diff --git a/changelog b/changelog index 8acaf43..f6db6a4 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,11 @@ +20080104 mxr src/input/repa6.input fix function names (7093) +20080104 mxr src/input/knot2.input fix function names (7093) +20080104 mxr src/input/grpthry.input fix function names (7093) +20080104 mxr src/input/exsum.input fix function names (7093) +20080104 mxr src/input/exlap.input fix function names (7093) +20080104 mxr src/input/easter.input fix function names (7093) +20080104 mxr src/input/collect.input fix function names (7093) +20080104 mxr src/input/calculus2.input fix function names (7093) 20080103 wxh src/algebra/sf.spad handle besselK (7090/355) 20080103 wxh src/algebra/op.spad handle besselK (7090/355) 20080103 wxh src/algebra/combfunc.spad handle besselK (7090/355) diff --git a/src/input/calculus2.input.pamphlet b/src/input/calculus2.input.pamphlet index 3db6893..031f0ec 100644 --- a/src/input/calculus2.input.pamphlet +++ b/src/input/calculus2.input.pamphlet @@ -370,7 +370,7 @@ eq := differentiate(y(x), x, 3) - sin(differentiate(y(x), x, 2)) * exp(y(x)) = c --S 29 of 112 seriesSolve(eq, y, x = 0, [1, 0, 0]) --R ---R Compiling function %B with type List UnivariateTaylorSeries( +--I Compiling function %B with type List UnivariateTaylorSeries( --R Expression Integer,x,0) -> UnivariateTaylorSeries(Expression --R Integer,x,0) --R @@ -388,7 +388,7 @@ seriesSolve(eq, y, x = 0, [1, 0, 0]) --S 30 of 112 x := operator 'x --R ---R Compiled code for %B has been cleared. +--I Compiled code for %B has been cleared. --R --R (4) x --R Type: BasicOperator @@ -417,10 +417,10 @@ eq2 := differentiate(y(t), t) = x(t) * y(t) --S 33 of 112 seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0]) --R ---R Compiling function %D with type List UnivariateTaylorSeries( +--I Compiling function %D with type List UnivariateTaylorSeries( --R Expression Integer,t,0) -> UnivariateTaylorSeries(Expression --R Integer,t,0) ---R Compiling function %E with type List UnivariateTaylorSeries( +--I Compiling function %E with type List UnivariateTaylorSeries( --R Expression Integer,t,0) -> UnivariateTaylorSeries(Expression --R Integer,t,0) --R @@ -493,37 +493,27 @@ laplace((cos(a*t) - cos(b*t))/t, t, s) --E 39 --S 40 of 112 -laplace(exp(a*t+b)*ei(c*t), t, s) ---R ---R There are no library operations named ei ---R Use HyperDoc Browse or issue ---R )what op ei ---R to learn if there is any operation containing " ei " in its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ei ---R with argument type(s) ---R Polynomial Integer ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +laplace(exp(a*t+b)*Ei(c*t), t, s) +--R +--R b s + c - a +--R %e log(---------) +--R c +--R (7) ----------------- +--R s - a +--R Type: Expression Integer --E 40 --S 41 of 112 -laplace(a*ci(b*t) + c*si(d*t), t, s) ---R ---R There are no library operations named ci ---R Use HyperDoc Browse or issue ---R )what op ci ---R to learn if there is any operation containing " ci " in its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ci ---R with argument type(s) ---R Polynomial Integer ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +laplace(a*Ci(b*t) + c*Si(d*t), t, s) +--R +--R 2 2 +--R s + b d +--R a log(-------) + 2c atan(-) +--R 2 s +--R b +--R (8) --------------------------- +--R 2s +--R Type: Expression Integer --E 41 --S 42 of 112 @@ -533,7 +523,7 @@ laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s) --R 2 --R 4 2 2 4 t 3 --R (s + 2a s + a )laplace(%e ,t,s) + 2a ---R (7) ---------------------------------------- +--R (9) ---------------------------------------- --R 4 2 2 4 --R s + 2a s + a --R Type: Expression Integer @@ -637,9 +627,9 @@ integrate(g, x) --R --R --R x +--------+ ---R ++ log(\|b + %G a + 1) ---R (4) | -------------------- d%G ---R ++ %G +--I ++ log(\|b + %G a + 1) +--I (4) | -------------------- d%G +--I ++ %G --R Type: Union(Expression Integer,...) --E 51 diff --git a/src/input/collect.input.pamphlet b/src/input/collect.input.pamphlet index 5e92eda..9e07896 100644 --- a/src/input/collect.input.pamphlet +++ b/src/input/collect.input.pamphlet @@ -91,10 +91,71 @@ e := reverse [i**3 for i in 10..0 by -2 | even? i] --R Type: List Integer --E 9 +--S 10 of 55 +[x**3 - y for x in b | even? x for y in e] +--R +--R (10) [0,- 56,- 448] +--R Type: List Integer +--E 10 + +--S 11 of 55 +f := [i**3 for i in 0..] +--R +--R (11) [0,1,8,27,64,125,216,343,512,729,...] +--R Type: Stream NonNegativeInteger +--E 11 + +--S 12 of 55 +[i**3 for i in 0..10] +--R +--R (12) [0,1,8,27,64,125,216,343,512,729,1000] +--R Type: List NonNegativeInteger +--E 12 + +--S 13 of 55 +[i**3 for i in 0.. while i < 11] +--R +--R (13) [0,1,8,27,64,125,216,343,512,729,...] +--R Type: Stream NonNegativeInteger +--E 13 + +--S 14 of 55 +[i**3 for i in 0.. for x in 0..10] +--R +--R (14) [0,1,8,27,64,125,216,343,512,729,...] +--R Type: Stream NonNegativeInteger +--E 14 + +--S 15 of 55 +[ [i**j for j in 0..3] for i in 0..] +--R +--R (15) +--R [[1,0,0,0], [1,1,1,1], [1,2,4,8], [1,3,9,27], [1,4,16,64], [1,5,25,125], +--R [1,6,36,216], [1,7,49,343], [1,8,64,512], [1,9,81,729], ...] +--R Type: Stream List NonNegativeInteger +--E 15 + +--S 16 of 55 +[ [i**j for j in 0..] for i in 0..3] +--R +--R (16) +--R [[1,0,0,0,0,0,0,0,0,0,...], [1,1,1,1,1,1,1,1,1,1,...], +--R [1,2,4,8,16,32,64,128,256,512,...], +--R [1,3,9,27,81,243,729,2187,6561,19683,...]] +--R Type: List Stream Fraction Integer +--E 16 + +--S 17 of 55 +brace [i**3 for i in 10..0 by -2] +--R +--R (17) {0,8,64,216,512,1000} +--R Type: Set NonNegativeInteger +--E 17 + -- Input generated from ContinuedFractionXmpPage )clear all ---S 10 of 55 +--S 18 of 55 c := continuedFraction(314159/100000) --R --R @@ -102,17 +163,17 @@ c := continuedFraction(314159/100000) --R (1) 3 + +---+ + +----+ + +---+ + +----+ + +---+ + +---+ + +---+ --R | 7 | 15 | 1 | 25 | 1 | 7 | 4 --R Type: ContinuedFraction Integer ---E 10 +--E 18 ---S 11 of 55 +--S 19 of 55 partialQuotients c --R --R --R (2) [3,7,15,1,25,1,7,4] --R Type: Stream Integer ---E 11 +--E 19 ---S 12 of 55 +--S 20 of 55 convergents c --R --R @@ -120,9 +181,9 @@ convergents c --R (3) [3,--,---,---,----,----,-----,------] --R 7 106 113 2931 3044 24239 100000 --R Type: Stream Fraction Integer ---E 12 +--E 20 ---S 13 of 55 +--S 21 of 55 approximants c --R --R @@ -131,17 +192,17 @@ approximants c --R (4) [3,--,---,---,----,----,-----,------] --R 7 106 113 2931 3044 24239 100000 --R Type: Stream Fraction Integer ---E 13 +--E 21 ---S 14 of 55 +--S 22 of 55 pq := partialQuotients(1/c) --R --R --R (5) [0,3,7,15,1,25,1,7,4] --R Type: Stream Integer ---E 14 +--E 22 ---S 15 of 55 +--S 23 of 55 continuedFraction(first pq,repeating [1],rest pq) --R --R @@ -149,9 +210,9 @@ continuedFraction(first pq,repeating [1],rest pq) --R (6) +---+ + +---+ + +----+ + +---+ + +----+ + +---+ + +---+ + +---+ --R | 3 | 7 | 15 | 1 | 25 | 1 | 7 | 4 --R Type: ContinuedFraction Integer ---E 15 +--E 23 ---S 16 of 55 +--S 24 of 55 z:=continuedFraction(3,repeating [1],repeating [3,6]) --R --R @@ -164,17 +225,17 @@ z:=continuedFraction(3,repeating [1],repeating [3,6]) --R +---+ + ... --R | 6 --R Type: ContinuedFraction Integer ---E 16 +--E 24 ---S 17 of 55 +--S 25 of 55 dens:Stream Integer := cons(1,generate((x+->x+4),6)) --R --R --R (8) [1,6,10,14,18,22,26,30,34,38,...] --R Type: Stream Integer ---E 17 +--E 25 ---S 18 of 55 +--S 26 of 55 cf := continuedFraction(0,repeating [1],dens) --R --R @@ -187,9 +248,9 @@ cf := continuedFraction(0,repeating [1],dens) --R +----+ + +----+ + ... --R | 34 | 38 --R Type: ContinuedFraction Integer ---E 18 +--E 26 ---S 19 of 55 +--S 27 of 55 ccf := convergents cf --R --R @@ -197,9 +258,9 @@ ccf := convergents cf --R (10) [0,1,-,--,----,-----,------,--------,---------,-----------,...] --R 7 71 1001 18089 398959 10391023 312129649 10622799089 --R Type: Stream Fraction Integer ---E 19 +--E 27 ---S 20 of 55 +--S 28 of 55 eConvergents := [2*e + 1 for e in ccf] --R --R @@ -207,9 +268,9 @@ eConvergents := [2*e + 1 for e in ccf] --R (11) [1,3,--,---,----,-----,-------,--------,---------,-----------,...] --R 7 71 1001 18089 398959 10391023 312129649 10622799089 --R Type: Stream Fraction Integer ---E 20 +--E 28 ---S 21 of 55 +--S 29 of 55 eConvergents :: Stream Float --R --R @@ -219,17 +280,17 @@ eConvergents :: Stream Float --R 2.7182818284 590458514, 2.7182818284 590452348, 2.7182818284 590452354, --R ...] --R Type: Stream Float ---E 21 +--E 29 ---S 22 of 55 +--S 30 of 55 exp 1.0 --R --R --R (13) 2.7182818284 590452354 --R Type: Float ---E 22 +--E 30 ---S 23 of 55 +--S 31 of 55 cf := continuedFraction(1,[(2*i+1)**2 for i in 0..],repeating [2]) --R --R @@ -242,9 +303,9 @@ cf := continuedFraction(1,[(2*i+1)**2 for i in 0..],repeating [2]) --R +-----+ + +-----+ + ... --R | 2 | 2 --R Type: ContinuedFraction Integer ---E 23 +--E 31 ---S 24 of 55 +--S 32 of 55 ccf := convergents cf --R --R @@ -252,9 +313,9 @@ ccf := convergents cf --R (15) [1,-,--,---,---,----,-----,-----,------,--------,...] --R 2 13 76 263 2578 36979 33976 622637 11064338 --R Type: Stream Fraction Integer ---E 24 +--E 32 ---S 25 of 55 +--S 33 of 55 piConvergents := [4/p for p in ccf] --R --R @@ -262,9 +323,9 @@ piConvergents := [4/p for p in ccf] --R (16) [4,-,--,---,----,-----,------,------,-------,--------,...] --R 3 15 105 315 3465 45045 45045 765765 14549535 --R Type: Stream Fraction Integer ---E 25 +--E 33 ---S 26 of 55 +--S 34 of 55 piConvergents :: Stream Float --R --R @@ -274,9 +335,9 @@ piConvergents :: Stream Float --R 3.2837384837 384837385, 3.0170718170 718170718, 3.2523659347 188758953, --R 3.0418396189 294022111, ...] --R Type: Stream Float ---E 26 +--E 34 ---S 27 of 55 +--S 35 of 55 continuedFraction((- 122 + 597*%i)/(4 - 4*%i)) --R --R @@ -284,15 +345,15 @@ continuedFraction((- 122 + 597*%i)/(4 - 4*%i)) --R (18) - 90 + 59%i + +---------+ + +-----------+ --R | 1 - 2%i | - 1 + 2%i --R Type: ContinuedFraction Complex Integer ---E 27 +--E 35 ---S 28 of 55 +--S 36 of 55 r : Fraction UnivariatePolynomial(x,Fraction Integer) --R --R Type: Void ---E 28 +--E 36 ---S 29 of 55 +--S 37 of 55 r := ((x - 1) * (x - 2)) / ((x-3) * (x-4)) --R --R @@ -302,9 +363,9 @@ r := ((x - 1) * (x - 2)) / ((x-3) * (x-4)) --R 2 --R x - 7x + 12 --R Type: Fraction UnivariatePolynomial(x,Fraction Integer) ---E 29 +--E 37 ---S 30 of 55 +--S 38 of 55 continuedFraction r --R --R @@ -314,9 +375,9 @@ continuedFraction r --R | - x - - | -- x - -- --R | 4 8 | 3 3 --R Type: ContinuedFraction UnivariatePolynomial(x,Fraction Integer) ---E 30 +--E 38 ---S 31 of 55 +--S 39 of 55 [i*i for i in convergents(z) :: Stream Float] --R --R @@ -326,77 +387,6 @@ continuedFraction r --R 11.0000000017 53603304, 10.9999999999 12099531, 11.0000000000 04406066, --R ...] --R Type: Stream Float ---E 31 - ---S 32 of 55 -[x**3 - y for x in b | even? x for y in e] ---R ---R ---RDaly Bug ---R AXIOM cannot iterate with x over your form now. Perhaps you should ---R try using a conversion to make sure your form is a list or ---R stream, for example. ---E 32 - ---S 33 of 55 -f := [i**3 for i in 0..] ---R ---R ---R (23) [0,1,8,27,64,125,216,343,512,729,...] ---R Type: Stream NonNegativeInteger ---E 33 - ---S 34 of 55 -[i**3 for i in 0..10] ---R ---R ---R (24) [0,1,8,27,64,125,216,343,512,729,1000] ---R Type: List NonNegativeInteger ---E 34 - ---S 35 of 55 -[i**3 for i in 0.. while i < 11] ---R ---R ---R (25) [0,1,8,27,64,125,216,343,512,729,...] ---R Type: Stream NonNegativeInteger ---E 35 - ---S 36 of 55 -[i**3 for i in 0.. for x in 0..10] ---R ---R ---R (26) [0,1,8,27,64,125,216,343,512,729,...] ---R Type: Stream NonNegativeInteger ---E 36 - ---S 37 of 55 -[[i**j for j in 0..3] for i in 0..] ---R ---R ---R (27) ---R [[1,0,0,0], [1,1,1,1], [1,2,4,8], [1,3,9,27], [1,4,16,64], [1,5,25,125], ---R [1,6,36,216], [1,7,49,343], [1,8,64,512], [1,9,81,729], ...] ---R Type: Stream List NonNegativeInteger ---E 37 - ---S 38 of 55 -[[i**j for j in 0..] for i in 0..3] ---R ---R ---R (28) ---R [[1,0,0,0,0,0,0,0,0,0,...], [1,1,1,1,1,1,1,1,1,1,...], ---R [1,2,4,8,16,32,64,128,256,512,...], ---R [1,3,9,27,81,243,729,2187,6561,19683,...]] ---R Type: List Stream Fraction Integer ---E 38 - ---S 39 of 55 -brace [i**3 for i in 10..0 by -2] ---R ---R ---R (29) {0,8,64,216,512,1000} ---R Type: Set NonNegativeInteger --E 39 -- Input for page ForCollectionDetailPage diff --git a/src/input/easter.input.pamphlet b/src/input/easter.input.pamphlet index 5db2309..64c9c44 100644 --- a/src/input/easter.input.pamphlet +++ b/src/input/easter.input.pamphlet @@ -28,7 +28,7 @@ \section{Numbers} Let's begin by playing with numbers: infinite precision integers <<*>>= ---S 1 of 201 +--S 1 of 200 factorial(50) --R --R @@ -36,7 +36,7 @@ factorial(50) --R Type: PositiveInteger --E 1 ---S 2 of 201 +--S 2 of 200 factor(%) --R --R @@ -48,7 +48,7 @@ factor(%) @ Infinite precision rational numbers <<*>>= ---S 3 of 201 +--S 3 of 200 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 --R --R @@ -61,7 +61,7 @@ Infinite precision rational numbers @ Arbitrary precision floating point numbers <<*>>= ---S 4 of 201 +--S 4 of 200 digits(50); --R --R @@ -71,7 +71,7 @@ digits(50); @ This number is nearly an integer <<*>>= ---S 5 of 201 +--S 5 of 200 exp(sqrt(163.)*%pi) --R --R @@ -79,7 +79,7 @@ exp(sqrt(163.)*%pi) --R Type: Float --E 5 ---S 6 of 201 +--S 6 of 200 digits(20); --R --R @@ -89,7 +89,7 @@ digits(20); @ Special functions <<*>>= ---S 7 of 201 +--S 7 of 200 besselJ(2, 1 + %i) --R --R @@ -100,7 +100,7 @@ besselJ(2, 1 + %i) @ Complete decimal expansion of a rational number <<*>>= ---S 8 of 201 +--S 8 of 200 decimal(1/7) --R --R @@ -112,7 +112,7 @@ decimal(1/7) @ Continued fractions <<*>>= ---S 9 of 201 +--S 9 of 200 continuedFraction(3.1415926535) --R --R @@ -125,7 +125,7 @@ continuedFraction(3.1415926535) @ Simplify an expression with nested square roots <<*>>= ---S 10 of 201 +--S 10 of 200 sqrt(2*sqrt(3) + 4) --R --R @@ -135,7 +135,7 @@ sqrt(2*sqrt(3) + 4) --R Type: AlgebraicNumber --E 10 ---S 11 of 201 +--S 11 of 200 simplify(%) --R --R @@ -148,7 +148,7 @@ simplify(%) @ Try a more complicated example (from the Putnam exam) <<*>>= ---S 12 of 201 +--S 12 of 200 sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))) --R --R @@ -161,7 +161,7 @@ sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))) --R Type: AlgebraicNumber --E 12 ---S 13 of 201 +--S 13 of 200 simplify(%) --R --R @@ -177,7 +177,7 @@ simplify(%) @ Cardinal numbers <<*>>= ---S 14 of 201 +--S 14 of 200 2*Aleph(0) - 3 --R --R @@ -190,7 +190,7 @@ Cardinal numbers Numbers are nice, but symbols allow for variability---try some high school algebra: rational simplification <<*>>= ---S 15 of 201 +--S 15 of 200 (x**2 - 4)/(x**2 + 4*x + 4) --R --R @@ -203,7 +203,7 @@ algebra: rational simplification @ This example requires more sophistication <<*>>= ---S 16 of 201 +--S 16 of 200 (%e**x - 1)/(%e**(x/2) + 1) --R --R @@ -217,7 +217,7 @@ This example requires more sophistication --R Type: Expression Integer --E 16 ---S 17 of 201 +--S 17 of 200 normalize(%) --R --R @@ -231,7 +231,7 @@ normalize(%) @ Expand and factor polynomials <<*>>= ---S 18 of 201 +--S 18 of 200 (x + 1)**20 --R --R @@ -247,7 +247,7 @@ Expand and factor polynomials --R Type: Polynomial Integer --E 18 ---S 19 of 201 +--S 19 of 200 D(%, x) --R --R @@ -263,7 +263,7 @@ D(%, x) --R Type: Polynomial Integer --E 19 ---S 20 of 201 +--S 20 of 200 factor(%) --R --R @@ -272,7 +272,7 @@ factor(%) --R Type: Factored Polynomial Integer --E 20 ---S 21 of 201 +--S 21 of 200 x**100 - 1 --R --R @@ -281,7 +281,7 @@ x**100 - 1 --R Type: Polynomial Integer --E 21 ---S 22 of 201 +--S 22 of 200 factor(%) --R --R @@ -300,7 +300,7 @@ factor(%) @ Factor polynomials over finite fields and field extensions <<*>>= ---S 23 of 201 +--S 23 of 200 p:= x**4 - 3*x**2 + 1 --R --R @@ -309,7 +309,7 @@ p:= x**4 - 3*x**2 + 1 --R Type: Polynomial Integer --E 23 ---S 24 of 201 +--S 24 of 200 factor(p) --R --R @@ -318,14 +318,14 @@ factor(p) --R Type: Factored Polynomial Integer --E 24 ---S 25 of 201 +--S 25 of 200 phi:= rootOf(phi**2 - phi - 1); --R --R --R Type: AlgebraicNumber --E 25 ---S 26 of 201 +--S 26 of 200 factor(p, [phi]) --R --R @@ -333,7 +333,7 @@ factor(p, [phi]) --R Type: Factored Polynomial AlgebraicNumber --E 26 ---S 27 of 201 +--S 27 of 200 factor(p :: Polynomial(PrimeField(5))) --R --R @@ -342,7 +342,7 @@ factor(p :: Polynomial(PrimeField(5))) --R Type: Factored Polynomial PrimeField 5 --E 27 ---S 28 of 201 +--S 28 of 200 expand(%) --R --R @@ -354,7 +354,7 @@ expand(%) @ Partial fraction decomposition <<*>>= ---S 29 of 201 +--S 29 of 200 (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2) --R --R @@ -366,7 +366,7 @@ Partial fraction decomposition --R Type: Fraction Polynomial Integer --E 29 ---S 30 of 201 +--S 30 of 200 padicFraction( partialFraction(numerator(%) :: UnivariatePolynomial(x, Fraction Integer), factor(denominator(%) :: Polynomial Integer) :: @@ -384,7 +384,7 @@ padicFraction( \section{Trigonometry} Trigonometric manipulations---these are typically difficult for students <<*>>= ---S 31 of 201 +--S 31 of 200 r:= cos(3*x)/cos(x) --R --R @@ -394,7 +394,7 @@ r:= cos(3*x)/cos(x) --R Type: Expression Integer --E 31 ---S 32 of 201 +--S 32 of 200 real(complexNormalize(%)) --R --R @@ -403,7 +403,7 @@ real(complexNormalize(%)) --R Type: Expression Integer --E 32 ---S 33 of 201 +--S 33 of 200 real(normalize(simplify(complexNormalize(r)))) --R --R @@ -414,7 +414,7 @@ real(normalize(simplify(complexNormalize(r)))) @ Use rewrite rules <<*>>= ---S 34 of 201 +--S 34 of 200 sincosAngles:= rule _ (cos((n | integer?(n)) * x) == _ cos((n - 1)*x) * cos(x) - sin((n - 1)*x) * sin(x); _ @@ -428,7 +428,7 @@ sincosAngles:= rule _ --R Type: Ruleset(Integer,Integer,Expression Integer) --E 34 ---S 35 of 201 +--S 35 of 200 sincosAngles r --R --R @@ -437,7 +437,7 @@ sincosAngles r --R Type: Expression Integer --E 35 ---S 36 of 201 +--S 36 of 200 r:= 'r; --R --R @@ -448,7 +448,7 @@ r:= 'r; \section{Determining Zero Equivalence} The following expressions are all equal to zero <<*>>= ---S 37 of 201 +--S 37 of 200 sqrt(997) - (997**3)**(1/6) --R --R @@ -456,7 +456,7 @@ sqrt(997) - (997**3)**(1/6) --R Type: AlgebraicNumber --E 37 ---S 38 of 201 +--S 38 of 200 sqrt(999983) - (999983**3)**(1/6) --R --R @@ -464,7 +464,7 @@ sqrt(999983) - (999983**3)**(1/6) --R Type: AlgebraicNumber --E 38 ---S 39 of 201 +--S 39 of 200 (2**(1/3) + 4**(1/3))**3 - 6*(2**(1/3) + 4**(1/3)) - 6 --R --R @@ -473,7 +473,7 @@ sqrt(999983) - (999983**3)**(1/6) --R Type: AlgebraicNumber --E 39 ---S 40 of 201 +--S 40 of 200 simplify(%) --R --R @@ -485,7 +485,7 @@ simplify(%) @ This expression is zero for $x, y > 0$ and $n$ not equal to zero <<*>>= ---S 41 of 201 +--S 41 of 200 x**(1/n)*y**(1/n) - (x*y)**(1/n) --R --R @@ -496,7 +496,7 @@ x**(1/n)*y**(1/n) - (x*y)**(1/n) --R Type: Expression Integer --E 41 ---S 42 of 201 +--S 42 of 200 normalize(%) --R --R @@ -508,7 +508,7 @@ normalize(%) See Joel Moses, ``Algebraic Simplification: A Guide for the Perplexed'', CACM, Volume 14, Number 8, August 1971 <<*>>= ---S 43 of 201 +--S 43 of 200 expr:= log(tan(1/2*x + %pi/4)) - asinh(tan(x)) --R --R @@ -518,7 +518,7 @@ expr:= log(tan(1/2*x + %pi/4)) - asinh(tan(x)) --R Type: Expression Integer --E 43 ---S 44 of 201 +--S 44 of 200 complexNormalize(%) --R --R @@ -573,7 +573,7 @@ complexNormalize(%) @ Use a roundabout method---show that expr is a constant equal to zero <<*>>= ---S 45 of 201 +--S 45 of 200 D(expr, x) --R --R @@ -590,7 +590,7 @@ D(expr, x) --R Type: Expression Integer --E 45 ---S 46 of 201 +--S 46 of 200 simplify(real(complexNormalize(expand(simplify(%))))) --R --R @@ -611,7 +611,7 @@ simplify(real(complexNormalize(expand(simplify(%))))) --R Type: Expression Integer --E 46 ---S 47 of 201 +--S 47 of 200 normalize(eval(expr, x = 0)) --R --R @@ -619,7 +619,7 @@ normalize(eval(expr, x = 0)) --R Type: Expression Integer --E 47 ---S 48 of 201 +--S 48 of 200 log((2*sqrt(r) + 1)/sqrt(4*r + 4*sqrt(r) + 1)) --R --R @@ -632,7 +632,7 @@ log((2*sqrt(r) + 1)/sqrt(4*r + 4*sqrt(r) + 1)) --R Type: Expression Integer --E 48 ---S 49 of 201 +--S 49 of 200 simplify(%) --R --R @@ -645,7 +645,7 @@ simplify(%) --R Type: Expression Integer --E 49 ---S 50 of 201 +--S 50 of 200 (4*r + 4*sqrt(r) + 1)**(sqrt(r)/(2*sqrt(r) + 1)) _ * (2*sqrt(r) + 1)**(1/(2*sqrt(r) + 1)) - 2*sqrt(r) - 1 --R @@ -659,7 +659,7 @@ simplify(%) --R Type: Expression Integer --E 50 ---S 51 of 201 +--S 51 of 200 normalize(%) --R --R @@ -671,13 +671,13 @@ normalize(%) \section{The Complex Domain} Complex functions---separate into their real and imaginary parts <<*>>= ---S 52 of 201 +--S 52 of 200 rectform(z) == real(z) + %i*imag(z) --R --R Type: Void --E 52 ---S 53 of 201 +--S 53 of 200 rectform(log(3 + 4*%i)) --R --R Compiling function rectform with type Expression Complex Integer -> @@ -691,7 +691,7 @@ rectform(log(3 + 4*%i)) --R Type: Expression Complex Integer --E 53 ---S 54 of 201 +--S 54 of 200 simplify(rectform(tan(x + %i*y))) --R --R @@ -710,7 +710,7 @@ September 1991. This first expression can simplify to $\sqrt{(x y)}/\sqrt{(x)}$, but no further in general (consider what happens when x, y = -1). <<*>>= ---S 55 of 201 +--S 55 of 200 sqrt(x*y*abs(z)**2) / (sqrt(x)*abs(z)) --R --R @@ -726,7 +726,7 @@ sqrt(x*y*abs(z)**2) / (sqrt(x)*abs(z)) @ If $z = -1$, $\sqrt(1/z)$ is not equal to $1/\sqrt(z)$ <<*>>= ---S 56 of 201 +--S 56 of 200 sqrt(1/z) - 1/sqrt(z) --R --R @@ -743,7 +743,7 @@ sqrt(1/z) - 1/sqrt(z) @ If $z = 3 \pi i$, $\log(\exp(z))$ is not equal to $z$ <<*>>= ---S 57 of 201 +--S 57 of 200 log(%e**z) --R --R @@ -751,7 +751,7 @@ log(%e**z) --R Type: Expression Integer --E 57 ---S 58 of 201 +--S 58 of 200 normalize(%) --R --R @@ -762,7 +762,7 @@ normalize(%) @ The principal value of this expression is $(10 - 4 \pi) i$ <<*>>= ---S 59 of 201 +--S 59 of 200 log(%e**(10*%i)) --R --R @@ -771,7 +771,7 @@ log(%e**(10*%i)) --R Type: Expression Complex Integer --E 59 ---S 60 of 201 +--S 60 of 200 normalize(%) --R --R @@ -783,7 +783,7 @@ normalize(%) @ If $z = \pi$, $\arctan(\tan(z))$ is not equal to $z$ <<*>>= ---S 61 of 201 +--S 61 of 200 atan(tan(z)) --R --R @@ -794,7 +794,7 @@ atan(tan(z)) @ If $z = 2 \pi i$, $\sqrt(\exp(z))$ is not equal to $\exp(z/2)$ <<*>>= ---S 62 of 201 +--S 62 of 200 sqrt(%e**z) - %e**(z/2) --R --R @@ -809,7 +809,7 @@ sqrt(%e**z) - %e**(z/2) \section{Equations} Manipulate an equation using a natural syntax <<*>>= ---S 63 of 201 +--S 63 of 200 (x = 0)/2 + 1 --R --R @@ -822,7 +822,7 @@ Manipulate an equation using a natural syntax @ Solve various nonlinear equations---this cubic polynomial has all real roots <<*>>= ---S 64 of 201 +--S 64 of 200 radicalSolve(3*x**3 - 18*x**2 + 33*x - 19 = 0, x) --R --R @@ -869,7 +869,7 @@ radicalSolve(3*x**3 - 18*x**2 + 33*x - 19 = 0, x) --R Type: List Equation Expression Integer --E 64 ---S 65 of 201 +--S 65 of 200 map(e +-> lhs(e) = rectform(rhs(e)), %) --R --R Compiling function rectform with type Expression Integer -> @@ -924,7 +924,7 @@ map(e +-> lhs(e) = rectform(rhs(e)), %) @ Some simple seeming problems can have messy answers <<*>>= ---S 66 of 201 +--S 66 of 200 eqn:= x**4 + x**3 + x**2 + x + 1 = 0 --R --R @@ -933,7 +933,7 @@ eqn:= x**4 + x**3 + x**2 + x + 1 = 0 --R Type: Equation Polynomial Integer --E 66 ---S 67 of 201 +--S 67 of 200 radicalSolve(eqn, x) --R --R @@ -1284,7 +1284,7 @@ radicalSolve(eqn, x) @ Check one of the answers <<*>>= ---S 68 of 201 +--S 68 of 200 eval(eqn, %.1) --R --R @@ -1373,7 +1373,7 @@ eval(eqn, %.1) --R Type: Equation Expression Integer --E 68 ---S 69 of 201 +--S 69 of 200 %e**(2*x) + 2*%e**x + 1 = z --R --R @@ -1382,7 +1382,7 @@ eval(eqn, %.1) --R Type: Equation Expression Integer --E 69 ---S 70 of 201 +--S 70 of 200 solve(%, x) --R --R @@ -1394,7 +1394,7 @@ solve(%, x) @ This equation is already factored and so {\sl should} be easy to solve <<*>>= ---S 71 of 201 +--S 71 of 200 (x + 1) * (sin(x)**2 + 1)**2 * cos(3*x)**3 = 0 --R --R @@ -1403,7 +1403,7 @@ This equation is already factored and so {\sl should} be easy to solve --R Type: Equation Expression Integer --E 71 ---S 72 of 201 +--S 72 of 200 solve(%, x) --R --R @@ -1417,7 +1417,7 @@ solve(%, x) The following equations have an infinite number of solutions (let $n$ be an arbitrary integer): $z = 0 [+ n 2 \pi i]$ <<*>>= ---S 73 of 201 +--S 73 of 200 solve(%e**z = 1, z) --R --R @@ -1428,7 +1428,7 @@ solve(%e**z = 1, z) @ $x = \pi/4 [+ n \pi]$ <<*>>= ---S 74 of 201 +--S 74 of 200 solve(sin(x) = cos(x), x) --R --R @@ -1438,7 +1438,7 @@ solve(sin(x) = cos(x), x) --R Type: List Equation Expression Integer --E 74 ---S 75 of 201 +--S 75 of 200 solve(tan(x) = 1, x) --R --R @@ -1451,7 +1451,7 @@ solve(tan(x) = 1, x) @ $x = 0$, $0 [+ n \pi, + n 2 \pi]$ <<*>>= ---S 76 of 201 +--S 76 of 200 solve(sin(x) = tan(x), x) --R --R @@ -1462,7 +1462,7 @@ solve(sin(x) = tan(x), x) @ This equation has no solutions <<*>>= ---S 77 of 201 +--S 77 of 200 solve(sqrt(x**2 + 1) = x - 2, x) --R --R @@ -1473,7 +1473,7 @@ solve(sqrt(x**2 + 1) = x - 2, x) @ Solve a system of linear equations <<*>>= ---S 78 of 201 +--S 78 of 200 eq1:= x + y + z = 6 --R --R @@ -1481,7 +1481,7 @@ eq1:= x + y + z = 6 --R Type: Equation Polynomial Integer --E 78 ---S 79 of 201 +--S 79 of 200 eq2:= 2*x + y + 2*z = 10 --R --R @@ -1489,7 +1489,7 @@ eq2:= 2*x + y + 2*z = 10 --R Type: Equation Polynomial Integer --E 79 ---S 80 of 201 +--S 80 of 200 eq3:= x + 3*y + z = 10 --R --R @@ -1500,17 +1500,17 @@ eq3:= x + 3*y + z = 10 @ Note that the solution is parametric <<*>>= ---S 81 of 201 +--S 81 of 200 solve([eq1, eq2, eq3], [x, y, z]) --R --R ---R (81) [[x= - %BU + 4,y= 2,z= %BU]] +--I (81) [[x= - %BU + 4,y= 2,z= %BU]] --R Type: List List Equation Fraction Polynomial Integer --E 81 @ Solve a system of nonlinear equations <<*>>= ---S 82 of 201 +--S 82 of 200 eq1:= x**2*y + 3*y*z - 4 = 0 --R --R @@ -1519,7 +1519,7 @@ eq1:= x**2*y + 3*y*z - 4 = 0 --R Type: Equation Polynomial Integer --E 82 ---S 83 of 201 +--S 83 of 200 eq2:= -3*x**2*z + 2*y**2 + 1 = 0 --R --R @@ -1528,7 +1528,7 @@ eq2:= -3*x**2*z + 2*y**2 + 1 = 0 --R Type: Equation Polynomial Integer --E 83 ---S 84 of 201 +--S 84 of 200 eq3:= 2*y*z**2 - z**2 - 1 = 0 --R --R @@ -1540,7 +1540,7 @@ eq3:= 2*y*z**2 - z**2 - 1 = 0 @ Solving this by hand would be a nightmare <<*>>= ---S 85 of 201 +--S 85 of 200 solve([eq1, eq2, eq3], [x, y, z]) --R --R @@ -1562,7 +1562,7 @@ solve([eq1, eq2, eq3], [x, y, z]) @ \section{Matrix Algebra} <<*>>= ---S 86 of 201 +--S 86 of 200 m:= matrix([[a, b], [1, a*b]]) --R --R @@ -1575,7 +1575,7 @@ m:= matrix([[a, b], [1, a*b]]) @ Invert the matrix <<*>>= ---S 87 of 201 +--S 87 of 200 minv:= inverse(m) --R --R @@ -1591,7 +1591,7 @@ minv:= inverse(m) --R Type: Union(Matrix Fraction Polynomial Integer,...) --E 87 ---S 88 of 201 +--S 88 of 200 m * minv --R --R @@ -1604,7 +1604,7 @@ m * minv @ Define a Vandermonde matrix (useful for doing polynomial interpolations) <<*>>= ---S 89 of 201 +--S 89 of 200 matrix([[1, 1, 1, 1 ], _ [w, x, y, z ], _ [w**2, x**2, y**2, z**2], _ @@ -1623,7 +1623,7 @@ matrix([[1, 1, 1, 1 ], _ --R Type: Matrix Polynomial Integer --E 89 ---S 90 of 201 +--S 90 of 200 determinant(%) --R --R @@ -1645,7 +1645,7 @@ determinant(%) @ The following formula implies a general result <<*>>= ---S 91 of 201 +--S 91 of 200 factor(%) --R --R @@ -1656,7 +1656,7 @@ factor(%) @ Compute the eigenvalues of a matrix from its characteristic polynomial <<*>>= ---S 92 of 201 +--S 92 of 200 m:= matrix([[ 5, -3, -7], _ [-2, 1, 2], _ [ 2, -3, -4]]) @@ -1670,7 +1670,7 @@ m:= matrix([[ 5, -3, -7], _ --R Type: Matrix Integer --E 92 ---S 93 of 201 +--S 93 of 200 characteristicPolynomial(m, lambda) --R --R @@ -1679,7 +1679,7 @@ characteristicPolynomial(m, lambda) --R Type: Polynomial Integer --E 93 ---S 94 of 201 +--S 94 of 200 solve(% = 0, lambda) --R --R @@ -1687,7 +1687,7 @@ solve(% = 0, lambda) --R Type: List Equation Fraction Polynomial Integer --E 94 ---S 95 of 201 +--S 95 of 200 m:= 'm; --R --R @@ -1698,7 +1698,7 @@ m:= 'm; \section{Sums and Products} \subsection{Sums: finite and infinite} <<*>>= ---S 96 of 201 +--S 96 of 200 summation(k**3, k = 1..n) --R --R @@ -1710,7 +1710,7 @@ summation(k**3, k = 1..n) --R Type: Expression Integer --E 96 ---S 97 of 201 +--S 97 of 200 sum(k**3, k = 1..n) --R --R @@ -1721,7 +1721,7 @@ sum(k**3, k = 1..n) --R Type: Fraction Polynomial Integer --E 97 ---S 98 of 201 +--S 98 of 200 limit(sum(1/k**2 + 1/k**3, k = 1..n), n = %plusInfinity) --R --R @@ -1731,7 +1731,7 @@ limit(sum(1/k**2 + 1/k**3, k = 1..n), n = %plusInfinity) @ \subsection{Products} <<*>>= ---S 99 of 201 +--S 99 of 200 product(k, k = 1..n) --R --R @@ -1747,7 +1747,7 @@ product(k, k = 1..n) \section{Calculus} \subsection{Limits --- start with a famous example} <<*>>= ---S 100 of 201 +--S 100 of 200 limit((1 + 1/n)**n, n = %plusInfinity) --R --R @@ -1755,7 +1755,7 @@ limit((1 + 1/n)**n, n = %plusInfinity) --R Type: Union(OrderedCompletion Expression Integer,...) --E 100 ---S 101 of 201 +--S 101 of 200 limit((1 - cos(x))/x**2, x = 0) --R --R @@ -1769,21 +1769,21 @@ limit((1 - cos(x))/x**2, x = 0) Apply the chain rule---this is important for PDEs and many other applications <<*>>= ---S 102 of 201 +--S 102 of 200 y:= operator('y); --R --R --R Type: BasicOperator --E 102 ---S 103 of 201 +--S 103 of 200 x:= operator('x); --R --R --R Type: BasicOperator --E 103 ---S 104 of 201 +--S 104 of 200 D(y(x(t)), t, 2) --R --R @@ -1798,7 +1798,7 @@ D(y(x(t)), t, 2) @ \subsection{Indefinite Integrals} <<*>>= ---S 105 of 201 +--S 105 of 200 1/(x**3 + 2) --R --R @@ -1812,7 +1812,7 @@ D(y(x(t)), t, 2) @ This would be very difficult to do by hand <<*>>= ---S 106 of 201 +--S 106 of 200 integrate(%, x) --R --R @@ -1830,7 +1830,7 @@ integrate(%, x) --R Type: Union(Expression Integer,...) --E 106 ---S 107 of 201 +--S 107 of 200 D(%, x) --R --R @@ -1844,7 +1844,7 @@ D(%, x) @ This example involves several symbolic parameters <<*>>= ---S 108 of 201 +--S 108 of 200 integrate(1/(a + b*cos(x)), x) --R --R @@ -1870,7 +1870,7 @@ integrate(1/(a + b*cos(x)), x) --R Type: Union(List Expression Integer,...) --E 108 ---S 109 of 201 +--S 109 of 200 map(simplify, map(f +-> D(f, x), %)) --R --R @@ -1883,7 +1883,7 @@ map(simplify, map(f +-> D(f, x), %)) @ Calculus on a non-smooth (but well defined) function <<*>>= ---S 110 of 201 +--S 110 of 200 D(abs(x), x) --R --R @@ -1893,13 +1893,13 @@ D(abs(x), x) --R Type: Expression Integer --E 110 ---S 111 of 201 +--S 111 of 200 integrate(abs(x), x) --R --R --R x --R ++ ---R (111) | abs(%J)d%J +--I (111) | abs(%J)d%J --R ++ --R Type: Union(Expression Integer,...) --E 111 @@ -1907,13 +1907,13 @@ integrate(abs(x), x) @ Calculus on a piecewise defined function <<*>>= ---S 112 of 201 +--S 112 of 200 a(x) == if x < 0 then -x else x --R --R Type: Void --E 112 ---S 113 of 201 +--S 113 of 200 D(a(x), x) --R --R Compiling function a with type Variable x -> Polynomial Integer @@ -1922,7 +1922,7 @@ D(a(x), x) --R Type: Polynomial Integer --E 113 ---S 114 of 201 +--S 114 of 200 integrate(a(x), x) --R --R @@ -1938,7 +1938,7 @@ integrate(a(x), x) The following two integrals should be equivalent. The correct solution is $[(1 + x)^(3/2) + (1 - x)^(3/2)] / 3$ <<*>>= ---S 115 of 201 +--S 115 of 200 integrate(x/(sqrt(1 + x) + sqrt(1 - x)), x) --R --R @@ -1949,7 +1949,7 @@ integrate(x/(sqrt(1 + x) + sqrt(1 - x)), x) --R Type: Union(Expression Integer,...) --E 115 ---S 116 of 201 +--S 116 of 200 integrate((sqrt(1 + x) - sqrt(1 - x))/2, x) --R --R @@ -1964,7 +1964,7 @@ integrate((sqrt(1 + x) - sqrt(1 - x))/2, x) \subsection{Definite Integrals} The following two functions have a pole at zero <<*>>= ---S 117 of 201 +--S 117 of 200 integrate(1/x, x = -1..1) --R --R @@ -1976,7 +1976,7 @@ integrate(1/x, x = -1..1) --R --E 117 ---S 118 of 201 +--S 118 of 200 integrate(1/x**2, x = -1..1) --R --R @@ -1993,7 +1993,7 @@ Different branches of the square root need to be chosen in the intervals [0, 1] and [1, 2]. The correct results are $4/3$, $[4 - \sqrt{(8)}]/3$, $[8 - \sqrt{(8)}]/3$, respectively. <<*>>= ---S 119 of 201 +--S 119 of 200 integrate(sqrt(x + 1/x - 2), x = 0..1) --R --R @@ -2001,7 +2001,7 @@ integrate(sqrt(x + 1/x - 2), x = 0..1) --R Type: Union(pole: potentialPole,...) --E 119 ---S 120 of 201 +--S 120 of 200 integrate(sqrt(x + 1/x - 2), x = 0..1, "noPole") --R --R @@ -2011,7 +2011,7 @@ integrate(sqrt(x + 1/x - 2), x = 0..1, "noPole") --R Type: Union(f1: OrderedCompletion Expression Integer,...) --E 120 ---S 121 of 201 +--S 121 of 200 integrate(sqrt(x + 1/x - 2), x = 1..2) --R --R @@ -2019,7 +2019,7 @@ integrate(sqrt(x + 1/x - 2), x = 1..2) --R Type: Union(pole: potentialPole,...) --E 121 ---S 122 of 201 +--S 122 of 200 integrate(sqrt(x + 1/x - 2), x = 1..2, "noPole") --R --R @@ -2030,7 +2030,7 @@ integrate(sqrt(x + 1/x - 2), x = 1..2, "noPole") --R Type: Union(f1: OrderedCompletion Expression Integer,...) --E 122 ---S 123 of 201 +--S 123 of 200 integrate(sqrt(x + 1/x - 2), x = 0..2) --R --R @@ -2038,7 +2038,7 @@ integrate(sqrt(x + 1/x - 2), x = 0..2) --R Type: Union(pole: potentialPole,...) --E 123 ---S 124 of 201 +--S 124 of 200 integrate(sqrt(x + 1/x - 2), x = 0..2, "noPole") --R --R @@ -2052,7 +2052,7 @@ integrate(sqrt(x + 1/x - 2), x = 0..2, "noPole") @ \subsection{Contour integrals} <<*>>= ---S 125 of 201 +--S 125 of 200 integrate(cos(x)/(x**2 + a**2), x = %minusInfinity..%plusInfinity) --R --R @@ -2060,7 +2060,7 @@ integrate(cos(x)/(x**2 + a**2), x = %minusInfinity..%plusInfinity) --R Type: Union(pole: potentialPole,...) --E 125 ---S 126 of 201 +--S 126 of 200 integrate(cos(x)/(x**2 + a**2), x = %minusInfinity..%plusInfinity, "noPole") --R --R @@ -2071,7 +2071,7 @@ integrate(cos(x)/(x**2 + a**2), x = %minusInfinity..%plusInfinity, "noPole") @ \subsection{Integrand with a branch point} <<*>>= ---S 127 of 201 +--S 127 of 200 integrate(t**(a - 1)/(1 + t), t = 0..%plusInfinity) --R --R @@ -2079,7 +2079,7 @@ integrate(t**(a - 1)/(1 + t), t = 0..%plusInfinity) --R Type: Union(pole: potentialPole,...) --E 127 ---S 128 of 201 +--S 128 of 200 integrate(t**(a - 1)/(1 + t), t = 0..%plusInfinity, "noPole") --R --R @@ -2090,7 +2090,7 @@ integrate(t**(a - 1)/(1 + t), t = 0..%plusInfinity, "noPole") @ Multiple integrals: volume of a tetrahedron <<*>>= ---S 129 of 201 +--S 129 of 200 integrate(integrate(integrate(1, z = 0..c*(1 - x/a - y/b)), _ y = 0..b*(1 - x/a)), _ x = 0..a) @@ -2106,7 +2106,7 @@ integrate(integrate(integrate(1, z = 0..c*(1 - x/a - y/b)), _ \subsection{Series} Taylor series---this first example comes from special relativity <<*>>= ---S 130 of 201 +--S 130 of 200 1/sqrt(1 - (v/c)**2) --R --R @@ -2121,7 +2121,7 @@ Taylor series---this first example comes from special relativity --R Type: Expression Integer --E 130 ---S 131 of 201 +--S 131 of 200 series(%, v = 0) --R --R @@ -2132,7 +2132,7 @@ series(%, v = 0) --R Type: UnivariatePuiseuxSeries(Expression Integer,v,0) --E 131 ---S 132 of 201 +--S 132 of 200 1/%**2 --R --R @@ -2143,7 +2143,7 @@ series(%, v = 0) --R Type: UnivariatePuiseuxSeries(Expression Integer,v,0) --E 132 ---S 133 of 201 +--S 133 of 200 tsin:= series(sin(x), x = 0) --R --R @@ -2153,7 +2153,7 @@ tsin:= series(sin(x), x = 0) --R Type: UnivariatePuiseuxSeries(Expression Integer,x,0) --E 133 ---S 134 of 201 +--S 134 of 200 tcos:= series(cos(x), x = 0) --R --R @@ -2166,7 +2166,7 @@ tcos:= series(cos(x), x = 0) @ Note that additional terms will be computed as needed <<*>>= ---S 135 of 201 +--S 135 of 200 tsin/tcos --R --R @@ -2176,7 +2176,7 @@ tsin/tcos --R Type: UnivariatePuiseuxSeries(Expression Integer,x,0) --E 135 ---S 136 of 201 +--S 136 of 200 series(tan(x), x = 0) --R --R @@ -2192,7 +2192,7 @@ Look at the Taylor series around $x = 1$ )set streams calculate 1 ---S 137 of 201 +--S 137 of 200 log(x)**a*exp(-b*x) --R --R @@ -2201,7 +2201,7 @@ log(x)**a*exp(-b*x) --R Type: Expression Integer --E 137 ---S 138 of 201 +--S 138 of 200 series(%, x = 1) --R --R @@ -2218,7 +2218,7 @@ series(%, x = 1) @ Compare the Taylor series of two different formulations of a function <<*>>= ---S 139 of 201 +--S 139 of 200 taylor(log(sinh(z)) + log(cosh(z + w)), z = 0) --R --R @@ -2230,7 +2230,7 @@ taylor(log(sinh(z)) + log(cosh(z + w)), z = 0) --R --E 139 ---S 140 of 201 +--S 140 of 200 % - taylor(log(sinh(z) * cosh(z + w)), z = 0) --R --R @@ -2246,7 +2246,7 @@ taylor(log(sinh(z)) + log(cosh(z + w)), z = 0) \subsection{Power series} Compute the general formula <<*>>= ---S 141 of 201 +--S 141 of 200 log(sin(x)/x) --R --R @@ -2256,7 +2256,7 @@ log(sin(x)/x) --R Type: Expression Integer --E 141 ---S 142 of 201 +--S 142 of 200 series(%, x = 0) --R --R @@ -2266,7 +2266,7 @@ series(%, x = 0) --R Type: UnivariatePuiseuxSeries(Expression Integer,x,0) --E 142 ---S 143 of 201 +--S 143 of 200 exp(-x)*sin(x) --R --R @@ -2275,7 +2275,7 @@ exp(-x)*sin(x) --R Type: Expression Integer --E 143 ---S 144 of 201 +--S 144 of 200 series(%, x = 0) --R --R @@ -2289,14 +2289,14 @@ series(%, x = 0) Derive an explicit Taylor series solution of y as a function of x from the following implicit relation <<*>>= ---S 145 of 201 +--S 145 of 200 y:= operator('y); --R --R --R Type: BasicOperator --E 145 ---S 146 of 201 +--S 146 of 200 x = sin(y(x)) + cos(y(x)) --R --R @@ -2304,7 +2304,7 @@ x = sin(y(x)) + cos(y(x)) --R Type: Equation Expression Integer --E 146 ---S 147 of 201 +--S 147 of 200 seriesSolve(%, y, x = 1, 0) --R --R @@ -2321,7 +2321,7 @@ seriesSolve(%, y, x = 1, 0) @ \subsection{Pade (rational function) approximation} <<*>>= ---S 148 of 201 +--S 148 of 200 pade(1, 1, taylor(exp(-x), x = 0)) --R --R @@ -2335,7 +2335,7 @@ pade(1, 1, taylor(exp(-x), x = 0)) \section{Transforms} \subsection{Laplace and inverse Laplace transforms} <<*>>= ---S 149 of 201 +--S 149 of 200 laplace(cos((w - 1)*t), t, s) --R --R @@ -2346,7 +2346,7 @@ laplace(cos((w - 1)*t), t, s) --R Type: Expression Integer --E 149 ---S 150 of 201 +--S 150 of 200 inverseLaplace(%, s, t) --R --R @@ -2360,14 +2360,14 @@ inverseLaplace(%, s, t) \section{Difference and Differential Equations} \subsection{Second order linear recurrence equation} <<*>>= ---S 151 of 201 +--S 151 of 200 r:= operator('r); --R --R --R Type: BasicOperator --E 151 ---S 152 of 201 +--S 152 of 200 r(n + 2) - 2 * r(n + 1) + r(n) = 2 --R --R @@ -2375,7 +2375,7 @@ r(n + 2) - 2 * r(n + 1) + r(n) = 2 --R Type: Equation Expression Integer --E 152 ---S 153 of 201 +--S 153 of 200 [%, r(0) = 1, r(1) = m] --R --R @@ -2389,14 +2389,14 @@ r(n + 2) - 2 * r(n + 1) + r(n) = 2 \subsection{Second order ODE with initial conditions} solve first using Laplace transforms <<*>>= ---S 154 of 201 +--S 154 of 200 f:= operator('f); --R --R --R Type: BasicOperator --E 154 ---S 155 of 201 +--S 155 of 200 ode:= D(f(t), t, 2) + 4*f(t) = sin(2*t) --R --R @@ -2406,7 +2406,7 @@ ode:= D(f(t), t, 2) + 4*f(t) = sin(2*t) --R Type: Equation Expression Integer --E 155 ---S 156 of 201 +--S 156 of 200 map(e +-> laplace(e, t, s), %) --R --R @@ -2420,7 +2420,7 @@ map(e +-> laplace(e, t, s), %) @ Now, solve the ODE directly <<*>>= ---S 157 of 201 +--S 157 of 200 solve(ode, f, t = 0, [0, 0]) --R --R @@ -2433,14 +2433,14 @@ solve(ode, f, t = 0, [0, 0]) @ \subsection{First order linear ODE} <<*>>= ---S 158 of 201 +--S 158 of 200 y:= operator('y); --R --R --R Type: BasicOperator --E 158 ---S 159 of 201 +--S 159 of 200 x**2 * D(y(x), x) + 3*x*y(x) = sin(x)/x --R --R @@ -2450,7 +2450,7 @@ x**2 * D(y(x), x) + 3*x*y(x) = sin(x)/x --R Type: Equation Expression Integer --E 159 ---S 160 of 201 +--S 160 of 200 solve(%, y, x) --R --R @@ -2464,7 +2464,7 @@ solve(%, y, x) @ \subsection{Nonlinear ODE} <<*>>= ---S 161 of 201 +--S 161 of 200 D(y(x), x, 2) + y(x)*D(y(x), x)**3 = 0 --R --R @@ -2474,7 +2474,7 @@ D(y(x), x, 2) + y(x)*D(y(x), x)**3 = 0 --R Type: Equation Expression Integer --E 161 ---S 162 of 201 +--S 162 of 200 solve(%, y, x) --R --R @@ -2489,7 +2489,7 @@ solve(%, y, x) @ A simple parametric ODE <<*>>= ---S 163 of 201 +--S 163 of 200 D(y(x, a), x) = a*y(x, a) --R --R @@ -2498,7 +2498,7 @@ D(y(x, a), x) = a*y(x, a) --R Type: Equation Expression Integer --E 163 ---S 164 of 201 +--S 164 of 200 solve(%, y, x); --R --R @@ -2515,7 +2515,7 @@ solve(%, y, x); This problem has nontrivial solutions $y(x) = A \sin([\pi/2 + n \pi] x)$ for $n$ an arbitrary integer. <<*>>= ---S 165 of 201 +--S 165 of 200 solve(D(y(x), x, 2) + k**2*y(x) = 0, y, x) --R --R @@ -2528,14 +2528,14 @@ solve(D(y(x), x, 2) + k**2*y(x) = 0, y, x) @ \subsection{System of two linear, constant coefficient ODEs} <<*>>= ---S 166 of 201 +--S 166 of 200 x:= operator('x); --R --R --R Type: BasicOperator --E 166 ---S 167 of 201 +--S 167 of 200 system:= [D(x(t), t) = x(t) - y(t), D(y(t), t) = x(t) + y(t)] --R --R @@ -2548,7 +2548,7 @@ system:= [D(x(t), t) = x(t) - y(t), D(y(t), t) = x(t) + y(t)] @ Check the answer. Triangular system of two ODEs <<*>>= ---S 168 of 201 +--S 168 of 200 system:= [D(x(t), t) = x(t) * (1 + cos(t)/(2 + sin(t))), _ D(y(t), t) = x(t) - y(t)] --R @@ -2562,8 +2562,8 @@ system:= [D(x(t), t) = x(t) * (1 + cos(t)/(2 + sin(t))), _ @ Try solving this system one equation at a time <<*>>= ---S 169 of 201 -solve(system.1, x, t) +--S 169 of 200 +s:=solve(system.1, x, t) --R --R --R t t @@ -2571,185 +2571,125 @@ solve(system.1, x, t) --RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) --E 169 ---S 170 of 201 -isTimes(subst(%.basis.1, cos(t) = sqrt(1 - sin(t)**2))) +--S 170 of 200 +eq1 := x(t) = C1 * s.basis.1 --R --R ---R (162) "failed" ---R Type: Union("failed",...) +--R t t +--R (162) x(t)= C1 %e sin(t) + 2C1 %e +--R Type: Equation Expression Integer --E 170 ---S 171 of 201 -reduce(*, cons(subst( - factors(factor(subst(%.1**2, sin(t) = u) :: Polynomial Integer)).1.factor, - u = sin(t)), - rest(%))) ---R ---R There are 30 exposed and 3 unexposed library operations named elt ---R having 2 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op elt ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. +--S 171 of 200 +s1:=solve(map(e +-> subst(e, eq1), system.2), y, t) --R ---RDaly Bug ---R Cannot find a definition or applicable library operation named elt ---R with argument type(s) ---R failed ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (163) +--R - t t 2 - t t 2 +--R 2C1 %e (%e ) sin(t) + (- C1 cos(t) + 5C1)%e (%e ) +--R [particular= ------------------------------------------------------, +--R 5 +--R - t +--R basis= [%e ]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) --E 171 ---S 172 of 201 -x(t) = C1 * % ---R ---R There are 34 exposed and 23 unexposed library operations named * ---R having 2 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op * ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. +--S 172 of 200 +eq2 := y(t) = simplify(s1.particular) + C2 * s1.basis.1 --R ---RDaly Bug ---R Cannot find a definition or applicable library operation named * ---R with argument type(s) ---R Variable C1 ---R failed ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R t t - t +--R 2C1 %e sin(t) + (- C1 cos(t) + 5C1)%e + 5C2 %e +--R (164) y(t)= -------------------------------------------------- +--R 5 +--R Type: Equation Expression Integer --E 172 ---S 173 of 201 -solve(map(e +-> subst(e, %), system.2), y, t) ---R ---R There are 3 exposed and 0 unexposed library operations named subst ---R having 2 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op subst ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R Cannot find a definition or applicable library operation named subst ---R with argument type(s) ---R Expression Integer ---R Union(List Expression Integer,"failed") ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. ---R AXIOM will attempt to step through and interpret the code. +--S 173 of 200 +map(e +-> rightZero eval(e, [eq1, D(eq1,t), eq2 , D(eq2,t)]), system) --R ---RDaly Bug ---R Anonymous user functions created with +-> that are processed in ---R interpret-code mode must have result target information ---R available. This information is not present so AXIOM cannot ---R proceed any further. This may be remedied by declaring the ---R function. +--R +--R (165) [0= 0,0= 0] +--R Type: List Equation Expression Integer --E 173 - ---S 174 of 201 -y(t) = simplify(%.particular) + C2 * %.basis.1 ---R ---R There are 30 exposed and 3 unexposed library operations named elt ---R having 2 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op elt ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named elt ---R with argument type(s) ---R failed ---R Variable particular ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. ---E 174 - )clear properties x y @ \section{Operators} \subsection{Linear differential operator} <<*>>= ---S 175 of 201 +--S 174 of 200 DD:= operator("D") :: Operator(Expression Integer) --R --R ---R (163) D +--R (166) D --R Type: Operator Expression Integer ---E 175 +--E 174 ---S 176 of 201 +--S 175 of 200 evaluate(DD, e +-> D(e, x))$Operator(Expression Integer) --R --R ---R (164) D +--R (167) D --R Type: Operator Expression Integer ---E 176 +--E 175 ---S 177 of 201 +--S 176 of 200 L:= (DD - 1) * (DD + 2) --R --R --R 2 ---R (165) D 2 + D - D - 2 +--R (168) D 2 + D - D - 2 --R Type: Operator Expression Integer ---E 177 +--E 176 ---S 178 of 201 +--S 177 of 200 g:= operator('g) --R --R ---R (166) g +--R (169) g --R Type: BasicOperator ---E 178 +--E 177 ---S 179 of 201 +--S 178 of 200 L(f(x)) --R --R --R ,, , ---R (167) f (x) + f (x) - 2f(x) +--R (170) f (x) + f (x) - 2f(x) --R --R Type: Expression Integer ---E 179 +--E 178 ---S 180 of 201 +--S 179 of 200 subst(L(subst(g(y), y = x)), x = y) --R --R --R ,, , ---R (168) g (y) + g (y) - 2g(y) +--R (171) g (y) + g (y) - 2g(y) --R --R Type: Expression Integer ---E 180 +--E 179 ---S 181 of 201 +--S 180 of 200 subst(L(subst(A * sin(z**2), z = x)), x = z) --R --R --R 2 2 2 ---R (169) (- 4A z - 2A)sin(z ) + (2A z + 2A)cos(z ) +--R (172) (- 4A z - 2A)sin(z ) + (2A z + 2A)cos(z ) --R Type: Expression Integer ---E 181 +--E 180 @ \subsection{Truncated Taylor series operator} <<*>>= ---S 182 of 201 +--S 181 of 200 T:= (f, xx, a) +-> subst((DD**0)(f(x)), x = a)/factorial(0) * (xx - a)**0 + _ subst((DD**1)(f(x)), x = a)/factorial(1) * (xx - a)**1 + _ subst((DD**2)(f(x)), x = a)/factorial(2) * (xx - a)**2 --R --R ---R (170) +--R (173) --R (f,xx,a) --R +-> --R 0 1 @@ -2762,70 +2702,70 @@ T:= (f, xx, a) +-> subst((DD**0)(f(x)), x = a)/factorial(0) * (xx - a)**0 + _ --R --------------------- (xx - a) --R factorial(2) --R Type: AnonymousFunction ---E 182 +--E 181 ---S 183 of 201 +--S 182 of 200 T(f, x, a) --R --R --R 2 2 ,, , --R (x - 2a x + a )f (a) + (2x - 2a)f (a) + 2f(a) --R ---R (171) ----------------------------------------------- +--R (174) ----------------------------------------------- --R 2 --R Type: Expression Integer ---E 183 +--E 182 ---S 184 of 201 +--S 183 of 200 T(g, y, b) --R --R --R 2 2 ,, , --R (y - 2b y + b )g (b) + (2y - 2b)g (b) + 2g(b) --R ---R (172) ----------------------------------------------- +--R (175) ----------------------------------------------- --R 2 --R Type: Expression Integer ---E 184 +--E 183 ---S 185 of 201 +--S 184 of 200 Sin:= operator("sin") :: Operator(Expression Integer) --R --R ---R (173) sin +--R (176) sin --R Type: Operator Expression Integer ---E 185 +--E 184 ---S 186 of 201 +--S 185 of 200 evaluate(Sin, x +-> sin(x))$Operator(Expression Integer) --R --R ---R (174) sin +--R (177) sin --R Type: Operator Expression Integer ---E 186 +--E 185 ---S 187 of 201 +--S 186 of 200 T(Sin, z, c) --R --R --R 2 2 --R (- z + 2c z - c + 2)sin(c) + (2z - 2c)cos(c) ---R (175) ---------------------------------------------- +--R (178) ---------------------------------------------- --R 2 --R Type: Expression Integer ---E 187 +--E 186 @ \section{Programming} Write a simple program to compute Legendre polynomials <<*>>= ---S 188 of 201 +--S 187 of 200 p(n, x) == 1/(2**n*factorial(n)) * D((x**2 - 1)**n, x, n) --R --R Type: Void ---E 188 +--E 187 ---S 189 of 201 +--S 188 of 200 for i in 0..4 repeat { output(""); output(concat(["p(", string(i), ", x) = "])); output(p(i, x))} --R --R Compiling function p with type (NonNegativeInteger,Variable x) -> @@ -2852,40 +2792,40 @@ for i in 0..4 repeat { output(""); output(concat(["p(", string(i), ", x) = " --R -- x - -- x + - --R 8 4 8 --R Type: Void ---E 189 +--E 188 ---S 190 of 201 +--S 189 of 200 eval(p(4, x), x = 1) --R --R Compiling function p with type (PositiveInteger,Variable x) -> --R Polynomial Fraction Integer --R ---R (178) 1 +--R (181) 1 --R Type: Polynomial Fraction Integer ---E 190 +--E 189 @ Now, perform the same computation using a recursive definition <<*>>= ---S 191 of 201 +--S 190 of 200 pp(0, x) == 1 --R --R Type: Void ---E 191 +--E 190 ---S 192 of 201 +--S 191 of 200 pp(1, x) == x --R --R Type: Void ---E 192 +--E 191 ---S 193 of 201 +--S 192 of 200 pp(n, x) == ((2*n - 1)*x*pp(n - 1, x) - (n - 1)*pp(n - 2, x))/n --R --R Type: Void ---E 193 +--E 192 ---S 194 of 201 +--S 193 of 200 for i in 0..4 repeat { output(""); output(concat(["pp(", string(i), ", x) = "])); output(pp(i, x))} --R --R Compiling function pp with type (Integer,Variable x) -> Polynomial @@ -2912,7 +2852,7 @@ for i in 0..4 repeat { output(""); output(concat(["pp(", string(i), ", x) = --R -- x - -- x + - --R 8 4 8 --R Type: Void ---E 194 +--E 193 )clear properties p pp @@ -2921,31 +2861,31 @@ for i in 0..4 repeat { output(""); output(concat(["pp(", string(i), ", x) = \subsection{Horner's rule} This is important for numerical algorithms <<*>>= ---S 195 of 201 +--S 194 of 200 a:= operator('a) --R --R ---R (183) a +--R (186) a --R Type: BasicOperator ---E 195 +--E 194 ---S 196 of 201 +--S 195 of 200 sum(a(i)*x**i, i = 1..5) --R --R --R 5 4 3 2 ---R (184) a(5)x + a(4)x + a(3)x + a(2)x + a(1)x +--R (187) a(5)x + a(4)x + a(3)x + a(2)x + a(1)x --R Type: Expression Integer ---E 196 +--E 195 ---S 197 of 201 +--S 196 of 200 p:= factor(%) --R --R --R 5 4 3 2 ---R (185) a(5)x + a(4)x + a(3)x + a(2)x + a(1)x +--R (188) a(5)x + a(4)x + a(3)x + a(2)x + a(1)x --R Type: Factored Expression Integer ---E 197 +--E 196 @ Convert the result into FORTRAN syntax @@ -2953,40 +2893,40 @@ Convert the result into FORTRAN syntax )set fortran ints2floats off ---S 198 of 201 +--S 197 of 200 outputAsFortran('p = p) --R --R p=a(5)*x**5+a(4)*x**4+a(3)*x**3+a(2)*x*x+a(1)*x --R Type: Void ---E 198 +--E 197 @ \section{Boolean Logic} \subsection{Simplify logical expressions} <<*>>= ---S 199 of 201 +--S 198 of 200 true and false --R --R ---R (187) false +--R (190) false --R Type: Boolean ---E 199 +--E 198 ---S 200 of 201 +--S 199 of 200 x or (not x) --R --R --RDaly Bug --R Argument number 1 to "or" must be a Boolean. ---E 200 +--E 199 ---S 201 of 201 +--S 200 of 200 x or y or (x and y) --R --R --RDaly Bug --R Argument number 1 to "or" must be a Boolean. ---E 201 +--E 200 )spool )lisp (bye) diff --git a/src/input/exlap.input.pamphlet b/src/input/exlap.input.pamphlet index 432b063..d290295 100644 --- a/src/input/exlap.input.pamphlet +++ b/src/input/exlap.input.pamphlet @@ -37,39 +37,31 @@ laplace((exp(a*t) - exp(b*t))/t, t, s) --E 2 --S 3 of 6 -laplace(exp(a*t+b)*ei(c*t), t, s) +laplace(exp(a*t+b)*Ei(c*t), t, s) --R ---R There are no library operations named ei ---R Use HyperDoc Browse or issue ---R )what op ei ---R to learn if there is any operation containing " ei " in its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ei ---R with argument type(s) ---R Polynomial Integer ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R b s + c - a +--R %e log(---------) +--R c +--R (3) ----------------- +--R s - a +--R Type: Expression Integer --E 3 )clear all --S 4 of 6 -laplace(a*ci(b*t) + c*si(d*t), t, s) +laplace(a*Ci(b*t) + c*Si(d*t), t, s) --R ---R There are no library operations named ci ---R Use HyperDoc Browse or issue ---R )what op ci ---R to learn if there is any operation containing " ci " in its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ci ---R with argument type(s) ---R Polynomial Integer ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R 2 2 +--R s + b d +--R a log(-------) + 2c atan(-) +--R 2 s +--R b +--R (1) --------------------------- +--R 2s +--R Type: Expression Integer --E 4 )clear all diff --git a/src/input/exsum.input.pamphlet b/src/input/exsum.input.pamphlet index 7c2f9d0..df444c0 100644 --- a/src/input/exsum.input.pamphlet +++ b/src/input/exsum.input.pamphlet @@ -93,32 +93,19 @@ sum(3*k**2/(c**2 + 1) + 12*k/d,k = (3*a)..(4*b)) )clear all --S 7 of 13 -[1..15] +[i for i in 1..15] --R --R ---R (1) [1..15] ---R Type: List Segment PositiveInteger +--R (1) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] +--R Type: List PositiveInteger --E 7 --S 8 of 13 -reduce(+,[1..15]) ---R ---R There are 1 exposed and 3 unexposed library operations named reduce ---R having 2 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op reduce ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. +reduce(+,[i for i in 1..15]) --R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R reduce with argument type(s) ---R Variable + ---R List Segment PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (2) 120 +--R Type: PositiveInteger --E 8 )clear all diff --git a/src/input/grpthry.input.pamphlet b/src/input/grpthry.input.pamphlet index 544b278..b0296a4 100644 --- a/src/input/grpthry.input.pamphlet +++ b/src/input/grpthry.input.pamphlet @@ -19,7 +19,7 @@ )set message auto off )clear all ---S 1 of 67 +--S 1 of 68 x : PERM INT := [[1,3,5],[7,11,9]] --R --R @@ -27,7 +27,7 @@ x : PERM INT := [[1,3,5],[7,11,9]] --R Type: Permutation Integer --E 1 ---S 2 of 67 +--S 2 of 68 y : PERM INT := [[3,5,7,9]] --R --R @@ -35,7 +35,7 @@ y : PERM INT := [[3,5,7,9]] --R Type: Permutation Integer --E 2 ---S 3 of 67 +--S 3 of 68 z : PERM INT := [1,3,11] --R --R @@ -43,155 +43,113 @@ z : PERM INT := [1,3,11] --R Type: Permutation Integer --E 3 ---S 4 of 67 -g1 : PERMGRPS INT := [ x , y ] +--S 4 of 68 +g1 : PERMGRP INT := [ x , y ] --R ---R ---RDaly Bug ---R Category, domain or package constructor PERMGRPS is not available. +--R +--R (4) <(1 3 5)(7 11 9),(3 5 7 9)> +--R Type: PermutationGroup Integer --E 4 ---S 5 of 67 -g2 : PERMGRPS INT := [ x , z ] +--S 5 of 68 +g2 : PERMGRP INT := [ x , z ] --R ---R ---RDaly Bug ---R Category, domain or package constructor PERMGRPS is not available. +--R +--R (5) <(1 3 5)(7 11 9),(1 3 11)> +--R Type: PermutationGroup Integer --E 5 ---S 6 of 67 -g3 : PERMGRPS INT := [ y , z ] +--S 6 of 68 +g3 : PERMGRP INT := [ y , z ] --R ---R ---RDaly Bug ---R Category, domain or package constructor PERMGRPS is not available. +--R +--R (6) <(3 5 7 9),(1 3 11)> +--R Type: PermutationGroup Integer --E 6 ---S 7 of 67 +--S 7 of 68 order g1 --R ---R There are 9 exposed and 5 unexposed library operations named order ---R having 1 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op order ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named order ---R with argument type(s) ---R Variable g1 ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (7) 720 +--R Type: PositiveInteger --E 7 ---S 8 of 67 +--S 8 of 68 degree g3 --R --R ---R (4) g3 ---R Type: IndexedExponents Symbol +--R (8) 6 +--R Type: PositiveInteger --E 8 ---S 9 of 67 +--S 9 of 68 movedPoints g2 --R ---R There are 2 exposed and 0 unexposed library operations named ---R movedPoints having 1 argument(s) but none was determined to be ---R applicable. Use HyperDoc Browse, or issue ---R )display op movedPoints ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R movedPoints with argument type(s) ---R Variable g2 ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (9) {1,3,5,7,9,11} +--R Type: Set Integer --E 9 ---S 10 of 67 +--S 10 of 68 orbit (g1, 3) --R ---R There are 4 exposed and 0 unexposed library operations named orbit ---R having 2 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op orbit ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named orbit ---R with argument type(s) ---R Variable g1 ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (10) {1,3,5,7,9,11} +--R Type: Set Integer --E 10 ---S 11 of 67 +--S 11 of 68 orbits g3 --R ---R There are 1 exposed and 0 unexposed library operations named orbits ---R having 1 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op orbits ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R orbits with argument type(s) ---R Variable g3 ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (11) {{1,3,5,7,9,11}} +--R Type: Set Set Integer --E 11 ---S 12 of 67 +--S 12 of 68 member? ( y , g2 ) --R ---R There are 2 exposed and 1 unexposed library operations named member? ---R having 2 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op member? ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R member? with argument type(s) ---R Permutation Integer ---R Variable g2 ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (12) false +--R Type: Boolean --E 12 ---S 13 of 67 -)sh PERMGRPS +--S 13 of 68 +)sh PERMGRP --R ---R The )show system command is used to display information about types ---R or partial types. For example, )show Integer will show ---R information about Integer . ---R ---R PERMGRPS is not the name of a known type constructor. If you want ---R to see information about any operations named PERMGRPS , issue ---R )display operations PERMGRPS +--R PermutationGroup S: SetCategory is a domain constructor +--R Abbreviation for PermutationGroup is PERMGRP +--R This constructor is exposed in this frame. +--R Issue )edit permgrps.spad.pamphlet to see algebra source code for PERMGRP +--R +--R------------------------------- Operations -------------------------------- +--R ? Boolean ?<=? : (%,%) -> Boolean +--R ?=? : (%,%) -> Boolean base : % -> List S +--R coerce : List Permutation S -> % coerce : % -> List Permutation S +--R coerce : % -> OutputForm degree : % -> NonNegativeInteger +--R hash : % -> SingleInteger latex : % -> String +--R movedPoints : % -> Set S orbit : (%,List S) -> Set List S +--R orbit : (%,Set S) -> Set Set S orbit : (%,S) -> Set S +--R orbits : % -> Set Set S order : % -> NonNegativeInteger +--R random : % -> Permutation S ?~=? : (%,%) -> Boolean +--R ?.? : (%,NonNegativeInteger) -> Permutation S +--R generators : % -> List Permutation S +--R initializeGroupForWordProblem : (%,Integer,Integer) -> Void +--R initializeGroupForWordProblem : % -> Void +--R member? : (Permutation S,%) -> Boolean +--R permutationGroup : List Permutation S -> % +--R random : (%,Integer) -> Permutation S +--R strongGenerators : % -> List Permutation S +--R wordInGenerators : (Permutation S,%) -> List NonNegativeInteger +--R wordInStrongGenerators : (Permutation S,%) -> List NonNegativeInteger +--R wordsForStrongGenerators : % -> List List NonNegativeInteger +--R --E 13 )clear all ---S 14 of 67 +--S 14 of 68 ptn9 := partitions 9 --R --R @@ -200,112 +158,1133 @@ ptn9 := partitions 9 --R Type: Stream List Integer --E 14 ---S 15 of 67 -map(dimIrrRepSym, ptn9) ---R ---R There are 68 exposed and 8 unexposed library operations named map ---R having 2 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op map ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named map ---R with argument type(s) ---R Variable dimIrrRepSym ---R Stream List Integer ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--S 15 of 68 +map(dimensionOfIrreducibleRepresentation, ptn9) +--R +--R +--R (2) [1,8,27,28,48,105,56,42,162,120,...] +--R Type: Stream NonNegativeInteger --E 15 ---S 16 of 67 -yt := listYoungTableaus [4,2]; yt :: (LIST TABLEAU I) ---R +--S 16 of 68 +yt := listYoungTableaus [4,2] --R ---RDaly Bug ---R I is not a valid type. +--R +--R (3) +--R +0 2 4 5+ +0 2 3 5+ +0 2 3 4+ +0 1 4 5+ +0 1 3 5+ +--R [| |, | |, | |, | |, | |, +--R +1 3 0 0+ +1 4 0 0+ +1 5 0 0+ +2 3 0 0+ +2 4 0 0+ +--R +0 1 3 4+ +0 1 2 5+ +0 1 2 4+ +0 1 2 3+ +--R | |, | |, | |, | |] +--R +2 5 0 0+ +3 4 0 0+ +3 5 0 0+ +4 5 0 0+ +--R Type: List Matrix Integer --E 16 ---S 17 of 67 -r1 := irrRepSymNat([4,2],[1,2,4,5,3,6]) ---R ---R There are no library operations named irrRepSymNat ---R Use HyperDoc Browse or issue ---R )what op irrRepSymNat ---R to learn if there is any operation containing " irrRepSymNat " in ---R its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R irrRepSymNat with argument type(s) ---R List PositiveInteger ---R List PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--S 17 of 68 +r1 := irreducibleRepresentation([4,2],[1,2,4,5,3,6]) +--R +--R +--R + 0 - 1 - 1 0 0 0 0 0 1 + +--R | | +--R |- 1 0 0 0 0 0 0 0 0 | +--R | | +--R | 1 1 1 0 0 0 0 0 0 | +--R | | +--R | 0 1 0 0 0 0 0 0 - 1| +--R | | +--R (4) | 0 0 0 0 0 0 1 0 0 | +--R | | +--R | 0 0 0 0 1 0 0 0 0 | +--R | | +--R | 1 0 0 0 0 0 - 1 - 1 0 | +--R | | +--R |- 1 - 1 - 1 - 1 - 1 - 1 0 0 0 | +--R | | +--R + 0 0 0 1 0 0 0 0 0 + +--R Type: Matrix Integer --E 17 ---S 18 of 67 -r2 := irrRepSymNat([4,2],[3,2,1,5,6,4]) ---R ---R There are no library operations named irrRepSymNat ---R Use HyperDoc Browse or issue ---R )what op irrRepSymNat ---R to learn if there is any operation containing " irrRepSymNat " in ---R its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R irrRepSymNat with argument type(s) ---R List PositiveInteger ---R List PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--S 18 of 68 +r2 := irreducibleRepresentation([4,2],[3,2,1,5,6,4]) +--R +--R +--R + 0 0 - 1 0 0 0 0 - 1 0 + +--R | | +--R | 1 0 1 0 - 1 0 - 1 0 0 | +--R | | +--R | 0 0 0 0 1 0 0 0 0 | +--R | | +--R | 0 0 0 0 0 0 0 1 0 | +--R | | +--R (5) |- 1 0 0 - 1 0 0 0 0 0 | +--R | | +--R | 0 0 0 0 0 0 1 0 0 | +--R | | +--R | 0 0 - 1 0 0 - 1 0 - 1 - 1| +--R | | +--R | 0 0 0 0 0 0 0 0 1 | +--R | | +--R + 0 - 1 0 0 - 1 0 - 1 0 0 + +--R Type: Matrix Integer --E 18 ---S 19 of 67 -r3 := irrRepSymNat([4,2],[4,2,1,3,6,5]) ---R ---R There are no library operations named irrRepSymNat ---R Use HyperDoc Browse or issue ---R )what op irrRepSymNat ---R to learn if there is any operation containing " irrRepSymNat " in ---R its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R irrRepSymNat with argument type(s) ---R List PositiveInteger ---R List PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--S 19 of 68 +r3 := irreducibleRepresentation([4,2],[4,2,1,3,6,5]) +--R +--R +--R +0 0 0 0 1 0 1 0 1 + +--R | | +--R |0 0 0 0 0 1 0 1 0 | +--R | | +--R |0 0 0 1 0 0 0 0 0 | +--R | | +--R |0 - 1 0 0 - 1 0 - 1 0 0 | +--R | | +--R (6) |0 0 - 1 0 0 - 1 0 - 1 - 1| +--R | | +--R |1 1 1 0 0 0 0 0 0 | +--R | | +--R |0 0 0 0 0 0 0 0 1 | +--R | | +--R |0 0 0 0 1 0 0 0 0 | +--R | | +--R +0 0 0 0 0 1 0 0 0 + +--R Type: Matrix Integer --E 19 ---S 20 of 67 +--S 20 of 68 (r3 = r1*r2) :: Boolean --R --R ---R (2) false +--R (7) false --R Type: Boolean --E 20 ---S 21 of 67 -irrRepSymNat [4,4,1] +--S 21 of 68 +irreducibleRepresentation [4,4,1] --R --R ---R (3) irrRepSymNat ---R 4,4,1 ---R Type: Symbol +--R (8) +--R [ +--R [ +--R [- 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, - 1, 0, 0, 0, 1, 0, - 1, +--R 0, - 1, - 1, - 1, 0, 1, 1, 0, 0, 0, 0, - 1, 0, - 1, 1, - 1, - 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, - 1, 0, 0, 0, 1, 1, 0, +--R 1, 1, 0, - 1, - 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, - 1, 0, - 1, 0, 1, +--R 0, 0, 1, 1, 0, 0, - 1, 0, - 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, - 1, 0, - 1, +--R - 1, 0, 0, 0, 0, 1, 0, 0, - 1, 0, - 1, - 1, 0, 0, 0, - 1, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, - 1, +--R - 1, - 1, 0, 0, 1, 0, 0, 0, 0, 0, - 1, - 1, - 1, 1, - 1, - 1, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 1, 1, 0, 0, 0, +--R 0, - 1, 0, - 1, 1, - 1, - 1, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 1, 0, +--R 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, - 1, 0, - 1, +--R 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, - 1, 0, +--R - 1, - 1, 0, 0, 0, - 1, 1, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, +--R 0, - 1, - 1, - 1, 1, - 1, - 1, - 1, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, - 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 1, - 1, - 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, +--R 0, 0, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, +--R 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, +--R 0, 0, 0, 0, 0, - 1, 0, 0, 0, - 1, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, - 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 1, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, - 1] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 1, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, - 1, - 1, - 1] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, - 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 1] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, - 1, 0, 0, 0, - 1, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, - 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, - 1] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] +--R ] +--R , +--R +--R [ +--R [- 1, 0, - 1, - 1, 0, 0, 0, - 1, 0, - 1, 1, 0, 0, 1, - 1, 1, 1, - 1, 0, 0, +--R 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, +--R - 1, 0, - 1, 0, 0, - 1, - 1, 0, 0, 0, 0, - 1, - 1, - 1, 0, 0, - 1, 0, 0, +--R 0, 0, 0, 0, - 1, - 1, 0, - 2, - 1, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 1, +--R 1, 0] +--R , +--R +--R [1, 1, 1, 1, 0, 0, 0, 0, 0, 1, - 1, - 1, - 1, - 1, 0, 0, 0, 1, 1, 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, +--R 1, 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0] +--R , +--R +--R [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, +--R 1, - 1, 1, 1, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, +--R 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0] +--R , +--R +--R [- 1, - 1, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 1, - 1, - 1, 0, 0, 0, 1, 1, 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, +--R 0, 1, 1, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, +--R - 1, - 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0] +--R , +--R +--R [0, 0, - 1, - 1, - 1, 0, 0, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, +--R - 1, - 1, - 1, - 1, 0, - 1, - 1, 0, 0, 0, 0, - 1, - 1, - 1, - 1, 0, - 1, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, - 1, 0, - 1, - 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0] +--R , +--R +--R [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, - 2, - 1, - 1, 1, 0, 1, 1, 0, 1, +--R 1, 0, 1, 0, 0, - 1, - 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, +--R 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0] +--R , +--R +--R [- 1, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, - 1, - 1, - 1, - 1, +--R 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [- 1, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, - 1, 0, - 1, 0, 0, 0, +--R 0, 0, - 1, 0, - 1, 0, 0, - 1, 0, - 1, 1, 1, - 1, 0, 0, 0, - 1, 0, 0, - 1, +--R 0, 0, - 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] +--R , +--R +--R [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 1, 1, 0, 0, - 1, - 1, +--R 0, 0, 0, 0, 1, 1, 1, - 1, - 1, - 1, - 1, 0, 0, 0, 1, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, 0, 0, 1, 1, 1, 1, +--R 0, 1, 1, 0, - 1, - 1, - 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, 0, 1, +--R 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, - 1, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, - 1, - 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, +--R 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, +--R 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, +--R 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, +--R 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, +--R 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, - 1, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, 0, 1, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, - 1, - 1, 0, +--R 0, 0, 0, 0, 1, - 1, 0, 0, 0, - 1, - 1, - 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, 1, 1, +--R 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, +--R 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, +--R 0, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, +--R 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, +--R 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, +--R 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, +--R 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] +--R , +--R +--R [- 1, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, - 1, 0, - 1, +--R 0, 0, - 1, - 1, 0, 0, 0, 0, - 1, - 1, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, - 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, +--R 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [- 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 1, 1, +--R 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, +--R - 1, - 1, 0, - 1, - 1, 0, 0, 0, 0, - 1, - 1, - 1, - 1, 0, - 1, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, - 1, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, - 1, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, - 1, - 1, - 1, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, +--R 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, +--R 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, +--R 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, +--R 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, +--R 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R - 1, - 1, - 1, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, +--R 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R - 1, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, - 1, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, - 1, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, +--R 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, +--R - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, - 1, - 1, - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, - 1, - 1, 0, 0, 0, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, - 1, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, - 1, 0, +--R 0, 0, 0, 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, 0, +--R 0, - 1, 0, 0, 0, - 1, 0, 0, 0, - 1, 0, 0] +--R , +--R +--R [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +--R 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 1, +--R 0, 0, - 1, 0, 0, 0, - 1, 0, 0, 0, - 1, 0] +--R ] +--R ] +--R Type: List Matrix Integer --E 21 )clear all ---S 22 of 67 +--S 22 of 68 permutationRepresentation [2,3,1,4,6,5,11,10,7,8,9] --R --R @@ -333,7 +1312,7 @@ permutationRepresentation [2,3,1,4,6,5,11,10,7,8,9] --R Type: Matrix Integer --E 22 ---S 23 of 67 +--S 23 of 68 gm2 := createGenericMatrix 2 --R --R @@ -345,7 +1324,7 @@ gm2 := createGenericMatrix 2 --R Type: Matrix Polynomial Integer --E 23 ---S 24 of 67 +--S 24 of 68 symmetricTensors (gm2,2) --R --R @@ -362,7 +1341,7 @@ symmetricTensors (gm2,2) --R Type: Matrix Polynomial Integer --E 24 ---S 25 of 67 +--S 25 of 68 gm3 := createGenericMatrix 3 --R --R @@ -377,7 +1356,7 @@ gm3 := createGenericMatrix 3 --R Type: Matrix Polynomial Integer --E 25 ---S 26 of 67 +--S 26 of 68 antisymmetricTensors (gm3,2) --R --R @@ -392,7 +1371,7 @@ antisymmetricTensors (gm3,2) --R Type: Matrix Polynomial Integer --E 26 ---S 27 of 67 +--S 27 of 68 tensorProduct(gm2,gm2) --R --R @@ -412,7 +1391,7 @@ tensorProduct(gm2,gm2) --R Type: Matrix Polynomial Integer --E 27 ---S 28 of 67 +--S 28 of 68 )sh REP1 --R --R RepresentationPackage1 R: Ring is a package constructor @@ -439,207 +1418,402 @@ tensorProduct(gm2,gm2) )clear all ---S 29 of 67 -r0 := irrRepSymNat [2,2,2,1,1]; r28 := meatAxe (r0::(LIST MATRIX PF 2)) ---R +--S 29 of 68 +r0 := irreducibleRepresentation [2,2,2,1,1]; --R ---RDaly Bug ---R Cannot convert from type Symbol to List Matrix PrimeField 2 for ---R value ---R irrRepSymNat ---R 2,2,2,1,1 --R +--R Type: List Matrix Integer --E 29 ---S 30 of 67 -areEquivalent? (r28.1, r28.2) +--S 30 of 68 +r28 := meatAxe (r0::(LIST MATRIX PF 2)) --R ---R There are no library operations named r28 ---R Use HyperDoc Browse or issue ---R )what op r28 ---R to learn if there is any operation containing " r28 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named r28 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Fingerprint element in generated algebra is singular +--R A proper cyclic submodule is found. +--R Transition matrix computed +--R The inverse of the transition matrix computed +--R Now transform the matrices +--R +--R (2) +--R [ +--R +0 1 1 1 1 1 1 0 0 1 1 1 0 0+ +--R | | +--R |1 0 1 1 1 0 0 1 1 1 0 0 1 1| +--R | | +--R |1 1 0 1 0 1 0 0 1 0 1 0 0 1| +--R | | +--R |1 1 1 0 0 0 1 1 0 0 0 1 1 0| +--R | | +--R |1 1 0 0 0 1 1 1 1 1 1 1 1 1| +--R | | +--R |1 0 1 0 1 0 1 0 1 1 1 1 0 1| +--R | | +--R |1 0 0 1 1 1 0 1 0 1 1 1 1 0| +--R [| |, +--R |0 1 1 0 1 1 0 1 0 1 1 0 0 0| +--R | | +--R |0 1 0 1 1 0 1 0 1 1 0 1 0 0| +--R | | +--R |1 1 0 0 1 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 0 1 0 0 1 0 0 0 0 0 0 0 0| +--R | | +--R |1 0 0 1 0 0 1 0 0 0 0 0 0 0| +--R | | +--R |0 1 1 0 0 0 0 1 0 0 0 0 0 0| +--R | | +--R +0 1 0 1 0 0 0 0 1 0 0 0 0 0+ +--R +1 1 1 1 0 0 0 0 0 0 0 0 0 0+ +--R | | +--R |1 1 1 0 0 0 1 0 0 1 1 0 0 0| +--R | | +--R |1 1 1 0 0 0 0 0 1 1 0 0 1 0| +--R | | +--R |1 1 1 0 0 0 0 1 1 0 1 0 1 0| +--R | | +--R |1 1 1 0 0 0 0 1 0 1 1 1 1 0| +--R | | +--R |1 1 1 0 0 1 0 0 0 1 1 0 1 1| +--R | | +--R |1 1 1 0 1 0 0 0 0 1 1 0 0 1| +--R | |] +--R |1 1 0 0 0 0 0 0 0 0 1 1 1 1| +--R | | +--R |1 0 1 0 0 0 0 0 0 1 0 1 0 1| +--R | | +--R |0 0 0 1 0 0 1 0 0 1 1 1 1 0| +--R | | +--R |0 0 0 1 0 0 0 0 1 1 1 0 1 1| +--R | | +--R |0 0 0 1 0 0 0 1 1 1 1 0 0 1| +--R | | +--R |0 0 0 0 0 0 1 0 1 0 1 1 1 1| +--R | | +--R +0 0 0 0 0 0 1 1 1 1 0 1 0 1+ +--R , +--R +--R +1 0 0 0 0 0 0 0 1 1 1 1 1 1+ +--R | | +--R |0 1 0 0 0 0 0 0 1 1 1 0 0 0| +--R | | +--R |0 0 1 0 0 1 1 0 1 0 0 1 0 0| +--R | | +--R |0 0 0 1 0 1 0 1 0 1 0 0 1 0| +--R | | +--R |0 0 0 0 1 0 1 1 1 1 0 0 0 1| +--R | | +--R |0 0 0 0 0 1 1 1 1 1 0 1 1 0| +--R | | +--R |0 0 0 0 0 1 1 1 1 0 1 1 0 1| +--R [| |, +--R |0 0 0 0 0 1 1 1 0 1 1 0 1 1| +--R | | +--R |0 0 0 0 0 1 1 0 1 1 1 1 0 0| +--R | | +--R |0 0 0 0 0 1 0 1 1 1 1 0 1 0| +--R | | +--R |0 0 0 0 0 0 1 1 1 1 1 1 1 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 1| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 1 0 1| +--R | | +--R +0 0 0 0 0 0 0 0 0 0 0 0 0 1+ +--R +0 0 1 1 1 1 1 0 1 0 0 0 0 0+ +--R | | +--R |0 0 1 0 0 0 0 0 0 0 0 0 1 1| +--R | | +--R |0 0 0 0 0 0 0 1 0 1 0 0 1 0| +--R | | +--R |0 0 0 0 0 0 0 1 0 0 1 0 0 1| +--R | | +--R |0 0 1 0 0 0 0 0 0 1 1 0 1 1| +--R | | +--R |0 0 0 0 0 0 0 1 1 0 0 1 0 0| +--R | | +--R |0 0 0 0 0 0 1 0 0 1 0 1 0 0| +--R | |] +--R |1 1 0 0 0 1 0 0 0 0 1 1 0 0| +--R | | +--R |0 0 1 1 0 0 1 0 1 0 0 0 1 0| +--R | | +--R |1 0 1 0 1 1 0 0 1 0 0 0 0 1| +--R | | +--R |1 0 1 1 1 0 0 0 1 0 0 0 1 1| +--R | | +--R |0 0 1 1 0 0 1 1 1 1 0 1 1 0| +--R | | +--R |0 1 1 0 1 1 0 1 1 0 1 1 0 1| +--R | | +--R +0 1 1 1 1 0 0 0 1 1 1 1 1 1+ +--R ] +--R Type: List List Matrix PrimeField 2 --E 30 ---S 31 of 67 -meatAxe r28.2 +--S 31 of 68 +areEquivalent? (r28.1, r28.2) --R ---R There are no library operations named r28 ---R Use HyperDoc Browse or issue ---R )what op r28 ---R to learn if there is any operation containing " r28 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named r28 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Dimensions of kernels differ +--R +--R Representations are not equivalent. +--R +--R (3) [0] +--R Type: Matrix PrimeField 2 --E 31 ---S 32 of 67 -isAbsolutelyIrreducible? r28.2 +--S 32 of 68 +meatAxe r28.2 --R ---R There are no library operations named r28 ---R Use HyperDoc Browse or issue ---R )what op r28 ---R to learn if there is any operation containing " r28 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named r28 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is irreducible, but we don't know +--R whether it is absolutely irreducible +--R +--R (4) +--R [ +--R +1 0 0 0 0 0 0 0 0 0 0 0 0 0+ +--R | | +--R |0 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 1 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 1 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 1 1 0 1 1 1 1 1 0 0 0 0| +--R | | +--R |0 0 1 0 1 1 1 1 1 0 1 0 0 0| +--R [| |, +--R |0 0 0 1 1 1 1 1 0 1 1 0 0 0| +--R | | +--R |1 1 1 0 1 1 1 0 1 1 1 0 0 0| +--R | | +--R |1 1 0 1 1 1 0 1 1 1 1 0 0 0| +--R | | +--R |1 1 0 0 0 0 1 1 1 1 1 0 0 0| +--R | | +--R |1 0 1 0 0 1 1 0 1 0 1 0 1 0| +--R | | +--R |1 0 0 1 0 1 0 1 0 1 1 1 0 0| +--R | | +--R +1 0 0 0 1 0 1 1 0 0 0 1 1 1+ +--R +0 0 0 0 0 0 0 1 0 1 1 0 0 0+ +--R | | +--R |0 0 0 0 0 0 0 1 0 0 0 0 1 1| +--R | | +--R |1 1 0 0 1 0 0 0 1 1 1 1 1 1| +--R | | +--R |1 0 0 0 0 0 0 0 1 0 1 1 0 1| +--R | | +--R |1 0 0 0 0 0 0 0 0 1 1 0 1 1| +--R | | +--R |1 0 0 0 0 0 0 1 0 1 0 0 1 0| +--R | | +--R |1 0 0 0 0 0 1 0 1 0 0 1 0 0| +--R | |] +--R |0 0 1 1 0 1 0 0 0 0 0 1 1 0| +--R | | +--R |1 0 0 0 0 1 0 0 1 1 1 1 1 1| +--R | | +--R |0 0 1 0 1 0 1 0 0 0 0 1 0 1| +--R | | +--R |0 0 0 1 1 0 0 1 0 0 0 0 1 1| +--R | | +--R |0 0 0 0 0 1 1 1 0 0 0 1 1 1| +--R | | +--R |0 1 1 0 1 0 0 0 1 0 1 1 0 1| +--R | | +--R +0 1 0 1 1 0 0 0 0 1 1 0 1 1+ +--R ] +--R Type: List List Matrix PrimeField 2 --E 32 ---S 33 of 67 -ma := meatAxe r28.1 +--S 33 of 68 random generation, FAILURE OK. +isAbsolutelyIrreducible? r28.2 --R ---R There are no library operations named r28 ---R Use HyperDoc Browse or issue ---R )what op r28 ---R to learn if there is any operation containing " r28 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named r28 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (5) true +--R Type: Boolean --E 33 ---S 34 of 67 -isAbsolutelyIrreducible? ma.1 +--S 34 of 68 +ma := meatAxe r28.1 --R ---R There are no library operations named ma ---R Use HyperDoc Browse or issue ---R )what op ma ---R to learn if there is any operation containing " ma " in its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ma ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R A proper cyclic submodule is found. +--R Transition matrix computed +--R The inverse of the transition matrix computed +--R Now transform the matrices +--R +--R (6) +--R +0 0 0 0 1 0 1 1+ +1 1 1 1 1 1 0 0+ +--R | | | | +--R |0 0 0 0 0 1 0 1| |1 0 0 1 1 0 1 0| +--R | | | | +--R |0 0 0 0 0 0 1 1| |0 0 1 1 0 0 1 0| +--R | | | | +--R |0 0 0 0 0 0 0 1| |1 1 0 1 1 1 1 1| +--R [[| |,| |], +--R |1 0 1 0 0 0 0 0| |1 1 1 1 0 0 1 0| +--R | | | | +--R |0 1 0 1 0 0 0 0| |1 0 0 1 1 1 1 1| +--R | | | | +--R |0 0 1 1 0 0 0 0| |0 1 1 0 1 0 1 1| +--R | | | | +--R +0 0 0 1 0 0 0 0+ +1 0 0 1 0 1 0 1+ +--R +0 1 1 0 0 1+ +1 1 0 0 0 0+ +--R | | | | +--R |1 0 1 0 0 1| |1 0 1 1 0 0| +--R | | | | +--R |1 1 0 0 0 1| |1 0 0 1 0 1| +--R [| |,| |]] +--R |0 0 0 1 0 0| |1 0 1 1 1 0| +--R | | | | +--R |0 0 0 0 1 0| |1 0 0 0 1 1| +--R | | | | +--R +1 1 1 0 0 0+ +0 1 1 1 0 1+ +--R Type: List List Matrix PrimeField 2 --E 34 ---S 35 of 67 -isAbsolutelyIrreducible? ma.2 +--S 35 of 68 +isAbsolutelyIrreducible? ma.1 --R ---R There are no library operations named ma ---R Use HyperDoc Browse or issue ---R )what op ma ---R to learn if there is any operation containing " ma " in its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ma ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (7) true +--R Type: Boolean --E 35 +--S 36 of 68 +isAbsolutelyIrreducible? ma.2 +--R +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (8) true +--R Type: Boolean +--E 36 + )clear all ---S 36 of 67 +--S 37 of 68 px : PERM PF 29 := cycles [[1,3,5],[7,11,9]] --R --R --R (1) (1 3 5)(7 11 9) --R Type: Permutation PrimeField 29 ---E 36 +--E 37 ---S 37 of 67 +--S 38 of 68 py : PERM PF 29 := cycles [[3,5,7,9]] --R --R --R (2) (3 5 7 9) --R Type: Permutation PrimeField 29 ---E 37 +--E 38 ---S 38 of 67 +--S 39 of 68 pz : PERM PF 29 := cycle [1,3,11] --R --R --R (3) (1 3 11) --R Type: Permutation PrimeField 29 ---E 38 +--E 39 ---S 39 of 67 +--S 40 of 68 px * pz --R --R --R (4) (1 5)(3 9 7 11) --R Type: Permutation PrimeField 29 ---E 39 +--E 40 ---S 40 of 67 +--S 41 of 68 py ** 3 --R --R --R (5) (3 9 7 5) --R Type: Permutation PrimeField 29 ---E 40 +--E 41 ---S 41 of 67 +--S 42 of 68 inv px --R --R --R (6) (1 5 3)(7 9 11) --R Type: Permutation PrimeField 29 ---E 41 +--E 42 ---S 42 of 67 +--S 43 of 68 order px --R --R --R (7) 3 --R Type: PositiveInteger ---E 42 +--E 43 ---S 43 of 67 +--S 44 of 68 movedPoints py --R --R --R (8) {3,5,7,9} --R Type: Set PrimeField 29 ---E 43 +--E 44 ---S 44 of 67 +--S 45 of 68 orbit ( pz , 3 ) --R --R --R (9) {3,11,1} --R Type: Set PrimeField 29 ---E 44 +--E 45 ---S 45 of 67 +--S 46 of 68 eval ( py , 7 ) --R --R --R (10) 9 --R Type: PrimeField 29 ---E 45 +--E 46 ---S 46 of 67 +--S 47 of 68 )sh PERM --R --R Permutation S: SetCategory is a domain constructor @@ -679,19 +1853,19 @@ eval ( py , 7 ) --R min : (%,%) -> % if S has FINITE or S has ORDSET --R numberOfCycles : % -> NonNegativeInteger --R ---E +--E 47 )clear all ---S 47 of 67 +--S 48 of 68 genA6 : List PERM INT := [cycle [1,2,3],cycle [2,3,4,5,6]] --R --R --R (1) [(1 2 3),(2 3 4 5 6)] --R Type: List Permutation Integer ---E 47 +--E 48 ---S 48 of 67 +--S 49 of 68 pRA6 := permutationRepresentation (genA6,6) --R --R @@ -707,9 +1881,9 @@ pRA6 := permutationRepresentation (genA6,6) --R | | | | --R +0 0 0 0 0 1+ +0 0 0 0 1 0+ --R Type: List Matrix Integer ---E 48 +--E 49 ---S 49 of 67 +--S 50 of 68 sp0 := meatAxe (pRA6::(List Matrix PF 2)) --R --R Fingerprint element in generated algebra is singular @@ -728,9 +1902,9 @@ sp0 := meatAxe (pRA6::(List Matrix PF 2)) --R | | | | --R +0 0 0 0 1+ +0 0 0 1 0+ --R Type: List List Matrix PrimeField 2 ---E 49 +--E 50 ---S 50 of 67 +--S 51 of 68 sp1 := meatAxe sp0.1 --R --R Fingerprint element in generated algebra is singular @@ -754,9 +1928,9 @@ sp1 := meatAxe sp0.1 --R | | | | --R +0 0 0 1+ +1 1 1 1+ --R Type: List List Matrix PrimeField 2 ---E 50 +--E 51 ---S 51 of 67 random generation, failure ok. +--S 52 of 68 random generation, FAILURE OK. isAbsolutelyIrreducible? sp1.2 --R --R Random element in generated algebra has @@ -769,260 +1943,600 @@ isAbsolutelyIrreducible? sp1.2 --R --I (5) true --R Type: Boolean ---E 51 - ---S 52 of 67 -d2211 := irrRepSymNat ([2,2,1,1],genA6) ---R ---R There are no library operations named irrRepSymNat ---R Use HyperDoc Browse or issue ---R )what op irrRepSymNat ---R to learn if there is any operation containing " irrRepSymNat " in ---R its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R irrRepSymNat with argument type(s) ---R List PositiveInteger ---R List Permutation Integer ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. --E 52 ---S 53 of 67 -d2211m2 := (d2211::(List Matrix PF 2)); sp2 := meatAxe d2211m2 +--S 53 of 68 +d2211 := irreducibleRepresentation ([2,2,1,1],genA6) --R ---R ---RDaly Bug ---R Cannot convert from type Variable d2211 to List Matrix PrimeField 2 ---R for value ---R d2211 --R +--R (6) +--R +1 0 0 - 1 1 0 0 0 0 + + 0 0 1 0 0 0 1 0 0+ +--R | | | | +--R |0 1 0 1 0 1 0 0 0 | | 0 0 0 0 1 0 - 1 0 0| +--R | | | | +--R |0 0 1 0 1 - 1 0 0 0 | | 0 0 0 0 0 1 1 0 0| +--R | | | | +--R |0 0 0 - 1 0 0 - 1 0 0 | | 0 0 0 0 0 0 1 1 0| +--R | | | | +--R [|0 0 0 0 - 1 0 0 - 1 0 |,| 0 0 0 0 0 0 - 1 0 1|] +--R | | | | +--R |0 0 0 0 0 - 1 0 0 - 1| | 0 0 0 0 0 0 1 0 0| +--R | | | | +--R |0 0 0 1 0 0 0 0 0 | |- 1 0 0 0 0 0 - 1 0 0| +--R | | | | +--R |0 0 0 0 1 0 0 0 0 | | 0 - 1 0 0 0 0 1 0 0| +--R | | | | +--R +0 0 0 0 0 1 0 0 0 + + 0 0 0 - 1 0 0 - 1 0 0+ +--R Type: List Matrix Integer --E 53 ---S 54 of 67 -isAbsolutelyIrreducible? sp2.1 +--S 54 of 68 +d2211m2 := (d2211::(List Matrix PF 2)); sp2 := meatAxe d2211m2 --R ---R There are no library operations named sp2 ---R Use HyperDoc Browse or issue ---R )what op sp2 ---R to learn if there is any operation containing " sp2 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp2 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Fingerprint element in generated algebra is singular +--R A proper cyclic submodule is found. +--R Transition matrix computed +--R The inverse of the transition matrix computed +--R Now transform the matrices +--R +--R +1 0 0 0 0+ +1 1 1 0 0+ +--R +1 0 1 1+ +0 0 1 0+ | | | | +--R | | | | |0 1 1 1 1| |0 0 1 1 1| +--R |0 1 0 1| |1 1 1 1| | | | | +--R (7) [[| |,| |],[|0 1 1 0 0|,|1 0 0 1 0|]] +--R |1 1 0 0| |1 0 1 1| | | | | +--R | | | | |0 1 0 1 0| |0 0 1 0 1| +--R +0 1 0 0+ +0 1 0 1+ | | | | +--R +0 1 1 1 0+ +1 0 0 1 1+ +--R Type: List List Matrix PrimeField 2 --E 54 ---S 55 of 67 -areEquivalent? (sp2.1, sp1.2) +--S 55 of 68 random generation, FAILURE OK. +isAbsolutelyIrreducible? sp2.1 --R ---R There are no library operations named sp2 ---R Use HyperDoc Browse or issue ---R )what op sp2 ---R to learn if there is any operation containing " sp2 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp2 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (8) true +--R Type: Boolean --E 55 ---S 56 of 67 -dA6d16 := tensorProduct(sp2.1,sp1.2); meatAxe dA6d16 +--S 56 of 68 random generation, FAILURE OK. +areEquivalent? (sp2.1, sp1.2) --R ---R There are no library operations named sp2 ---R Use HyperDoc Browse or issue ---R )what op sp2 ---R to learn if there is any operation containing " sp2 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp2 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Dimensions of kernels differ +--R +--R Representations are not equivalent. +--R +--R (9) [0] +--R Type: Matrix PrimeField 2 --E 56 ---S 57 of 67 -isAbsolutelyIrreducible? dA6d16 +--S 57 of 68 +dA6d16 := tensorProduct(sp2.1,sp1.2); meatAxe dA6d16 --R ---R There are 1 exposed and 0 unexposed library operations named ---R isAbsolutelyIrreducible? having 1 argument(s) but none was ---R determined to be applicable. Use HyperDoc Browse, or issue ---R )display op isAbsolutelyIrreducible? ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R isAbsolutelyIrreducible? with argument type(s) ---R Variable dA6d16 ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is irreducible, but we don't know +--R whether it is absolutely irreducible +--R +--R (10) +--R [ +--R +0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0+ +--R | | +--R |1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0| +--R | | +--R |0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0| +--R | | +--R |0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0| +--R | | +--R |0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0| +--R | | +--R |0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1| +--R [| |, +--R |0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R +0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0+ +--R +0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0+ +--R | | +--R |0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0| +--R | | +--R |0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0| +--R | | +--R |0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1| +--R | | +--R |0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1| +--R | | +--R |0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1| +--R | | +--R |0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1| +--R | |] +--R |0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0| +--R | | +--R |1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0| +--R | | +--R |1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0| +--R | | +--R |1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1| +--R | | +--R |0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1| +--R | | +--R |0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1| +--R | | +--R +0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1+ +--R ] +--R Type: List List Matrix PrimeField 2 --E 57 ---S 58 of 67 -sp3 := meatAxe (dA6d16 :: (List Matrix FF(2,2))) ---R +--S 58 of 68 +isAbsolutelyIrreducible? dA6d16 --R ---RDaly Bug ---R Cannot convert from type Variable dA6d16 to List Matrix FiniteField( ---R 2,2) for value ---R dA6d16 +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R We have not found a one-dimensional kernel so far, +--R as we do a random search you could try again --R +--R (11) false +--R Type: Boolean --E 58 ---S 59 of 67 -isAbsolutelyIrreducible? sp3.1 +--S 59 of 68 +sp3 := meatAxe (dA6d16 :: (List Matrix FF(2,2))) --R ---R There are no library operations named sp3 ---R Use HyperDoc Browse or issue ---R )what op sp3 ---R to learn if there is any operation containing " sp3 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp3 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R A proper cyclic submodule is found. +--R Transition matrix computed +--R The inverse of the transition matrix computed +--R Now transform the matrices +--R +--R (12) +--R [ +--R +%A + 1 %A + 1 0 %A 1 %A %A %A + 1+ +--R | | +--R | %A 0 %A + 1 %A + 1 1 %A + 1 %A + 1 %A | +--R | | +--R | %A %A + 1 %A 0 1 %A %A + 1 0 | +--R | | +--R | 0 %A %A + 1 %A 0 1 1 0 | +--R [| |, +--R | %A %A %A + 1 1 %A + 1 %A 0 %A | +--R | | +--R |%A + 1 %A %A + 1 1 %A 0 %A %A + 1| +--R | | +--R | 1 1 1 0 %A + 1 %A + 1 %A 0 | +--R | | +--R + 0 %A + 1 %A 0 0 %A %A + 1 %A + 1+ +--R + 0 %A + 1 %A + 1 %A 1 1 0 %A + +--R | | +--R |%A + 1 %A + 1 1 0 1 %A + 1 1 %A + 1| +--R | | +--R | %A 0 1 1 %A %A + 1 %A + 1 0 | +--R | | +--R | %A 1 0 %A %A 0 1 %A | +--R | |] +--R | 1 1 0 %A + 1 0 1 1 0 | +--R | | +--R | 1 %A 1 0 1 0 0 %A | +--R | | +--R |%A + 1 0 1 1 0 %A %A + 1 1 | +--R | | +--R +%A + 1 %A %A %A + 1 0 %A + 1 %A 0 + +--R , +--R +--R +%A + 1 %A %A 0 %A 1 %A + 1 0 + +--R | | +--R |%A + 1 1 0 %A + 1 1 %A + 1 1 %A | +--R | | +--R | 1 1 %A %A 1 %A 1 %A + 1| +--R | | +--R | 1 0 1 %A + 1 %A + 1 0 %A 1 | +--R [| |, +--R | 1 1 1 0 %A + 1 %A + 1 %A 0 | +--R | | +--R |%A + 1 %A %A 1 %A + 1 1 1 %A + 1| +--R | | +--R |%A + 1 %A + 1 %A 1 0 1 %A %A | +--R | | +--R + %A 0 %A + 1 0 1 0 1 %A + +--R + 1 1 %A %A + 1 0 %A %A + 1 %A + 1+ +--R | | +--R |%A + 1 0 0 1 %A + 1 1 1 %A + 1| +--R | | +--R | %A 0 1 0 %A + 1 0 %A + 1 1 | +--R | | +--R | 1 1 %A + 1 %A %A %A 1 0 | +--R | |] +--R | 1 %A 0 1 1 %A 1 0 | +--R | | +--R | 1 0 1 %A + 1 0 %A + 1 1 %A + 1| +--R | | +--R | 0 1 %A + 1 1 1 %A + 1 %A + 1 1 | +--R | | +--R + %A %A %A + 1 %A + 1 %A %A 0 1 + +--R ] +--R Type: List List Matrix FiniteField(2,2) --E 59 ---S 60 of 67 -isAbsolutelyIrreducible? sp3.2 +--S 60 of 68 random generation, FAILURE OK. +isAbsolutelyIrreducible? sp3.1 --R ---R There are no library operations named sp3 ---R Use HyperDoc Browse or issue ---R )what op sp3 ---R to learn if there is any operation containing " sp3 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp3 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (13) true +--R Type: Boolean --E 60 ---S 61 of 67 -areEquivalent? (sp3.1,sp3.2) +--S 61 of 68 random generation, FAILURE OK. +isAbsolutelyIrreducible? sp3.2 --R ---R There are no library operations named sp3 ---R Use HyperDoc Browse or issue ---R )what op sp3 ---R to learn if there is any operation containing " sp3 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp3 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (14) true +--R Type: Boolean --E 61 ---S 62 of 67 +--S 62 of 68 random generation, FAILURE OK. +areEquivalent? (sp3.1,sp3.2) +--R +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R There is no isomorphism, as the only possible one +--R fails to do the necessary base change +--R +--R Representations are not equivalent. +--R +--R (15) [0] +--R Type: Matrix FiniteField(2,2) +--E 62 + +--S 63 of 68 sp0.2 --R --R ---R (6) [[1],[1]] +--R (16) [[1],[1]] --R Type: List Matrix PrimeField 2 ---E 62 +--E 63 ---S 63 of 67 +--S 64 of 68 sp1.2 --R --R ---R +0 1 0 0+ +0 1 1 1+ ---R | | | | ---R |0 0 1 0| |1 1 0 1| ---R (7) [| |,| |] ---R |1 0 0 0| |1 1 1 0| ---R | | | | ---R +0 0 0 1+ +1 1 1 1+ +--R +0 1 0 0+ +0 1 1 1+ +--R | | | | +--R |0 0 1 0| |1 1 0 1| +--R (17) [| |,| |] +--R |1 0 0 0| |1 1 1 0| +--R | | | | +--R +0 0 0 1+ +1 1 1 1+ --R Type: List Matrix PrimeField 2 ---E 63 +--E 64 ---S 64 of 67 +--S 65 of 68 sp2.1 --R ---R There are no library operations named sp2 ---R Use HyperDoc Browse or issue ---R )what op sp2 ---R to learn if there is any operation containing " sp2 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp2 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. ---E 64 +--R +--R +1 0 1 1+ +0 0 1 0+ +--R | | | | +--R |0 1 0 1| |1 1 1 1| +--R (18) [| |,| |] +--R |1 1 0 0| |1 0 1 1| +--R | | | | +--R +0 1 0 0+ +0 1 0 1+ +--R Type: List Matrix PrimeField 2 +--E 65 ---S 65 of 67 +--S 66 of 68 sp3.1 --R ---R There are no library operations named sp3 ---R Use HyperDoc Browse or issue ---R )what op sp3 ---R to learn if there is any operation containing " sp3 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp3 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. ---E 65 +--R +--R (19) +--R +%A + 1 %A + 1 0 %A 1 %A %A %A + 1+ +--R | | +--R | %A 0 %A + 1 %A + 1 1 %A + 1 %A + 1 %A | +--R | | +--R | %A %A + 1 %A 0 1 %A %A + 1 0 | +--R | | +--R | 0 %A %A + 1 %A 0 1 1 0 | +--R [| |, +--R | %A %A %A + 1 1 %A + 1 %A 0 %A | +--R | | +--R |%A + 1 %A %A + 1 1 %A 0 %A %A + 1| +--R | | +--R | 1 1 1 0 %A + 1 %A + 1 %A 0 | +--R | | +--R + 0 %A + 1 %A 0 0 %A %A + 1 %A + 1+ +--R + 0 %A + 1 %A + 1 %A 1 1 0 %A + +--R | | +--R |%A + 1 %A + 1 1 0 1 %A + 1 1 %A + 1| +--R | | +--R | %A 0 1 1 %A %A + 1 %A + 1 0 | +--R | | +--R | %A 1 0 %A %A 0 1 %A | +--R | |] +--R | 1 1 0 %A + 1 0 1 1 0 | +--R | | +--R | 1 %A 1 0 1 0 0 %A | +--R | | +--R |%A + 1 0 1 1 0 %A %A + 1 1 | +--R | | +--R +%A + 1 %A %A %A + 1 0 %A + 1 %A 0 + +--R Type: List Matrix FiniteField(2,2) +--E 66 ---S 66 of 67 +--S 67 of 68 sp3.2 --R ---R There are no library operations named sp3 ---R Use HyperDoc Browse or issue ---R )what op sp3 ---R to learn if there is any operation containing " sp3 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp3 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. ---E 66 +--R +--R (20) +--R +%A + 1 %A %A 0 %A 1 %A + 1 0 + +--R | | +--R |%A + 1 1 0 %A + 1 1 %A + 1 1 %A | +--R | | +--R | 1 1 %A %A 1 %A 1 %A + 1| +--R | | +--R | 1 0 1 %A + 1 %A + 1 0 %A 1 | +--R [| |, +--R | 1 1 1 0 %A + 1 %A + 1 %A 0 | +--R | | +--R |%A + 1 %A %A 1 %A + 1 1 1 %A + 1| +--R | | +--R |%A + 1 %A + 1 %A 1 0 1 %A %A | +--R | | +--R + %A 0 %A + 1 0 1 0 1 %A + +--R + 1 1 %A %A + 1 0 %A %A + 1 %A + 1+ +--R | | +--R |%A + 1 0 0 1 %A + 1 1 1 %A + 1| +--R | | +--R | %A 0 1 0 %A + 1 0 %A + 1 1 | +--R | | +--R | 1 1 %A + 1 %A %A %A 1 0 | +--R | |] +--R | 1 %A 0 1 1 %A 1 0 | +--R | | +--R | 1 0 1 %A + 1 0 %A + 1 1 %A + 1| +--R | | +--R | 0 1 %A + 1 1 1 %A + 1 %A + 1 1 | +--R | | +--R + %A %A %A + 1 %A + 1 %A %A 0 1 + +--R Type: List Matrix FiniteField(2,2) +--E 67 ---S 67 of 67 +--S 68 of 68 dA6d16 --R --R ---R (8) dA6d16 ---R Type: Variable dA6d16 ---E 67 +--R (21) +--R +0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0+ +--R | | +--R |0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0| +--R | | +--R |1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0| +--R | | +--R |0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1| +--R | | +--R |0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0| +--R | | +--R |0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0| +--R | | +--R |0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1| +--R [| |, +--R |0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R +0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0+ +--R +0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0+ +--R | | +--R |0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0| +--R | | +--R |0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1| +--R | | +--R |1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1| +--R | | +--R |1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0| +--R | | +--R |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1| +--R | |] +--R |0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1| +--R | | +--R |1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1| +--R | | +--R |1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0| +--R | | +--R |1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1| +--R | | +--R |0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1| +--R | | +--R |0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1| +--R | | +--R |0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0| +--R | | +--R +0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1+ +--R Type: List Matrix PrimeField 2 +--E 68 )spool )lisp (bye) diff --git a/src/input/knot2.input.pamphlet b/src/input/knot2.input.pamphlet index a793b46..7973989 100644 --- a/src/input/knot2.input.pamphlet +++ b/src/input/knot2.input.pamphlet @@ -63,57 +63,49 @@ l := lcm(p, q) quo p --E 4 --S 5 of 8 -maxRange := (odd? l => l * %pi::SF; 2 * l * %pi::SF) +maxRange := (odd? l => l * %pi; 2 * l * %pi) --R --R ---R (5) 15.707963267948966 ---R Type: DoubleFloat +--R (5) 5%pi +--R Type: Pi --E 5 --S 6 of 8 theRange := 0..maxRange --R --R ---R (6) 0...15.707963267948966 ---R Type: Segment DoubleFloat +--R (6) 0..(5%pi) +--R Type: Segment Pi --E 6 @ Create the knot -<<*>>= ---S 7 of 8 +\begin{verbatim} knot:TUBE := tubePlot(sin t * cos(PQ*t),cos t * cos(PQ*t),cos t * sin(PQ*t), f, theRange, 0.1::SF, 6, "open" ) +\end{verbatim} +<<*>>= +--S 7 of 8 +v:=draw(curve(sin t * cos(PQ*t),cos t * cos(PQ*t),cos t * sin(PQ*t)), _ + t=theRange, tubeRadius==0.1) --R ---R ---RDaly Bug ---R Although TubePlot is the name of a constructor, a full type must be ---R specified in the context you have used it. Issue )show TubePlot ---R for more information. +--I Compiling function %B with type DoubleFloat -> DoubleFloat +--I Compiling function %D with type DoubleFloat -> DoubleFloat +--I Compiling function %F with type DoubleFloat -> DoubleFloat +--R Transmitting data... +--R +--R (7) ThreeDimensionalViewport: "DCOS((3*t)/5)*DSIN(t)" +--R Type: ThreeDimensionalViewport --E 7 @ -Make a viewport out of it +close the viewport +\begin{verbatim} +makeViewport3D(knot, concat ["knot",p::String,q::String])$VIEW3D +\end{verbatim} <<*>>= --S 8 of 8 -makeViewport3D(knot, concat ["knot",p::String,q::String])$VIEW3D ---R ---R There are 2 exposed and 0 unexposed library operations named ---R makeViewport3D having 2 argument(s) but none was determined to be ---R applicable. Use HyperDoc Browse, or issue ---R )display op makeViewport3D ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R makeViewport3D with argument type(s) ---R Symbol ---R String ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +close(v) --E 8 )spool )lisp (bye) diff --git a/src/input/repa6.input.pamphlet b/src/input/repa6.input.pamphlet index 352a022..099c75d 100644 --- a/src/input/repa6.input.pamphlet +++ b/src/input/repa6.input.pamphlet @@ -39,7 +39,7 @@ representations of the alternating group A6. We generate A6 by the permutations threecycle x=(1,2,3) and the 5-cycle y=(2,3,4,5,6) <<*>>= ---S 1 of 33 +--S 1 of 33 genA6 : List PERM INT := [cycle [1,2,3], cycle [2,3,4,5,6]] --R --R @@ -50,7 +50,7 @@ genA6 : List PERM INT := [cycle [1,2,3], cycle [2,3,4,5,6]] @ pRA6 is the permutation representation over the Integers... <<*>>= ---S 2 of 33 +--S 2 of 33 pRA6 := permutationRepresentation (genA6, 6) --R --R @@ -71,7 +71,7 @@ pRA6 := permutationRepresentation (genA6, 6) @ And pRA6m2 is the permutation representation over PrimeField 2: <<*>>= ---S 3 of 33 +--S 3 of 33 pRA6m2 : List Matrix PrimeField 2 := pRA6 --R --R @@ -117,7 +117,7 @@ sp0 := meatAxe pRA6m2 We have found the trivial module as a factormodule and a 5-dimensional submodule. <<*>>= ---S 5 of 33 +--S 5 of 33 dA6d1 := sp0.2 --R --R @@ -128,7 +128,7 @@ dA6d1 := sp0.2 @ Try to split again... <<*>>= ---S 6 of 33 +--S 6 of 33 sp1 := meatAxe sp0.1 --R --R Fingerprint element in generated algebra is singular @@ -158,7 +158,7 @@ sp1 := meatAxe sp0.1 And find a 4-dimensional submodule, say dA6d4a, and the trivial one again. <<*>>= ---S 7 of 33 +--S 7 of 33 dA6d4a := sp1.2 --R --R @@ -175,13 +175,13 @@ dA6d4a := sp1.2 @ Now we want to test, whether dA6d4a is absolutely irreducible... <<*>>= ---S 8 of 33 random input, ok to fail +--S 8 of 33 random input, FAILURE OK isAbsolutelyIrreducible? dA6d4a --R --R Random element in generated algebra does --R not have a one-dimensional kernel ---R Random element in generated algebra has ---R one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel --R Random element in generated algebra has --R one-dimensional kernel --R We know that all the cyclic submodules generated by all @@ -204,7 +204,7 @@ What is the degree of the representation belonging to partition [2,2,1,1]? <<*>>= -- lambda : PRTITION := partition [2,2,1,1] ---S 9 of 33 +--S 9 of 33 lambda := [2,2,1,1] --R --R @@ -213,21 +213,11 @@ lambda := [2,2,1,1] --E 9 --S 10 of 33 -dimIrrRepSym lambda ---R ---R There are no library operations named dimIrrRepSym ---R Use HyperDoc Browse or issue ---R )what op dimIrrRepSym ---R to learn if there is any operation containing " dimIrrRepSym " in ---R its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R dimIrrRepSym with argument type(s) ---R List PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +dimensionOfIrreducibleRepresentation lambda +--R +--R +--R (10) 9 +--R Type: PositiveInteger --E 10 @ @@ -235,22 +225,28 @@ Now create the restriction to A6: <<*>>= --S 11 of 33 -d2211 := irrRepSymNat(lambda, genA6) ---R ---R There are no library operations named irrRepSymNat ---R Use HyperDoc Browse or issue ---R )what op irrRepSymNat ---R to learn if there is any operation containing " irrRepSymNat " in ---R its name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R irrRepSymNat with argument type(s) ---R List PositiveInteger ---R List Permutation Integer ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +d2211 := irreducibleRepresentation(lambda, genA6) +--R +--R +--R (11) +--R +1 0 0 - 1 1 0 0 0 0 + + 0 0 1 0 0 0 1 0 0+ +--R | | | | +--R |0 1 0 1 0 1 0 0 0 | | 0 0 0 0 1 0 - 1 0 0| +--R | | | | +--R |0 0 1 0 1 - 1 0 0 0 | | 0 0 0 0 0 1 1 0 0| +--R | | | | +--R |0 0 0 - 1 0 0 - 1 0 0 | | 0 0 0 0 0 0 1 1 0| +--R | | | | +--R [|0 0 0 0 - 1 0 0 - 1 0 |,| 0 0 0 0 0 0 - 1 0 1|] +--R | | | | +--R |0 0 0 0 0 - 1 0 0 - 1| | 0 0 0 0 0 0 1 0 0| +--R | | | | +--R |0 0 0 1 0 0 0 0 0 | |- 1 0 0 0 0 0 - 1 0 0| +--R | | | | +--R |0 0 0 0 1 0 0 0 0 | | 0 - 1 0 0 0 0 1 0 0| +--R | | | | +--R +0 0 0 0 0 1 0 0 0 + + 0 0 0 - 1 0 0 - 1 0 0+ +--R Type: List Matrix Integer --E 11 @ @@ -259,13 +255,25 @@ And d2211m2 is the representation over PrimeField 2: --S 12 of 33 d2211m2 : List Matrix PrimeField 2 := d2211 --R ---R ---RDaly Bug ---R Cannot convert right-hand side of assignment ---R d2211 --R ---R to an object of the type List Matrix PrimeField 2 of the ---R left-hand side. +--R +1 0 0 1 1 0 0 0 0+ +0 0 1 0 0 0 1 0 0+ +--R | | | | +--R |0 1 0 1 0 1 0 0 0| |0 0 0 0 1 0 1 0 0| +--R | | | | +--R |0 0 1 0 1 1 0 0 0| |0 0 0 0 0 1 1 0 0| +--R | | | | +--R |0 0 0 1 0 0 1 0 0| |0 0 0 0 0 0 1 1 0| +--R | | | | +--R (12) [|0 0 0 0 1 0 0 1 0|,|0 0 0 0 0 0 1 0 1|] +--R | | | | +--R |0 0 0 0 0 1 0 0 1| |0 0 0 0 0 0 1 0 0| +--R | | | | +--R |0 0 0 1 0 0 0 0 0| |1 0 0 0 0 0 1 0 0| +--R | | | | +--R |0 0 0 0 1 0 0 0 0| |0 1 0 0 0 0 1 0 0| +--R | | | | +--R +0 0 0 0 0 1 0 0 0+ +0 0 0 1 0 0 1 0 0+ +--R Type: List Matrix PrimeField 2 --E 12 @ @@ -274,10 +282,22 @@ And split it: --S 13 of 33 sp2 := meatAxe d2211m2 --R ---R ---RDaly Bug ---R d2211m2 is declared as being in List Matrix PrimeField 2 but has not ---R been given a value. +--R Fingerprint element in generated algebra is singular +--R A proper cyclic submodule is found. +--R Transition matrix computed +--R The inverse of the transition matrix computed +--R Now transform the matrices +--R +--R +1 0 0 0 0+ +1 1 1 0 0+ +--R +1 0 1 1+ +0 0 1 0+ | | | | +--R | | | | |0 1 1 1 1| |0 0 1 1 1| +--R |0 1 0 1| |1 1 1 1| | | | | +--R (13) [[| |,| |],[|0 1 1 0 0|,|1 0 0 1 0|]] +--R |1 1 0 0| |1 0 1 1| | | | | +--R | | | | |0 1 0 1 0| |0 0 1 0 1| +--R +0 1 0 0+ +0 1 0 1+ | | | | +--R +0 1 1 1 0+ +1 0 0 1 1+ +--R Type: List List Matrix PrimeField 2 --E 13 @ @@ -285,69 +305,52 @@ A 5 and a 4-dimensional one. we take the 4-dimensional one, say dA6d4b: <<*>>= ---S 14 of 33 +--S 14 of 33 dA6d4b := sp2.1 --R ---R There are no library operations named sp2 ---R Use HyperDoc Browse or issue ---R )what op sp2 ---R to learn if there is any operation containing " sp2 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp2 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R +1 0 1 1+ +0 0 1 0+ +--R | | | | +--R |0 1 0 1| |1 1 1 1| +--R (14) [| |,| |] +--R |1 1 0 0| |1 0 1 1| +--R | | | | +--R +0 1 0 0+ +0 1 0 1+ +--R Type: List Matrix PrimeField 2 --E 14 @ This is absolutely irreducible, too ... <<*>>= ---S 15 of 33 +--S 15 of 33 random generation, FAILURE OK. isAbsolutelyIrreducible? dA6d4b --R ---R There are 1 exposed and 0 unexposed library operations named ---R isAbsolutelyIrreducible? having 1 argument(s) but none was ---R determined to be applicable. Use HyperDoc Browse, or issue ---R )display op isAbsolutelyIrreducible? ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R isAbsolutelyIrreducible? with argument type(s) ---R Variable dA6d4b ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (15) true +--R Type: Boolean --E 15 @ And dA6d4a and dA6d4b are not equivalent: <<*>>= ---S 16 of 33 +--S 16 of 33 random generation, FAILURE OK. areEquivalent? ( dA6d4a , dA6d4b ) --R ---R There are 1 exposed and 0 unexposed library operations named ---R areEquivalent? having 2 argument(s) but none was determined to be ---R applicable. Use HyperDoc Browse, or issue ---R )display op areEquivalent? ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R areEquivalent? with argument type(s) ---R List Matrix PrimeField 2 ---R Variable dA6d4b ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Dimensions of kernels differ +--R +--R Representations are not equivalent. +--R +--R (16) [0] +--R Type: Matrix PrimeField 2 --E 16 @ @@ -355,25 +358,74 @@ So the third irreducible representation is found. Now construct a new representation with the help of the tensorproduct <<*>>= ---S 17 of 33 +--S 17 of 33 dA6d16 := tensorProduct ( dA6d4a , dA6d4b ) --R ---R There are 2 exposed and 0 unexposed library operations named ---R tensorProduct having 2 argument(s) but none was determined to be ---R applicable. Use HyperDoc Browse, or issue ---R )display op tensorProduct ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R tensorProduct with argument type(s) ---R List Matrix PrimeField 2 ---R Variable dA6d4b ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (17) +--R +0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0+ +--R | | +--R |0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| +--R [| |, +--R |1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0| +--R | | +--R +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0+ +--R +0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0+ +--R | | +--R |0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1| +--R | | +--R |0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1| +--R | | +--R |0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1| +--R | | +--R |0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0| +--R | | +--R |1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1| +--R | | +--R |1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1| +--R | | +--R |0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1| +--R | |] +--R |0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0| +--R | | +--R |1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0| +--R | | +--R |1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0| +--R | | +--R |0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0| +--R | | +--R |0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0| +--R | | +--R |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1| +--R | | +--R |1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1| +--R | | +--R +0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1+ +--R Type: List Matrix PrimeField 2 --E 17 @ @@ -382,149 +434,508 @@ And try to split it... --S 18 of 33 sp3 := meatAxe dA6d16 --R ---R There are 1 exposed and 0 unexposed library operations named meatAxe ---R having 1 argument(s) but none was determined to be applicable. ---R Use HyperDoc Browse, or issue ---R )display op meatAxe ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R meatAxe with argument type(s) ---R Variable dA6d16 ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is irreducible, but we don't know +--R whether it is absolutely irreducible +--R +--R (18) +--R [ +--R +0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0+ +--R | | +--R |0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0| +--R | | +--R |1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R [| |, +--R |0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| +--R | | +--R +0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0+ +--R +0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0+ +--R | | +--R |0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1| +--R | | +--R |0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0| +--R | | +--R |0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1| +--R | | +--R |0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0| +--R | | +--R |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1| +--R | | +--R |1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0| +--R | | +--R |0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1| +--R | |] +--R |0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0| +--R | | +--R |0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1| +--R | | +--R |1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0| +--R | | +--R |0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1| +--R | | +--R |0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0| +--R | | +--R |0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1| +--R | | +--R |1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0| +--R | | +--R +0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1+ +--R ] +--R Type: List List Matrix PrimeField 2 --E 18 @ The representation is irreducible, but may be not absolutely irreducible. <<*>>= ---S 19 of 33 +--S 19 of 33 isAbsolutelyIrreducible? dA6d16 --R ---R There are 1 exposed and 0 unexposed library operations named ---R isAbsolutelyIrreducible? having 1 argument(s) but none was ---R determined to be applicable. Use HyperDoc Browse, or issue ---R )display op isAbsolutelyIrreducible? ---R to learn more about the available operations. Perhaps ---R package-calling the operation or using coercions on the arguments ---R will allow you to apply the operation. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named ---R isAbsolutelyIrreducible? with argument type(s) ---R Variable dA6d16 ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R We have not found a one-dimensional kernel so far, +--R as we do a random search you could try again +--R +--R (19) false +--R Type: Boolean --E 19 @ So let's try the same over the field with 4 elements: <<*>>= ---S 20 of 33 +--S 20 of 33 gf4 := FiniteField(2,2) --R --R ---R (10) FiniteField(2,2) +--R (20) FiniteField(2,2) --R Type: Domain --E 20 ---S 21 of 33 +--S 21 of 33 dA6d16gf4 : List Matrix gf4 := dA6d16 --R ---R ---RDaly Bug ---R Cannot convert right-hand side of assignment ---R dA6d16 --R ---R to an object of the type List Matrix FiniteField(2,2) of the ---R left-hand side. +--R (21) +--R +0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0+ +--R | | +--R |0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| +--R [| |, +--R |1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0| +--R | | +--R +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0+ +--R +0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0+ +--R | | +--R |0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1| +--R | | +--R |0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1| +--R | | +--R |0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1| +--R | | +--R |0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0| +--R | | +--R |1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1| +--R | | +--R |1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1| +--R | | +--R |0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1| +--R | |] +--R |0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0| +--R | | +--R |1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0| +--R | | +--R |1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0| +--R | | +--R |0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0| +--R | | +--R |0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0| +--R | | +--R |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1| +--R | | +--R |1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1| +--R | | +--R +0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1+ +--R Type: List Matrix FiniteField(2,2) --E 21 --S 22 of 33 sp4 := meatAxe dA6d16gf4 --R ---R ---RDaly Bug ---R dA6d16gf4 is declared as being in List Matrix FiniteField(2,2) but ---R has not been given a value. +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R Fingerprint element in generated algebra is non-singular +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R Fingerprint element in generated algebra is singular +--R The generated cyclic submodule was not proper +--R The generated cyclic submodule was not proper +--R A proper cyclic submodule is found. +--R Transition matrix computed +--R The inverse of the transition matrix computed +--R Now transform the matrices +--R +--R (22) +--R [ +--R + %A %A + 1 0 %A 1 %A + 1 0 0 + +--R | | +--R | 0 0 %A %A + 1 %A %A 0 0 | +--R | | +--R | %A %A + 1 %A 1 %A + 1 0 0 0 | +--R | | +--R | %A %A + 1 %A 1 %A 0 0 0 | +--R [| |, +--R |%A + 1 1 1 1 0 0 %A + 1 %A| +--R | | +--R | 0 0 %A + 1 1 0 0 %A 0 | +--R | | +--R | 1 0 1 1 0 0 0 0 | +--R | | +--R + 1 1 0 0 0 0 0 0 + +--R + 1 0 %A 0 1 1 %A %A + 1+ +--R | | +--R | 1 %A + 1 0 0 0 %A + 1 1 %A + 1| +--R | | +--R | %A 1 %A + 1 %A + 1 %A + 1 1 %A 0 | +--R | | +--R |%A + 1 %A + 1 0 0 1 %A + 1 1 1 | +--R | |] +--R | 1 0 %A + 1 0 1 1 %A %A | +--R | | +--R | 0 0 %A + 1 %A + 1 %A + 1 1 1 %A | +--R | | +--R | 0 0 1 0 0 1 0 1 | +--R | | +--R + 0 %A 0 %A 1 %A + 1 %A + 1 %A + +--R , +--R +--R +0 1 1 %A + 1 0 0 0 0+ +--R | | +--R |1 1 %A + 1 0 0 0 0 0| +--R | | +--R |%A 0 0 0 0 0 0 0| +--R | | +--R |1 %A 0 0 0 0 0 0| +--R [| |, +--R |%A %A + 1 1 1 1 0 1 1| +--R | | +--R |0 0 %A 1 0 1 0 1| +--R | | +--R |%A 1 0 1 1 1 0 0| +--R | | +--R +1 %A %A + 1 %A 0 1 0 0+ +--R +%A + 1 1 %A 0 0 %A + 1 0 1 + +--R | | +--R | 0 %A 1 1 1 0 %A + 1 %A | +--R | | +--R | 0 %A + 1 0 %A + 1 %A + 1 1 %A + 1 %A | +--R | | +--R | 1 %A + 1 1 %A + 1 0 0 %A + 1 1 | +--R | |] +--R | 0 %A 0 %A + 1 %A + 1 0 0 %A + 1| +--R | | +--R |%A + 1 0 %A + 1 %A 0 %A + 1 0 %A + 1| +--R | | +--R | 0 1 0 1 %A + 1 0 %A + 1 %A + 1| +--R | | +--R + %A %A %A 1 %A %A 1 %A + 1+ +--R ] +--R Type: List List Matrix FiniteField(2,2) --E 22 @ Now we find two 8-dimensional ones, dA6d8a and dA6d8b. <<*>>= ---S 23 of 33 +--S 23 of 33 dA6d8a : List Matrix gf4 := sp4.1 --R ---R There are no library operations named sp4 ---R Use HyperDoc Browse or issue ---R )what op sp4 ---R to learn if there is any operation containing " sp4 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp4 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (23) +--R + %A %A + 1 0 %A 1 %A + 1 0 0 + +--R | | +--R | 0 0 %A %A + 1 %A %A 0 0 | +--R | | +--R | %A %A + 1 %A 1 %A + 1 0 0 0 | +--R | | +--R | %A %A + 1 %A 1 %A 0 0 0 | +--R [| |, +--R |%A + 1 1 1 1 0 0 %A + 1 %A| +--R | | +--R | 0 0 %A + 1 1 0 0 %A 0 | +--R | | +--R | 1 0 1 1 0 0 0 0 | +--R | | +--R + 1 1 0 0 0 0 0 0 + +--R + 1 0 %A 0 1 1 %A %A + 1+ +--R | | +--R | 1 %A + 1 0 0 0 %A + 1 1 %A + 1| +--R | | +--R | %A 1 %A + 1 %A + 1 %A + 1 1 %A 0 | +--R | | +--R |%A + 1 %A + 1 0 0 1 %A + 1 1 1 | +--R | |] +--R | 1 0 %A + 1 0 1 1 %A %A | +--R | | +--R | 0 0 %A + 1 %A + 1 %A + 1 1 1 %A | +--R | | +--R | 0 0 1 0 0 1 0 1 | +--R | | +--R + 0 %A 0 %A 1 %A + 1 %A + 1 %A + +--R Type: List Matrix FiniteField(2,2) --E 23 --S 24 of 33 dA6d8b : List Matrix gf4 := sp4.2 --R ---R There are no library operations named sp4 ---R Use HyperDoc Browse or issue ---R )what op sp4 ---R to learn if there is any operation containing " sp4 " in its ---R name. ---R ---RDaly Bug ---R Cannot find a definition or applicable library operation named sp4 ---R with argument type(s) ---R PositiveInteger ---R ---R Perhaps you should use "@" to indicate the required return type, ---R or "$" to specify which version of the function you need. +--R +--R (24) +--R +0 1 1 %A + 1 0 0 0 0+ +--R | | +--R |1 1 %A + 1 0 0 0 0 0| +--R | | +--R |%A 0 0 0 0 0 0 0| +--R | | +--R |1 %A 0 0 0 0 0 0| +--R [| |, +--R |%A %A + 1 1 1 1 0 1 1| +--R | | +--R |0 0 %A 1 0 1 0 1| +--R | | +--R |%A 1 0 1 1 1 0 0| +--R | | +--R +1 %A %A + 1 %A 0 1 0 0+ +--R +%A + 1 1 %A 0 0 %A + 1 0 1 + +--R | | +--R | 0 %A 1 1 1 0 %A + 1 %A | +--R | | +--R | 0 %A + 1 0 %A + 1 %A + 1 1 %A + 1 %A | +--R | | +--R | 1 %A + 1 1 %A + 1 0 0 %A + 1 1 | +--R | |] +--R | 0 %A 0 %A + 1 %A + 1 0 0 %A + 1| +--R | | +--R |%A + 1 0 %A + 1 %A 0 %A + 1 0 %A + 1| +--R | | +--R | 0 1 0 1 %A + 1 0 %A + 1 %A + 1| +--R | | +--R + %A %A %A 1 %A %A 1 %A + 1+ +--R Type: List Matrix FiniteField(2,2) --E 24 @ Both are absolutely irreducible... <<*>>= ---S 25 of 33 +--S 25 of 33 random generation, FAILURE OK. isAbsolutelyIrreducible? dA6d8a --R ---R ---RDaly Bug ---R dA6d8a is declared as being in List Matrix FiniteField(2,2) but has ---R not been given a value. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (25) true +--R Type: Boolean --E 25 ---S 26 of 33 +--S 26 of 33 random generation, FAILURE OK. isAbsolutelyIrreducible? dA6d8b --R ---R ---RDaly Bug ---R dA6d8b is declared as being in List Matrix FiniteField(2,2) but has ---R not been given a value. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R We know that all the cyclic submodules generated by all +--R non-trivial element of the singular matrix under view are +--R not proper, hence Norton's irreducibility test can be done: +--R The generated cyclic submodule was not proper +--R Representation is absolutely irreducible +--R +--R (26) true +--R Type: Boolean --E 26 @ And they are not equivalent... <<*>>= ---S 27 of 33 +--S 27 of 33 random generation, FAILURE OK. areEquivalent? ( dA6d8a, dA6d8b ) --R ---R ---RDaly Bug ---R dA6d8a is declared as being in List Matrix FiniteField(2,2) but has ---R not been given a value. +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra does +--R not have a one-dimensional kernel +--R Random element in generated algebra has +--R one-dimensional kernel +--R There is no isomorphism, as the only possible one +--R fails to do the necessary base change +--R +--R Representations are not equivalent. +--R +--R (27) [0] +--R Type: Matrix FiniteField(2,2) --E 27 @ @@ -535,11 +946,11 @@ The theory tells us that there are no more irreducible ones. Here again are all absolutely irreducible 2-modular representations of A6 <<*>>= ---S 28 of 33 +--S 28 of 33 dA6d1 --R --R ---R (11) [[1],[1]] +--R (28) [[1],[1]] --R Type: List Matrix PrimeField 2 --E 28 @@ -550,7 +961,7 @@ dA6d4a --R +0 1 0 0+ +0 1 1 1+ --R | | | | --R |0 0 1 0| |1 1 0 1| ---R (12) [| |,| |] +--R (29) [| |,| |] --R |1 0 0 0| |1 1 1 0| --R | | | | --R +0 0 0 1+ +1 1 1 1+ @@ -561,26 +972,90 @@ dA6d4a dA6d4b --R --R ---R (13) dA6d4b ---R Type: Variable dA6d4b +--R +1 0 1 1+ +0 0 1 0+ +--R | | | | +--R |0 1 0 1| |1 1 1 1| +--R (30) [| |,| |] +--R |1 1 0 0| |1 0 1 1| +--R | | | | +--R +0 1 0 0+ +0 1 0 1+ +--R Type: List Matrix PrimeField 2 --E 30 --S 31 of 33 dA6d8a --R ---R ---RDaly Bug ---R dA6d8a is declared as being in List Matrix FiniteField(2,2) but has ---R not been given a value. +--R +--R (31) +--R + %A %A + 1 0 %A 1 %A + 1 0 0 + +--R | | +--R | 0 0 %A %A + 1 %A %A 0 0 | +--R | | +--R | %A %A + 1 %A 1 %A + 1 0 0 0 | +--R | | +--R | %A %A + 1 %A 1 %A 0 0 0 | +--R [| |, +--R |%A + 1 1 1 1 0 0 %A + 1 %A| +--R | | +--R | 0 0 %A + 1 1 0 0 %A 0 | +--R | | +--R | 1 0 1 1 0 0 0 0 | +--R | | +--R + 1 1 0 0 0 0 0 0 + +--R + 1 0 %A 0 1 1 %A %A + 1+ +--R | | +--R | 1 %A + 1 0 0 0 %A + 1 1 %A + 1| +--R | | +--R | %A 1 %A + 1 %A + 1 %A + 1 1 %A 0 | +--R | | +--R |%A + 1 %A + 1 0 0 1 %A + 1 1 1 | +--R | |] +--R | 1 0 %A + 1 0 1 1 %A %A | +--R | | +--R | 0 0 %A + 1 %A + 1 %A + 1 1 1 %A | +--R | | +--R | 0 0 1 0 0 1 0 1 | +--R | | +--R + 0 %A 0 %A 1 %A + 1 %A + 1 %A + +--R Type: List Matrix FiniteField(2,2) --E 31 --S 32 of 33 dA6d8b --R ---R ---RDaly Bug ---R dA6d8b is declared as being in List Matrix FiniteField(2,2) but has ---R not been given a value. +--R +--R (32) +--R +0 1 1 %A + 1 0 0 0 0+ +--R | | +--R |1 1 %A + 1 0 0 0 0 0| +--R | | +--R |%A 0 0 0 0 0 0 0| +--R | | +--R |1 %A 0 0 0 0 0 0| +--R [| |, +--R |%A %A + 1 1 1 1 0 1 1| +--R | | +--R |0 0 %A 1 0 1 0 1| +--R | | +--R |%A 1 0 1 1 1 0 0| +--R | | +--R +1 %A %A + 1 %A 0 1 0 0+ +--R +%A + 1 1 %A 0 0 %A + 1 0 1 + +--R | | +--R | 0 %A 1 1 1 0 %A + 1 %A | +--R | | +--R | 0 %A + 1 0 %A + 1 %A + 1 1 %A + 1 %A | +--R | | +--R | 1 %A + 1 1 %A + 1 0 0 %A + 1 1 | +--R | |] +--R | 0 %A 0 %A + 1 %A + 1 0 0 %A + 1| +--R | | +--R |%A + 1 0 %A + 1 %A 0 %A + 1 0 %A + 1| +--R | | +--R | 0 1 0 1 %A + 1 0 %A + 1 %A + 1| +--R | | +--R + %A %A %A 1 %A %A 1 %A + 1+ +--R Type: List Matrix FiniteField(2,2) --E 32 @ @@ -591,8 +1066,70 @@ representations of A6 over PrimeField 2 dA6d16 --R --R ---R (14) dA6d16 ---R Type: Variable dA6d16 +--R (33) +--R +0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0+ +--R | | +--R |0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| +--R [| |, +--R |1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1| +--R | | +--R |0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0| +--R | | +--R +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0+ +--R +0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0+ +--R | | +--R |0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1| +--R | | +--R |0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1| +--R | | +--R |0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1| +--R | | +--R |0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0| +--R | | +--R |1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1| +--R | | +--R |1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1| +--R | | +--R |0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1| +--R | |] +--R |0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0| +--R | | +--R |1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0| +--R | | +--R |1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0| +--R | | +--R |0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0| +--R | | +--R |0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0| +--R | | +--R |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1| +--R | | +--R |1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1| +--R | | +--R +0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1+ +--R Type: List Matrix PrimeField 2 --E 33 )spool )lisp (bye)