% -*- coding: utf-8 -*- % !TEX program = xelatex \documentclass[chinese]{jnuexam} % 䏿–‡è¯•å· %\SetExamBoolFalse{answer} %䏿˜¾ç¤ºç”案 \SetExamOption{ binding = 2, % 装订线,1 ä»…ç©ºç™½è¯•å·æœ‰ï¼Œ2 试å·å’Œç”案都有 scratch = 1, % è‰ç¨¿çº¸æ•°é‡ï¼Œä»…ç©ºç™½è¯•å·æœ‰ï¼ŒA3 大å°ï¼ŒåŒé¢å°åˆ· seed = 19061116, % éšæœºæ•°ç§åï¼Œç”¨äºŽæ”¹å˜ B å·å°é¢˜çš„éšæœºé¡ºåº } \begin{document} \examtitle{ % 生æˆè¯•å·è¡¨å¤´ niandu = 2017--2018, xueqi = 2, kecheng = 大妿•°å¦, zhuanye = ç†å·¥å››å¦åˆ†, % å¯ä»¥ä¸ºç©ºç™½ jiaoshi = {å¼ ä¸‰ï¼ŒæŽå››ï¼ŒçŽ‹äº”}, % 教师姓å shijian = 2018~å¹´~06~月~28~æ—¥, bixiu = 1, % 1 为必修,0 为选修 bijuan = 1, % 1 为é—å·ï¼Œ0 ä¸ºå¼€å· shijuan = A, % A 或 B 或 C å· neizhao = 1, % 1 打勾,0 ä¸å‹¾ waizhao = 0, % 1 打勾,0 ä¸å‹¾ } \gradetable[total=4] % 生æˆè¯„分表 \exampart{填空题}[å…±~6~å°é¢˜ï¼Œæ¯å°é¢˜~3~分,共~18~分] \answertable[total=6,column=3,strut=3em] % 生æˆç”题æ :行高3em,总共6题,æ¯è¡Œ3题 \begin{question} 设常数$k>0$,函数$f(x)=\ln x-\frac{x}{\e}+k$在$(0,+\infty)$内零点的个数为 \fillout{$2$}. \end{question} \vfill \begin{question} 设$\va=(2,1,2)$,$\vb=(4,-1,10)$,$\vc=\vb-\lambda\va$,且$\va\bot\vc$,则$\lambda=$ \fillout{$3$}. \end{question} \vfill \begin{question} å·²çŸ¥äºŒé˜¶è¡Œåˆ—å¼ $\left|\begin{array}{cc} 1 & 2\\ - 3 & x \end{array}\right|=0$,则 $x=$ \fillout{$-6$}. \end{question} \vfill \begin{question} å‘é‡ç»„ $\alpha_1=(1,1,0), \alpha_2=(0,1,1), \alpha_3=(1,0,1)$, 则将å‘é‡ $\beta=(4, 5, 3)$ 表示为 $\alpha_1, \alpha_2, \alpha_3$ 的线性组åˆä¸º $\beta=$ \fillout{$3\alpha_1+2\alpha_2+\alpha_3$}. \end{question} \vfill \begin{question} å·²çŸ¥éšæœºå˜é‡$\xi$的期望和方差å„为$E\xi=3, D\xi=2$, 则$E\xi^2=$ \fillout{$11$}. \end{question} \vfill \begin{question} 已知$\xi$å’Œ$\eta$相互独立且$\xi\sim N(1,4), \eta\sim N(2,5)$,则$\xi-2\eta\sim$ \fillout{$N(-3,24)$}. \end{question} \vfill \newpage \exampart{å•选题}[å…±~6~å°é¢˜ï¼Œæ¯å°é¢˜~3~分,共~18~分] \answertable[total=6,column=6] % 生æˆç”题æ :默认行高,总共6题,æ¯è¡Œ6题 \begin{question} 在下列ç‰å¼ä¸ï¼Œæ£ç¡®çš„结果是\pickout{C} \begin{abcd} \item $\int f'(x)\dx=f(x)$ \item $\int \d f(x)=f(x)$ \item $\frac{\d}{\dx}\big(\int f(x)\dx\big)=f(x)$ \item $\d\big(\int f(x)\dx\big)=f(x)$ \end{abcd} \end{question} \bigskip \begin{question} å‡è®¾$F(x)$是连ç»å‡½æ•°$f(x)$的一个原函数,则必有\pickout{A} \begin{abcd} \item $F(x)$是å¶å‡½æ•° $\Leftrightarrow$ $f(x)$是奇函数 \item $F(x)$是奇函数 $\Leftrightarrow$ $f(x)$是å¶å‡½æ•° \item $F(x)$是周期函数 $\Leftrightarrow$ $f(x)$是周期函数 \item $F(x)$是å•调函数 $\Leftrightarrow$ $f(x)$是å•调函数 \end{abcd} \end{question} \bigskip \begin{question} 设矩阵 $A = \left(\begin{array}{ccc} 1 & 1 & 0\\ 1 & x & 0\\ 0 & 0 & 1 \end{array}\right)$ å…¶ä¸ä¸¤ä¸ªç‰¹å¾å€¼ä¸º $\lambda_1 = 1$ å’Œ $\lambda_2 = 2$,则 $x=$ \pickout{B} \begin{abcd} \item $2$ \item $1$ \item $0$ \item $-1$ \end{abcd} \end{question} \bigskip \begin{question} 二次型 $f = 4 x_1^2 - 2 x_1 x_2 + 6 x_2^2$ 对应的矩阵ç‰äºŽ \pickout{C} \begin{abcd} \item $\left(\begin{array}{cc} 4 & - 2\\ - 2 & 6 \end{array}\right)$ \item $\left(\begin{array}{cc} 2 & - 2\\ - 2 & 3 \end{array}\right)$ \item $\left(\begin{array}{cc} 4 & - 1\\ - 1 & 6 \end{array}\right)$ \item $\left(\begin{array}{cc} 2 & - 1\\ - 1 & 3 \end{array}\right)$ \end{abcd} \end{question} \bigskip \begin{question} 下列说法\CJKunderline{䏿£ç¡®}的是\pickout{B} \begin{abcd} \item 大数定律说明了大é‡ç›¸äº’独立且åŒåˆ†å¸ƒçš„éšæœºå˜é‡çš„å‡å€¼çš„稳定性 \item 大数定律说明大é‡ç›¸äº’独立且åŒåˆ†å¸ƒçš„éšæœºå˜é‡çš„å‡å€¼è¿‘ä¼¼äºŽæ£æ€åˆ†å¸ƒ \item ä¸å¿ƒæžé™å®šç†è¯´æ˜Žäº†å¤§é‡ç›¸äº’独立且åŒåˆ†å¸ƒçš„éšæœºå˜é‡çš„和的稳定性 \item ä¸å¿ƒæžé™å®šç†è¯´æ˜Žå¤§é‡ç›¸äº’独立且åŒåˆ†å¸ƒçš„éšæœºå˜é‡çš„å’Œè¿‘ä¼¼äºŽæ£æ€åˆ†å¸ƒ \end{abcd} \end{question} \bigskip \begin{question} 对总体$X$å’Œæ ·æœ¬$(X_1,\cdots,X_n)$的说法哪个是\CJKunderline{䏿£ç¡®}çš„\pickout{D} \begin{abcd} \item æ€»ä½“æ˜¯éšæœºå˜é‡ \item æ ·æœ¬æ˜¯$n$å…ƒéšæœºå˜é‡ \item $X_1, \cdots, X_n$相互独立 \item $X_1 = X_2 =\cdots = X_n$ \end{abcd} \end{question} \bigskip \newpage \exampart{计算题}[å…±~6~å°é¢˜ï¼Œæ¯å°é¢˜~8~分,共~48~分] \begin{question} 求ä¸å®šç§¯åˆ†$\displaystyle\int\e^{2x}\,(\tan x+1)^2\dx$。 \end{question} \smallskip \begin{solution} \everymath{\displaystyle}% åŽŸå¼ \? $=\int\e^{2x}\,\sec^2 x\dx+2\int\e^{2x}\,\tan x\dx$ \points{2} \+ $=\int\e^{2x}\,\d(\tan x)+ 2\int\e^{2x}\,\tan x\dx$ \points{4} \+ $=\e^{2x}\,\tan x - 2\int\e^{2x}\,\tan x\dx+ 2\int\e^{2x}\,\tan x\dx$ \points{6} \+ $=\e^{2x}\,\tan x + C$ \points{8} \end{solution} \vfill \begin{question} 求过点$A(1,2,-1), B(2,3,0),C(3,3,2)$ 的三角形$\triangle ABC$ çš„é¢ç§¯å’Œå®ƒä»¬ç¡®å®šçš„平颿–¹ç¨‹. \end{question} \smallskip \begin{solution} 由题设$\overrightarrow{AB}=(1,1,1),\overrightarrow{AC}=(2,1,3)$, \points{2} æ•…$\overrightarrow{AB}\times \overrightarrow{AC}=\begin{vmatrix} \vec{i}&\vec{j} &\vec{k}\\ 1&1&1\\ 2&1&3\\ \end{vmatrix}=(2,-1,-1)$, \points{4} 三角形$\triangle ABC$ çš„é¢ç§¯ä¸º$S_{\triangle ABC}=\frac{1}{2}\big|\overrightarrow{AB}\times \overrightarrow{AC}\big|=\frac{1}{2}\sqrt{6}.$ \points{6} 所求平é¢çš„æ–¹ç¨‹ä¸º$2(x-2)-(y-3)-z=0$, å³$2x-y-z-1=0$ \points{8} \end{solution} \vfill \newpage \begin{question} è®¡ç®—å››é˜¶è¡Œåˆ—å¼ $A = \left|\begin{array}{cccc} 0 & 1 & 2 & 3\\ 1 & 2 & 3 & 0\\ 2 & 3 & 0 & 1\\ 3 & 0 & 1 & 2 \end{array}\right|$ 的值. \end{question} \smallskip \begin{solution} $A \? = \left|\begin{array}{cccc} 0 & 1 & 2 & 3\\ 1 & 2 & 3 & 0\\ 2 & 3 & 0 & 1\\ 3 & 0 & 1 & 2 \end{array}\right| = \left|\begin{array}{cccc} 0 & 1 & 2 & 3\\ 1 & 2 & 3 & 0\\ 0 & - 1 & - 6 & 1\\ 0 & - 6 & - 8 & 2 \end{array}\right| = 1 \cdot (- 1)^{2 + 1} \left|\begin{array}{ccc} 1 & 2 & 3\\ - 1 & - 6 & 1\\ - 6 & - 8 & 2 \end{array}\right|$ \points{4} \+ $= -\left|\begin{array}{ccc} 1 & 2 & 3\\ 0 & - 4 & 4\\ 0 & 4 & 20 \end{array}\right| = - \left|\begin{array}{cc} - 4 & 4\\ 4 & 20 \end{array}\right| = -(-4\cdot20-4\cdot4) = 96$ \points{8} \end{solution} \vfill \begin{question} åˆ©ç”¨é…æ–¹æ³•,将二次型 $f = x_1^2 + 2 x_1 x_2 - 6 x_1 x_3 + 2 x_2^2 - 12 x_2 x_3 + 9 x^2_3$ åŒ–ä¸ºæ ‡å‡†å½¢ $f = d_1 y^2_1 + d_2 y^2_2 + d_3 y^2_3$ . \end{question} \smallskip \begin{solution} $f \? = x_1^2 + 2 x_1 x_2 - 6 x_1 x_3 + 2 x_2^2 - 12 x_2 x_3 + 9 x^2_3$ \par \+ $= x_1^2 + 2 x_1 (x_2 - 3 x_3) + (x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3 $ \par \+ $= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 6 x_2 x_3$ \points{3} \+ $= (x_1 + x_2 - 3 x_3)^2 + x_2^2 - 2 x_2 \cdot 3 x_3 + (3 x_3)^2 - 9x_3^2$ \par \+ $= (x_1 + x_2 - 3 x_3)^2 + (x_2 - 3 x_3)^2 - 9 x_3^2$ \points{6} 令$y_1 = x_1 + x_2 - 3 x_3, y_2 = x_2 - 3 x_3, y_3 = x_3$, \newline 则$f = y_1^2 + y_2^2 - 9y_3^2$ä¸ºæ ‡å‡†å½¢ï¼Ž\points{8} \end{solution} \vfill \newpage \begin{question} 设æ¯å‘炮弹命ä¸é£žæœºçš„æ¦‚率是0.2且相互独立,现在å‘å°„100å‘炮弹.\par (1) 用切è´è°¢å¤«ä¸ç‰å¼ä¼°è®¡å‘½ä¸æ•°ç›®$\xi$在10å‘到30å‘之间的概率.\par (2) 用ä¸å¿ƒæžé™å®šç†ä¼°è®¡å‘½ä¸æ•°ç›®$\xi$在10å‘到30å‘之间的概率. \end{question} \smallskip \begin{solution} $E\xi = n p = 100 \cdot 0.2 = 20, D\xi = n p q = 100 \cdot 0.2 \cdot 0.8 = 16$. \points{2} (1) $P (10 < \xi < 30) = P (|\xi - E\xi| < 10) \ge 1 - \frac{D\xi}{10^2} = 1 - \frac{16}{100} = 0.84$. \points{4} (2) $P (10 < \xi < 30) \? \approx \Phi_0\left(\frac{30 - 20}{\sqrt{16}}\right) - \Phi_0\left(\frac{10 - 20}{\sqrt{16}}\right)$ \points{6} \+ $= 2 \Phi_0(2.5) - 1 = 2 \cdot 0.9938 - 1 =0.9876$ \points{8} \end{solution} \vfill \begin{question} ä»Žæ£æ€æ€»ä½“$N(\mu,\sigma^2)$ä¸æŠ½å‡ºæ ·æœ¬å®¹é‡ä¸º16çš„æ ·æœ¬ï¼Œç®—å¾—å…¶å¹³å‡æ•°ä¸º3160ï¼Œæ ‡å‡†å·®ä¸º100. 试检验å‡è®¾$H_0:\mu=3140$æ˜¯å¦æˆç«‹($\alpha = 0.01$). \end{question} \smallskip \begin{solution} (1) 待检å‡è®¾ $H_0 : \mu = 3140$. \points{1} (2) 选å–ç»Ÿè®¡é‡ $T = \frac{\widebar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$. \points{3} (3) 查表得到 $t_{\alpha} = t_{\alpha} (n - 1) = t_{0.01} (15) =2.947$. \points{5} (4) 计算统计值 $t = \frac{\widebar{x} - \mu_0}{s/\sqrt{n}} =\frac{3160-3140}{100/4} = 0.8$.\points{7} (5) 由于 $| t | < t_{\alpha}$, æ•…æŽ¥å— $H_0$, å³å‡è®¾æˆç«‹. \points{8} \end{solution} \vfill \newpage \exampart{è¯æ˜Žé¢˜}[å…±~2~å°é¢˜ï¼Œæ¯å°é¢˜~8~分,共~16~分] \SetExamTranslation{solution-Solution=è¯} % 将“解â€å—改为“è¯â€å— \begin{question} 设数列$\{x_n\}$满足$x_1=\sqrt2$,$x_{n+1}=\sqrt{2+x_n}$ï¼Žè¯æ˜Žæ•°åˆ—收敛,并求出æžé™ï¼Ž \end{question} \smallskip \begin{solution} (1) 事实上,由于$x_1<2$,且$x_k<2$æ—¶ $$x_{k+1}=\sqrt{2+x_k}<\sqrt{2+2}=2,$$ 由数å¦å½’纳法知对所有$n$都有$x_n<2$ï¼Œå³æ•°åˆ—有上界. åˆç”±äºŽ $$\frac{x_{n+1}}{x_n}=\sqrt{\frac{2}{x_n^2}+\frac{1}{x_n}}>\sqrt{\frac{2}{2^2}+\frac{1}{2}}=1,$$ 所以数列å•è°ƒå¢žåŠ ï¼Žç”±æžé™å˜åœ¨å‡†åˆ™II,数列必定收敛.\points{4} (2) 设数列的æžé™ä¸º$A$,对递推公å¼ä¸¤è¾¹åŒæ—¶å–æžé™å¾—到 $$A=\sqrt{2+A}.$$ 解得$A=2$ï¼Œå³æ•°åˆ—$\{x_n\}$çš„æžé™ä¸º$2$.\points{8} \end{solution} \vfill \begin{question} 设事件$A$å’Œ$B$ç›¸äº’ç‹¬ç«‹ï¼Œè¯æ˜Ž$A$å’Œ$\widebar{B}$相互独立. \end{question} \smallskip \begin{solution} \? $P (A \cdot \widebar{B}) = P (A - B) = P (A - A B)$ \points{2} \< $= P (A) - P (A B) = P (A) - P (A) P (B)$ \points{4} \< $= P (A) (1 - P (B)) = P (A) P (\widebar{B})$ \points{6} 所以$A$å’Œ$\widebar{B}$相互独立.\points{8} \end{solution} \vfill \examdata{一些å¯èƒ½ç”¨åˆ°çš„æ•°æ®} %é™„å½•æ•°æ® \begin{tabularx}{\linewidth}{*{4}{>{$}X<{$}}} \hline \Phi_0(0.5)=0.6915 & \Phi_0(1)=0.8413 & \Phi_0(2)=0.9773 & \Phi_0(2.5)=0.9938 \\ t_{0.01}(8)=3.355 & t_{0.01}(9)=3.250 & t_{0.01}(15)=2.947 & t_{0.01}(16)=2.921 \\ \chi_{0.005}^2(8)=22.0 & \chi_{0.005}^2(9)=23.6 & \chi_{0.005}^2(15)=32.8 & \chi_{0.005}^2(16)=34.3 \\ \chi_{0.995}^2(8)=1.34 & \chi_{0.995}^2(9)=1.73 & \chi_{0.995}^2(15)=4.60 & \chi_{0.995}^2(16)=5.14 \\ \hline \end{tabularx} \end{document}