%	\iffalse meta-comment
%
%	Copyright (C) 2020 by Brian W. Mulligan <bwmulligan@astronaos.com>
% -----------------------------------------------------------
%
% This file may be distributed and/or modified under the conditions of
% the LaTeX Project Public License, either version 1.3c of this license
% or (at your option) any later version. The latest version of this
% license is in:
%
% http://www.latex-project.org/lppl.txt
%
% and version 1.3c or later is part of all distributions of LaTeX
% version 2006/05/20 or later.
%
% \fi
%
% \iffalse
%<*driver>
\ProvidesFile{physconst.dtx}
%</driver>
%<package>\NeedsTeXFormat{LaTeX2e}[1994/06/01]
%<package> \ProvidesPackage{physconst}
%<*package>
 [2021/03/26 v1.1.2 physconst package]
%</package>
%<package>\RequirePackage{physunits}
%<package>\DeclareOption{shortconst}{ \typeout{physconst: reduced precision}%
%<package> \DeclareRobustCommand{\shortconst}{1} }
%<package>\DeclareOption{cgs}{ \typeout{physconst: using cgs instead of SI}%
%<package> \DeclareRobustCommand{\cgsunits}{1} }
%<package>\DeclareOption{unseparatedecimals}{ \typeout{physconst:%
%<package> long decimals are printed as x.xxxxxx instead of x.xxx~xxx}%
%<package> \DeclareRobustCommand{\unseparatedecimals}{1} }
%<package>\ProcessOptions\relax
%<*driver>
\documentclass{ltxdoc}
\usepackage{xcolor}
\usepackage{mdframed}
\usepackage{physconst}
\usepackage{imakeidx}
\makeindex[columns=2]
\usepackage[backref]{hyperref}
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\OnlyDescription
\begin{document}
\DocInput{physconst.dtx}
\PrintChanges
\PrintIndex
\end{document}
%</driver>
% \fi
%
% \CharacterTable
%  {Upper-case    \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%   Lower-case    \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%   Digits        \0\1\2\3\4\5\6\7\8\9
%   Exclamation   \!     Double quote  \"     Hash (number) \#
%   Dollar        \$     Percent       \%     Ampersand     \&
%   Acute accent  \'     Left paren    \(     Right paren   \)
%   Asterisk      \*     Plus          \+     Comma         \,
%   Minus         \-     Point         \.     Solidus       \/
%   Colon         \:     Semicolon     \;     Less than     \<
%   Equals        \=     Greater than  \>     Question mark \?
%   Commercial at \@     Left bracket  \[     Backslash     \\
%   Right bracket \]     Circumflex    \^     Underscore    \_
%   Grave accent  \`     Left brace    \{     Vertical bar  \|
%   Right brace   \}     Tilde         \~}
%
% \changes{v1.0.0}{2020/01/25}{Initial version.}
% \changes{v1.0.1}{2020/01/25}{Add options section and fix formatting.}
% \changes{v1.0.2}{2020/01/26}{External changes for distribution.}
% \changes{v1.1.0}{2020/02/03}{Add Earth, Sun, Jupiter mass and radius, fix Coulomb constant.}
% \changes{v1.1.1}{2020/03/26}{Fixed bug that shortconst was having the opposite effect than intended. Additions and corrections to documentation.}
% \changes{v1.1.2}{2021/03/26}{Corrected the value for Avogadro's Number. Prior version had a typo.}
%
% \GetFileInfo{physconst.dtx}
% \DeclareRobustCommand{\fileversion}{v1.1.2}
% \DeclareRobustCommand{\filedate}{2021/03/26}
%
% \DoNotIndex{\DeclareRobustCommand,\newenvironment,\DeclareRobustCommand%
% ,\left,\right,\textbf,\mathrm}
%
% \title{The \textsf{physconst} package\thanks{This document corresponds to %
% \textsf{physconst}~\fileversion, dated \filedate.}}
% \author{Brian W. Mulligan \\ \texttt{bwmulligan@astronaos.com}}
%
% \maketitle
% \setlength{\parindent}{0em}
% \setlength{\parskip}{1em}
%
% \section{Introduction}
% \changes{v1.1.1}{2020/03/26}{Corrected source of astronomical constants within the introduction.}
%
%
% This package consists of several macros that are shorthand for a variety of
% physical constants, e.g. the speed of light.
% The package developed out of physics and astronomy classes that I have
% taught and wanted to ensure that I had correct values for each constant
% and did not wish to retype them every time I use them.
% The constants can be used in two forms, the most accurate available values,
% or versions that are rounded to 3 significant digits for use in typical
% classroom settings, homework assignments, etc.
%
% Most constants are taken from CODATA 2018, with the exception of the
% astronomical objects, whose values are taken from International Astronomical
% Union specified values. Constants that are derived from true constants, e.g.
% the fine structure constant, have been calculated using the accepted values
% of the fundamental constants.
%
%\subsection{Options}
%
% There are three options available: |shortconst|, |cgs|, and 
% |unseparatedecimals|.
% They can be invoked when the package is declared, e.g.\\ 
% |\usepackage[shortconst]{physconst}|.
%
% |shortconst| will reduce the precision to 3 digits for all constants. This
% is intended when you don't want to have the details of the constants, just
% the general value (e.g. $1.60\times10^{-19}\Coulomb$ instead of 
% $1.602\,176\,634\times10^{-19}\Coulomb$).
%
% |cgs| will provide all constants in cgs, i.e. the units used in astronomy.
%
% |unseparatedecimals| is for situations when you don't want spaces in the
% decimal portion of full precision constants. E.g. the elementary charge 
% would appear as $1.602176634\times10^{-19}\Coulomb$ instead of
% $1.602\,176\,634\times10^{-19}\Coulomb$. (notice the gaps between digits
% in the latter.)
%
% \section{Prerequisites / Dependencies}
% \changes{v1.1.1}{2020/03/26}{Added section for dependencies.}
%
% \subsection{General}
% This package requires the \verb|physunits| package.%
% \subsection{Generating Documentation}
% \verb|hyperref|, \verb|xcolor|, \verb|mdframed|, and 
% \verb|imakeidx| packages are required to generate the documentation
% (this file) for this package.
%
% \section{Acknowledgements}
% \changes{v1.1.1}{2020/03/26}{Added section for acknowledgements.}
%
% The author would like to thank Dr. Florian Leupold for catching a glaring
% error in the shortconst option, and M. Kloske for catching a typo in
% Avogadro's Number.
%
% \section{Bug Reporting}
% \changes{v1.1.1}{2020/03/26}{Added section for bug reporting.}
%
% Please report bugs or issues in this package using github, at
% \url{https://github.com/astrobit/physconst/issues}.%
%
%\section{Macros}
%
% \changes{v1.1.1}{2020/03/26}{Upgraded macros to a section instead of a subsection.}
%
%\subsection{Normal Macros}
%
% The normal macros are the ones that you will typically use, whose values are
% determined by the choice of options when the package is invoked.
%
% \subsubsection{Naming Convention}
%
% Each macro starts with a lower case `k' to indicate that it is a constant.
% If the macro is of special units, e.g. eV, those units will be specified next.
% If the macro is part of a fundamental unit group, it then gets the name of the
% group, e.g. Mass, Charge, etc.
% Finally is the details or name of the constants, e.g. Proton, Planck, etc.
%
%\subsubsection{Mass}
%
%
%\index{Mass|usage}
%
% \DescribeMacro{\kMassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Electron|usage}
% |\kMassElectron| is the mass of an electron.
%
% \DescribeMacro{\keVMassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Electron>in eV|usage}
% |\keVMassElectron| is the mass of an electron.
%
% \DescribeMacro{\kMassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Electron|usage}
% |\kMassElectronNumeric| is the numeric value of
%  the mass of an electron.
%
% \DescribeMacro{\keVMassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Electron>in eV|usage}
% |\keVMassElectronNumeric| is the numeric value of
%  the mass of an electron.
%
% \DescribeMacro{\kMassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Proton|usage}
% |\kMassProton| is the mass of a proton.
%
% \DescribeMacro{\keVMassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Proton>in eV|usage}
% |\keVMassProton| is the mass of a proton.
%
% \DescribeMacro{\kMassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Proton|usage}
% |\kMassProtonNumeric| is the numeric value of
%  the mass of a proton.
%
% \DescribeMacro{\keVMassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Proton>in eV|usage}
% |\keVMassProtonNumeric| is the numeric value of
%  the mass of a proton.
%
% \DescribeMacro{\kMassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Hydrogen atom|usage}
% |\kMassHydrogen| is the mass of a neutral hydrogen atom.
%
% \DescribeMacro{\keVMassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Hydrogen atom>in eV|usage}
% |\keVMassHydrogen| is the mass of a neutral hydrogen atom.
%
% \DescribeMacro{\kMassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Hydrogen atom|usage}
% |\kMassHydrogenNumeric| is the numeric value of
%  the mass of a neutral hydrogen atom.
%
% \DescribeMacro{\keVMassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>Hydrogen atom>in eV|usage}
% |\keVMassHydrogenNumeric| is the numeric value of
%  the mass of a neutral hydrogen atom.
%
% \DescribeMacro{\kMassSun}
% \index{Mass>Sun|usage}
% |\kMassSun| is the mass of the Sun.
%
% \DescribeMacro{\kMassSunNumeric}
% \index{Mass>Sun|usage}
% |\kMassSunNumeric| is the numeric value of
%  the mass of the Sun.
%
% \DescribeMacro{\kMassEarth}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\kMassEarth| is the mass of the Earth.
%
% \DescribeMacro{\kMassEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\kMassEarthNumeric| is the numeric value of
%  the mass of the Earth.
%
% \DescribeMacro{\kMassJupiter}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\kMassJupiter| is the mass of Jupiter.
%
% \DescribeMacro{\kMassJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\kMassJupiterNumeric| is the numeric value of
%  the mass of Jupiter.
%
% \DescribeMacro{\kMassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>amu|usage}
% |\kMassAMU| is the mass of an atomic mass unit.
%
% \DescribeMacro{\keVMassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>amu>in eV|usage}
% |\keVMassAMU| is the mass of an atomic mass unit.
%
% \DescribeMacro{\kMassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>amu|usage}
% |\kMassAMUNumeric| is the numeric value of
%  the mass of an atomic mass unit.
%
% \DescribeMacro{\keVMassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% \index{Mass>amu>in eV|usage}
% |\keVMassAMUNumeric| is the numeric value of
%  the mass of an atomic mass unit.
%
%
%\subsubsection{Charge}
%
%
%\index{Charge|usage}
%
% \DescribeMacro{\kChargeFundamental}
% \index{Charge>Elementary|usage}
% |\kChargeFundamental| is the fundamental charge.
%
% \DescribeMacro{\kChargeFundamentalNumeric}
% \index{Charge>Elementary|usage}
% |\kChargeFundamentalNumeric| is the numeric value of
%  the fundamental charge.
%
% \DescribeMacro{\kChargeElectron}
% \index{Charge>Electron|usage}
% |\kChargeElectron| is the charge of an electron.
%
% \DescribeMacro{\kChargeElectronNumeric}
% \index{Charge>Electron|usage}
% |\kChargeElectronNumeric| is the numeric value of
%  the charge of an electron.
%
% \DescribeMacro{\kChargeProton}
% \index{Charge>Proton|usage}
% |\kChargeProton| is the charge of a proton.
%
% \DescribeMacro{\kChargeProtonNumeric}
% \index{Charge>Proton|usage}
% |\kChargeProtonNumeric| is the numeric value of
%  the charge of a proton.
%
%
%\subsubsection{Distances and Lengths}
%
%
%\index{Distances and Lengths|usage}
%
% \DescribeMacro{\kRadiusBohr}
% \index{Distances and Lengths>Bohr Radius|usage}
% |\kRadiusBohr| is Bohr radius of an atom.
%
% \DescribeMacro{\kRadiusBohrNumeric}
% \index{Distances and Lengths>Bohr Radius|usage}
% |\kRadiusBohrNumeric| is the numeric value of
%  Bohr radius of an atom.
%
% \DescribeMacro{\kAstronomicalUnit}
% \index{Distances and Lengths>Astronomical Unit|usage}
% |\kAstronomicalUnit| is the astronomical unit (the average distance between
% the Earth and the Sun).
%
% \DescribeMacro{\kAstronomicalUnitNumeric}
% \index{Distances and Lengths>Astronomical Unit|usage}
% |\kAstronomicalUnitNumeric| is the numeric value of
%  the astronomical unit (the average distance between the
% Earth and the Sun).
%
% \DescribeMacro{\kParsec}
% \index{Distances and Lengths>Parsec|usage}
% |\kParsec| is the length of a parsec ($\frac{648000\au}{\pi}$).
%
% \DescribeMacro{\kParsecNumeric}
% \index{Distances and Lengths>Parsec|usage}
% |\kParsecNumeric| is the numeric value of
%  the length of a parsec ($\frac{648000\au}{\pi}$).
%
% \DescribeMacro{\kRadiusSun}
% \index{Distances and Lengths>Solar Radius|usage}
% |\kRadiusSun| is the mean radius of the Sun.
%
% \DescribeMacro{\kRadiusSunNumeric}
% \index{Distances and Lengths>Solar Radius|usage}
% |\kRadiusSunNumeric| is the numeric value of
%  the mean radius of the Sun.
%
% \DescribeMacro{\kRadiusEarth}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\kRadiusEarth| is the mean radius of the Earth.
%
% \DescribeMacro{\kRadiusEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\kRadiusEarthNumeric| is the numeric value of
%  the mean radius of the Earth.
%
% \DescribeMacro{\kRadiusJupiter}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\kRadiusJupiter| is the mean radius of Jupiter.
%
% \DescribeMacro{\kRadiusJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\kRadiusJupiterNumeric| is the numeric value of
%  the mean radius of Jupiter.
%
%
%\subsubsection{Energy, Power, and Luminosity}
%
%
%\index{Energy, Power, and Luminosity|usage}
%
% \DescribeMacro{\kRydberg}
% \index{Energy, Power, and Luminosity>Rydberg|usage}
% |\kRydberg| is the Rydberg energy (the binding energy of Hydrogen).
%
% \DescribeMacro{\keVRydberg}
% \index{Energy, Power, and Luminosity>Rydberg>in eV|usage}
% |\keVRydberg| is the Rydberg energy (the binding energy of Hydrogen).
%
% \DescribeMacro{\kRydbergNumeric}
% \index{Energy, Power, and Luminosity>Rydberg|usage}
% |\kRydbergNumeric| is the numeric value of
%  the Rydberg energy (the binding energy of Hydrogen).
%
% \DescribeMacro{\keVRydbergNumeric}
% \index{Energy, Power, and Luminosity>Rydberg>in eV|usage}
% |\keVRydbergNumeric| is the numeric value of
%  the Rydberg energy (the binding energy of Hydrogen).
%
% \DescribeMacro{\kLuminositySun}
% \index{Energy, Power, and Luminosity>Solar Luminosity|usage}
% |\kLuminositySun| is the luminosity of the Sun.
%
% \DescribeMacro{\kLuminositySunNumeric}
% \index{Energy, Power, and Luminosity>Solar Luminosity|usage}
% |\kLuminositySunNumeric| is the numeric value of
%  the luminosity of the Sun.
%
%
%\subsubsection{Pressure}
%
%
%\index{Pressure|usage}
%
% \DescribeMacro{\kPressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% \index{Pressure>Standard Atmosphere|usage}
% |\kPressureAtmosphere| is the standard atmospheric pressure.
%
% \DescribeMacro{\kPressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% \index{Pressure>Standard Atmosphere|usage}
% |\kPressureAtmosphereNumeric| is the numeric value of
%  the standard atmospheric pressure.
%
% \DescribeMacro{\kPressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% \index{Pressure>Standard Pressure|usage}
% |\kPressureStandard| is the standard atmospheric pressure.
%
% \DescribeMacro{\kPressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% \index{Pressure>Standard Pressure|usage}
% |\kPressureStandardNumeric| is the numeric value of
%  the standard atmospheric pressure.
%
%
%\subsubsection{Velocity, Speed and Acceleration}
%
%
%\index{Velocity, Speed and Acceleration|usage}
%
% \DescribeMacro{\kSpeedLight}
% \index{Velocity, Speed and Acceleration>Speed of Light|usage}
% |\kSpeedLight| is the speed of light.
%
% \DescribeMacro{\kSpeedLightNumeric}
% \index{Velocity, Speed and Acceleration>Speed of Light|usage}
% |\kSpeedLightNumeric| is the numeric value of
%  the speed of light.
%
% \DescribeMacro{\kAccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% \index{Velocity, Speed and Acceleration>Acceleration due to Gravity|usage}
% |\kAccelGravity| is the accelertion due to gravity at the surface of the
% Earth.
%
% \DescribeMacro{\kAccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% \index{Velocity, Speed and Acceleration>Acceleration due to Gravity|usage}
% |\kAccelGravityNumeric| is the numeric value of
%  the accelertion due to gravity at the surface of the Earth.
%
%
%\subsubsection{Other Constants}
%
%
%\index{Other Constants|usage}
%
% \DescribeMacro{\kCoulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Coulomb Constant|usage}
% |\kCoulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$).
%
% \DescribeMacro{\kCoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Coulomb Constant|usage}
% |\kCoulombNumeric| is the numeric value of
%  the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$).
%
% \DescribeMacro{\kVacuumPermittivity}
% \index{Other Constants>Vacuum Permittivity|usage}
% |\kVacuumPermittivity| is the electric permittivity of the vacuum.
%
% \DescribeMacro{\kVacuumPermittivityNumeric}
% \index{Other Constants>Vacuum Permittivity|usage}
% |\kVacuumPermittivityNumeric| is the numeric value of
%  the electric permittivity of the vacuum.
%
% \DescribeMacro{\kVacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% \index{Other Constants>Vacuum Permeability|usage}
% |\kVacuumPermeability| is the magnetic permeability of the vacuum.
%
% \DescribeMacro{\kVacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% \index{Other Constants>Vacuum Permeability|usage}
% |\kVacuumPermeabilityNumeric| is the numeric value of
%  the magnetic permeability of the vacuum.
%
% \DescribeMacro{\kVacuumImpedance}
% \index{Other Constants>Vacuum Impedance|usage}
% |\kVacuumImpedance| is the characteristic impedance of the vacuum.
%
% \DescribeMacro{\kVacuumImpedanceNumeric}
% \index{Other Constants>Vacuum Impedance|usage}
% |\kVacuumImpedanceNumeric| is the numeric value of
%  the characteristic impedance of the vacuum.
%
% \DescribeMacro{\kBoltzmann}
% \index{Other Constants>Boltzmann|usage}
% |\kBoltzmann| is the Boltzmann constant.
%
% \DescribeMacro{\keVBoltzmann}
% \index{Other Constants>Boltzmann>in eV|usage}
% |\keVBoltzmann| is the Boltzmann constant.
%
% \DescribeMacro{\kBoltzmannNumeric}
% \index{Other Constants>Boltzmann|usage}
% |\kBoltzmannNumeric| is the numeric value of
%  the Boltzmann constant.
%
% \DescribeMacro{\keVBoltzmannNumeric}
% \index{Other Constants>Boltzmann>in eV|usage}
% |\keVBoltzmannNumeric| is the numeric value of
%  the Boltzmann constant.
%
% \DescribeMacro{\kPlanck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Planck|usage}
% |\kPlanck| is the Planck constant.
%
% \DescribeMacro{\keVPlanck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Planck>in eV|usage}
% |\keVPlanck| is the Planck constant.
%
% \DescribeMacro{\kPlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Planck|usage}
% |\kPlanckNumeric| is the numeric value of
%  the Planck constant.
%
% \DescribeMacro{\keVPlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Planck>in eV|usage}
% |\keVPlanckNumeric| is the numeric value of
%  the Planck constant.
%
% \DescribeMacro{\kPlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Reduced Planck|usage}
% |\kPlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$.
%
% \DescribeMacro{\keVPlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Reduced Planck>in eV|usage}
% |\keVPlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$.
%
% \DescribeMacro{\kPlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Reduced Planck|usage}
% |\kPlanckReducedNumeric| is the numeric value of
%  the Reduced Planck constant $\left(\frac{h}{2\pi}\right)$.
%
% \DescribeMacro{\keVPlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Reduced Planck>in eV|usage}
% |\keVPlanckReducedNumeric| is the numeric value of
%  the Reduced Planck constant $\left(\frac{h}{2\pi}\right)$.
%
% \DescribeMacro{\kGravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% \index{Other Constants>Newton's Gravitational Constant|usage}
% |\kGravity| is Newton's gravitational constant.
%
% \DescribeMacro{\kGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% \index{Other Constants>Newton's Gravitational Constant|usage}
% |\kGravityNumeric| is the numeric value of
%  Newton's gravitational constant.
%
% \DescribeMacro{\kStefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Stefan-Boltzmann|usage}
% |\kStefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$.
%
% \DescribeMacro{\kStefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \index{Other Constants>Stefan-Boltzmann|usage}
% |\kStefanBoltzmannNumeric| is the numeric value of
%  the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$.
%
% \DescribeMacro{\kRadiation}
% \index{Other Constants>Radiation|usage}
% |\kRadiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$.
%
% \DescribeMacro{\kRadiationNumeric}
% \index{Other Constants>Radiation|usage}
% |\kRadiationNumeric| is the numeric value of
%  the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$.
%
% \DescribeMacro{\kFineStructure}
% \index{Other Constants>Fine Structure|usage}
% |\kFineStructure| is the fine structure constant.
%
% \DescribeMacro{\kFineStructureNumeric}
% \index{Other Constants>Fine Structure|usage}
% |\kFineStructureNumeric| is the numeric value of
%  the fine structure constant.
%
% \DescribeMacro{\kFineStructureReciprocal}
% \index{Other Constants>Fine Structure>Reciprocal|usage}
% |\kFineStructureReciprocal| is the reciprocal of the fine structure constant.
%
% \DescribeMacro{\kFineStructureReciprocalNumeric}
% \index{Other Constants>Fine Structure>Reciprocal|usage}
% |\kFineStructureReciprocalNumeric| is the numeric value of
%  the reciprocal of the fine structure constant.
%
% \DescribeMacro{\kAvogadro}
% \index{Other Constants>Avogadro's Number|usage}
% |\kAvogadro| is Avogadro's Number (the number of particles in a mole).
%
% \DescribeMacro{\kAvogadroNumeric}
% \index{Other Constants>Avogadro's Number|usage}
% |\kAvogadroNumeric| is the numeric value of
%  Avogadro's Number (the number of particles in a mole).
%
%
%\subsection{Detailed Macros}
%
% These macros are used to access the constants with specific units and 
% precision. They require use of \textbackslash makeatletter and
% \textbackslash makeatother in order to be used. They are used internally
% by physconst to define the macros that are normally used (those described
% above.
%
% \subsubsection{NamingConvention}
% The detailed macros are named like \k@units@precision@name. The units
% specify which units the constant is in (SI, cgs, or eV). For constants that
% are independent of the unit system (e.g. Avogadro's number and the fine
% structure constant), the units are omitted. The precision is either `short'
% or `full' to indicate how much precision is included in the number. All short
% precision constants have 3 significant figures. The precision of full
% precision constants vary by their definition and/or inputs. Finally, the
% name or description of the constant appears.
%
%\subsubsection{Mass}
%
% \DescribeMacro{\k@SI@short@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassElectron| is the mass of an electron in SI units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassElectron| is the mass of an electron in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassElectron| is the mass of an electron in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassElectron| is the mass of an electron in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassElectron| is the mass of an electron in eV with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@MassElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@MassElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassElectron| is the mass of an electron in eV with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@MassElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@MassElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassElectronNumeric| is a mathematical value of
%  the mass of an electron in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassElectronNumeric| is a mathematical value of
%  the mass of an electron in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassElectronNumeric| is a mathematical value of
%  the mass of an electron in cgs units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassElectronNumeric| is a mathematical value of
%  the mass of an electron in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassElectronNumeric| is a mathematical value of
%  the mass of an electron in eV with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@MassElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@MassElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassElectronNumeric| is a mathematical value of
%  the mass of an electron in eV with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@MassElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@MassElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassProton| is the mass of a proton in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassProton| is the mass of a proton in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassProton| is the mass of a proton in cgs units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassProton| is the mass of a proton in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassProton| is the mass of a proton in eV with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@MassProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@MassProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassProton| is the mass of a proton in eV with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@MassProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@MassProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassProtonNumeric| is a mathematical value of
%  the mass of a proton in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassProtonNumeric| is a mathematical value of
%  the mass of a proton in SI units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassProtonNumeric| is a mathematical value of
%  the mass of a proton in cgs units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassProtonNumeric| is a mathematical value of
%  the mass of a proton in cgs units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassProtonNumeric| is a mathematical value of
%  the mass of a proton in eV with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@MassProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@MassProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassProtonNumeric| is a mathematical value of
%  the mass of a proton in eV with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@MassProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@MassProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassHydrogen| is the mass of a neutral hydrogen atom in SI units
% with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassHydrogen\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassHydrogen}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassHydrogen| is the mass of a neutral hydrogen atom in SI units
% with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassHydrogen\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassHydrogen}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassHydrogen| is the mass of a neutral hydrogen atom in cgs
% units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassHydrogen\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassHydrogen}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassHydrogen| is the mass of a neutral hydrogen atom in cgs
% units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassHydrogen\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassHydrogen}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassHydrogen| is the mass of a neutral hydrogen atom in eV with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@MassHydrogen\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@MassHydrogen}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassHydrogen| is the mass of a neutral hydrogen atom in eV with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@MassHydrogen\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@MassHydrogen}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassHydrogenNumeric| is a mathematical value of
%  the mass of a neutral hydrogen atom in SI units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassHydrogenNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassHydrogenNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassHydrogenNumeric| is a mathematical value of
%  the mass of a neutral hydrogen atom in SI units with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassHydrogenNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassHydrogenNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassHydrogenNumeric| is a mathematical value of
%  the mass of a neutral hydrogen atom in cgs units
% with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassHydrogenNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassHydrogenNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassHydrogenNumeric| is a mathematical value of
%  the mass of a neutral hydrogen atom in cgs units
% with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassHydrogenNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassHydrogenNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassHydrogenNumeric| is a mathematical value of
%  the mass of a neutral hydrogen atom in eV with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@MassHydrogenNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@MassHydrogenNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassHydrogenNumeric| is a mathematical value of
%  the mass of a neutral hydrogen atom in eV with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@MassHydrogenNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@MassHydrogenNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassSun}
% |\k@SI@short@MassSun| is the mass of the Sun in SI units with reduced
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassSun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassSun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassSun}
% |\k@SI@full@MassSun| is the mass of the Sun in SI units with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassSun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassSun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassSun}
% |\k@cgs@short@MassSun| is the mass of the Sun in cgs units with reduced
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassSun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassSun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassSun}
% |\k@cgs@full@MassSun| is the mass of the Sun in cgs units with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassSun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassSun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassSunNumeric}
% |\k@SI@short@MassSunNumeric| is a mathematical value of
%  the mass of the Sun in SI units with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassSunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassSunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassSunNumeric}
% |\k@SI@full@MassSunNumeric| is a mathematical value of
%  the mass of the Sun in SI units with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassSunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassSunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassSunNumeric}
% |\k@cgs@short@MassSunNumeric| is a mathematical value of
%  the mass of the Sun in cgs units with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassSunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassSunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassSunNumeric}
% |\k@cgs@full@MassSunNumeric| is a mathematical value of
%  the mass of the Sun in cgs units with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassSunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassSunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@MassEarth}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\k@short@MassEarth| is the mass of the Earth with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@MassEarth\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@MassEarth}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@MassEarth}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\k@full@MassEarth| is the mass of the Earth with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@MassEarth\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@MassEarth}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@MassEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\k@short@MassEarthNumeric| is a mathematical value of
%  the mass of the Earth with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@MassEarthNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@MassEarthNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@MassEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\k@full@MassEarthNumeric| is a mathematical value of
%  the mass of the Earth with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@MassEarthNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@MassEarthNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@MassJupiter}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\k@short@MassJupiter| is the mass of Jupiter with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@MassJupiter\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@MassJupiter}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@MassJupiter}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\k@full@MassJupiter| is the mass of Jupiter with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@MassJupiter\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@MassJupiter}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@MassJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\k@short@MassJupiterNumeric| is a mathematical value of
%  the mass of Jupiter with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@MassJupiterNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@MassJupiterNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@MassJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\k@full@MassJupiterNumeric| is a mathematical value of
%  the mass of Jupiter with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@MassJupiterNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@MassJupiterNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassAMU| is the mass of an atomic mass unit in SI units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassAMU\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassAMU}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassAMU| is the mass of an atomic mass unit in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassAMU\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassAMU}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassAMU| is the mass of an atomic mass unit in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassAMU\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassAMU}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassAMU| is the mass of an atomic mass unit in cgs units with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassAMU\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassAMU}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassAMU| is the mass of an atomic mass unit in eV with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@MassAMU\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@MassAMU}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassAMU| is the mass of an atomic mass unit in eV with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@MassAMU\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@MassAMU}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassAMUNumeric| is a mathematical value of
%  the mass of an atomic mass unit in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@MassAMUNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@MassAMUNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassAMUNumeric| is a mathematical value of
%  the mass of an atomic mass unit in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@MassAMUNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@MassAMUNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassAMUNumeric| is a mathematical value of
%  the mass of an atomic mass unit in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@MassAMUNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@MassAMUNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassAMUNumeric| is a mathematical value of
%  the mass of an atomic mass unit in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@MassAMUNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@MassAMUNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassAMUNumeric| is a mathematical value of
%  the mass of an atomic mass unit in eV with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@MassAMUNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@MassAMUNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassAMUNumeric| is a mathematical value of
%  the mass of an atomic mass unit in eV with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@MassAMUNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@MassAMUNumeric}\end{mdframed}
% \makeatother
%
%
%\subsubsection{Charge}
%
% \DescribeMacro{\k@SI@short@ChargeFundamental}
% |\k@SI@short@ChargeFundamental| is the fundamental charge in SI units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@ChargeFundamental\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@ChargeFundamental}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@ChargeFundamental}
% |\k@SI@full@ChargeFundamental| is the fundamental charge in SI units with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@ChargeFundamental\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@ChargeFundamental}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@ChargeFundamental}
% |\k@cgs@short@ChargeFundamental| is the fundamental charge in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@ChargeFundamental\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@ChargeFundamental}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@ChargeFundamental}
% |\k@cgs@full@ChargeFundamental| is the fundamental charge in cgs units with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@ChargeFundamental\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@ChargeFundamental}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@ChargeFundamentalNumeric}
% |\k@SI@short@ChargeFundamentalNumeric| is a mathematical value of
%  the fundamental charge in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@ChargeFundamentalNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@ChargeFundamentalNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@ChargeFundamentalNumeric}
% |\k@SI@full@ChargeFundamentalNumeric| is a mathematical value of
%  the fundamental charge in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@ChargeFundamentalNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@ChargeFundamentalNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@ChargeFundamentalNumeric}
% |\k@cgs@short@ChargeFundamentalNumeric| is a mathematical value of
%  the fundamental charge in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@ChargeFundamentalNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@ChargeFundamentalNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@ChargeFundamentalNumeric}
% |\k@cgs@full@ChargeFundamentalNumeric| is a mathematical value of
%  the fundamental charge in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@ChargeFundamentalNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@ChargeFundamentalNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@ChargeElectron}
% |\k@SI@short@ChargeElectron| is the charge of an electron in SI units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@ChargeElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@ChargeElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@ChargeElectron}
% |\k@SI@full@ChargeElectron| is the charge of an electron in SI units with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@ChargeElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@ChargeElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@ChargeElectron}
% |\k@cgs@short@ChargeElectron| is the charge of an electron in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@ChargeElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@ChargeElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@ChargeElectron}
% |\k@cgs@full@ChargeElectron| is the charge of an electron in cgs units with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@ChargeElectron\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@ChargeElectron}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@ChargeElectronNumeric}
% |\k@SI@short@ChargeElectronNumeric| is a mathematical value of
%  the charge of an electron in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@ChargeElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@ChargeElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@ChargeElectronNumeric}
% |\k@SI@full@ChargeElectronNumeric| is a mathematical value of
%  the charge of an electron in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@ChargeElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@ChargeElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@ChargeElectronNumeric}
% |\k@cgs@short@ChargeElectronNumeric| is a mathematical value of
%  the charge of an electron in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@ChargeElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@ChargeElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@ChargeElectronNumeric}
% |\k@cgs@full@ChargeElectronNumeric| is a mathematical value of
%  the charge of an electron in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@ChargeElectronNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@ChargeElectronNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@ChargeProton}
% |\k@SI@short@ChargeProton| is the charge of a proton in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@ChargeProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@ChargeProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@ChargeProton}
% |\k@SI@full@ChargeProton| is the charge of a proton in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@ChargeProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@ChargeProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@ChargeProton}
% |\k@cgs@short@ChargeProton| is the charge of a proton in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@ChargeProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@ChargeProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@ChargeProton}
% |\k@cgs@full@ChargeProton| is the charge of a proton in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@ChargeProton\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@ChargeProton}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@ChargeProtonNumeric}
% |\k@SI@short@ChargeProtonNumeric| is a mathematical value of
%  the charge of a proton in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@ChargeProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@ChargeProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@ChargeProtonNumeric}
% |\k@SI@full@ChargeProtonNumeric| is a mathematical value of
%  the charge of a proton in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@ChargeProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@ChargeProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@ChargeProtonNumeric}
% |\k@cgs@short@ChargeProtonNumeric| is a mathematical value of
%  the charge of a proton in cgs units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@ChargeProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@ChargeProtonNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@ChargeProtonNumeric}
% |\k@cgs@full@ChargeProtonNumeric| is a mathematical value of
%  the charge of a proton in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@ChargeProtonNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@ChargeProtonNumeric}\end{mdframed}
% \makeatother
%
%
%\subsubsection{Distances and Lengths}
%
% \DescribeMacro{\k@SI@short@RadiusBohr}
% |\k@SI@short@RadiusBohr| is Bohr radius of an atom in SI units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@RadiusBohr\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@RadiusBohr}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@RadiusBohr}
% |\k@SI@full@RadiusBohr| is Bohr radius of an atom in SI units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@RadiusBohr\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@RadiusBohr}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@RadiusBohr}
% |\k@cgs@short@RadiusBohr| is Bohr radius of an atom in cgs units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@RadiusBohr\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@RadiusBohr}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@RadiusBohr}
% |\k@cgs@full@RadiusBohr| is Bohr radius of an atom in cgs units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@RadiusBohr\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@RadiusBohr}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@RadiusBohrNumeric}
% |\k@SI@short@RadiusBohrNumeric| is a mathematical value of
%  Bohr radius of an atom in SI units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@RadiusBohrNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@RadiusBohrNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@RadiusBohrNumeric}
% |\k@SI@full@RadiusBohrNumeric| is a mathematical value of
%  Bohr radius of an atom in SI units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@RadiusBohrNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@RadiusBohrNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@RadiusBohrNumeric}
% |\k@cgs@short@RadiusBohrNumeric| is a mathematical value of
%  Bohr radius of an atom in cgs units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@RadiusBohrNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@RadiusBohrNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@RadiusBohrNumeric}
% |\k@cgs@full@RadiusBohrNumeric| is a mathematical value of
%  Bohr radius of an atom in cgs units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@RadiusBohrNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@RadiusBohrNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@AstronomicalUnit}
% |\k@SI@short@AstronomicalUnit| is the astronomical unit (the average distance
% between the Earth and the Sun) in SI units with reduced precision.
% (IAU~Resolution~B2~2012)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@AstronomicalUnit\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@AstronomicalUnit}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@AstronomicalUnit}
% |\k@SI@full@AstronomicalUnit| is the astronomical unit (the average distance
% between the Earth and the Sun) in SI units with full precision.
% (IAU~Resolution~B2~2012)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@AstronomicalUnit\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@AstronomicalUnit}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@AstronomicalUnit}
% |\k@cgs@short@AstronomicalUnit| is the astronomical unit (the average
% distance between the Earth and the Sun) in cgs units with reduced precision.
% (IAU~Resolution~B2~2012)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@AstronomicalUnit\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@AstronomicalUnit}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@AstronomicalUnit}
% |\k@cgs@full@AstronomicalUnit| is the astronomical unit (the average distance
% between the Earth and the Sun) in cgs units with full precision.
% (IAU~Resolution~B2~2012)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@AstronomicalUnit\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@AstronomicalUnit}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@AstronomicalUnitNumeric}
% |\k@SI@short@AstronomicalUnitNumeric| is a mathematical value of
%  the astronomical unit (the average distance
% between the Earth and the Sun) in SI units with reduced precision.
% (IAU~Resolution~B2~2012)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@AstronomicalUnitNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@AstronomicalUnitNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@AstronomicalUnitNumeric}
% |\k@SI@full@AstronomicalUnitNumeric| is a mathematical value of
%  the astronomical unit (the average distance
% between the Earth and the Sun) in SI units with full precision.
% (IAU~Resolution~B2~2012)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@AstronomicalUnitNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@AstronomicalUnitNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@AstronomicalUnitNumeric}
% |\k@cgs@short@AstronomicalUnitNumeric| is a mathematical value of
%  the astronomical unit (the average distance
% between the Earth and the Sun) in cgs units with reduced precision.
% (IAU~Resolution~B2~2012)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@AstronomicalUnitNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@AstronomicalUnitNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@AstronomicalUnitNumeric}
% |\k@cgs@full@AstronomicalUnitNumeric| is a mathematical value of
%  the astronomical unit (the average distance
% between the Earth and the Sun) in cgs units with full precision.
% (IAU~Resolution~B2~2012)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@AstronomicalUnitNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@AstronomicalUnitNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@Parsec}
% |\k@SI@short@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% SI units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@Parsec\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@Parsec}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@Parsec}
% |\k@SI@full@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in SI
% units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@Parsec\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@Parsec}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@Parsec}
% |\k@cgs@short@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% cgs units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@Parsec\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@Parsec}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@Parsec}
% |\k@cgs@full@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% cgs units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@Parsec\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@Parsec}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@ParsecNumeric}
% |\k@SI@short@ParsecNumeric| is a mathematical value of
%  the length of a parsec ($\frac{648000\au}{\pi}$) in SI
% units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@ParsecNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@ParsecNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@ParsecNumeric}
% |\k@SI@full@ParsecNumeric| is a mathematical value of
%  the length of a parsec ($\frac{648000\au}{\pi}$) in SI
% units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@ParsecNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@ParsecNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@ParsecNumeric}
% |\k@cgs@short@ParsecNumeric| is a mathematical value of
%  the length of a parsec ($\frac{648000\au}{\pi}$) in cgs
% units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@ParsecNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@ParsecNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@ParsecNumeric}
% |\k@cgs@full@ParsecNumeric| is a mathematical value of
%  the length of a parsec ($\frac{648000\au}{\pi}$) in cgs
% units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@ParsecNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@ParsecNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@RadiusSun}
% |\k@SI@short@RadiusSun| is the mean radius of the Sun in SI units with
% reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@RadiusSun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@RadiusSun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@RadiusSun}
% |\k@SI@full@RadiusSun| is the mean radius of the Sun in SI units with full
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@RadiusSun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@RadiusSun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@RadiusSun}
% |\k@cgs@short@RadiusSun| is the mean radius of the Sun in cgs units with
% reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@RadiusSun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@RadiusSun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@RadiusSun}
% |\k@cgs@full@RadiusSun| is the mean radius of the Sun in cgs units with full
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@RadiusSun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@RadiusSun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@RadiusSunNumeric}
% |\k@SI@short@RadiusSunNumeric| is a mathematical value of
%  the mean radius of the Sun in SI units with reduced
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@RadiusSunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@RadiusSunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@RadiusSunNumeric}
% |\k@SI@full@RadiusSunNumeric| is a mathematical value of
%  the mean radius of the Sun in SI units with full
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@RadiusSunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@RadiusSunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@RadiusSunNumeric}
% |\k@cgs@short@RadiusSunNumeric| is a mathematical value of
%  the mean radius of the Sun in cgs units with reduced
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@RadiusSunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@RadiusSunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@RadiusSunNumeric}
% |\k@cgs@full@RadiusSunNumeric| is a mathematical value of
%  the mean radius of the Sun in cgs units with full
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@RadiusSunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@RadiusSunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@RadiusEarth}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\k@short@RadiusEarth| is the mean radius of the Earth with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@RadiusEarth\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@RadiusEarth}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@RadiusEarth}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\k@full@RadiusEarth| is the mean radius of the Earth with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@RadiusEarth\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@RadiusEarth}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@RadiusEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\k@short@RadiusEarthNumeric| is a mathematical value of
%  the mean radius of the Earth with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@RadiusEarthNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@RadiusEarthNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@RadiusEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\k@full@RadiusEarthNumeric| is a mathematical value of
%  the mean radius of the Earth with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@RadiusEarthNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@RadiusEarthNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@RadiusJupiter}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\k@short@RadiusJupiter| is the mean radius of Jupiter with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@RadiusJupiter\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@RadiusJupiter}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@RadiusJupiter}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\k@full@RadiusJupiter| is the mean radius of Jupiter with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@RadiusJupiter\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@RadiusJupiter}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@RadiusJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\k@short@RadiusJupiterNumeric| is a mathematical value of
%  the mean radius of Jupiter with reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@RadiusJupiterNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@RadiusJupiterNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@RadiusJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\k@full@RadiusJupiterNumeric| is a mathematical value of
%  the mean radius of Jupiter with full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@RadiusJupiterNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@RadiusJupiterNumeric}\end{mdframed}
% \makeatother
%
%
%\subsubsection{Energy, Power, and Luminosity}
%
% \DescribeMacro{\k@SI@short@Rydberg}
% |\k@SI@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in SI units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@Rydberg\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@Rydberg}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@Rydberg}
% |\k@SI@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in SI units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@Rydberg\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@Rydberg}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@Rydberg}
% |\k@cgs@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in cgs units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@Rydberg\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@Rydberg}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@Rydberg}
% |\k@cgs@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in cgs units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@Rydberg\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@Rydberg}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@Rydberg}
% |\k@eV@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in eV with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@Rydberg\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@Rydberg}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@Rydberg}
% |\k@eV@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in eV with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@Rydberg\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@Rydberg}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@RydbergNumeric}
% |\k@SI@short@RydbergNumeric| is a mathematical value of
%  the Rydberg energy (the binding energy of Hydrogen) in SI
% units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@RydbergNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@RydbergNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@RydbergNumeric}
% |\k@SI@full@RydbergNumeric| is a mathematical value of
%  the Rydberg energy (the binding energy of Hydrogen) in SI
% units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@RydbergNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@RydbergNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@RydbergNumeric}
% |\k@cgs@short@RydbergNumeric| is a mathematical value of
%  the Rydberg energy (the binding energy of Hydrogen) in
% cgs units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@RydbergNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@RydbergNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@RydbergNumeric}
% |\k@cgs@full@RydbergNumeric| is a mathematical value of
%  the Rydberg energy (the binding energy of Hydrogen) in
% cgs units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@RydbergNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@RydbergNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@RydbergNumeric}
% |\k@eV@short@RydbergNumeric| is a mathematical value of
%  the Rydberg energy (the binding energy of Hydrogen) in eV
% with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@RydbergNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@RydbergNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@RydbergNumeric}
% |\k@eV@full@RydbergNumeric| is a mathematical value of
%  the Rydberg energy (the binding energy of Hydrogen) in eV
% with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@RydbergNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@RydbergNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@LuminositySun}
% |\k@SI@short@LuminositySun| is the luminosity of the Sun in SI units with
% reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@LuminositySun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@LuminositySun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@LuminositySun}
% |\k@SI@full@LuminositySun| is the luminosity of the Sun in SI units with full
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@LuminositySun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@LuminositySun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@LuminositySun}
% |\k@cgs@short@LuminositySun| is the luminosity of the Sun in cgs units with
% reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@LuminositySun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@LuminositySun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@LuminositySun}
% |\k@cgs@full@LuminositySun| is the luminosity of the Sun in cgs units with
% full precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@LuminositySun\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@LuminositySun}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@LuminositySunNumeric}
% |\k@SI@short@LuminositySunNumeric| is a mathematical value of
%  the luminosity of the Sun in SI units with reduced
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@LuminositySunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@LuminositySunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@LuminositySunNumeric}
% |\k@SI@full@LuminositySunNumeric| is a mathematical value of
%  the luminosity of the Sun in SI units with full
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@LuminositySunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@LuminositySunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@LuminositySunNumeric}
% |\k@cgs@short@LuminositySunNumeric| is a mathematical value of
%  the luminosity of the Sun in cgs units with
% reduced precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@LuminositySunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@LuminositySunNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@LuminositySunNumeric}
% |\k@cgs@full@LuminositySunNumeric| is a mathematical value of
%  the luminosity of the Sun in cgs units with full
% precision.
% (IAU~Resolution~B3~2015)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@LuminositySunNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@LuminositySunNumeric}\end{mdframed}
% \makeatother
%
%
%\subsubsection{Pressure}
%
% \DescribeMacro{\k@SI@short@PressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@short@PressureAtmosphere| is the standard atmospheric pressure in SI
% units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@PressureAtmosphere\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@PressureAtmosphere}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@PressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@full@PressureAtmosphere| is the standard atmospheric pressure in SI
% units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@PressureAtmosphere\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@PressureAtmosphere}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@PressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@short@PressureAtmosphere| is the standard atmospheric pressure in cgs
% units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@PressureAtmosphere\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@PressureAtmosphere}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@PressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@full@PressureAtmosphere| is the standard atmospheric pressure in cgs
% units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@PressureAtmosphere\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@PressureAtmosphere}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@PressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@short@PressureAtmosphereNumeric| is a mathematical value of
%  the standard atmospheric pressure in SI units
% with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@PressureAtmosphereNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@PressureAtmosphereNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@PressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@full@PressureAtmosphereNumeric| is a mathematical value of
%  the standard atmospheric pressure in SI units
% with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@PressureAtmosphereNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@PressureAtmosphereNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@PressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@short@PressureAtmosphereNumeric| is a mathematical value of
%  the standard atmospheric pressure in cgs
% units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@PressureAtmosphereNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@PressureAtmosphereNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@PressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@full@PressureAtmosphereNumeric| is a mathematical value of
%  the standard atmospheric pressure in cgs units
% with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@PressureAtmosphereNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@PressureAtmosphereNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@PressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@short@PressureStandard| is the standard atmospheric pressure in SI
% units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@PressureStandard\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@PressureStandard}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@PressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@full@PressureStandard| is the standard atmospheric pressure in SI
% units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@PressureStandard\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@PressureStandard}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@PressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@short@PressureStandard| is the standard atmospheric pressure in cgs
% units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@PressureStandard\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@PressureStandard}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@PressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@full@PressureStandard| is the standard atmospheric pressure in cgs
% units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@PressureStandard\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@PressureStandard}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@PressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@short@PressureStandardNumeric| is a mathematical value of
%  the standard atmospheric pressure in SI units
% with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@PressureStandardNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@PressureStandardNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@PressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@full@PressureStandardNumeric| is a mathematical value of
%  the standard atmospheric pressure in SI units
% with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@PressureStandardNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@PressureStandardNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@PressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@short@PressureStandardNumeric| is a mathematical value of
%  the standard atmospheric pressure in cgs units
% with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@PressureStandardNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@PressureStandardNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@PressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@full@PressureStandardNumeric| is a mathematical value of
%  the standard atmospheric pressure in cgs units
% with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@PressureStandardNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@PressureStandardNumeric}\end{mdframed}
% \makeatother
%
%
%\subsubsection{Velocity, Speed and Acceleration}
%
% \DescribeMacro{\k@SI@short@SpeedLight}
% |\k@SI@short@SpeedLight| is the speed of light in SI units with reduced
% precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@SpeedLight\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@SpeedLight}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@SpeedLight}
% |\k@SI@full@SpeedLight| is the speed of light in SI units with full precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@SpeedLight\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@SpeedLight}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@SpeedLight}
% |\k@cgs@short@SpeedLight| is the speed of light in cgs units with reduced
% precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@SpeedLight\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@SpeedLight}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@SpeedLight}
% |\k@cgs@full@SpeedLight| is the speed of light in cgs units with full
% precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@SpeedLight\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@SpeedLight}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@SpeedLightNumeric}
% |\k@SI@short@SpeedLightNumeric| is a mathematical value of
%  the speed of light in SI units with reduced precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@SpeedLightNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@SpeedLightNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@SpeedLightNumeric}
% |\k@SI@full@SpeedLightNumeric| is a mathematical value of
%  the speed of light in SI units with full precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@SpeedLightNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@SpeedLightNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@SpeedLightNumeric}
% |\k@cgs@short@SpeedLightNumeric| is a mathematical value of
%  the speed of light in cgs units with reduced
% precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@SpeedLightNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@SpeedLightNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@SpeedLightNumeric}
% |\k@cgs@full@SpeedLightNumeric| is a mathematical value of
%  the speed of light in cgs units with full precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@SpeedLightNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@SpeedLightNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@AccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@SI@short@AccelGravity| is the accelertion due to gravity at the surface
% of the Earth in SI units with reduced precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@AccelGravity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@AccelGravity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@AccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@SI@full@AccelGravity| is the accelertion due to gravity at the surface of
% the Earth in SI units with full precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@AccelGravity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@AccelGravity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@AccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@cgs@short@AccelGravity| is the accelertion due to gravity at the surface
% of the Earth in cgs units with reduced precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@AccelGravity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@AccelGravity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@AccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@cgs@full@AccelGravity| is the accelertion due to gravity at the surface
% of the Earth in cgs units with full precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@AccelGravity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@AccelGravity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@AccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@SI@short@AccelGravityNumeric| is a mathematical value of
%  the accelertion due to gravity at the surface of the
% Earth in SI units with reduced precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@AccelGravityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@AccelGravityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@AccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@SI@full@AccelGravityNumeric| is a mathematical value of
%  the accelertion due to gravity at the surface of the
% Earth in SI units with full precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@AccelGravityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@AccelGravityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@AccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@cgs@short@AccelGravityNumeric| is a mathematical value of
%  the accelertion due to gravity at the surface of
% the Earth in cgs units with reduced precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@AccelGravityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@AccelGravityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@AccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@cgs@full@AccelGravityNumeric| is a mathematical value of
%  the accelertion due to gravity at the surface of the
% Earth in cgs units with full precision.
% (CODATA 2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@AccelGravityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@AccelGravityNumeric}\end{mdframed}
% \makeatother
%
%
%\subsubsection{Other Constants}
%
% \DescribeMacro{\k@SI@short@Coulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% SI units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@Coulomb\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@Coulomb}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@Coulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% SI units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@Coulomb\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@Coulomb}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@Coulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$)
% in cgs units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@Coulomb\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@Coulomb}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@Coulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% cgs units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@Coulomb\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@Coulomb}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@CoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@CoulombNumeric| is a mathematical value of
%  the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in SI
% units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@CoulombNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@CoulombNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@CoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@CoulombNumeric| is a mathematical value of
%  the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in SI
% units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@CoulombNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@CoulombNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@CoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@CoulombNumeric| is a mathematical value of
%  the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in cgs
% units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@CoulombNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@CoulombNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@CoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@CoulombNumeric| is a mathematical value of
%  the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in cgs
% units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@CoulombNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@CoulombNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@VacuumPermittivity}
% |\k@SI@short@VacuumPermittivity| is the electric permittivity of the vacuum
% in SI units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@VacuumPermittivity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@VacuumPermittivity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@VacuumPermittivity}
% |\k@SI@full@VacuumPermittivity| is the electric permittivity of the vacuum in
% SI units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@VacuumPermittivity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@VacuumPermittivity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@VacuumPermittivity}
% |\k@cgs@short@VacuumPermittivity| is the electric permittivity of the vacuum
% in cgs units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@VacuumPermittivity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@VacuumPermittivity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@VacuumPermittivity}
% |\k@cgs@full@VacuumPermittivity| is the electric permittivity of the vacuum
% in cgs units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@VacuumPermittivity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@VacuumPermittivity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@VacuumPermittivityNumeric}
% |\k@SI@short@VacuumPermittivityNumeric| is a mathematical value of
%  the electric permittivity of the vacuum in SI
% units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@VacuumPermittivityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@VacuumPermittivityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@VacuumPermittivityNumeric}
% |\k@SI@full@VacuumPermittivityNumeric| is a mathematical value of
%  the electric permittivity of the vacuum in SI
% units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@VacuumPermittivityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@VacuumPermittivityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@VacuumPermittivityNumeric}
% |\k@cgs@short@VacuumPermittivityNumeric| is a mathematical value of
%  the electric permittivity of the vacuum in
% cgs units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@VacuumPermittivityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@VacuumPermittivityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@VacuumPermittivityNumeric}
% |\k@cgs@full@VacuumPermittivityNumeric| is a mathematical value of
%  the electric permittivity of the vacuum in cgs
% units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@VacuumPermittivityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@VacuumPermittivityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@VacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@short@VacuumPermeability| is the magnetic permeability of the vacuum
% in SI units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@VacuumPermeability\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@VacuumPermeability}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@VacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@full@VacuumPermeability| is the magnetic permeability of the vacuum in
% SI units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@VacuumPermeability\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@VacuumPermeability}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@VacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@short@VacuumPermeability| is the magnetic permeability of the vacuum
% in cgs units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@VacuumPermeability\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@VacuumPermeability}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@VacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@full@VacuumPermeability| is the magnetic permeability of the vacuum
% in cgs units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@VacuumPermeability\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@VacuumPermeability}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@VacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@short@VacuumPermeabilityNumeric| is a mathematical value of
%  the magnetic permeability of the vacuum in SI
% units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@VacuumPermeabilityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@VacuumPermeabilityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@VacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@full@VacuumPermeabilityNumeric| is a mathematical value of
%  the magnetic permeability of the vacuum in SI
% units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@VacuumPermeabilityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@VacuumPermeabilityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@VacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@short@VacuumPermeabilityNumeric| is a mathematical value of
%  the magnetic permeability of the vacuum in
% cgs units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@VacuumPermeabilityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@VacuumPermeabilityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@VacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@full@VacuumPermeabilityNumeric| is a mathematical value of
%  the magnetic permeability of the vacuum in cgs
% units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@VacuumPermeabilityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@VacuumPermeabilityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@VacuumImpedance}
% |\k@short@VacuumImpedance| is the characteristic impedance of the vacuum with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@VacuumImpedance\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@VacuumImpedance}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@VacuumImpedance}
% |\k@full@VacuumImpedance| is the characteristic impedance of the vacuum with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@VacuumImpedance\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@VacuumImpedance}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@VacuumImpedanceNumeric}
% |\k@short@VacuumImpedanceNumeric| is a mathematical value of
%  the characteristic impedance of the vacuum with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@VacuumImpedanceNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@VacuumImpedanceNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@VacuumImpedanceNumeric}
% |\k@full@VacuumImpedanceNumeric| is a mathematical value of
%  the characteristic impedance of the vacuum with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@VacuumImpedanceNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@VacuumImpedanceNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@Boltzmann}
% |\k@SI@short@Boltzmann| is the Boltzmann constant in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@Boltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@Boltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@Boltzmann}
% |\k@SI@full@Boltzmann| is the Boltzmann constant in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@Boltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@Boltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@Boltzmann}
% |\k@cgs@short@Boltzmann| is the Boltzmann constant in cgs units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@Boltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@Boltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@Boltzmann}
% |\k@cgs@full@Boltzmann| is the Boltzmann constant in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@Boltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@Boltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@Boltzmann}
% |\k@eV@short@Boltzmann| is the Boltzmann constant in eV with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@Boltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@Boltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@Boltzmann}
% |\k@eV@full@Boltzmann| is the Boltzmann constant in eV with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@Boltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@Boltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@BoltzmannNumeric}
% |\k@SI@short@BoltzmannNumeric| is a mathematical value of
%  the Boltzmann constant in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@BoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@BoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@BoltzmannNumeric}
% |\k@SI@full@BoltzmannNumeric| is a mathematical value of
%  the Boltzmann constant in SI units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@BoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@BoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@BoltzmannNumeric}
% |\k@cgs@short@BoltzmannNumeric| is a mathematical value of
%  the Boltzmann constant in cgs units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@BoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@BoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@BoltzmannNumeric}
% |\k@cgs@full@BoltzmannNumeric| is a mathematical value of
%  the Boltzmann constant in cgs units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@BoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@BoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@BoltzmannNumeric}
% |\k@eV@short@BoltzmannNumeric| is a mathematical value of
%  the Boltzmann constant in eV with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@BoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@BoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@BoltzmannNumeric}
% |\k@eV@full@BoltzmannNumeric| is a mathematical value of
%  the Boltzmann constant in eV with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@BoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@BoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@Planck| is the Planck constant in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@Planck\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@Planck}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@Planck| is the Planck constant in SI units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@Planck\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@Planck}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@Planck| is the Planck constant in cgs units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@Planck\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@Planck}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@Planck| is the Planck constant in cgs units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@Planck\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@Planck}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@short@Planck| is the Planck constant in eV with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@Planck\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@Planck}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@full@Planck| is the Planck constant in eV with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@Planck\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@Planck}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@PlanckNumeric| is a mathematical value of
%  the Planck constant in SI units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@PlanckNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@PlanckNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@PlanckNumeric| is a mathematical value of
%  the Planck constant in SI units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@PlanckNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@PlanckNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@PlanckNumeric| is a mathematical value of
%  the Planck constant in cgs units with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@PlanckNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@PlanckNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@PlanckNumeric| is a mathematical value of
%  the Planck constant in cgs units with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@PlanckNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@PlanckNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@short@PlanckNumeric| is a mathematical value of
%  the Planck constant in eV with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@PlanckNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@PlanckNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@full@PlanckNumeric| is a mathematical value of
%  the Planck constant in eV with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@PlanckNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@PlanckNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in SI units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@PlanckReduced\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@PlanckReduced}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in SI units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@PlanckReduced\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@PlanckReduced}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in cgs units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@PlanckReduced\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@PlanckReduced}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in cgs units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@PlanckReduced\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@PlanckReduced}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@short@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in eV with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@PlanckReduced\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@PlanckReduced}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@full@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in eV with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@PlanckReduced\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@PlanckReduced}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@PlanckReducedNumeric| is a mathematical value of
%  the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in SI units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@PlanckReducedNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@PlanckReducedNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@PlanckReducedNumeric| is a mathematical value of
%  the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in SI units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@PlanckReducedNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@PlanckReducedNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@PlanckReducedNumeric| is a mathematical value of
%  the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in cgs units with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@PlanckReducedNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@PlanckReducedNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@PlanckReducedNumeric| is a mathematical value of
%  the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in cgs units with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@PlanckReducedNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@PlanckReducedNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@short@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@short@PlanckReducedNumeric| is a mathematical value of
%  the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in eV with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@short@PlanckReducedNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@short@PlanckReducedNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@eV@full@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@full@PlanckReducedNumeric| is a mathematical value of
%  the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in eV with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@eV@full@PlanckReducedNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@eV@full@PlanckReducedNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@Gravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@short@Gravity| is Newton's gravitational constant in SI units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@Gravity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@Gravity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@Gravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@full@Gravity| is Newton's gravitational constant in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@Gravity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@Gravity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@Gravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@short@Gravity| is Newton's gravitational constant in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@Gravity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@Gravity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@Gravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@full@Gravity| is Newton's gravitational constant in cgs units with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@Gravity\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@Gravity}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@GravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@short@GravityNumeric| is a mathematical value of
%  Newton's gravitational constant in SI units with reduced
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@GravityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@GravityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@GravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@full@GravityNumeric| is a mathematical value of
%  Newton's gravitational constant in SI units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@GravityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@GravityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@GravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@short@GravityNumeric| is a mathematical value of
%  Newton's gravitational constant in cgs units with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@GravityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@GravityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@GravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@full@GravityNumeric| is a mathematical value of
%  Newton's gravitational constant in cgs units with full
% precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@GravityNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@GravityNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@StefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@StefanBoltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@StefanBoltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@StefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@StefanBoltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@StefanBoltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@StefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@StefanBoltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@StefanBoltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@StefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@StefanBoltzmann\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@StefanBoltzmann}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@StefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@StefanBoltzmannNumeric| is a mathematical value of
%  the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@StefanBoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@StefanBoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@StefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@StefanBoltzmannNumeric| is a mathematical value of
%  the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@StefanBoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@StefanBoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@StefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@StefanBoltzmannNumeric| is a mathematical value of
%  the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@StefanBoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@StefanBoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@StefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@StefanBoltzmannNumeric| is a mathematical value of
%  the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@StefanBoltzmannNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@StefanBoltzmannNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@Radiation}
% |\k@SI@short@Radiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@Radiation\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@Radiation}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@Radiation}
% |\k@SI@full@Radiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@Radiation\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@Radiation}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@Radiation}
% |\k@cgs@short@Radiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@Radiation\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@Radiation}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@Radiation}
% |\k@cgs@full@Radiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@Radiation\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@Radiation}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@short@RadiationNumeric}
% |\k@SI@short@RadiationNumeric| is a mathematical value of
%  the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@short@RadiationNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@short@RadiationNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@SI@full@RadiationNumeric}
% |\k@SI@full@RadiationNumeric| is a mathematical value of
%  the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@SI@full@RadiationNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@SI@full@RadiationNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@short@RadiationNumeric}
% |\k@cgs@short@RadiationNumeric| is a mathematical value of
%  the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@short@RadiationNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@short@RadiationNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@cgs@full@RadiationNumeric}
% |\k@cgs@full@RadiationNumeric| is a mathematical value of
%  the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with full
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@cgs@full@RadiationNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@cgs@full@RadiationNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@FineStructure}
% |\k@short@FineStructure| is the fine structure constant with reduced
% precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@FineStructure\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@FineStructure}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@FineStructure}
% |\k@full@FineStructure| is the fine structure constant with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@FineStructure\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@FineStructure}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@FineStructureNumeric}
% |\k@short@FineStructureNumeric| is a mathematical value of
%  the fine structure constant with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@FineStructureNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@FineStructureNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@FineStructureNumeric}
% |\k@full@FineStructureNumeric| is a mathematical value of
%  the fine structure constant with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@FineStructureNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@FineStructureNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@FineStructureReciprocal}
% |\k@short@FineStructureReciprocal| is the reciprocal of the fine structure
% constant with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@FineStructureReciprocal\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@FineStructureReciprocal}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@FineStructureReciprocal}
% |\k@full@FineStructureReciprocal| is the reciprocal of the fine structure
% constant with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@FineStructureReciprocal\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@FineStructureReciprocal}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@FineStructureReciprocalNumeric}
% |\k@short@FineStructureReciprocalNumeric| is a mathematical value of
%  the reciprocal of the fine structure
% constant with reduced precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@FineStructureReciprocalNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@FineStructureReciprocalNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@FineStructureReciprocalNumeric}
% |\k@full@FineStructureReciprocalNumeric| is a mathematical value of
%  the reciprocal of the fine structure constant
% with full precision.
% (Calculated)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@FineStructureReciprocalNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@FineStructureReciprocalNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@Avogadro}
% |\k@short@Avogadro| is Avogadro's Number (the number of particles in a mole)
% with reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@Avogadro\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@Avogadro}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@Avogadro}
% |\k@full@Avogadro| is Avogadro's Number (the number of particles in a mole)
% with full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@Avogadro\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@Avogadro}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@short@AvogadroNumeric}
% |\k@short@AvogadroNumeric| is a mathematical value of
%  Avogadro's Number (the number of particles in a mole) with
% reduced precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@short@AvogadroNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@short@AvogadroNumeric}\end{mdframed}
% \makeatother
%
% \DescribeMacro{\k@full@AvogadroNumeric}
% |\k@full@AvogadroNumeric| is a mathematical value of
%  Avogadro's Number (the number of particles in a mole) with
% full precision.
% (CODATA~2018)
%
% The macro can be invoked by (e.g.)
% \begin{mdframed}[backgroundcolor=orange!25]%
% {\small\texttt{\textbackslash makeatletter\\ The value is
% \textbackslash k@full@AvogadroNumeric\\
% \textbackslash makeatother}}\end{mdframed}
% \makeatletter
% Resulting in 
% \begin{mdframed}[backgroundcolor=blue!25]%
% {The value is \k@full@AvogadroNumeric}\end{mdframed}
% \makeatother
%
\makeatletter
% \StopEventually{}
%
% \section{Implementation}
%
% \subsection{Special}
%
%\iffalse
%<*package>
%\fi
% \begin{macro}{\physconst@decimalsseparator}
% |\physconst@decimalsseparator| is the a special macro used to separate digits
% in the decimal portion of the constants. If the option unseparatedecimals is
% not specified, decimals will be printed as 1.234\,567\,890. If the option
% is specified, decimals will be printed as 1.234567890. This macro should
% note be used outside of this package.
%
%    \begin{macrocode}
\ifx\unseparatedecimals\undefined
\DeclareRobustCommand{\physconst@decimalsseparator}{\,}
\else
\DeclareRobustCommand{\physconst@decimalsseparator}{ }
\fi
%    \end{macrocode}
% \end{macro}
%\iffalse
%</package>
%\fi
%
%\subsection{Mass}
%
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassElectron| is the mass of an electron in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassElectron}{%
\ensuremath{%
9.11%
\times 10^{-31}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassElectron| is the mass of an electron in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassElectron}{%
\ensuremath{%
9.109\expandafter\physconst@decimalsseparator%
383\expandafter\physconst@decimalsseparator%
701\expandafter\physconst@decimalsseparator%
500%
\times 10^{-31}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassElectron| is the mass of an electron in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassElectron}{%
\ensuremath{%
9.11%
\times 10^{-28}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassElectron| is the mass of an electron in cgs units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassElectron}{%
\ensuremath{%
9.109\expandafter\physconst@decimalsseparator%
383\expandafter\physconst@decimalsseparator%
701\expandafter\physconst@decimalsseparator%
500%
\times 10^{-28}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassElectron| is the mass of an electron in eV with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@MassElectron}{%
\ensuremath{%
5.11%
\times 10^{5}\eV\,c^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@MassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassElectron| is the mass of an electron in eV with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@MassElectron}{%
\ensuremath{%
5.109\expandafter\physconst@decimalsseparator%
989\expandafter\physconst@decimalsseparator%
499\expandafter\physconst@decimalsseparator%
962%
\times 10^{5}\eV\,c^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\kMassElectron| is the mass of an electron.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassElectron}{%
\k@SI@full@MassElectron}
\else
\DeclareRobustCommand {\kMassElectron}{%
\k@SI@short@MassElectron}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassElectron}{%
\k@cgs@full@MassElectron}
\else
\DeclareRobustCommand {\kMassElectron}{%
\k@cgs@short@MassElectron}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVMassElectron}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\keVMassElectron| is the mass of an electron.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVMassElectron}{%
\k@eV@full@MassElectron}
\else
\DeclareRobustCommand {\keVMassElectron}{%
\k@eV@short@MassElectron}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassElectronNumeric| is the mass of an electron in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassElectronNumeric}{%
\ensuremath{%
9.11e-31}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassElectronNumeric| is the mass of an electron in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassElectronNumeric}{%
\ensuremath{%
9.109383701500e-31}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassElectronNumeric| is the mass of an electron in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassElectronNumeric}{%
\ensuremath{%
9.11e-28}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassElectronNumeric| is the mass of an electron in cgs units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassElectronNumeric}{%
\ensuremath{%
9.109383701500e-28}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassElectronNumeric| is the mass of an electron in eV with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@MassElectronNumeric}{%
\ensuremath{%
5.11e+05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@MassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassElectronNumeric| is the mass of an electron in eV with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@MassElectronNumeric}{%
\ensuremath{%
5.109989499962e+05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\kMassElectronNumeric| is the mass of an electron.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassElectronNumeric}{%
\k@SI@full@MassElectronNumeric}
\else
\DeclareRobustCommand {\kMassElectronNumeric}{%
\k@SI@short@MassElectronNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassElectronNumeric}{%
\k@cgs@full@MassElectronNumeric}
\else
\DeclareRobustCommand {\kMassElectronNumeric}{%
\k@cgs@short@MassElectronNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVMassElectronNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\keVMassElectronNumeric| is the mass of an electron.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVMassElectronNumeric}{%
\k@eV@full@MassElectronNumeric}
\else
\DeclareRobustCommand {\keVMassElectronNumeric}{%
\k@eV@short@MassElectronNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassProton| is the mass of a proton in SI units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassProton}{%
\ensuremath{%
1.67%
\times 10^{-27}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassProton| is the mass of a proton in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassProton}{%
\ensuremath{%
1.672\expandafter\physconst@decimalsseparator%
621\expandafter\physconst@decimalsseparator%
923\expandafter\physconst@decimalsseparator%
690%
\times 10^{-27}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassProton| is the mass of a proton in cgs units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassProton}{%
\ensuremath{%
1.67%
\times 10^{-24}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassProton| is the mass of a proton in cgs units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassProton}{%
\ensuremath{%
1.672\expandafter\physconst@decimalsseparator%
621\expandafter\physconst@decimalsseparator%
923\expandafter\physconst@decimalsseparator%
690%
\times 10^{-24}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassProton| is the mass of a proton in eV with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@MassProton}{%
\ensuremath{%
9.38%
\times 10^{8}\eV\,c^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@MassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassProton| is the mass of a proton in eV with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@MassProton}{%
\ensuremath{%
9.382\expandafter\physconst@decimalsseparator%
720\expandafter\physconst@decimalsseparator%
881\expandafter\physconst@decimalsseparator%
605%
\times 10^{8}\eV\,c^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\kMassProton| is the mass of a proton.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassProton}{%
\k@SI@full@MassProton}
\else
\DeclareRobustCommand {\kMassProton}{%
\k@SI@short@MassProton}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassProton}{%
\k@cgs@full@MassProton}
\else
\DeclareRobustCommand {\kMassProton}{%
\k@cgs@short@MassProton}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVMassProton}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\keVMassProton| is the mass of a proton.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVMassProton}{%
\k@eV@full@MassProton}
\else
\DeclareRobustCommand {\keVMassProton}{%
\k@eV@short@MassProton}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassProtonNumeric| is the mass of a proton in SI units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassProtonNumeric}{%
\ensuremath{%
1.67e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassProtonNumeric| is the mass of a proton in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassProtonNumeric}{%
\ensuremath{%
1.672621923690e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassProtonNumeric| is the mass of a proton in cgs units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassProtonNumeric}{%
\ensuremath{%
1.67e-24}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassProtonNumeric| is the mass of a proton in cgs units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassProtonNumeric}{%
\ensuremath{%
1.672621923690e-24}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassProtonNumeric| is the mass of a proton in eV with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@MassProtonNumeric}{%
\ensuremath{%
9.38e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@MassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassProtonNumeric| is the mass of a proton in eV with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@MassProtonNumeric}{%
\ensuremath{%
9.382720881605e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\kMassProtonNumeric| is the mass of a proton.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassProtonNumeric}{%
\k@SI@full@MassProtonNumeric}
\else
\DeclareRobustCommand {\kMassProtonNumeric}{%
\k@SI@short@MassProtonNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassProtonNumeric}{%
\k@cgs@full@MassProtonNumeric}
\else
\DeclareRobustCommand {\kMassProtonNumeric}{%
\k@cgs@short@MassProtonNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVMassProtonNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\keVMassProtonNumeric| is the mass of a proton.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVMassProtonNumeric}{%
\k@eV@full@MassProtonNumeric}
\else
\DeclareRobustCommand {\keVMassProtonNumeric}{%
\k@eV@short@MassProtonNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassHydrogen| is the mass of a neutral hydrogen atom in SI units
% with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassHydrogen}{%
\ensuremath{%
1.67%
\times 10^{-27}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassHydrogen| is the mass of a neutral hydrogen atom in SI units
% with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassHydrogen}{%
\ensuremath{%
1.673\expandafter\physconst@decimalsseparator%
532\expandafter\physconst@decimalsseparator%
837\expandafter\physconst@decimalsseparator%
806%
\times 10^{-27}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassHydrogen| is the mass of a neutral hydrogen atom in cgs
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassHydrogen}{%
\ensuremath{%
1.67%
\times 10^{-24}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassHydrogen| is the mass of a neutral hydrogen atom in cgs
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassHydrogen}{%
\ensuremath{%
1.673\expandafter\physconst@decimalsseparator%
532\expandafter\physconst@decimalsseparator%
837\expandafter\physconst@decimalsseparator%
806%
\times 10^{-24}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassHydrogen| is the mass of a neutral hydrogen atom in eV with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@MassHydrogen}{%
\ensuremath{%
9.39%
\times 10^{8}\eV\,c^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@MassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassHydrogen| is the mass of a neutral hydrogen atom in eV with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@MassHydrogen}{%
\ensuremath{%
9.387\expandafter\physconst@decimalsseparator%
830\expandafter\physconst@decimalsseparator%
735\expandafter\physconst@decimalsseparator%
048%
\times 10^{8}\eV\,c^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\kMassHydrogen| is the mass of a neutral hydrogen atom.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassHydrogen}{%
\k@SI@full@MassHydrogen}
\else
\DeclareRobustCommand {\kMassHydrogen}{%
\k@SI@short@MassHydrogen}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassHydrogen}{%
\k@cgs@full@MassHydrogen}
\else
\DeclareRobustCommand {\kMassHydrogen}{%
\k@cgs@short@MassHydrogen}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVMassHydrogen}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\keVMassHydrogen| is the mass of a neutral hydrogen atom.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVMassHydrogen}{%
\k@eV@full@MassHydrogen}
\else
\DeclareRobustCommand {\keVMassHydrogen}{%
\k@eV@short@MassHydrogen}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in SI units
% with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassHydrogenNumeric}{%
\ensuremath{%
1.67e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in SI units
% with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassHydrogenNumeric}{%
\ensuremath{%
1.673532837806e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in cgs
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassHydrogenNumeric}{%
\ensuremath{%
1.67e-24}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in cgs
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassHydrogenNumeric}{%
\ensuremath{%
1.673532837806e-24}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in eV with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@MassHydrogenNumeric}{%
\ensuremath{%
9.39e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@MassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in eV with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@MassHydrogenNumeric}{%
\ensuremath{%
9.387830735048e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\kMassHydrogenNumeric| is the mass of a neutral hydrogen atom.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassHydrogenNumeric}{%
\k@SI@full@MassHydrogenNumeric}
\else
\DeclareRobustCommand {\kMassHydrogenNumeric}{%
\k@SI@short@MassHydrogenNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassHydrogenNumeric}{%
\k@cgs@full@MassHydrogenNumeric}
\else
\DeclareRobustCommand {\kMassHydrogenNumeric}{%
\k@cgs@short@MassHydrogenNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVMassHydrogenNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\keVMassHydrogenNumeric| is the mass of a neutral hydrogen atom.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVMassHydrogenNumeric}{%
\k@eV@full@MassHydrogenNumeric}
\else
\DeclareRobustCommand {\keVMassHydrogenNumeric}{%
\k@eV@short@MassHydrogenNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassSun}
% |\k@SI@short@MassSun| is the mass of the Sun in SI units with reduced
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassSun}{%
\ensuremath{%
1.99%
\times 10^{30}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassSun}
% |\k@SI@full@MassSun| is the mass of the Sun in SI units with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassSun}{%
\ensuremath{%
1.988\expandafter\physconst@decimalsseparator%
409\expandafter\physconst@decimalsseparator%
9%
\times 10^{30}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassSun}
% |\k@cgs@short@MassSun| is the mass of the Sun in cgs units with reduced
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassSun}{%
\ensuremath{%
1.99%
\times 10^{33}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassSun}
% |\k@cgs@full@MassSun| is the mass of the Sun in cgs units with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassSun}{%
\ensuremath{%
1.988\expandafter\physconst@decimalsseparator%
409\expandafter\physconst@decimalsseparator%
9%
\times 10^{33}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassSun}
% |\kMassSun| is the mass of the Sun.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassSun}{%
\k@SI@full@MassSun}
\else
\DeclareRobustCommand {\kMassSun}{%
\k@SI@short@MassSun}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassSun}{%
\k@cgs@full@MassSun}
\else
\DeclareRobustCommand {\kMassSun}{%
\k@cgs@short@MassSun}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassSunNumeric}
% |\k@SI@short@MassSunNumeric| is the mass of the Sun in SI units with reduced
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassSunNumeric}{%
\ensuremath{%
1.99e+30}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassSunNumeric}
% |\k@SI@full@MassSunNumeric| is the mass of the Sun in SI units with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassSunNumeric}{%
\ensuremath{%
1.9884099e+30}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassSunNumeric}
% |\k@cgs@short@MassSunNumeric| is the mass of the Sun in cgs units with reduced
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassSunNumeric}{%
\ensuremath{%
1.99e+33}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassSunNumeric}
% |\k@cgs@full@MassSunNumeric| is the mass of the Sun in cgs units with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassSunNumeric}{%
\ensuremath{%
1.9884099e+33}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassSunNumeric}
% |\kMassSunNumeric| is the mass of the Sun.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassSunNumeric}{%
\k@SI@full@MassSunNumeric}
\else
\DeclareRobustCommand {\kMassSunNumeric}{%
\k@SI@short@MassSunNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassSunNumeric}{%
\k@cgs@full@MassSunNumeric}
\else
\DeclareRobustCommand {\kMassSunNumeric}{%
\k@cgs@short@MassSunNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@MassEarth}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\k@short@MassEarth| is the mass of the Earth with reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@MassEarth}{%
\ensuremath{%
5.97%
\times 10^{24}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@MassEarth}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\k@full@MassEarth| is the mass of the Earth with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@MassEarth}{%
\ensuremath{%
5.972\expandafter\physconst@decimalsseparator%
168%
\times 10^{24}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassEarth}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\kMassEarth| is the mass of the Earth.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassEarth}{%
\k@full@MassEarth}
\else
\DeclareRobustCommand {\kMassEarth}{%
\k@short@MassEarth}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@MassEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\k@short@MassEarthNumeric| is the mass of the Earth with reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@MassEarthNumeric}{%
\ensuremath{%
5.97e+24}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@MassEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\k@full@MassEarthNumeric| is the mass of the Earth with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@MassEarthNumeric}{%
\ensuremath{%
5.972168e+24}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Earth}
% |\kMassEarthNumeric| is the mass of the Earth.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassEarthNumeric}{%
\k@full@MassEarthNumeric}
\else
\DeclareRobustCommand {\kMassEarthNumeric}{%
\k@short@MassEarthNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@MassJupiter}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\k@short@MassJupiter| is the mass of Jupiter with reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@MassJupiter}{%
\ensuremath{%
1.90%
\times 10^{27}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@MassJupiter}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\k@full@MassJupiter| is the mass of Jupiter with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@MassJupiter}{%
\ensuremath{%
1.898\expandafter\physconst@decimalsseparator%
124\expandafter\physconst@decimalsseparator%
6%
\times 10^{27}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassJupiter}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\kMassJupiter| is the mass of Jupiter.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassJupiter}{%
\k@full@MassJupiter}
\else
\DeclareRobustCommand {\kMassJupiter}{%
\k@short@MassJupiter}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@MassJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\k@short@MassJupiterNumeric| is the mass of Jupiter with reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@MassJupiterNumeric}{%
\ensuremath{%
1.90e+27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@MassJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\k@full@MassJupiterNumeric| is the mass of Jupiter with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@MassJupiterNumeric}{%
\ensuremath{%
1.8981246e+27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter}
% |\kMassJupiterNumeric| is the mass of Jupiter.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassJupiterNumeric}{%
\k@full@MassJupiterNumeric}
\else
\DeclareRobustCommand {\kMassJupiterNumeric}{%
\k@short@MassJupiterNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassAMU| is the mass of an atomic mass unit in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassAMU}{%
\ensuremath{%
1.66%
\times 10^{-27}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassAMU| is the mass of an atomic mass unit in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassAMU}{%
\ensuremath{%
1.660\expandafter\physconst@decimalsseparator%
539\expandafter\physconst@decimalsseparator%
066\expandafter\physconst@decimalsseparator%
600%
\times 10^{-27}\kg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassAMU| is the mass of an atomic mass unit in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassAMU}{%
\ensuremath{%
1.66%
\times 10^{-24}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassAMU| is the mass of an atomic mass unit in cgs units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassAMU}{%
\ensuremath{%
1.660\expandafter\physconst@decimalsseparator%
539\expandafter\physconst@decimalsseparator%
066\expandafter\physconst@decimalsseparator%
600%
\times 10^{-24}\gm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassAMU| is the mass of an atomic mass unit in eV with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@MassAMU}{%
\ensuremath{%
9.31%
\times 10^{8}\eV\,c^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@MassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassAMU| is the mass of an atomic mass unit in eV with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@MassAMU}{%
\ensuremath{%
9.314\expandafter\physconst@decimalsseparator%
941\expandafter\physconst@decimalsseparator%
024\expandafter\physconst@decimalsseparator%
171%
\times 10^{8}\eV\,c^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\kMassAMU| is the mass of an atomic mass unit.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassAMU}{%
\k@SI@full@MassAMU}
\else
\DeclareRobustCommand {\kMassAMU}{%
\k@SI@short@MassAMU}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassAMU}{%
\k@cgs@full@MassAMU}
\else
\DeclareRobustCommand {\kMassAMU}{%
\k@cgs@short@MassAMU}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVMassAMU}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\keVMassAMU| is the mass of an atomic mass unit.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVMassAMU}{%
\k@eV@full@MassAMU}
\else
\DeclareRobustCommand {\keVMassAMU}{%
\k@eV@short@MassAMU}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@short@MassAMUNumeric| is the mass of an atomic mass unit in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@MassAMUNumeric}{%
\ensuremath{%
1.66e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@SI@full@MassAMUNumeric| is the mass of an atomic mass unit in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@MassAMUNumeric}{%
\ensuremath{%
1.660539066600e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@short@MassAMUNumeric| is the mass of an atomic mass unit in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@MassAMUNumeric}{%
\ensuremath{%
1.66e-24}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@cgs@full@MassAMUNumeric| is the mass of an atomic mass unit in cgs units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@MassAMUNumeric}{%
\ensuremath{%
1.660539066600e-24}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@short@MassAMUNumeric| is the mass of an atomic mass unit in eV with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@MassAMUNumeric}{%
\ensuremath{%
9.31e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@MassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\k@eV@full@MassAMUNumeric| is the mass of an atomic mass unit in eV with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@MassAMUNumeric}{%
\ensuremath{%
9.314941024171e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kMassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\kMassAMUNumeric| is the mass of an atomic mass unit.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassAMUNumeric}{%
\k@SI@full@MassAMUNumeric}
\else
\DeclareRobustCommand {\kMassAMUNumeric}{%
\k@SI@short@MassAMUNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kMassAMUNumeric}{%
\k@cgs@full@MassAMUNumeric}
\else
\DeclareRobustCommand {\kMassAMUNumeric}{%
\k@cgs@short@MassAMUNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVMassAMUNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% \changes{v1.1.0}{2020/02/03}{Correct value in eV.}
% |\keVMassAMUNumeric| is the mass of an atomic mass unit.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVMassAMUNumeric}{%
\k@eV@full@MassAMUNumeric}
\else
\DeclareRobustCommand {\keVMassAMUNumeric}{%
\k@eV@short@MassAMUNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%
%\subsection{Charge}
%
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@ChargeFundamental}
% |\k@SI@short@ChargeFundamental| is the fundamental charge in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@ChargeFundamental}{%
\ensuremath{%
1.60%
\times 10^{-19}\Coulomb}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@ChargeFundamental}
% |\k@SI@full@ChargeFundamental| is the fundamental charge in SI units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@ChargeFundamental}{%
\ensuremath{%
1.602\expandafter\physconst@decimalsseparator%
176\expandafter\physconst@decimalsseparator%
634%
\times 10^{-19}\Coulomb}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@ChargeFundamental}
% |\k@cgs@short@ChargeFundamental| is the fundamental charge in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@ChargeFundamental}{%
\ensuremath{%
4.80%
\times 10^{-10}\esu}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@ChargeFundamental}
% |\k@cgs@full@ChargeFundamental| is the fundamental charge in cgs units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@ChargeFundamental}{%
\ensuremath{%
4.803\expandafter\physconst@decimalsseparator%
204\expandafter\physconst@decimalsseparator%
713%
\times 10^{-10}\esu}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kChargeFundamental}
% |\kChargeFundamental| is the fundamental charge.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeFundamental}{%
\k@SI@full@ChargeFundamental}
\else
\DeclareRobustCommand {\kChargeFundamental}{%
\k@SI@short@ChargeFundamental}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeFundamental}{%
\k@cgs@full@ChargeFundamental}
\else
\DeclareRobustCommand {\kChargeFundamental}{%
\k@cgs@short@ChargeFundamental}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@ChargeFundamentalNumeric}
% |\k@SI@short@ChargeFundamentalNumeric| is the fundamental charge in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@ChargeFundamentalNumeric}{%
\ensuremath{%
1.60e-19}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@ChargeFundamentalNumeric}
% |\k@SI@full@ChargeFundamentalNumeric| is the fundamental charge in SI units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@ChargeFundamentalNumeric}{%
\ensuremath{%
1.602176634e-19}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@ChargeFundamentalNumeric}
% |\k@cgs@short@ChargeFundamentalNumeric| is the fundamental charge in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@ChargeFundamentalNumeric}{%
\ensuremath{%
4.80e-10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@ChargeFundamentalNumeric}
% |\k@cgs@full@ChargeFundamentalNumeric| is the fundamental charge in cgs units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@ChargeFundamentalNumeric}{%
\ensuremath{%
4.803204713e-10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kChargeFundamentalNumeric}
% |\kChargeFundamentalNumeric| is the fundamental charge.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeFundamentalNumeric}{%
\k@SI@full@ChargeFundamentalNumeric}
\else
\DeclareRobustCommand {\kChargeFundamentalNumeric}{%
\k@SI@short@ChargeFundamentalNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeFundamentalNumeric}{%
\k@cgs@full@ChargeFundamentalNumeric}
\else
\DeclareRobustCommand {\kChargeFundamentalNumeric}{%
\k@cgs@short@ChargeFundamentalNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@ChargeElectron}
% |\k@SI@short@ChargeElectron| is the charge of an electron in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@ChargeElectron}{%
\ensuremath{%
-1.60%
\times 10^{-19}\Coulomb}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@ChargeElectron}
% |\k@SI@full@ChargeElectron| is the charge of an electron in SI units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@ChargeElectron}{%
\ensuremath{%
-1.602\expandafter\physconst@decimalsseparator%
176\expandafter\physconst@decimalsseparator%
634%
\times 10^{-19}\Coulomb}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@ChargeElectron}
% |\k@cgs@short@ChargeElectron| is the charge of an electron in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@ChargeElectron}{%
\ensuremath{%
-4.80%
\times 10^{-10}\esu}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@ChargeElectron}
% |\k@cgs@full@ChargeElectron| is the charge of an electron in cgs units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@ChargeElectron}{%
\ensuremath{%
-4.803\expandafter\physconst@decimalsseparator%
204\expandafter\physconst@decimalsseparator%
713%
\times 10^{-10}\esu}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kChargeElectron}
% |\kChargeElectron| is the charge of an electron.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeElectron}{%
\k@SI@full@ChargeElectron}
\else
\DeclareRobustCommand {\kChargeElectron}{%
\k@SI@short@ChargeElectron}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeElectron}{%
\k@cgs@full@ChargeElectron}
\else
\DeclareRobustCommand {\kChargeElectron}{%
\k@cgs@short@ChargeElectron}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@ChargeElectronNumeric}
% |\k@SI@short@ChargeElectronNumeric| is the charge of an electron in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@ChargeElectronNumeric}{%
\ensuremath{%
-1.60e-19}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@ChargeElectronNumeric}
% |\k@SI@full@ChargeElectronNumeric| is the charge of an electron in SI units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@ChargeElectronNumeric}{%
\ensuremath{%
-1.602176634e-19}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@ChargeElectronNumeric}
% |\k@cgs@short@ChargeElectronNumeric| is the charge of an electron in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@ChargeElectronNumeric}{%
\ensuremath{%
-4.80e-10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@ChargeElectronNumeric}
% |\k@cgs@full@ChargeElectronNumeric| is the charge of an electron in cgs units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@ChargeElectronNumeric}{%
\ensuremath{%
-4.803204713e-10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kChargeElectronNumeric}
% |\kChargeElectronNumeric| is the charge of an electron.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeElectronNumeric}{%
\k@SI@full@ChargeElectronNumeric}
\else
\DeclareRobustCommand {\kChargeElectronNumeric}{%
\k@SI@short@ChargeElectronNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeElectronNumeric}{%
\k@cgs@full@ChargeElectronNumeric}
\else
\DeclareRobustCommand {\kChargeElectronNumeric}{%
\k@cgs@short@ChargeElectronNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@ChargeProton}
% |\k@SI@short@ChargeProton| is the charge of a proton in SI units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@ChargeProton}{%
\ensuremath{%
1.60%
\times 10^{-19}\Coulomb}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@ChargeProton}
% |\k@SI@full@ChargeProton| is the charge of a proton in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@ChargeProton}{%
\ensuremath{%
1.602\expandafter\physconst@decimalsseparator%
176\expandafter\physconst@decimalsseparator%
634%
\times 10^{-19}\Coulomb}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@ChargeProton}
% |\k@cgs@short@ChargeProton| is the charge of a proton in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@ChargeProton}{%
\ensuremath{%
4.80%
\times 10^{-10}\esu}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@ChargeProton}
% |\k@cgs@full@ChargeProton| is the charge of a proton in cgs units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@ChargeProton}{%
\ensuremath{%
4.803\expandafter\physconst@decimalsseparator%
204\expandafter\physconst@decimalsseparator%
713%
\times 10^{-10}\esu}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kChargeProton}
% |\kChargeProton| is the charge of a proton.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeProton}{%
\k@SI@full@ChargeProton}
\else
\DeclareRobustCommand {\kChargeProton}{%
\k@SI@short@ChargeProton}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeProton}{%
\k@cgs@full@ChargeProton}
\else
\DeclareRobustCommand {\kChargeProton}{%
\k@cgs@short@ChargeProton}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@ChargeProtonNumeric}
% |\k@SI@short@ChargeProtonNumeric| is the charge of a proton in SI units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@ChargeProtonNumeric}{%
\ensuremath{%
1.60e-19}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@ChargeProtonNumeric}
% |\k@SI@full@ChargeProtonNumeric| is the charge of a proton in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@ChargeProtonNumeric}{%
\ensuremath{%
1.602176634e-19}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@ChargeProtonNumeric}
% |\k@cgs@short@ChargeProtonNumeric| is the charge of a proton in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@ChargeProtonNumeric}{%
\ensuremath{%
4.80e-10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@ChargeProtonNumeric}
% |\k@cgs@full@ChargeProtonNumeric| is the charge of a proton in cgs units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@ChargeProtonNumeric}{%
\ensuremath{%
4.803204713e-10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kChargeProtonNumeric}
% |\kChargeProtonNumeric| is the charge of a proton.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeProtonNumeric}{%
\k@SI@full@ChargeProtonNumeric}
\else
\DeclareRobustCommand {\kChargeProtonNumeric}{%
\k@SI@short@ChargeProtonNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kChargeProtonNumeric}{%
\k@cgs@full@ChargeProtonNumeric}
\else
\DeclareRobustCommand {\kChargeProtonNumeric}{%
\k@cgs@short@ChargeProtonNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%
%\subsection{Distances and Lengths}
%
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@RadiusBohr}
% |\k@SI@short@RadiusBohr| is Bohr radius of an atom in SI units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@RadiusBohr}{%
\ensuremath{%
5.29%
\times 10^{-11}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@RadiusBohr}
% |\k@SI@full@RadiusBohr| is Bohr radius of an atom in SI units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@RadiusBohr}{%
\ensuremath{%
5.291\expandafter\physconst@decimalsseparator%
772\expandafter\physconst@decimalsseparator%
11%
\times 10^{-11}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@RadiusBohr}
% |\k@cgs@short@RadiusBohr| is Bohr radius of an atom in cgs units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@RadiusBohr}{%
\ensuremath{%
5.29%
\times 10^{-9}\cm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@RadiusBohr}
% |\k@cgs@full@RadiusBohr| is Bohr radius of an atom in cgs units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@RadiusBohr}{%
\ensuremath{%
5.291\expandafter\physconst@decimalsseparator%
772\expandafter\physconst@decimalsseparator%
11%
\times 10^{-9}\cm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiusBohr}
% |\kRadiusBohr| is Bohr radius of an atom.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusBohr}{%
\k@SI@full@RadiusBohr}
\else
\DeclareRobustCommand {\kRadiusBohr}{%
\k@SI@short@RadiusBohr}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusBohr}{%
\k@cgs@full@RadiusBohr}
\else
\DeclareRobustCommand {\kRadiusBohr}{%
\k@cgs@short@RadiusBohr}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@RadiusBohrNumeric}
% |\k@SI@short@RadiusBohrNumeric| is Bohr radius of an atom in SI units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@RadiusBohrNumeric}{%
\ensuremath{%
5.29e-11}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@RadiusBohrNumeric}
% |\k@SI@full@RadiusBohrNumeric| is Bohr radius of an atom in SI units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@RadiusBohrNumeric}{%
\ensuremath{%
5.29177211e-11}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@RadiusBohrNumeric}
% |\k@cgs@short@RadiusBohrNumeric| is Bohr radius of an atom in cgs units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@RadiusBohrNumeric}{%
\ensuremath{%
5.29e-09}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@RadiusBohrNumeric}
% |\k@cgs@full@RadiusBohrNumeric| is Bohr radius of an atom in cgs units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@RadiusBohrNumeric}{%
\ensuremath{%
5.29177211e-09}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiusBohrNumeric}
% |\kRadiusBohrNumeric| is Bohr radius of an atom.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusBohrNumeric}{%
\k@SI@full@RadiusBohrNumeric}
\else
\DeclareRobustCommand {\kRadiusBohrNumeric}{%
\k@SI@short@RadiusBohrNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusBohrNumeric}{%
\k@cgs@full@RadiusBohrNumeric}
\else
\DeclareRobustCommand {\kRadiusBohrNumeric}{%
\k@cgs@short@RadiusBohrNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@AstronomicalUnit}
% |\k@SI@short@AstronomicalUnit| is the astronomical unit (the average distance
% between the Earth and the Sun) in SI units with reduced precision.
% Source: IAU~Resolution~B2~2012
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@AstronomicalUnit}{%
\ensuremath{%
1.50%
\times 10^{11}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@AstronomicalUnit}
% |\k@SI@full@AstronomicalUnit| is the astronomical unit (the average distance
% between the Earth and the Sun) in SI units with full precision.
% Source: IAU~Resolution~B2~2012
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@AstronomicalUnit}{%
\ensuremath{%
1.495\expandafter\physconst@decimalsseparator%
978\expandafter\physconst@decimalsseparator%
707%
\times 10^{11}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@AstronomicalUnit}
% |\k@cgs@short@AstronomicalUnit| is the astronomical unit (the average
% distance between the Earth and the Sun) in cgs units with reduced precision.
% Source: IAU~Resolution~B2~2012
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@AstronomicalUnit}{%
\ensuremath{%
1.50%
\times 10^{13}\cm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@AstronomicalUnit}
% |\k@cgs@full@AstronomicalUnit| is the astronomical unit (the average distance
% between the Earth and the Sun) in cgs units with full precision.
% Source: IAU~Resolution~B2~2012
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@AstronomicalUnit}{%
\ensuremath{%
1.495\expandafter\physconst@decimalsseparator%
978\expandafter\physconst@decimalsseparator%
707%
\times 10^{13}\cm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kAstronomicalUnit}
% |\kAstronomicalUnit| is the astronomical unit (the average distance between
% the Earth and the Sun).
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAstronomicalUnit}{%
\k@SI@full@AstronomicalUnit}
\else
\DeclareRobustCommand {\kAstronomicalUnit}{%
\k@SI@short@AstronomicalUnit}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAstronomicalUnit}{%
\k@cgs@full@AstronomicalUnit}
\else
\DeclareRobustCommand {\kAstronomicalUnit}{%
\k@cgs@short@AstronomicalUnit}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@AstronomicalUnitNumeric}
% |\k@SI@short@AstronomicalUnitNumeric| is the astronomical unit (the average distance
% between the Earth and the Sun) in SI units with reduced precision.
% Source: IAU~Resolution~B2~2012
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@AstronomicalUnitNumeric}{%
\ensuremath{%
1.50e+11}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@AstronomicalUnitNumeric}
% |\k@SI@full@AstronomicalUnitNumeric| is the astronomical unit (the average distance
% between the Earth and the Sun) in SI units with full precision.
% Source: IAU~Resolution~B2~2012
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@AstronomicalUnitNumeric}{%
\ensuremath{%
1.495978707e+11}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@AstronomicalUnitNumeric}
% |\k@cgs@short@AstronomicalUnitNumeric| is the astronomical unit (the average
% distance between the Earth and the Sun) in cgs units with reduced precision.
% Source: IAU~Resolution~B2~2012
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@AstronomicalUnitNumeric}{%
\ensuremath{%
1.50e+13}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@AstronomicalUnitNumeric}
% |\k@cgs@full@AstronomicalUnitNumeric| is the astronomical unit (the average distance
% between the Earth and the Sun) in cgs units with full precision.
% Source: IAU~Resolution~B2~2012
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@AstronomicalUnitNumeric}{%
\ensuremath{%
1.495978707e+13}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kAstronomicalUnitNumeric}
% |\kAstronomicalUnitNumeric| is the astronomical unit (the average distance between
% the Earth and the Sun).
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAstronomicalUnitNumeric}{%
\k@SI@full@AstronomicalUnitNumeric}
\else
\DeclareRobustCommand {\kAstronomicalUnitNumeric}{%
\k@SI@short@AstronomicalUnitNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAstronomicalUnitNumeric}{%
\k@cgs@full@AstronomicalUnitNumeric}
\else
\DeclareRobustCommand {\kAstronomicalUnitNumeric}{%
\k@cgs@short@AstronomicalUnitNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@Parsec}
% |\k@SI@short@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@Parsec}{%
\ensuremath{%
3.09%
\times 10^{16}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@Parsec}
% |\k@SI@full@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in SI
% units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@Parsec}{%
\ensuremath{%
3.085\expandafter\physconst@decimalsseparator%
677\expandafter\physconst@decimalsseparator%
581%
\times 10^{16}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@Parsec}
% |\k@cgs@short@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@Parsec}{%
\ensuremath{%
3.09%
\times 10^{18}\cm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@Parsec}
% |\k@cgs@full@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@Parsec}{%
\ensuremath{%
3.085\expandafter\physconst@decimalsseparator%
677\expandafter\physconst@decimalsseparator%
581%
\times 10^{18}\cm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kParsec}
% |\kParsec| is the length of a parsec ($\frac{648000\au}{\pi}$).
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kParsec}{%
\k@SI@full@Parsec}
\else
\DeclareRobustCommand {\kParsec}{%
\k@SI@short@Parsec}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kParsec}{%
\k@cgs@full@Parsec}
\else
\DeclareRobustCommand {\kParsec}{%
\k@cgs@short@Parsec}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@ParsecNumeric}
% |\k@SI@short@ParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@ParsecNumeric}{%
\ensuremath{%
3.09e+16}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@ParsecNumeric}
% |\k@SI@full@ParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$) in SI
% units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@ParsecNumeric}{%
\ensuremath{%
3.085677581e+16}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@ParsecNumeric}
% |\k@cgs@short@ParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@ParsecNumeric}{%
\ensuremath{%
3.09e+18}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@ParsecNumeric}
% |\k@cgs@full@ParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$) in
% cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@ParsecNumeric}{%
\ensuremath{%
3.085677581e+18}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kParsecNumeric}
% |\kParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$).
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kParsecNumeric}{%
\k@SI@full@ParsecNumeric}
\else
\DeclareRobustCommand {\kParsecNumeric}{%
\k@SI@short@ParsecNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kParsecNumeric}{%
\k@cgs@full@ParsecNumeric}
\else
\DeclareRobustCommand {\kParsecNumeric}{%
\k@cgs@short@ParsecNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@RadiusSun}
% |\k@SI@short@RadiusSun| is the mean radius of the Sun in SI units with
% reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@RadiusSun}{%
\ensuremath{%
6.96%
\times 10^{8}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@RadiusSun}
% |\k@SI@full@RadiusSun| is the mean radius of the Sun in SI units with full
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@RadiusSun}{%
\ensuremath{%
6.957%
\times 10^{8}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@RadiusSun}
% |\k@cgs@short@RadiusSun| is the mean radius of the Sun in cgs units with
% reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@RadiusSun}{%
\ensuremath{%
6.96%
\times 10^{10}\cm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@RadiusSun}
% |\k@cgs@full@RadiusSun| is the mean radius of the Sun in cgs units with full
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@RadiusSun}{%
\ensuremath{%
6.957%
\times 10^{10}\cm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiusSun}
% |\kRadiusSun| is the mean radius of the Sun.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusSun}{%
\k@SI@full@RadiusSun}
\else
\DeclareRobustCommand {\kRadiusSun}{%
\k@SI@short@RadiusSun}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusSun}{%
\k@cgs@full@RadiusSun}
\else
\DeclareRobustCommand {\kRadiusSun}{%
\k@cgs@short@RadiusSun}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@RadiusSunNumeric}
% |\k@SI@short@RadiusSunNumeric| is the mean radius of the Sun in SI units with
% reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@RadiusSunNumeric}{%
\ensuremath{%
6.96e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@RadiusSunNumeric}
% |\k@SI@full@RadiusSunNumeric| is the mean radius of the Sun in SI units with full
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@RadiusSunNumeric}{%
\ensuremath{%
6.957e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@RadiusSunNumeric}
% |\k@cgs@short@RadiusSunNumeric| is the mean radius of the Sun in cgs units with
% reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@RadiusSunNumeric}{%
\ensuremath{%
6.96e+10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@RadiusSunNumeric}
% |\k@cgs@full@RadiusSunNumeric| is the mean radius of the Sun in cgs units with full
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@RadiusSunNumeric}{%
\ensuremath{%
6.957e+10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiusSunNumeric}
% |\kRadiusSunNumeric| is the mean radius of the Sun.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusSunNumeric}{%
\k@SI@full@RadiusSunNumeric}
\else
\DeclareRobustCommand {\kRadiusSunNumeric}{%
\k@SI@short@RadiusSunNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusSunNumeric}{%
\k@cgs@full@RadiusSunNumeric}
\else
\DeclareRobustCommand {\kRadiusSunNumeric}{%
\k@cgs@short@RadiusSunNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@RadiusEarth}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\k@short@RadiusEarth| is the mean radius of the Earth with reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@RadiusEarth}{%
\ensuremath{%
6.37%
\times 10^{6}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@RadiusEarth}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\k@full@RadiusEarth| is the mean radius of the Earth with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@RadiusEarth}{%
\ensuremath{%
6.371\expandafter\physconst@decimalsseparator%
0%
\times 10^{6}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiusEarth}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\kRadiusEarth| is the mean radius of the Earth.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusEarth}{%
\k@full@RadiusEarth}
\else
\DeclareRobustCommand {\kRadiusEarth}{%
\k@short@RadiusEarth}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@RadiusEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\k@short@RadiusEarthNumeric| is the mean radius of the Earth with reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@RadiusEarthNumeric}{%
\ensuremath{%
6.37e+06}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@RadiusEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\k@full@RadiusEarthNumeric| is the mean radius of the Earth with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@RadiusEarthNumeric}{%
\ensuremath{%
6.3710e+06}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiusEarthNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Earth}
% |\kRadiusEarthNumeric| is the mean radius of the Earth.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusEarthNumeric}{%
\k@full@RadiusEarthNumeric}
\else
\DeclareRobustCommand {\kRadiusEarthNumeric}{%
\k@short@RadiusEarthNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@RadiusJupiter}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\k@short@RadiusJupiter| is the mean radius of Jupiter with reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@RadiusJupiter}{%
\ensuremath{%
6.99%
\times 10^{7}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@RadiusJupiter}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\k@full@RadiusJupiter| is the mean radius of Jupiter with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@RadiusJupiter}{%
\ensuremath{%
6.991\expandafter\physconst@decimalsseparator%
1%
\times 10^{7}\m}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiusJupiter}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\kRadiusJupiter| is the mean radius of Jupiter.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusJupiter}{%
\k@full@RadiusJupiter}
\else
\DeclareRobustCommand {\kRadiusJupiter}{%
\k@short@RadiusJupiter}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@RadiusJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\k@short@RadiusJupiterNumeric| is the mean radius of Jupiter with reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@RadiusJupiterNumeric}{%
\ensuremath{%
6.99e+07}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@RadiusJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\k@full@RadiusJupiterNumeric| is the mean radius of Jupiter with full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@RadiusJupiterNumeric}{%
\ensuremath{%
6.9911e+07}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiusJupiterNumeric}
% \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter}
% |\kRadiusJupiterNumeric| is the mean radius of Jupiter.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiusJupiterNumeric}{%
\k@full@RadiusJupiterNumeric}
\else
\DeclareRobustCommand {\kRadiusJupiterNumeric}{%
\k@short@RadiusJupiterNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%
%\subsection{Energy, Power, and Luminosity}
%
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@Rydberg}
% |\k@SI@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@Rydberg}{%
\ensuremath{%
2.18%
\times 10^{-18}\Joule}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@Rydberg}
% |\k@SI@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in SI units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@Rydberg}{%
\ensuremath{%
2.179\expandafter\physconst@decimalsseparator%
872\expandafter\physconst@decimalsseparator%
36%
\times 10^{-18}\Joule}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@Rydberg}
% |\k@cgs@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@Rydberg}{%
\ensuremath{%
2.18%
\times 10^{-11}\erg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@Rydberg}
% |\k@cgs@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@Rydberg}{%
\ensuremath{%
2.179\expandafter\physconst@decimalsseparator%
872\expandafter\physconst@decimalsseparator%
36%
\times 10^{-11}\erg}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@Rydberg}
% |\k@eV@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in eV with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@Rydberg}{%
\ensuremath{%
1.36%
\times 10^{1}\eV}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@Rydberg}
% |\k@eV@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen)
% in eV with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@Rydberg}{%
\ensuremath{%
1.360\expandafter\physconst@decimalsseparator%
569\expandafter\physconst@decimalsseparator%
31%
\times 10^{1}\eV}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRydberg}
% |\kRydberg| is the Rydberg energy (the binding energy of Hydrogen).
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRydberg}{%
\k@SI@full@Rydberg}
\else
\DeclareRobustCommand {\kRydberg}{%
\k@SI@short@Rydberg}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRydberg}{%
\k@cgs@full@Rydberg}
\else
\DeclareRobustCommand {\kRydberg}{%
\k@cgs@short@Rydberg}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVRydberg}
% |\keVRydberg| is the Rydberg energy (the binding energy of Hydrogen).
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVRydberg}{%
\k@eV@full@Rydberg}
\else
\DeclareRobustCommand {\keVRydberg}{%
\k@eV@short@Rydberg}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@RydbergNumeric}
% |\k@SI@short@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen)
% in SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@RydbergNumeric}{%
\ensuremath{%
2.18e-18}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@RydbergNumeric}
% |\k@SI@full@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen)
% in SI units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@RydbergNumeric}{%
\ensuremath{%
2.17987236e-18}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@RydbergNumeric}
% |\k@cgs@short@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen)
% in cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@RydbergNumeric}{%
\ensuremath{%
2.18e-11}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@RydbergNumeric}
% |\k@cgs@full@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen)
% in cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@RydbergNumeric}{%
\ensuremath{%
2.17987236e-11}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@RydbergNumeric}
% |\k@eV@short@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen)
% in eV with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@RydbergNumeric}{%
\ensuremath{%
1.36e+01}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@RydbergNumeric}
% |\k@eV@full@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen)
% in eV with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@RydbergNumeric}{%
\ensuremath{%
1.36056931e+01}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRydbergNumeric}
% |\kRydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen).
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRydbergNumeric}{%
\k@SI@full@RydbergNumeric}
\else
\DeclareRobustCommand {\kRydbergNumeric}{%
\k@SI@short@RydbergNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRydbergNumeric}{%
\k@cgs@full@RydbergNumeric}
\else
\DeclareRobustCommand {\kRydbergNumeric}{%
\k@cgs@short@RydbergNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVRydbergNumeric}
% |\keVRydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen).
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVRydbergNumeric}{%
\k@eV@full@RydbergNumeric}
\else
\DeclareRobustCommand {\keVRydbergNumeric}{%
\k@eV@short@RydbergNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@LuminositySun}
% |\k@SI@short@LuminositySun| is the luminosity of the Sun in SI units with
% reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@LuminositySun}{%
\ensuremath{%
3.83%
\times 10^{26}\Watt}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@LuminositySun}
% |\k@SI@full@LuminositySun| is the luminosity of the Sun in SI units with full
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@LuminositySun}{%
\ensuremath{%
3.828%
\times 10^{26}\Watt}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@LuminositySun}
% |\k@cgs@short@LuminositySun| is the luminosity of the Sun in cgs units with
% reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@LuminositySun}{%
\ensuremath{%
3.83%
\times 10^{33}\erg\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@LuminositySun}
% |\k@cgs@full@LuminositySun| is the luminosity of the Sun in cgs units with
% full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@LuminositySun}{%
\ensuremath{%
3.828%
\times 10^{33}\erg\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kLuminositySun}
% |\kLuminositySun| is the luminosity of the Sun.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kLuminositySun}{%
\k@SI@full@LuminositySun}
\else
\DeclareRobustCommand {\kLuminositySun}{%
\k@SI@short@LuminositySun}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kLuminositySun}{%
\k@cgs@full@LuminositySun}
\else
\DeclareRobustCommand {\kLuminositySun}{%
\k@cgs@short@LuminositySun}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@LuminositySunNumeric}
% |\k@SI@short@LuminositySunNumeric| is the luminosity of the Sun in SI units with
% reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@LuminositySunNumeric}{%
\ensuremath{%
3.83e+26}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@LuminositySunNumeric}
% |\k@SI@full@LuminositySunNumeric| is the luminosity of the Sun in SI units with full
% precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@LuminositySunNumeric}{%
\ensuremath{%
3.828e+26}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@LuminositySunNumeric}
% |\k@cgs@short@LuminositySunNumeric| is the luminosity of the Sun in cgs units with
% reduced precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@LuminositySunNumeric}{%
\ensuremath{%
3.83e+33}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@LuminositySunNumeric}
% |\k@cgs@full@LuminositySunNumeric| is the luminosity of the Sun in cgs units with
% full precision.
% Source: IAU~Resolution~B3~2015
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@LuminositySunNumeric}{%
\ensuremath{%
3.828e+33}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kLuminositySunNumeric}
% |\kLuminositySunNumeric| is the luminosity of the Sun.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kLuminositySunNumeric}{%
\k@SI@full@LuminositySunNumeric}
\else
\DeclareRobustCommand {\kLuminositySunNumeric}{%
\k@SI@short@LuminositySunNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kLuminositySunNumeric}{%
\k@cgs@full@LuminositySunNumeric}
\else
\DeclareRobustCommand {\kLuminositySunNumeric}{%
\k@cgs@short@LuminositySunNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%
%\subsection{Pressure}
%
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@PressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@short@PressureAtmosphere| is the standard atmospheric pressure in SI
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@PressureAtmosphere}{%
\ensuremath{%
1.01%
\times 10^{5}\Pa}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@PressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@full@PressureAtmosphere| is the standard atmospheric pressure in SI
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@PressureAtmosphere}{%
\ensuremath{%
1.013\expandafter\physconst@decimalsseparator%
25%
\times 10^{5}\Pa}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@PressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@short@PressureAtmosphere| is the standard atmospheric pressure in cgs
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@PressureAtmosphere}{%
\ensuremath{%
1.01\barP}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@PressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@full@PressureAtmosphere| is the standard atmospheric pressure in cgs
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@PressureAtmosphere}{%
\ensuremath{%
1.013\expandafter\physconst@decimalsseparator%
25\barP}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kPressureAtmosphere}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\kPressureAtmosphere| is the standard atmospheric pressure.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPressureAtmosphere}{%
\k@SI@full@PressureAtmosphere}
\else
\DeclareRobustCommand {\kPressureAtmosphere}{%
\k@SI@short@PressureAtmosphere}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPressureAtmosphere}{%
\k@cgs@full@PressureAtmosphere}
\else
\DeclareRobustCommand {\kPressureAtmosphere}{%
\k@cgs@short@PressureAtmosphere}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@PressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@short@PressureAtmosphereNumeric| is the standard atmospheric pressure in SI
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@PressureAtmosphereNumeric}{%
\ensuremath{%
1.01e+05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@PressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@full@PressureAtmosphereNumeric| is the standard atmospheric pressure in SI
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@PressureAtmosphereNumeric}{%
\ensuremath{%
1.01325e+05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@PressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@short@PressureAtmosphereNumeric| is the standard atmospheric pressure in cgs
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@PressureAtmosphereNumeric}{%
\ensuremath{%
1.01e+00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@PressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@full@PressureAtmosphereNumeric| is the standard atmospheric pressure in cgs
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@PressureAtmosphereNumeric}{%
\ensuremath{%
1.01325e+00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kPressureAtmosphereNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\kPressureAtmosphereNumeric| is the standard atmospheric pressure.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPressureAtmosphereNumeric}{%
\k@SI@full@PressureAtmosphereNumeric}
\else
\DeclareRobustCommand {\kPressureAtmosphereNumeric}{%
\k@SI@short@PressureAtmosphereNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPressureAtmosphereNumeric}{%
\k@cgs@full@PressureAtmosphereNumeric}
\else
\DeclareRobustCommand {\kPressureAtmosphereNumeric}{%
\k@cgs@short@PressureAtmosphereNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@PressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@short@PressureStandard| is the standard atmospheric pressure in SI
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@PressureStandard}{%
\ensuremath{%
1.00%
\times 10^{5}\Pa}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@PressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@full@PressureStandard| is the standard atmospheric pressure in SI
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@PressureStandard}{%
\ensuremath{%
1.000\expandafter\physconst@decimalsseparator%
00%
\times 10^{5}\Pa}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@PressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@short@PressureStandard| is the standard atmospheric pressure in cgs
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@PressureStandard}{%
\ensuremath{%
1.00\barP}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@PressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@full@PressureStandard| is the standard atmospheric pressure in cgs
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@PressureStandard}{%
\ensuremath{%
1.000\expandafter\physconst@decimalsseparator%
00\barP}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kPressureStandard}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\kPressureStandard| is the standard atmospheric pressure.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPressureStandard}{%
\k@SI@full@PressureStandard}
\else
\DeclareRobustCommand {\kPressureStandard}{%
\k@SI@short@PressureStandard}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPressureStandard}{%
\k@cgs@full@PressureStandard}
\else
\DeclareRobustCommand {\kPressureStandard}{%
\k@cgs@short@PressureStandard}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@PressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@short@PressureStandardNumeric| is the standard atmospheric pressure in SI
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@PressureStandardNumeric}{%
\ensuremath{%
1.00e+05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@PressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@SI@full@PressureStandardNumeric| is the standard atmospheric pressure in SI
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@PressureStandardNumeric}{%
\ensuremath{%
1.00000e+05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@PressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@short@PressureStandardNumeric| is the standard atmospheric pressure in cgs
% units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@PressureStandardNumeric}{%
\ensuremath{%
1.00e+00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@PressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\k@cgs@full@PressureStandardNumeric| is the standard atmospheric pressure in cgs
% units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@PressureStandardNumeric}{%
\ensuremath{%
1.00000e+00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kPressureStandardNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix prefix of units.}
% |\kPressureStandardNumeric| is the standard atmospheric pressure.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPressureStandardNumeric}{%
\k@SI@full@PressureStandardNumeric}
\else
\DeclareRobustCommand {\kPressureStandardNumeric}{%
\k@SI@short@PressureStandardNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPressureStandardNumeric}{%
\k@cgs@full@PressureStandardNumeric}
\else
\DeclareRobustCommand {\kPressureStandardNumeric}{%
\k@cgs@short@PressureStandardNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%
%\subsection{Velocity, Speed and Acceleration}
%
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@SpeedLight}
% |\k@SI@short@SpeedLight| is the speed of light in SI units with reduced
% precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@SpeedLight}{%
\ensuremath{%
3.00%
\times 10^{8}\m\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@SpeedLight}
% |\k@SI@full@SpeedLight| is the speed of light in SI units with full precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@SpeedLight}{%
\ensuremath{%
2.997\expandafter\physconst@decimalsseparator%
924\expandafter\physconst@decimalsseparator%
58%
\times 10^{8}\m\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@SpeedLight}
% |\k@cgs@short@SpeedLight| is the speed of light in cgs units with reduced
% precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@SpeedLight}{%
\ensuremath{%
3.00%
\times 10^{10}\cm\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@SpeedLight}
% |\k@cgs@full@SpeedLight| is the speed of light in cgs units with full
% precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@SpeedLight}{%
\ensuremath{%
2.997\expandafter\physconst@decimalsseparator%
924\expandafter\physconst@decimalsseparator%
58%
\times 10^{10}\cm\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kSpeedLight}
% |\kSpeedLight| is the speed of light.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kSpeedLight}{%
\k@SI@full@SpeedLight}
\else
\DeclareRobustCommand {\kSpeedLight}{%
\k@SI@short@SpeedLight}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kSpeedLight}{%
\k@cgs@full@SpeedLight}
\else
\DeclareRobustCommand {\kSpeedLight}{%
\k@cgs@short@SpeedLight}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@SpeedLightNumeric}
% |\k@SI@short@SpeedLightNumeric| is the speed of light in SI units with reduced
% precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@SpeedLightNumeric}{%
\ensuremath{%
3.00e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@SpeedLightNumeric}
% |\k@SI@full@SpeedLightNumeric| is the speed of light in SI units with full precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@SpeedLightNumeric}{%
\ensuremath{%
2.99792458e+08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@SpeedLightNumeric}
% |\k@cgs@short@SpeedLightNumeric| is the speed of light in cgs units with reduced
% precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@SpeedLightNumeric}{%
\ensuremath{%
3.00e+10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@SpeedLightNumeric}
% |\k@cgs@full@SpeedLightNumeric| is the speed of light in cgs units with full
% precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@SpeedLightNumeric}{%
\ensuremath{%
2.99792458e+10}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kSpeedLightNumeric}
% |\kSpeedLightNumeric| is the speed of light.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kSpeedLightNumeric}{%
\k@SI@full@SpeedLightNumeric}
\else
\DeclareRobustCommand {\kSpeedLightNumeric}{%
\k@SI@short@SpeedLightNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kSpeedLightNumeric}{%
\k@cgs@full@SpeedLightNumeric}
\else
\DeclareRobustCommand {\kSpeedLightNumeric}{%
\k@cgs@short@SpeedLightNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@AccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@SI@short@AccelGravity| is the accelertion due to gravity at the surface
% of the Earth in SI units with reduced precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@AccelGravity}{%
\ensuremath{%
9.81\m\Sec^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@AccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@SI@full@AccelGravity| is the accelertion due to gravity at the surface of
% the Earth in SI units with full precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@AccelGravity}{%
\ensuremath{%
9.806\expandafter\physconst@decimalsseparator%
65\m\Sec^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@AccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@cgs@short@AccelGravity| is the accelertion due to gravity at the surface
% of the Earth in cgs units with reduced precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@AccelGravity}{%
\ensuremath{%
9.81%
\times 10^{2}\cm\Sec^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@AccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@cgs@full@AccelGravity| is the accelertion due to gravity at the surface
% of the Earth in cgs units with full precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@AccelGravity}{%
\ensuremath{%
9.806\expandafter\physconst@decimalsseparator%
65%
\times 10^{2}\cm\Sec^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kAccelGravity}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\kAccelGravity| is the accelertion due to gravity at the surface of the
% Earth.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAccelGravity}{%
\k@SI@full@AccelGravity}
\else
\DeclareRobustCommand {\kAccelGravity}{%
\k@SI@short@AccelGravity}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAccelGravity}{%
\k@cgs@full@AccelGravity}
\else
\DeclareRobustCommand {\kAccelGravity}{%
\k@cgs@short@AccelGravity}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@AccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@SI@short@AccelGravityNumeric| is the accelertion due to gravity at the surface
% of the Earth in SI units with reduced precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@AccelGravityNumeric}{%
\ensuremath{%
9.81e+00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@AccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@SI@full@AccelGravityNumeric| is the accelertion due to gravity at the surface of
% the Earth in SI units with full precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@AccelGravityNumeric}{%
\ensuremath{%
9.80665e+00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@AccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@cgs@short@AccelGravityNumeric| is the accelertion due to gravity at the surface
% of the Earth in cgs units with reduced precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@AccelGravityNumeric}{%
\ensuremath{%
9.81e+02}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@AccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\k@cgs@full@AccelGravityNumeric| is the accelertion due to gravity at the surface
% of the Earth in cgs units with full precision.
% Source: CODATA 2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@AccelGravityNumeric}{%
\ensuremath{%
9.80665e+02}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kAccelGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Correct value.}
% \changes{v1.1.0}{2020/02/03}{Fix units.}
% |\kAccelGravityNumeric| is the accelertion due to gravity at the surface of the
% Earth.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAccelGravityNumeric}{%
\k@SI@full@AccelGravityNumeric}
\else
\DeclareRobustCommand {\kAccelGravityNumeric}{%
\k@SI@short@AccelGravityNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAccelGravityNumeric}{%
\k@cgs@full@AccelGravityNumeric}
\else
\DeclareRobustCommand {\kAccelGravityNumeric}{%
\k@cgs@short@AccelGravityNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%
%\subsection{Other Constants}
%
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@Coulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@Coulomb}{%
\ensuremath{%
8.99%
\times 10^{9}\N\m^2\Coulomb^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@Coulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% SI units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@Coulomb}{%
\ensuremath{%
8.987\expandafter\physconst@decimalsseparator%
551\expandafter\physconst@decimalsseparator%
79%
\times 10^{9}\N\m^2\Coulomb^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@Coulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$)
% in cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@Coulomb}{%
\ensuremath{%
1.00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@Coulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@Coulomb}{%
\ensuremath{%
1.000\expandafter\physconst@decimalsseparator%
000\expandafter\physconst@decimalsseparator%
00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kCoulomb}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\kCoulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$).
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kCoulomb}{%
\k@SI@full@Coulomb}
\else
\DeclareRobustCommand {\kCoulomb}{%
\k@SI@short@Coulomb}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kCoulomb}{%
\k@cgs@full@Coulomb}
\else
\DeclareRobustCommand {\kCoulomb}{%
\k@cgs@short@Coulomb}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@CoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@CoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@CoulombNumeric}{%
\ensuremath{%
8.99e+09}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@CoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@CoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% SI units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@CoulombNumeric}{%
\ensuremath{%
8.98755179e+09}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@CoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@CoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$)
% in cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@CoulombNumeric}{%
\ensuremath{%
1.00e+00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@CoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@CoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in
% cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@CoulombNumeric}{%
\ensuremath{%
1.00000000e+00}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kCoulombNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\kCoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$).
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kCoulombNumeric}{%
\k@SI@full@CoulombNumeric}
\else
\DeclareRobustCommand {\kCoulombNumeric}{%
\k@SI@short@CoulombNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kCoulombNumeric}{%
\k@cgs@full@CoulombNumeric}
\else
\DeclareRobustCommand {\kCoulombNumeric}{%
\k@cgs@short@CoulombNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@VacuumPermittivity}
% |\k@SI@short@VacuumPermittivity| is the electric permittivity of the vacuum
% in SI units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@VacuumPermittivity}{%
\ensuremath{%
8.85%
\times 10^{-12}\Farad\m^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@VacuumPermittivity}
% |\k@SI@full@VacuumPermittivity| is the electric permittivity of the vacuum in
% SI units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@VacuumPermittivity}{%
\ensuremath{%
8.854\expandafter\physconst@decimalsseparator%
187\expandafter\physconst@decimalsseparator%
812\expandafter\physconst@decimalsseparator%
8%
\times 10^{-12}\Farad\m^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@VacuumPermittivity}
% |\k@cgs@short@VacuumPermittivity| is the electric permittivity of the vacuum
% in cgs units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@VacuumPermittivity}{%
\ensuremath{%
7.96%
\times 10^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@VacuumPermittivity}
% |\k@cgs@full@VacuumPermittivity| is the electric permittivity of the vacuum
% in cgs units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@VacuumPermittivity}{%
\ensuremath{%
7.957\expandafter\physconst@decimalsseparator%
747\expandafter\physconst@decimalsseparator%
154\expandafter\physconst@decimalsseparator%
6%
\times 10^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kVacuumPermittivity}
% |\kVacuumPermittivity| is the electric permittivity of the vacuum.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumPermittivity}{%
\k@SI@full@VacuumPermittivity}
\else
\DeclareRobustCommand {\kVacuumPermittivity}{%
\k@SI@short@VacuumPermittivity}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumPermittivity}{%
\k@cgs@full@VacuumPermittivity}
\else
\DeclareRobustCommand {\kVacuumPermittivity}{%
\k@cgs@short@VacuumPermittivity}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@VacuumPermittivityNumeric}
% |\k@SI@short@VacuumPermittivityNumeric| is the electric permittivity of the vacuum
% in SI units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@VacuumPermittivityNumeric}{%
\ensuremath{%
8.85e-12}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@VacuumPermittivityNumeric}
% |\k@SI@full@VacuumPermittivityNumeric| is the electric permittivity of the vacuum in
% SI units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@VacuumPermittivityNumeric}{%
\ensuremath{%
8.8541878128e-12}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@VacuumPermittivityNumeric}
% |\k@cgs@short@VacuumPermittivityNumeric| is the electric permittivity of the vacuum
% in cgs units with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@VacuumPermittivityNumeric}{%
\ensuremath{%
7.96e-02}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@VacuumPermittivityNumeric}
% |\k@cgs@full@VacuumPermittivityNumeric| is the electric permittivity of the vacuum
% in cgs units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@VacuumPermittivityNumeric}{%
\ensuremath{%
7.9577471546e-02}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kVacuumPermittivityNumeric}
% |\kVacuumPermittivityNumeric| is the electric permittivity of the vacuum.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumPermittivityNumeric}{%
\k@SI@full@VacuumPermittivityNumeric}
\else
\DeclareRobustCommand {\kVacuumPermittivityNumeric}{%
\k@SI@short@VacuumPermittivityNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumPermittivityNumeric}{%
\k@cgs@full@VacuumPermittivityNumeric}
\else
\DeclareRobustCommand {\kVacuumPermittivityNumeric}{%
\k@cgs@short@VacuumPermittivityNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@VacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@short@VacuumPermeability| is the magnetic permeability of the vacuum
% in SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@VacuumPermeability}{%
\ensuremath{%
1.26%
\times 10^{-6}\N\Amp^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@VacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@full@VacuumPermeability| is the magnetic permeability of the vacuum in
% SI units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@VacuumPermeability}{%
\ensuremath{%
1.256\expandafter\physconst@decimalsseparator%
637\expandafter\physconst@decimalsseparator%
062\expandafter\physconst@decimalsseparator%
1%
\times 10^{-6}\N\Amp^{-2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@VacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@short@VacuumPermeability| is the magnetic permeability of the vacuum
% in cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@VacuumPermeability}{%
\ensuremath{%
1.26%
\times 10^{1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@VacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@full@VacuumPermeability| is the magnetic permeability of the vacuum
% in cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@VacuumPermeability}{%
\ensuremath{%
1.256\expandafter\physconst@decimalsseparator%
637\expandafter\physconst@decimalsseparator%
061\expandafter\physconst@decimalsseparator%
4%
\times 10^{1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kVacuumPermeability}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\kVacuumPermeability| is the magnetic permeability of the vacuum.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumPermeability}{%
\k@SI@full@VacuumPermeability}
\else
\DeclareRobustCommand {\kVacuumPermeability}{%
\k@SI@short@VacuumPermeability}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumPermeability}{%
\k@cgs@full@VacuumPermeability}
\else
\DeclareRobustCommand {\kVacuumPermeability}{%
\k@cgs@short@VacuumPermeability}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@VacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@short@VacuumPermeabilityNumeric| is the magnetic permeability of the vacuum
% in SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@VacuumPermeabilityNumeric}{%
\ensuremath{%
1.26e-06}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@VacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@full@VacuumPermeabilityNumeric| is the magnetic permeability of the vacuum in
% SI units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@VacuumPermeabilityNumeric}{%
\ensuremath{%
1.2566370621e-06}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@VacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@short@VacuumPermeabilityNumeric| is the magnetic permeability of the vacuum
% in cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@VacuumPermeabilityNumeric}{%
\ensuremath{%
1.26e+01}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@VacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@full@VacuumPermeabilityNumeric| is the magnetic permeability of the vacuum
% in cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@VacuumPermeabilityNumeric}{%
\ensuremath{%
1.2566370614e+01}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kVacuumPermeabilityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\kVacuumPermeabilityNumeric| is the magnetic permeability of the vacuum.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumPermeabilityNumeric}{%
\k@SI@full@VacuumPermeabilityNumeric}
\else
\DeclareRobustCommand {\kVacuumPermeabilityNumeric}{%
\k@SI@short@VacuumPermeabilityNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumPermeabilityNumeric}{%
\k@cgs@full@VacuumPermeabilityNumeric}
\else
\DeclareRobustCommand {\kVacuumPermeabilityNumeric}{%
\k@cgs@short@VacuumPermeabilityNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@VacuumImpedance}
% |\k@short@VacuumImpedance| is the characteristic impedance of the vacuum with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@VacuumImpedance}{%
\ensuremath{%
3.77%
\times 10^{2}\Ohm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@VacuumImpedance}
% |\k@full@VacuumImpedance| is the characteristic impedance of the vacuum with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@VacuumImpedance}{%
\ensuremath{%
3.767\expandafter\physconst@decimalsseparator%
303\expandafter\physconst@decimalsseparator%
136\expandafter\physconst@decimalsseparator%
68%
\times 10^{2}\Ohm}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kVacuumImpedance}
% |\kVacuumImpedance| is the characteristic impedance of the vacuum.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumImpedance}{%
\k@full@VacuumImpedance}
\else
\DeclareRobustCommand {\kVacuumImpedance}{%
\k@short@VacuumImpedance}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@VacuumImpedanceNumeric}
% |\k@short@VacuumImpedanceNumeric| is the characteristic impedance of the vacuum with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@VacuumImpedanceNumeric}{%
\ensuremath{%
3.77e+02}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@VacuumImpedanceNumeric}
% |\k@full@VacuumImpedanceNumeric| is the characteristic impedance of the vacuum with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@VacuumImpedanceNumeric}{%
\ensuremath{%
3.76730313668e+02}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kVacuumImpedanceNumeric}
% |\kVacuumImpedanceNumeric| is the characteristic impedance of the vacuum.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kVacuumImpedanceNumeric}{%
\k@full@VacuumImpedanceNumeric}
\else
\DeclareRobustCommand {\kVacuumImpedanceNumeric}{%
\k@short@VacuumImpedanceNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@Boltzmann}
% |\k@SI@short@Boltzmann| is the Boltzmann constant in SI units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@Boltzmann}{%
\ensuremath{%
1.38%
\times 10^{-23}\J\K^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@Boltzmann}
% |\k@SI@full@Boltzmann| is the Boltzmann constant in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@Boltzmann}{%
\ensuremath{%
1.380\expandafter\physconst@decimalsseparator%
649%
\times 10^{-23}\J\K^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@Boltzmann}
% |\k@cgs@short@Boltzmann| is the Boltzmann constant in cgs units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@Boltzmann}{%
\ensuremath{%
1.38%
\times 10^{-16}\erg\K^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@Boltzmann}
% |\k@cgs@full@Boltzmann| is the Boltzmann constant in cgs units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@Boltzmann}{%
\ensuremath{%
1.380\expandafter\physconst@decimalsseparator%
649%
\times 10^{-16}\erg\K^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@Boltzmann}
% |\k@eV@short@Boltzmann| is the Boltzmann constant in eV with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@Boltzmann}{%
\ensuremath{%
8.62%
\times 10^{-5}\eV\K^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@Boltzmann}
% |\k@eV@full@Boltzmann| is the Boltzmann constant in eV with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@Boltzmann}{%
\ensuremath{%
8.617\expandafter\physconst@decimalsseparator%
333%
\times 10^{-5}\eV\K^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kBoltzmann}
% |\kBoltzmann| is the Boltzmann constant.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kBoltzmann}{%
\k@SI@full@Boltzmann}
\else
\DeclareRobustCommand {\kBoltzmann}{%
\k@SI@short@Boltzmann}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kBoltzmann}{%
\k@cgs@full@Boltzmann}
\else
\DeclareRobustCommand {\kBoltzmann}{%
\k@cgs@short@Boltzmann}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVBoltzmann}
% |\keVBoltzmann| is the Boltzmann constant.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVBoltzmann}{%
\k@eV@full@Boltzmann}
\else
\DeclareRobustCommand {\keVBoltzmann}{%
\k@eV@short@Boltzmann}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@BoltzmannNumeric}
% |\k@SI@short@BoltzmannNumeric| is the Boltzmann constant in SI units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@BoltzmannNumeric}{%
\ensuremath{%
1.38e-23}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@BoltzmannNumeric}
% |\k@SI@full@BoltzmannNumeric| is the Boltzmann constant in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@BoltzmannNumeric}{%
\ensuremath{%
1.380649e-23}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@BoltzmannNumeric}
% |\k@cgs@short@BoltzmannNumeric| is the Boltzmann constant in cgs units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@BoltzmannNumeric}{%
\ensuremath{%
1.38e-16}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@BoltzmannNumeric}
% |\k@cgs@full@BoltzmannNumeric| is the Boltzmann constant in cgs units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@BoltzmannNumeric}{%
\ensuremath{%
1.380649e-16}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@BoltzmannNumeric}
% |\k@eV@short@BoltzmannNumeric| is the Boltzmann constant in eV with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@BoltzmannNumeric}{%
\ensuremath{%
8.62e-05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@BoltzmannNumeric}
% |\k@eV@full@BoltzmannNumeric| is the Boltzmann constant in eV with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@BoltzmannNumeric}{%
\ensuremath{%
8.617333e-05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kBoltzmannNumeric}
% |\kBoltzmannNumeric| is the Boltzmann constant.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kBoltzmannNumeric}{%
\k@SI@full@BoltzmannNumeric}
\else
\DeclareRobustCommand {\kBoltzmannNumeric}{%
\k@SI@short@BoltzmannNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kBoltzmannNumeric}{%
\k@cgs@full@BoltzmannNumeric}
\else
\DeclareRobustCommand {\kBoltzmannNumeric}{%
\k@cgs@short@BoltzmannNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVBoltzmannNumeric}
% |\keVBoltzmannNumeric| is the Boltzmann constant.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVBoltzmannNumeric}{%
\k@eV@full@BoltzmannNumeric}
\else
\DeclareRobustCommand {\keVBoltzmannNumeric}{%
\k@eV@short@BoltzmannNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@Planck| is the Planck constant in SI units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@Planck}{%
\ensuremath{%
6.63%
\times 10^{-34}\J\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@Planck| is the Planck constant in SI units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@Planck}{%
\ensuremath{%
6.626\expandafter\physconst@decimalsseparator%
070\expandafter\physconst@decimalsseparator%
15%
\times 10^{-34}\J\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@Planck| is the Planck constant in cgs units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@Planck}{%
\ensuremath{%
6.63%
\times 10^{-27}\erg\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@Planck| is the Planck constant in cgs units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@Planck}{%
\ensuremath{%
6.626\expandafter\physconst@decimalsseparator%
070\expandafter\physconst@decimalsseparator%
15%
\times 10^{-27}\erg\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@short@Planck| is the Planck constant in eV with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@Planck}{%
\ensuremath{%
4.14%
\times 10^{-15}\eV\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@Planck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@full@Planck| is the Planck constant in eV with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@Planck}{%
\ensuremath{%
4.135\expandafter\physconst@decimalsseparator%
667\expandafter\physconst@decimalsseparator%
70%
\times 10^{-15}\eV\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kPlanck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\kPlanck| is the Planck constant.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPlanck}{%
\k@SI@full@Planck}
\else
\DeclareRobustCommand {\kPlanck}{%
\k@SI@short@Planck}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPlanck}{%
\k@cgs@full@Planck}
\else
\DeclareRobustCommand {\kPlanck}{%
\k@cgs@short@Planck}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVPlanck}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\keVPlanck| is the Planck constant.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVPlanck}{%
\k@eV@full@Planck}
\else
\DeclareRobustCommand {\keVPlanck}{%
\k@eV@short@Planck}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@PlanckNumeric| is the Planck constant in SI units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@PlanckNumeric}{%
\ensuremath{%
6.63e-34}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@PlanckNumeric| is the Planck constant in SI units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@PlanckNumeric}{%
\ensuremath{%
6.62607015e-34}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@PlanckNumeric| is the Planck constant in cgs units with reduced
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@PlanckNumeric}{%
\ensuremath{%
6.63e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@PlanckNumeric| is the Planck constant in cgs units with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@PlanckNumeric}{%
\ensuremath{%
6.62607015e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@short@PlanckNumeric| is the Planck constant in eV with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@PlanckNumeric}{%
\ensuremath{%
4.14e-15}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@PlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@full@PlanckNumeric| is the Planck constant in eV with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@PlanckNumeric}{%
\ensuremath{%
4.13566770e-15}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kPlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\kPlanckNumeric| is the Planck constant.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPlanckNumeric}{%
\k@SI@full@PlanckNumeric}
\else
\DeclareRobustCommand {\kPlanckNumeric}{%
\k@SI@short@PlanckNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPlanckNumeric}{%
\k@cgs@full@PlanckNumeric}
\else
\DeclareRobustCommand {\kPlanckNumeric}{%
\k@cgs@short@PlanckNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVPlanckNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\keVPlanckNumeric| is the Planck constant.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVPlanckNumeric}{%
\k@eV@full@PlanckNumeric}
\else
\DeclareRobustCommand {\keVPlanckNumeric}{%
\k@eV@short@PlanckNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@PlanckReduced}{%
\ensuremath{%
1.05%
\times 10^{-34}\J\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in SI units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@PlanckReduced}{%
\ensuremath{%
1.054\expandafter\physconst@decimalsseparator%
571\expandafter\physconst@decimalsseparator%
82%
\times 10^{-34}\J\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@PlanckReduced}{%
\ensuremath{%
1.05%
\times 10^{-27}\erg\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@PlanckReduced}{%
\ensuremath{%
1.054\expandafter\physconst@decimalsseparator%
571\expandafter\physconst@decimalsseparator%
82%
\times 10^{-27}\erg\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@short@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in eV with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@PlanckReduced}{%
\ensuremath{%
6.58%
\times 10^{-16}\eV\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@PlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@full@PlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in eV with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@PlanckReduced}{%
\ensuremath{%
6.582\expandafter\physconst@decimalsseparator%
119\expandafter\physconst@decimalsseparator%
57%
\times 10^{-16}\eV\Sec}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kPlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\kPlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPlanckReduced}{%
\k@SI@full@PlanckReduced}
\else
\DeclareRobustCommand {\kPlanckReduced}{%
\k@SI@short@PlanckReduced}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPlanckReduced}{%
\k@cgs@full@PlanckReduced}
\else
\DeclareRobustCommand {\kPlanckReduced}{%
\k@cgs@short@PlanckReduced}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVPlanckReduced}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\keVPlanckReduced| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVPlanckReduced}{%
\k@eV@full@PlanckReduced}
\else
\DeclareRobustCommand {\keVPlanckReduced}{%
\k@eV@short@PlanckReduced}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@PlanckReducedNumeric| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in SI units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@PlanckReducedNumeric}{%
\ensuremath{%
1.05e-34}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@PlanckReducedNumeric| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in SI units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@PlanckReducedNumeric}{%
\ensuremath{%
1.05457182e-34}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@PlanckReducedNumeric| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in cgs units with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@PlanckReducedNumeric}{%
\ensuremath{%
1.05e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@PlanckReducedNumeric| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in cgs units with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@PlanckReducedNumeric}{%
\ensuremath{%
1.05457182e-27}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@short@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@short@PlanckReducedNumeric| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in eV with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@short@PlanckReducedNumeric}{%
\ensuremath{%
6.58e-16}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@eV@full@PlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@eV@full@PlanckReducedNumeric| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$ in eV with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@eV@full@PlanckReducedNumeric}{%
\ensuremath{%
6.58211957e-16}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kPlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\kPlanckReducedNumeric| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPlanckReducedNumeric}{%
\k@SI@full@PlanckReducedNumeric}
\else
\DeclareRobustCommand {\kPlanckReducedNumeric}{%
\k@SI@short@PlanckReducedNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kPlanckReducedNumeric}{%
\k@cgs@full@PlanckReducedNumeric}
\else
\DeclareRobustCommand {\kPlanckReducedNumeric}{%
\k@cgs@short@PlanckReducedNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\keVPlanckReducedNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\keVPlanckReducedNumeric| is the Reduced Planck constant
% $\left(\frac{h}{2\pi}\right)$.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\keVPlanckReducedNumeric}{%
\k@eV@full@PlanckReducedNumeric}
\else
\DeclareRobustCommand {\keVPlanckReducedNumeric}{%
\k@eV@short@PlanckReducedNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@Gravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@short@Gravity| is Newton's gravitational constant in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@Gravity}{%
\ensuremath{%
6.67%
\times 10^{-11}\N\kg^{-2}\m^2}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@Gravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@full@Gravity| is Newton's gravitational constant in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@Gravity}{%
\ensuremath{%
6.674\expandafter\physconst@decimalsseparator%
30%
\times 10^{-11}\N\kg^{-2}\m^2}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@Gravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@short@Gravity| is Newton's gravitational constant in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@Gravity}{%
\ensuremath{%
6.67%
\times 10^{-8}\dyne\gm^{-2}\cm^2}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@Gravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@full@Gravity| is Newton's gravitational constant in cgs units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@Gravity}{%
\ensuremath{%
6.674\expandafter\physconst@decimalsseparator%
30%
\times 10^{-8}\dyne\gm^{-2}\cm^2}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kGravity}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\kGravity| is Newton's gravitational constant.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kGravity}{%
\k@SI@full@Gravity}
\else
\DeclareRobustCommand {\kGravity}{%
\k@SI@short@Gravity}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kGravity}{%
\k@cgs@full@Gravity}
\else
\DeclareRobustCommand {\kGravity}{%
\k@cgs@short@Gravity}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@GravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@short@GravityNumeric| is Newton's gravitational constant in SI units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@GravityNumeric}{%
\ensuremath{%
6.67e-11}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@GravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@SI@full@GravityNumeric| is Newton's gravitational constant in SI units with full
% precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@GravityNumeric}{%
\ensuremath{%
6.67430e-11}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@GravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@short@GravityNumeric| is Newton's gravitational constant in cgs units with
% reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@GravityNumeric}{%
\ensuremath{%
6.67e-08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@GravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\k@cgs@full@GravityNumeric| is Newton's gravitational constant in cgs units with
% full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@GravityNumeric}{%
\ensuremath{%
6.67430e-08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kGravityNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix value of constant.}
% |\kGravityNumeric| is Newton's gravitational constant.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kGravityNumeric}{%
\k@SI@full@GravityNumeric}
\else
\DeclareRobustCommand {\kGravityNumeric}{%
\k@SI@short@GravityNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kGravityNumeric}{%
\k@cgs@full@GravityNumeric}
\else
\DeclareRobustCommand {\kGravityNumeric}{%
\k@cgs@short@GravityNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@StefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@StefanBoltzmann}{%
\ensuremath{%
5.67%
\times 10^{-8}\J\Kelvin^{-4}\m^{-2}\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@StefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@StefanBoltzmann}{%
\ensuremath{%
5.670\expandafter\physconst@decimalsseparator%
374%
\times 10^{-8}\J\Kelvin^{-4}\m^{-2}\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@StefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@StefanBoltzmann}{%
\ensuremath{%
5.67%
\times 10^{-5}\erg\Kelvin^{-4}\cm^{-2}\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@StefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@StefanBoltzmann}{%
\ensuremath{%
5.670\expandafter\physconst@decimalsseparator%
374%
\times 10^{-5}\erg\Kelvin^{-4}\cm^{-2}\Sec^{-1}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kStefanBoltzmann}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\kStefanBoltzmann| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kStefanBoltzmann}{%
\k@SI@full@StefanBoltzmann}
\else
\DeclareRobustCommand {\kStefanBoltzmann}{%
\k@SI@short@StefanBoltzmann}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kStefanBoltzmann}{%
\k@cgs@full@StefanBoltzmann}
\else
\DeclareRobustCommand {\kStefanBoltzmann}{%
\k@cgs@short@StefanBoltzmann}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@StefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@short@StefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@StefanBoltzmannNumeric}{%
\ensuremath{%
5.67e-08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@StefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@SI@full@StefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@StefanBoltzmannNumeric}{%
\ensuremath{%
5.670374e-08}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@StefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@short@StefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@StefanBoltzmannNumeric}{%
\ensuremath{%
5.67e-05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@StefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\k@cgs@full@StefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@StefanBoltzmannNumeric}{%
\ensuremath{%
5.670374e-05}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kStefanBoltzmannNumeric}
% \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.}
% |\kStefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant
% $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kStefanBoltzmannNumeric}{%
\k@SI@full@StefanBoltzmannNumeric}
\else
\DeclareRobustCommand {\kStefanBoltzmannNumeric}{%
\k@SI@short@StefanBoltzmannNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kStefanBoltzmannNumeric}{%
\k@cgs@full@StefanBoltzmannNumeric}
\else
\DeclareRobustCommand {\kStefanBoltzmannNumeric}{%
\k@cgs@short@StefanBoltzmannNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@Radiation}
% |\k@SI@short@Radiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@Radiation}{%
\ensuremath{%
7.57%
\times 10^{-16}\Joule\m^{-3}\Kelvin^{-4}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@Radiation}
% |\k@SI@full@Radiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@Radiation}{%
\ensuremath{%
7.565\expandafter\physconst@decimalsseparator%
733%
\times 10^{-16}\Joule\m^{-3}\Kelvin^{-4}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@Radiation}
% |\k@cgs@short@Radiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@Radiation}{%
\ensuremath{%
7.57%
\times 10^{-15}\erg\cm^{-3}\Kelvin^{-4}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@Radiation}
% |\k@cgs@full@Radiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@Radiation}{%
\ensuremath{%
7.565\expandafter\physconst@decimalsseparator%
733%
\times 10^{-15}\erg\cm^{-3}\Kelvin^{-4}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiation}
% |\kRadiation| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiation}{%
\k@SI@full@Radiation}
\else
\DeclareRobustCommand {\kRadiation}{%
\k@SI@short@Radiation}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiation}{%
\k@cgs@full@Radiation}
\else
\DeclareRobustCommand {\kRadiation}{%
\k@cgs@short@Radiation}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@short@RadiationNumeric}
% |\k@SI@short@RadiationNumeric| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@short@RadiationNumeric}{%
\ensuremath{%
7.57e-16}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@SI@full@RadiationNumeric}
% |\k@SI@full@RadiationNumeric| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@SI@full@RadiationNumeric}{%
\ensuremath{%
7.565733e-16}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@short@RadiationNumeric}
% |\k@cgs@short@RadiationNumeric| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@short@RadiationNumeric}{%
\ensuremath{%
7.57e-15}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@cgs@full@RadiationNumeric}
% |\k@cgs@full@RadiationNumeric| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with full
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@cgs@full@RadiationNumeric}{%
\ensuremath{%
7.565733e-15}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kRadiationNumeric}
% |\kRadiationNumeric| is the radiation constant, $a
% \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$.
%
%    \begin{macrocode}
\ifx\cgsunits\undefined
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiationNumeric}{%
\k@SI@full@RadiationNumeric}
\else
\DeclareRobustCommand {\kRadiationNumeric}{%
\k@SI@short@RadiationNumeric}
\fi
\else
\ifx\shortconst\undefined
\DeclareRobustCommand {\kRadiationNumeric}{%
\k@cgs@full@RadiationNumeric}
\else
\DeclareRobustCommand {\kRadiationNumeric}{%
\k@cgs@short@RadiationNumeric}
\fi
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@FineStructure}
% |\k@short@FineStructure| is the fine structure constant with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@FineStructure}{%
\ensuremath{%
7.30%
\times 10^{-3}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@FineStructure}
% |\k@full@FineStructure| is the fine structure constant with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@FineStructure}{%
\ensuremath{%
7.297\expandafter\physconst@decimalsseparator%
352\expandafter\physconst@decimalsseparator%
57%
\times 10^{-3}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kFineStructure}
% |\kFineStructure| is the fine structure constant.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kFineStructure}{%
\k@full@FineStructure}
\else
\DeclareRobustCommand {\kFineStructure}{%
\k@short@FineStructure}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@FineStructureNumeric}
% |\k@short@FineStructureNumeric| is the fine structure constant with reduced
% precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@FineStructureNumeric}{%
\ensuremath{%
7.30e-03}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@FineStructureNumeric}
% |\k@full@FineStructureNumeric| is the fine structure constant with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@FineStructureNumeric}{%
\ensuremath{%
7.29735257e-03}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kFineStructureNumeric}
% |\kFineStructureNumeric| is the fine structure constant.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kFineStructureNumeric}{%
\k@full@FineStructureNumeric}
\else
\DeclareRobustCommand {\kFineStructureNumeric}{%
\k@short@FineStructureNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@FineStructureReciprocal}
% |\k@short@FineStructureReciprocal| is the reciprocal of the fine structure
% constant with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@FineStructureReciprocal}{%
\ensuremath{%
1.37%
\times 10^{2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@FineStructureReciprocal}
% |\k@full@FineStructureReciprocal| is the reciprocal of the fine structure
% constant with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@FineStructureReciprocal}{%
\ensuremath{%
1.370\expandafter\physconst@decimalsseparator%
359\expandafter\physconst@decimalsseparator%
99%
\times 10^{2}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kFineStructureReciprocal}
% |\kFineStructureReciprocal| is the reciprocal of the fine structure constant.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kFineStructureReciprocal}{%
\k@full@FineStructureReciprocal}
\else
\DeclareRobustCommand {\kFineStructureReciprocal}{%
\k@short@FineStructureReciprocal}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@FineStructureReciprocalNumeric}
% |\k@short@FineStructureReciprocalNumeric| is the reciprocal of the fine structure
% constant with reduced precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@FineStructureReciprocalNumeric}{%
\ensuremath{%
1.37e+02}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@FineStructureReciprocalNumeric}
% |\k@full@FineStructureReciprocalNumeric| is the reciprocal of the fine structure
% constant with full precision.
% Source: Calculated
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@FineStructureReciprocalNumeric}{%
\ensuremath{%
1.37035999e+02}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kFineStructureReciprocalNumeric}
% |\kFineStructureReciprocalNumeric| is the reciprocal of the fine structure constant.
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kFineStructureReciprocalNumeric}{%
\k@full@FineStructureReciprocalNumeric}
\else
\DeclareRobustCommand {\kFineStructureReciprocalNumeric}{%
\k@short@FineStructureReciprocalNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@Avogadro}
% |\k@short@Avogadro| is Avogadro's Number (the number of particles in a mole)
% with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@Avogadro}{%
\ensuremath{%
6.02%
\times 10^{23}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@Avogadro}
% |\k@full@Avogadro| is Avogadro's Number (the number of particles in a mole)
% with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@Avogadro}{%
\ensuremath{%
6.022\expandafter\physconst@decimalsseparator%
140\expandafter\physconst@decimalsseparator%
76%
\times 10^{23}}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kAvogadro}
% |\kAvogadro| is Avogadro's Number (the number of particles in a mole).
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAvogadro}{%
\k@full@Avogadro}
\else
\DeclareRobustCommand {\kAvogadro}{%
\k@short@Avogadro}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@short@AvogadroNumeric}
% |\k@short@AvogadroNumeric| is Avogadro's Number (the number of particles in a mole)
% with reduced precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@short@AvogadroNumeric}{%
\ensuremath{%
6.02e+23}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\k@full@AvogadroNumeric}
% |\k@full@AvogadroNumeric| is Avogadro's Number (the number of particles in a mole)
% with full precision.
% Source: CODATA~2018
%
%    \begin{macrocode}
\DeclareRobustCommand{\k@full@AvogadroNumeric}{%
\ensuremath{%
6.02214076e+23}}
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
%\iffalse
%<*package>
%\fi
% \begin{macro}{\kAvogadroNumeric}
% |\kAvogadroNumeric| is Avogadro's Number (the number of particles in a mole).
%
%    \begin{macrocode}
\ifx\shortconst\undefined
\DeclareRobustCommand {\kAvogadroNumeric}{%
\k@full@AvogadroNumeric}
\else
\DeclareRobustCommand {\kAvogadroNumeric}{%
\k@short@AvogadroNumeric}
\fi
%    \end{macrocode}
% \end{macro}
%
%\iffalse
%</package>
%\fi
% \CheckSum{0}
% \Finale
\makeatother