diff --git a/changelog b/changelog index c9a8e1a..c15d753 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,4 @@ +20080109 tpd src/doc/book add Ei,En,Ei1,Ei2,Ei3,Ei4,Ei5,Ei6 20080107 tpd Makefile fix GCLOPTS-CUSTRELOC for macosxppc 20080107 tpd Makefile add Makefile.macosxppc stanza and GCLOPTS-CUSTRELOC 20080107 tpd src/algebra/Makefile make cp of upper/lower files conditional diff --git a/src/doc/book.pamphlet b/src/doc/book.pamphlet index 377d5c6..4fdb58c 100644 --- a/src/doc/book.pamphlet +++ b/src/doc/book.pamphlet @@ -17252,7 +17252,7 @@ $z=3$: %\epsffile[0 0 295 295]{ps/newmap.ps} % I think this is good to say here: it shows a lot of depth. RSS -{\sloppy +%{\sloppy The {\tt CoordinateSystems} package exports the following \index{coordinate system} operations: @@ -18231,12 +18231,12 @@ $Gamma(z)$ is the Euler gamma function, {\bf Beta}: $F -> F$\hfill\newline $Beta(u, v)$ is the Euler Beta function, \index{function!Euler Beta} - $B(u,v)$, defined by + $Beta(u,v)$, defined by \index{Euler!Beta function} - $$B(u,v) = \int_{0}^{1} t^{u-1} (1-t)^{v-1} dt.$$ + $$Beta(u,v) = \int_{0}^{1} t^{u-1} (1-t)^{v-1} dt.$$ This is related to $\Gamma(z)$ by - $$B(u,v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}.$$ + $$Beta(u,v) = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u + v)}.$$ \noindent {\bf logGamma}: $F -> F$\hfill\newline @@ -18261,6 +18261,63 @@ is the function $\psi(z)$, $\psi(z)$, written $\psi^{(n)}(z)$. \noindent +{\bf E1}: $(DoubleFloat) -> OnePointCompletion DoubleFloat$\hfill\newline + E1(x) is the Exponential Integral function + The current implementation is a piecewise approximation + involving one poly from $-4..4$ and a second poly for $x > 4$ +\index{function!E1} + +\noindent +{\bf En}: $(PI, DFLOAT) -> OnePointCompletion DoubleFloat$\hfill\newline + En(PI,R) is the nth Exponential Integral +\index{function!En} + +\noindent +{\bf Ei}: $(OnePointCompletion DFLOAT) -> OnePointCompletion DFLOAT$ +\hfill\newline + Ei is the Exponential Integral function + This is computed using a 6 part piecewise approximation. + DoubleFloat can only preserve about 16 digits but the + Chebyshev approximation used can give 30 digits. +\index{function!Ei} + +\noindent +{\bf Ei1}: $(DoubleFloat) -> DoubleFloat$\hfill\newline + Ei1 is the first approximation of Ei where the result is + $x*e^-x*Ei(x)$ from -infinity to -10 (preserves digits) +\index{function!Ei1} + +\noindent +{\bf Ei2}: $(DoubleFloat) -> DoubleFloat$\hfill\newline + Ei2 is the first approximation of Ei where the result is + $x*e^-x*Ei(x)$ from -10 to -4 (preserves digits) +\index{function!Ei2} + +\noindent +{\bf Ei3}: $(DoubleFloat) -> DoubleFloat$\hfill\newline + Ei3 is the first approximation of Ei where the result is + $(Ei(x)-log |x| - gamma)/x$ from -4 to 4 (preserves digits) +\index{function!Ei3} + +\noindent +{\bf Ei4}: $(DoubleFloat) -> DoubleFloat$\hfill\newline + Ei4 is the first approximation of Ei where the result is + $x*e^-x*Ei(x)$ from 4 to 12 (preserves digits) +\index{function!Ei4} + +\noindent +{\bf Ei5}: $(DoubleFloat) -> DoubleFloat$\hfill\newline + Ei5 is the first approximation of Ei where the result is + $x*e^-x*Ei(x)$ from 12 to 32 (preserves digits) +\index{function!Ei5} + +\noindent +{\bf Ei6}: $(DoubleFloat) -> DoubleFloat$\hfill\newline + Ei6 is the first approximation of Ei where the result is + $x*e^-x*Ei(x)$ from 32 to infinity (preserves digits) +\index{function!Ei6} + +\noindent {\bf besselJ}: $(F,F) -> F$\hfill\newline $besselJ(v,z)$ is the Bessel function of the first kind, \index{function!Bessel}