diff --git a/changelog b/changelog index 346e9f2..eda7bfd 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,9 @@ +20080416 tpd src/input/schaum7.input show Schaums-Axiom equivalence +20080416 tpd src/input/schaum6.input show Schaums-Axiom equivalence +20080416 tpd src/input/schaum5.input show Schaums-Axiom equivalence +20080416 tpd src/input/schaum4.input show Schaums-Axiom equivalence +20080416 tpd src/input/schaum3.input show Schaums-Axiom equivalence +20080416 tpd src/input/schaum2.input show Schaums-Axiom equivalence 20080415 tpd src/input/schaum1.input show Schaums-Axiom equivalence 20080414 tpd src/input/Makefile add integration regression testing 20080414 tpd src/input/schaum34.input integrals of csch(ax) diff --git a/src/input/schaum2.input.pamphlet b/src/input/schaum2.input.pamphlet index ba16925..184122e 100644 --- a/src/input/schaum2.input.pamphlet +++ b/src/input/schaum2.input.pamphlet @@ -7,15 +7,18 @@ \eject \tableofcontents \eject -\section{\cite{1}:14.84~~~~~$\displaystyle\int{\frac{dx}{\sqrt{ax+b}}}$} -$$\int{\frac{1}{\sqrt{ax+b}}}=\frac{2\sqrt{ax+b}}{a}$$ +\section{\cite{1}:14.84~~~~~$\displaystyle +\int{\frac{dx}{\sqrt{ax+b}}}$} +$$\int{\frac{1}{\sqrt{ax+b}}}= +\frac{2\sqrt{ax+b}}{a} +$$ <<*>>= )spool schaum2.output )set message test on )set message auto off )clear all ---S 1 of 92 +--S 1 aa:=integrate(1/sqrt(a*x+b),x) --R --R @@ -25,9 +28,8 @@ aa:=integrate(1/sqrt(a*x+b),x) --R a --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 2 of 92 + +--S 2 bb:=(2*sqrt(a*x+b))/a --R --R @@ -37,9 +39,8 @@ bb:=(2*sqrt(a*x+b))/a --R a --R Type: Expression Integer --E -@ -<<*>>= ---S 3 of 92 + +--S 3 14:84 Schaums and Axiom agree cc:=aa-bb --R --R @@ -48,12 +49,15 @@ cc:=aa-bb --E @ -\section{\cite{1}:14.85~~~~~$\displaystyle\int{\frac{x~dx}{\sqrt{ax+b}}}$} -$$\int{\frac{x}{\sqrt{ax+b}}}=\frac{2(ax-2b)}{3a^2}\sqrt{ax+b}$$ +\section{\cite{1}:14.85~~~~~$\displaystyle +\int{\frac{x~dx}{\sqrt{ax+b}}}$} +$$\int{\frac{x}{\sqrt{ax+b}}}= +\frac{2(ax-2b)}{3a^2}\sqrt{ax+b} +$$ <<*>>= )clear all ---S 4 of 92 +--S 4 aa:=integrate(x/sqrt(a*x+b),x) --R --R @@ -64,9 +68,8 @@ aa:=integrate(x/sqrt(a*x+b),x) --R 3a --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 5 of 92 + +--S 5 bb:=(2*(a*x-2*b))/(3*a^2)*sqrt(a*x+b) --R --R @@ -77,9 +80,8 @@ bb:=(2*(a*x-2*b))/(3*a^2)*sqrt(a*x+b) --R 3a --R Type: Expression Integer --E -@ -<<*>>= ---S 6 of 92 + +--S 6 14:85 Schaums and Axiom agree cc:=aa-bb --R --R @@ -88,13 +90,15 @@ cc:=aa-bb --E @ -\section{\cite{1}:14.86~~~~~$\displaystyle\int{\frac{x^2~dx}{\sqrt{ax+b}}}$} +\section{\cite{1}:14.86~~~~~$\displaystyle +\int{\frac{x^2~dx}{\sqrt{ax+b}}}$} $$\int{\frac{x}{\sqrt{ax+b}}}= -\frac{2(3a^2x^2-4abx+8b^2)}{15a^2}\sqrt{ax+b}$$ +\frac{2(3a^2x^2-4abx+8b^2)}{15a^2}\sqrt{ax+b} +$$ <<*>>= )clear all ---S 7 of 92 +--S 7 aa:=integrate(x^2/sqrt(a*x+b),x) --R --R @@ -105,9 +109,8 @@ aa:=integrate(x^2/sqrt(a*x+b),x) --R 15a --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 8 of 92 + +--S 8 bb:=(2*(3*a^2*x^2-4*a*b*x+8*b^2))/(15*a^3)*sqrt(a*x+b) --R --R @@ -118,9 +121,8 @@ bb:=(2*(3*a^2*x^2-4*a*b*x+8*b^2))/(15*a^3)*sqrt(a*x+b) --R 15a --R Type: Expression Integer --E -@ -<<*>>= ---S 9 of 92 + +--S 9 14:86 Schaums and Axiom agree cc:=aa-bb --R --R @@ -129,7 +131,8 @@ cc:=aa-bb --E @ -\section{\cite{1}:14.87~~~~~$\displaystyle\int{\frac{dx}{x\sqrt{ax+b}}}$} +\section{\cite{1}:14.87~~~~~$\displaystyle +\int{\frac{dx}{x\sqrt{ax+b}}}$} $$\int{\frac{1}{x\sqrt{ax+b}}}= \left\{ \begin{array}{l} @@ -139,13 +142,14 @@ $$\int{\frac{1}{x\sqrt{ax+b}}}= \displaystyle \frac{2}{\sqrt{-b}}~\tan^{-1}\sqrt{\frac{ax+b}{-b}} \end{array} -\right.$$ +\right. +$$ Note: the first answer assumes $b > 0$ and the second assumes $b < 0$. <<*>>= )clear all ---S 10 of 92 +--S 10 aa:=integrate(1/(x*sqrt(a*x+b)),x) --R --R @@ -161,7 +165,7 @@ aa:=integrate(1/(x*sqrt(a*x+b)),x) @ Cleary Spiegel's first answer assumes $b > 0$: <<*>>= ---S 11 of 92 +--S 11 bb1:=1/sqrt(b)*log((sqrt(a*x+b)-sqrt(b))/(sqrt(a*x+b)+sqrt(b))) --R --R @@ -178,7 +182,7 @@ bb1:=1/sqrt(b)*log((sqrt(a*x+b)-sqrt(b))/(sqrt(a*x+b)+sqrt(b))) @ So we try the difference of the two results <<*>>= ---S 12 of 92 +--S 12 cc11:=aa.1-bb1 --R --R +-------+ +-+ +-------+ +-+ @@ -197,7 +201,7 @@ But the results don't simplify to 0. So we try some other tricks. Since both functions are of the form log(f(x))/sqrt(b) we extract the f(x) from each. First we get the function from Axiom's first answer: <<*>>= ---S 13 of 92 +--S 13 ff:=exp(aa.1*sqrt(b)) --R --R +-------+ +-+ @@ -209,7 +213,7 @@ ff:=exp(aa.1*sqrt(b)) @ and we get the same form from Spiegel's answer <<*>>= ---S 14 of 92 +--S 14 gg:=exp(bb1*sqrt(b)) --R --R +-------+ +-+ @@ -226,7 +230,7 @@ denominator by $1 == (sqrt(a*x+b) - sqrt(b))/(sqrt(a*x+b) - sqrt(b))$. First we multiply the numerator by $(sqrt(a*x+b) - sqrt(b))$ <<*>>= ---S 15 of 92 +--S 15 gg1:=gg*(sqrt(a*x+b) - sqrt(b)) --R --R +-+ +-------+ @@ -239,7 +243,7 @@ gg1:=gg*(sqrt(a*x+b) - sqrt(b)) @ Now we multiply the denominator by $(sqrt(a*x+b) - sqrt(b))$ <<*>>= ---S 16 of 92 +--S 16 gg2:=gg1/(sqrt(a*x+b) - sqrt(b)) --R --R +-+ +-------+ @@ -251,7 +255,7 @@ gg2:=gg1/(sqrt(a*x+b) - sqrt(b)) @ and now we multiply by the integration constant $a*sqrt(b)$ <<*>>= ---S 17 of 92 +--S 17 gg3:=gg2*(a*sqrt(b)) --R --R +-------+ +-+ @@ -263,7 +267,7 @@ gg3:=gg2*(a*sqrt(b)) @ and when we difference this with ff, the Axiom answer we get: <<*>>= ---S 18 of 92 +--S 18 14:87a Schaums and Axiom differ by a constant ff-gg3 --R --R (9) 0 @@ -275,7 +279,7 @@ So the constant of integration difference is $a*sqrt(b)$ Now we look at the second equations. We difference Axiom's second answer from Spiegel's answer: <<*>>= ---S 19 of 92 +--S 19 t1:=aa.2-bb1 --R --R +-------+ +-+ +---+ +-------+ @@ -292,7 +296,7 @@ t1:=aa.2-bb1 and again they do not simplify to zero. But we can show that both answers differ by a constant because the derivative is zero: <<*>>= ---S 20 of 92 +--S 20 D(t1,x) --R --R (11) 0 @@ -303,7 +307,7 @@ D(t1,x) Rather than find the constant this time we will differentiate both answers and compare them with the original equation. <<*>>= ---S 21 of 92 +--S 21 target:=1/(x*sqrt(a*x+b)) --R --R 1 @@ -315,7 +319,7 @@ target:=1/(x*sqrt(a*x+b)) @ and we select the second Axiom solution <<*>>= ---S 22 of 92 +--S 22 aa2:=aa.2 --R --R +---+ +-------+ @@ -330,7 +334,7 @@ aa2:=aa.2 @ take its derivative <<*>>= ---S 23 of 92 +--S 23 ad2:=D(aa2,x) --R --R 1 @@ -343,7 +347,7 @@ ad2:=D(aa2,x) When we take the difference of Axiom's input and the derivative of the output we see: <<*>>= ---S 24 of 92 +--S 24 ad2-target --R --R (15) 0 @@ -355,7 +359,7 @@ Thus the original equation and Axiom's derivative of the integral are equal. Now we do the same with Spiegel's answer. We take the derivative of his answer. <<*>>= ---S 25 of 92 +--S 25 ab1:=D(bb1,x) --R --R +-------+ +-+ @@ -368,7 +372,7 @@ ab1:=D(bb1,x) @ and we difference it from the original equation <<*>>= ---S 26 of 92 +--S 26 14:87b Schaums and Axiom differ by a constant ab1-target --R --R (17) 0 @@ -380,13 +384,15 @@ Thus the original equation and Spiegel's derivative of the integral are equal. So we can conclude that both second answers are correct although they differ by a constant of integration. -\section{\cite{1}:14.88~~~~~$\displaystyle\int{\frac{dx}{x^2\sqrt{ax+b}}}$} +\section{\cite{1}:14.88~~~~~$\displaystyle +\int{\frac{dx}{x^2\sqrt{ax+b}}}$} $$\int{\frac{1}{x^2\sqrt{ax+b}}}= --\frac{\sqrt{ax+b}}{bx}-\frac{a}{2b}~\int{\frac{1}{x\sqrt{ax+b}}}$$ +-\frac{\sqrt{ax+b}}{bx}-\frac{a}{2b}~\int{\frac{1}{x\sqrt{ax+b}}} +$$ <<*>>= )clear all ---S 27 of 92 +--S 27 aa:=integrate(1/(x^2*sqrt(a*x+b)),x) --R --R @@ -412,7 +418,7 @@ aa:=integrate(1/(x^2*sqrt(a*x+b)),x) In order to write down the book answer we need to first take the integral which has two results <<*>>= ---S 28 of 92 +--S 28 dd:=integrate(1/(x*sqrt(a*x+b)),x) --R --R @@ -429,7 +435,7 @@ dd:=integrate(1/(x*sqrt(a*x+b)),x) and derive two results for the book answer. The first result assumes $b > 0$ <<*>>= ---S 29 of 92 +--S 29 bb1:=-sqrt(a*x+b)/(b*x)-a/(2*b)*dd.1 --R --R @@ -445,7 +451,7 @@ bb1:=-sqrt(a*x+b)/(b*x)-a/(2*b)*dd.1 @ and the second result assumes $b < 0$. <<*>>= ---S 30 of 92 +--S 30 bb2:=-sqrt(a*x+b)/(b*x)-a/(2*b)*dd.2 --R --R @@ -463,7 +469,7 @@ bb2:=-sqrt(a*x+b)/(b*x)-a/(2*b)*dd.2 So we compute the difference of Axiom's first result with Spiegel's first result <<*>>= ---S 31 of 92 +--S 31 cc11:=bb1-aa.1 --R --R (5) @@ -484,7 +490,7 @@ cc11:=bb1-aa.1 @ we compute its derivative <<*>>= ---S 32 of 92 +--S 32 D(cc11,x) --R --R (6) 0 @@ -495,7 +501,7 @@ and we can see that the answers differ by a constant, the constant of integration. So Axiom's first answer should differentiate back to the target equation. <<*>>= ---S 33 of 92 +--S 33 target:=1/(x^2*sqrt(a*x+b)) --R --R 1 @@ -507,7 +513,7 @@ target:=1/(x^2*sqrt(a*x+b)) @ We differentiate Axiom's first answer <<*>>= ---S 34 of 92 +--S 34 ad1:=D(aa.1,x) --R --R +-+ +-------+ 2 @@ -520,7 +526,7 @@ ad1:=D(aa.1,x) @ and subtract it from the target equation <<*>>= ---S 35 of 92 +--S 35 ad1-target --R --R (9) 0 @@ -529,7 +535,7 @@ ad1-target @ and now we do the same with first Spiegel's answer: <<*>>= ---S 36 of 92 +--S 36 bd1:=D(bb1,x) --R --R +-+ +-------+ 2 @@ -542,7 +548,7 @@ bd1:=D(bb1,x) @ and we subtract it from the target <<*>>= ---S 37 of 92 +--S 37 bd1-target --R --R (11) 0 @@ -555,7 +561,7 @@ integrals differ by a constant. Now we look at the second answers. We difference the answers and can see immediately that they are equal. <<*>>= ---S 38 of 92 +--S 38 14:88 Schaums and Axiom differ by a constant cc22:=bb2-aa.2 --R --R @@ -564,13 +570,15 @@ cc22:=bb2-aa.2 --E @ -\section{\cite{1}:14.89~~~~~$\displaystyle\int{\sqrt{ax+b}~dx}$} +\section{\cite{1}:14.89~~~~~$\displaystyle +\int{\sqrt{ax+b}~dx}$} $$\int{\sqrt{ax+b}}= -\frac{2\sqrt{(ax+b)^3}}{3a}$$ +\frac{2\sqrt{(ax+b)^3}}{3a} +$$ <<*>>= )clear all ---S 39 of 92 +--S 39 aa:=integrate(sqrt(a*x+b),x) --R --R @@ -582,7 +590,7 @@ aa:=integrate(sqrt(a*x+b),x) --E @ <<*>>= ---S 40 of 92 +--S 40 bb:=(2*sqrt((a*x+b)^3))/(3*a) --R --R @@ -595,7 +603,7 @@ bb:=(2*sqrt((a*x+b)^3))/(3*a) --E @ <<*>>= ---S 41 of 92 +--S 41 cc:=aa-bb --R --R +----------------------------+ @@ -608,7 +616,7 @@ cc:=aa-bb @ Since this didn't simplify we could check each answer using the derivative <<*>>= ---S 42 of 92 +--S 42 target:=sqrt(a*x+b) --R --R +-------+ @@ -618,7 +626,7 @@ target:=sqrt(a*x+b) @ We take the derivative of Axiom's answer <<*>>= ---S 43 of 92 +--S 43 t1:=D(aa,x) --R --R a x + b @@ -630,7 +638,7 @@ t1:=D(aa,x) @ And we subtract the target from the derivative of Axiom's answer <<*>>= ---S 44 of 92 +--S 44 t1-target --R --R (6) 0 @@ -639,7 +647,7 @@ t1-target @ So they are equal. Now we do the same with Spiegel's answer <<*>>= ---S 45 of 92 +--S 45 t2:=D(bb,x) --R --R 2 2 2 @@ -653,7 +661,7 @@ t2:=D(bb,x) @ The numerator is <<*>>= ---S 46 of 92 +--S 46 nn:=(a*x+b)^2 --R --R 2 2 2 @@ -662,7 +670,7 @@ nn:=(a*x+b)^2 --E @ <<*>>= ---S 47 of 92 +--S 47 mm:=(a*x+b)^3 --R --R 3 3 2 2 2 3 @@ -672,7 +680,7 @@ mm:=(a*x+b)^3 @ which expands to Spiegel's version. <<*>>= ---S 48 of 92 +--S 48 14:89 Schaums and Axiom differ by a constant result=nn/sqrt(mm) --R --R 2 2 2 @@ -686,13 +694,15 @@ result=nn/sqrt(mm) @ and this reduces to $\sqrt{ax+b}$ -\section{\cite{1}:14.90~~~~~$\displaystyle\int{x\sqrt{ax+b}~dx}$} +\section{\cite{1}:14.90~~~~~$\displaystyle +\int{x\sqrt{ax+b}~dx}$} $$\int{x\sqrt{ax+b}}= -\frac{2(3ax-2b)}{15a^2}~\sqrt{(ax+b)^3}$$ +\frac{2(3ax-2b)}{15a^2}~\sqrt{(ax+b)^3} +$$ <<*>>= )clear all ---S 49 of 92 +--S 49 aa:=integrate(x*sqrt(a*x+b),x) --R --R @@ -703,9 +713,8 @@ aa:=integrate(x*sqrt(a*x+b),x) --R 15a --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 50 of 92 + +--S 50 bb:=(2*(3*a*x-2*b))/(15*a^2)*sqrt((a*x+b)^3) --R --R @@ -717,9 +726,8 @@ bb:=(2*(3*a*x-2*b))/(15*a^2)*sqrt((a*x+b)^3) --R 15a --R Type: Expression Integer --E -@ -<<*>>= ---S 51 of 92 + +--S 51 cc:=aa-bb --R --R (3) @@ -737,15 +745,14 @@ cc:=aa-bb @ If we had the terms <<*>>= ---S 52 of 92 +--S 52 t1:=(3*a*x-2*b) --R --R (4) 3a x - 2b --R Type: Polynomial Integer --E -@ -<<*>>= ---S 53 of 92 + +--S 53 t2:=(a*x+b) --R --R (5) a x + b @@ -754,7 +761,7 @@ t2:=(a*x+b) @ We can construct the Axiom result <<*>>= ---S 54 of 92 +--S 54 2*t1*t2*sqrt(t2)/(15*a^2) --R --R 2 2 2 +-------+ @@ -767,7 +774,7 @@ We can construct the Axiom result @ and we can construct the Spiegel result <<*>>= ---S 55 of 92 +--S 55 2*t1*sqrt(t2^3)/(15*a^2) --R --R +----------------------------+ @@ -781,7 +788,7 @@ and we can construct the Spiegel result @ the difference of these two depends on <<*>>= ---S 56 of 92 +--S 56 14:90 Axiom cannot simplify this expression t2*sqrt(t2)-sqrt(t2^3) --R --R +----------------------------+ @@ -791,14 +798,16 @@ t2*sqrt(t2)-sqrt(t2^3) --E @ -\section{\cite{1}:14.91~~~~~$\displaystyle\int{x^2\sqrt{ax+b}~dx}$} +\section{\cite{1}:14.91~~~~~$\displaystyle +\int{x^2\sqrt{ax+b}~dx}$} $$\int{x^2\sqrt{ax+b}}= -\frac{2(15a^2x^2-12abx+8b^2)}{105a^2}~\sqrt{(a+bx)^3}$$ +\frac{2(15a^2x^2-12abx+8b^2)}{105a^2}~\sqrt{(a+bx)^3} +$$ Note: the sqrt term is almost certainly $\sqrt{(ax+b)}$ <<*>>= )clear all ---S 57 of 92 +--S 57 aa:=integrate(x^2*sqrt(a*x+b),x) --R --R @@ -809,9 +818,8 @@ aa:=integrate(x^2*sqrt(a*x+b),x) --R 105a --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 58 of 92 + +--S 58 bb:=(2*(15*a^2*x^2-12*a*b*x+8*b^2))/(105*a^2)*sqrt((a*x+b)^3) --R --R @@ -823,9 +831,8 @@ bb:=(2*(15*a^2*x^2-12*a*b*x+8*b^2))/(105*a^2)*sqrt((a*x+b)^3) --R 105a --R Type: Expression Integer --E -@ -<<*>>= ---S 59 of 92 + +--S 59 14:91 Axiom cannot simplify this expression cc:=aa-bb --R --R @@ -843,13 +850,15 @@ cc:=aa-bb --E @ -\section{\cite{1}:14.92~~~~~$\displaystyle\int{\frac{\sqrt{ax+b}}{x}~dx}$} +\section{\cite{1}:14.92~~~~~$\displaystyle +\int{\frac{\sqrt{ax+b}}{x}~dx}$} $$\int{\frac{\sqrt{ax+b}}{x}}= -2\sqrt{ax+b}+b~\int{\frac{1}{x\sqrt{ax+b}}}$$ +2\sqrt{ax+b}+b~\int{\frac{1}{x\sqrt{ax+b}}} +$$ <<*>>= )clear all ---S 60 of 92 +--S 60 aa:=integrate(sqrt(a*x+b)/x,x) --R --R @@ -865,9 +874,8 @@ aa:=integrate(sqrt(a*x+b)/x,x) --R \|- b --R Type: Union(List Expression Integer,...) --E -@ -<<*>>= ---S 61 of 92 + +--S 61 dd:=integrate(1/(x*sqrt(a*x+b)),x) --R --R @@ -880,9 +888,8 @@ dd:=integrate(1/(x*sqrt(a*x+b)),x) --R \|b \|- b --R Type: Union(List Expression Integer,...) --E -@ -<<*>>= ---S 62 of 92 + +--S 62 bb1:=2*sqrt(a*x+b)+b*dd.1 --R --R @@ -895,9 +902,8 @@ bb1:=2*sqrt(a*x+b)+b*dd.1 --R \|b --R Type: Expression Integer --E -@ -<<*>>= ---S 63 of 92 + +--S 63 bb2:=2*sqrt(a*x+b)+b*dd.2 --R --R @@ -910,9 +916,8 @@ bb2:=2*sqrt(a*x+b)+b*dd.2 --R \|- b --R Type: Expression Integer --E -@ -<<*>>= ---S 64 of 92 + +--S 64 cc11:=bb1-aa.1 --R --R @@ -926,9 +931,8 @@ cc11:=bb1-aa.1 --R \|b --R Type: Expression Integer --E -@ -<<*>>= ---S 65 of 92 + +--S 65 cc12:=bb1-aa.2 --R --R @@ -942,9 +946,8 @@ cc12:=bb1-aa.2 --R \|b --R Type: Expression Integer --E -@ -<<*>>= ---S 66 of 92 + +--S 66 cc21:=bb2-aa.1 --R --R @@ -958,9 +961,8 @@ cc21:=bb2-aa.1 --R \|- b --R Type: Expression Integer --E -@ -<<*>>= ---S 67 of 92 + +--S 67 14:92 Axiom cannot simplify this expression cc22:=bb2-aa.2 --R --R @@ -976,13 +978,15 @@ cc22:=bb2-aa.2 --E @ -\section{\cite{1}:14.93~~~~~$\displaystyle\int{\frac{\sqrt{ax+b}}{x^2}~dx}$} +\section{\cite{1}:14.93~~~~~$\displaystyle +\int{\frac{\sqrt{ax+b}}{x^2}~dx}$} $$\int{\frac{\sqrt{ax+b}}{x^2}}= --\frac{\sqrt{ax+b}}{x}+\frac{a}{2}~\int{\frac{1}{x\sqrt{ax+b}}}$$ +-\frac{\sqrt{ax+b}}{x}+\frac{a}{2}~\int{\frac{1}{x\sqrt{ax+b}}} +$$ <<*>>= )clear all ---S 68 of 92 +--S 68 aa:=integrate(sqrt(a*x+b)/x^2,x) --R --R @@ -1003,9 +1007,8 @@ aa:=integrate(sqrt(a*x+b)/x^2,x) --R x\|- b --R Type: Union(List Expression Integer,...) --E -@ -<<*>>= ---S 69 of 92 + +--S 69 dd:=integrate(1/(x*sqrt(a*x+b)),x) --R --R @@ -1018,9 +1021,8 @@ dd:=integrate(1/(x*sqrt(a*x+b)),x) --R \|b \|- b --R Type: Union(List Expression Integer,...) --E -@ -<<*>>= ---S 70 of 92 + +--S 70 bb1:=-sqrt(a*x+b)/x+a/2*dd.1 --R --R @@ -1033,9 +1035,8 @@ bb1:=-sqrt(a*x+b)/x+a/2*dd.1 --R 2x\|b --R Type: Expression Integer --E -@ -<<*>>= ---S 71 of 92 + +--S 71 bb2:=-sqrt(a*x+b)/x+a/2*dd.2 --R --R @@ -1048,18 +1049,16 @@ bb2:=-sqrt(a*x+b)/x+a/2*dd.2 --R x\|- b --R Type: Expression Integer --E -@ -<<*>>= ---S 72 of 92 + +--S 72 cc11:=bb1-aa.1 --R --R --R (5) 0 --R Type: Expression Integer --E -@ -<<*>>= ---S 73 of 92 + +--S 73 cc21:=bb-aa.1 --R --R @@ -1073,9 +1072,8 @@ cc21:=bb-aa.1 --R 2x\|b --R Type: Expression Integer --E -@ -<<*>>= ---S 74 of 92 + +--S 74 cc12:=bb1-aa.2 --R --R @@ -1089,9 +1087,8 @@ cc12:=bb1-aa.2 --R 2\|- b \|b --R Type: Expression Integer --E -@ -<<*>>= ---S 75 of 92 + +--S 75 14:93 Schaums and Axiom agree cc22:=bb2-aa.2 --R --R @@ -1100,14 +1097,16 @@ cc22:=bb2-aa.2 --E @ -\section{\cite{1}:14.94~~~~~$\displaystyle\int{\frac{x^m}{\sqrt{ax+b}}~dx}$} +\section{\cite{1}:14.94~~~~~$\displaystyle +\int{\frac{x^m}{\sqrt{ax+b}}~dx}$} $$\int{\frac{x^m}{\sqrt{ax+b}}}= \frac{2x^m\sqrt{ax+b}}{(2m+1)a}-\frac{2mb}{(2m+1)a} -~\int{\frac{x^{m-1}}{\sqrt{ax+b}}}$$ +~\int{\frac{x^{m-1}}{\sqrt{ax+b}}} +$$ <<*>>= )clear all ---S 76 of 92 +--S 76 14:94 Axiom cannot do this integral aa:=integrate(x^m/sqrt(a*x+b),x) --R --R @@ -1120,14 +1119,16 @@ aa:=integrate(x^m/sqrt(a*x+b),x) --E @ -\section{\cite{1}:14.95~~~~~$\displaystyle\int{\frac{dx}{x^m\sqrt{ax+b}}}$} +\section{\cite{1}:14.95~~~~~$\displaystyle +\int{\frac{dx}{x^m\sqrt{ax+b}}}$} $$\int{\frac{1}{x^m\sqrt{ax+b}}}= -\frac{\sqrt{ax+b}}{(m-1)bx^{m-1}}-\frac{(2m-3)a}{(2m-2)b} -~\int{\frac{1}{x^{m-1}\sqrt{ax+b}}}$$ +~\int{\frac{1}{x^{m-1}\sqrt{ax+b}}} +$$ <<*>>= )clear all ---S 77 of 92 +--S 77 14:95 Axiom cannot do this integral aa:=integrate(1/(x^m*sqrt(a*x+b)),x) --R --R @@ -1140,14 +1141,16 @@ aa:=integrate(1/(x^m*sqrt(a*x+b)),x) --E @ -\section{\cite{1}:14.96~~~~~$\displaystyle\int{x^m\sqrt{ax+b}~dx}$} +\section{\cite{1}:14.96~~~~~$\displaystyle +\int{x^m\sqrt{ax+b}~dx}$} $$\int{x^m\sqrt{ax+b}}= \frac{2x^m}{(2m+3)a}(ax+b)^{3/2} --\frac{2mb}{(2m+3)a}~\int{x^{m-1}\sqrt{ax+b}}$$ +-\frac{2mb}{(2m+3)a}~\int{x^{m-1}\sqrt{ax+b}} +$$ <<*>>= )clear all ---S 78 of 92 +--S 78 14:96 Axiom cannot do this integral aa:=integrate(x^m*sqrt(a*x+b),x) --R --R @@ -1159,14 +1162,16 @@ aa:=integrate(x^m*sqrt(a*x+b),x) --E @ -\section{\cite{1}:14.97~~~~~$\displaystyle\int{\frac{\sqrt{ax+b}}{x^m}~dx}$} +\section{\cite{1}:14.97~~~~~$\displaystyle +\int{\frac{\sqrt{ax+b}}{x^m}~dx}$} $$\int{\frac{\sqrt{ax+b}}{x^m}}= -\frac{\sqrt{ax+b}}{(m-1)x^{m-1}} -+\frac{a}{2(m-1)}~\int{\frac{1}{x^{m-1}\sqrt{ax+b}}}$$ ++\frac{a}{2(m-1)}~\int{\frac{1}{x^{m-1}\sqrt{ax+b}}} +$$ <<*>>= )clear all ---S 79 of 92 +--S 79 14:97 Axiom cannot do this integral aa:=integrate(sqrt(a*x+b)/x^m,x) --R --R @@ -1179,15 +1184,17 @@ aa:=integrate(sqrt(a*x+b)/x^m,x) --E @ -\section{\cite{1}:14.98~~~~~$\displaystyle\int{\frac{\sqrt{ax+b}}{x^m}~dx}$} +\section{\cite{1}:14.98~~~~~$\displaystyle +\int{\frac{\sqrt{ax+b}}{x^m}~dx}$} $$\int{\frac{\sqrt{ax+b}}{x^m}}= \frac{-(ax+b)^{3/2}}{(m-1)bx^{m-1}} --\frac{(2m-5)a}{(2m-2)b}~\int{\frac{\sqrt{ax+b}}{x^{m-1}}}$$ +-\frac{(2m-5)a}{(2m-2)b}~\int{\frac{\sqrt{ax+b}}{x^{m-1}}} +$$ Note: 14.98 is the same as 14.97 <<*>>= )clear all ---S 80 of 92 +--S 80 14:98 Axiom cannot do this integral aa:=integrate(sqrt(a*x+b)/x^m,x) --R --R @@ -1200,13 +1207,15 @@ aa:=integrate(sqrt(a*x+b)/x^m,x) --E @ -\section{\cite{1}:14.99~~~~~$\displaystyle\int{(ax+b)^{m/2}~dx}$} +\section{\cite{1}:14.99~~~~~$\displaystyle +\int{(ax+b)^{m/2}~dx}$} $$\int{(ax+b)^{m/2}}= -\frac{2(ax+b)^{(m+2)/2}}{a(m+2)}$$ +\frac{2(ax+b)^{(m+2)/2}}{a(m+2)} +$$ <<*>>= )clear all ---S 81 of 92 +--S 81 aa:=integrate((a*x+b)^(m/2),x) --R --R @@ -1218,9 +1227,8 @@ aa:=integrate((a*x+b)^(m/2),x) --R a m + 2a --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 82 of 92 + +--S 82 bb:=(2*(a*x+b)^((m+2)/2))/(a*(m+2)) --R --R @@ -1232,9 +1240,8 @@ bb:=(2*(a*x+b)^((m+2)/2))/(a*(m+2)) --R a m + 2a --R Type: Expression Integer --E -@ -<<*>>= ---S 83 of 92 + +--S 83 14:99 Axiom cannot simplify this expression cc:=aa-bb --R --R @@ -1248,14 +1255,16 @@ cc:=aa-bb --E @ -\section{\cite{1}:14.100~~~~~$\displaystyle\int{x(ax+b)^{m/2}~dx}$} +\section{\cite{1}:14.100~~~~~$\displaystyle +\int{x(ax+b)^{m/2}~dx}$} $$\int{x(ax+b)^{m/2}}= \frac{2(ax+b)^{(m+4)/2}}{a^2(m+4)} --\frac{2b(ax+b)^{(m+2)/2}}{a^2(m+2)}$$ +-\frac{2b(ax+b)^{(m+2)/2}}{a^2(m+2)} +$$ <<*>>= )clear all ---S 84 of 92 +--S 84 aa:=integrate(x*(a*x+b)^(m/2),x) --R --R @@ -1268,9 +1277,8 @@ aa:=integrate(x*(a*x+b)^(m/2),x) --R a m + 6a m + 8a --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 85 of 92 + +--S 85 bb:=(2*(a*x+b)^((m+4)/2))/(a^2*(m+4))-(2*b*(a*x+b)^((m+2)/2))/(a^2*(m+2)) --R --R @@ -1283,9 +1291,8 @@ bb:=(2*(a*x+b)^((m+4)/2))/(a^2*(m+4))-(2*b*(a*x+b)^((m+2)/2))/(a^2*(m+2)) --R a m + 6a m + 8a --R Type: Expression Integer --E -@ -<<*>>= ---S 86 of 92 + +--S 86 14:100 Axiom cannot simplify this expression cc:=aa-bb --R --R @@ -1306,15 +1313,17 @@ cc:=aa-bb --E @ -\section{\cite{1}:14.101~~~~~$\displaystyle\int{x^2(ax+b)^{m/2}~dx}$} +\section{\cite{1}:14.101~~~~~$\displaystyle +\int{x^2(ax+b)^{m/2}~dx}$} $$\int{x^2(ax+b)^{m/2}}= \frac{2(ax+b)^{(m+6)/2}}{a^3(m+6)} -\frac{4b(ax+b)^{(m+4)/2}}{a^3(m+4)} -+\frac{2b^2(ax+b)^{(m+2)/2}}{a^3(m+2)}$$ ++\frac{2b^2(ax+b)^{(m+2)/2}}{a^3(m+2)} +$$ <<*>>= )clear all ---S 87 of 92 +--S 87 aa:=integrate(x^2*(a*x+b)^(m/2),x) --R --R @@ -1331,9 +1340,8 @@ aa:=integrate(x^2*(a*x+b)^(m/2),x) --R a m + 12a m + 44a m + 48a --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 88 of 92 + +--S 88 bb:=(2*(a*x+b)^((m+6)/2))/(a^3*(m+6))-_ (4*b*(a*x+b)^((m+4)/2))/(a^3*(m+4))+_ (2*b^2*(a*x+b)^((m+2)/2))/(a^3*(m+2)) @@ -1354,9 +1362,8 @@ bb:=(2*(a*x+b)^((m+6)/2))/(a^3*(m+6))-_ --R a m + 12a m + 44a m + 48a --R Type: Expression Integer --E -@ -<<*>>= ---S 89 of 92 + +--S 89 14:101 Axiom cannot simplify this expression cc:=aa-bb --R --R @@ -1385,14 +1392,16 @@ cc:=aa-bb --E @ -\section{\cite{1}:14.102~~~~~$\displaystyle\int{\frac{(ax+b)^{m/2}}{x}~dx}$} +\section{\cite{1}:14.102~~~~~$\displaystyle +\int{\frac{(ax+b)^{m/2}}{x}~dx}$} $$\int{\frac{(ax+b)^{m/2}}{x}}= \frac{2(ax+b)^{m/2}}{m} -+b~\int{\frac{(ax+b)^{(m-2)/2}}{x}}$$ ++b~\int{\frac{(ax+b)^{(m-2)/2}}{x}} +$$ <<*>>= )clear all ---S 90 of 92 +--S 90 14:102 Axiom cannot do this integral aa:=integrate((a*x+b)^(m/2)/x,x) --R --R @@ -1409,11 +1418,12 @@ aa:=integrate((a*x+b)^(m/2)/x,x) \int{\frac{(ax+b)^{m/2}}{x^2}~dx}$} $$\int{\frac{(ax+b)^{m/2}}{x^2}}= -\frac{(ax+b)^{(m+2)/2}}{bx} -+\frac{ma}{2b}~\int{\frac{(ax+b)^{m/2}}{x}}$$ ++\frac{ma}{2b}~\int{\frac{(ax+b)^{m/2}}{x}} +$$ <<*>>= )clear all ---S 91 of 92 +--S 91 14:103 Axiom cannot do this integral aa:=integrate((a*x+b)^(m/2)/x^2,x) --R --R @@ -1431,11 +1441,12 @@ aa:=integrate((a*x+b)^(m/2)/x^2,x) \int{\frac{dx}{x(ax+b)^{m/2}}}$} $$\int{\frac{1}{x(ax+b)^{m/2}}}= \frac{2}{(m-2)b(ax+b)^{(m-2)/2}} -+\frac{1}{b}~\int{\frac{1}{x(ax+b)^{(m-2)/2}}}$$ ++\frac{1}{b}~\int{\frac{1}{x(ax+b)^{(m-2)/2}}} +$$ <<*>>= )clear all ---S 92 of 92 +--S 92 14:104 Axiom cannot do this integral aa:=integrate(1/(x*(a*x+b)^(m/2)),x) --R --R @@ -1448,9 +1459,7 @@ aa:=integrate(1/(x*(a*x+b)^(m/2)),x) --I %L (b + %L a) --R Type: Union(Expression Integer,...) --E -@ -<<*>>= )spool )lisp (bye) @ diff --git a/src/input/schaum3.input.pamphlet b/src/input/schaum3.input.pamphlet index e1e030d..bed98c8 100644 --- a/src/input/schaum3.input.pamphlet +++ b/src/input/schaum3.input.pamphlet @@ -16,7 +16,7 @@ $$\int{\frac{1}{(ax+b)(px+q)}}= )set message auto off )clear all ---S 1 of 11 +--S 1 aa:=integrate(1/((a*x+b)*(p*x+q)),x) --R --R @@ -25,9 +25,8 @@ aa:=integrate(1/((a*x+b)*(p*x+q)),x) --R a q - b p --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 2 of 11 + +--S 2 bb:=1/(b*p-a*q)*log((p*x+q)/(a*x+b)) --R --R @@ -38,9 +37,8 @@ bb:=1/(b*p-a*q)*log((p*x+q)/(a*x+b)) --R a q - b p --R Type: Expression Integer --E -@ -<<*>>= ---S 3 of 11 + +--S 3 cc:=aa-bb --R --R @@ -51,6 +49,41 @@ cc:=aa-bb --R a q - b p --R Type: Expression Integer --E + +--S 4 +logdiv:=rule(log(a)-log(b) == log(a/b)) +--R +--R a +--I (4) - log(b) + log(a) + %I == log(-) + %I +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 5 +dd:=logdiv cc +--R +--R 1 +--R log(a x + b) + log(-------) +--R a x + b +--R (5) --------------------------- +--R a q - b p +--R Type: Expression Integer +--E + +--S 6 +logmul:=rule(log(a)+log(b) == log(a*b)) +--R +--I (6) log(b) + log(a) + %J == log(a b) + %J +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 7 14:105 Schaums and Axiom agree +ee:=logmul dd +--R +--R (7) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.106~~~~~$\displaystyle\int{\frac{x~dx}{(ax+b)(px+q)}}$} @@ -59,7 +92,7 @@ $$\int{\frac{x}{(ax+b)(px+q)}}= <<*>>= )clear all ---S 4 of 11 +--S 8 aa:=integrate(x/((a*x+b)*(p*x+q)),x) --R --R @@ -69,9 +102,8 @@ aa:=integrate(x/((a*x+b)*(p*x+q)),x) --R a p q - a b p --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 5 of 11 + +--S 9 bb:=1/(b*p-a*q)*(b/a*log(a*x+b)-q/p*log(p*x+q)) --R --R @@ -81,9 +113,8 @@ bb:=1/(b*p-a*q)*(b/a*log(a*x+b)-q/p*log(p*x+q)) --R a p q - a b p --R Type: Expression Integer --E -@ -<<*>>= ---S 6 of 11 + +--S 10 14:106 Schaums and Axiom agree cc:=aa-bb --R --R @@ -100,7 +131,7 @@ $$\int{\frac{1}{(ax+b)^2(px+q)}}= <<*>>= )clear all ---S 7 of 11 +--S 11 aa:=integrate(1/((a*x+b)^2*(p*x+q)),x) --R --R @@ -110,9 +141,8 @@ aa:=integrate(1/((a*x+b)^2*(p*x+q)),x) --R (a q - 2a b p q + a b p )x + a b q - 2a b p q + b p --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 8 of 11 + +--S 12 bb:=1/(b*p-a*q)*(1/(a*x+b)+p/(b*p-a*q)*log((p*x+q)/(a*x+b))) --R --R @@ -124,9 +154,8 @@ bb:=1/(b*p-a*q)*(1/(a*x+b)+p/(b*p-a*q)*log((p*x+q)/(a*x+b))) --R (a q - 2a b p q + a b p )x + a b q - 2a b p q + b p --R Type: Expression Integer --E -@ -<<*>>= ---S 9 of 11 + +--S 13 cc:=aa-bb --R --R @@ -138,6 +167,23 @@ cc:=aa-bb --R a q - 2a b p q + b p --R Type: Expression Integer --E + +--S 14 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 15 14:107 Schaums and Axiom agree +dd:=divlog cc +--R +--R (5) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.108~~~~~$\displaystyle\int{\frac{x~dx}{(ax+b)^2(px+q)}}$} @@ -149,7 +195,7 @@ $$\int{\frac{x}{(ax+b)^2(px+q)}}= <<*>>= )clear all ---S 10 of 11 +--S 16 aa:=integrate(x/((a*x+b)^2*(p*x+q)),x) --R --R @@ -161,9 +207,8 @@ aa:=integrate(x/((a*x+b)^2*(p*x+q)),x) --R (a q - 2a b p q + a b p )x + a b q - 2a b p q + a b p --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S 11 of 11 + +--S 17 bb:=1/(b*p-a*q)*(q/(b*p-a*q)*log((a*x+b)/(p*x+q))-b/(a*(a*x+b))) --R --R @@ -175,8 +220,8 @@ bb:=1/(b*p-a*q)*(q/(b*p-a*q)*log((a*x+b)/(p*x+q))-b/(a*(a*x+b))) --R (a q - 2a b p q + a b p )x + a b q - 2a b p q + a b p --R Type: Expression Integer --E -@ -<<*>>= + +--S 18 cc:=aa-bb --R --R @@ -188,6 +233,22 @@ cc:=aa-bb --R a q - 2a b p q + b p --R Type: Expression Integer --E + +--S 19 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 20 14:108 Schaums and Axiom agree +dd:=divlog cc +--R +--R (5) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.109~~~~~$\displaystyle @@ -198,7 +259,7 @@ $$\frac{b^2}{(bp-aq)a^2(ax+b)}+\frac{1}{(bp-aq)^2} <<*>>= )clear all ---S +--S 21 aa:=integrate(x^2/((a*x+b)^2*(p*x+q)),x) --R --R @@ -213,9 +274,8 @@ aa:=integrate(x^2/((a*x+b)^2*(p*x+q)),x) --R (a p q - 2a b p q + a b p )x + a b p q - 2a b p q + a b p --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S + +--S 22 bb:=b^2/((b*p-a*q)*a^2*(a*x+b))+_ 1/(b*p-a*q)^2*(q^2/p*log(p*x+q)+((b*(b*p-2*a*q))/a^2)*log(a*x+b)) --R @@ -231,9 +291,8 @@ bb:=b^2/((b*p-a*q)*a^2*(a*x+b))+_ --R (a p q - 2a b p q + a b p )x + a b p q - 2a b p q + a b p --R Type: Expression Integer --E -@ -<<*>>= ---S + +--S 23 14:109 Schaums and Axiom agree cc:=aa-bb --R --R @@ -250,7 +309,7 @@ a(m+n-2)~\int{\frac{1}{(ax+b)^m(px+q)^{n-1}}}\right\}$$ <<*>>= )clear all ---S +--S 24 14:110 Axiom cannot do this integral aa:=integrate(1/((a*x+b)^m*(p*x+q)^n),x) --R --R @@ -261,81 +320,14 @@ aa:=integrate(1/((a*x+b)^m*(p*x+q)^n),x) --I (b + %L a) (q + %L p) --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S -dd:=integrate(1/((a*x+b)^m*(p*x+q)^(n-1)),x) ---R ---R ---R x ---R ++ 1 ---I (2) | -------------------------- d%L ---R ++ m n - 1 ---I (b + %L a) (q + %L p) ---R Type: Union(Expression Integer,...) ---E -@ -<<*>>= ---S -bb:=-1/((n-1)*(b*p-a*q))*(1/((a*x+b)^(m-1)*(p*x+q)^(n-1))+a*(m+n-2)*dd) ---R ---R ---R (3) ---R m - 1 n - 1 ---R (a n + a m - 2a)(a x + b) (p x + q) ---R * ---R x ---R ++ 1 ---I | -------------------------- d%L ---R ++ m n - 1 ---I (b + %L a) (q + %L p) ---R + ---R 1 ---R / ---R m - 1 n - 1 ---R ((a n - a)q + (- b n + b)p)(a x + b) (p x + q) ---R Type: Expression Integer ---E @ -<<*>>= ---S -cc:=aa-bb ---R ---R ---R (4) ---R m - 1 n - 1 ---R (- a n - a m + 2a)(a x + b) (p x + q) ---R * ---R x ---R ++ 1 ---I | -------------------------- d%L ---R ++ m n - 1 ---I (b + %L a) (q + %L p) ---R + ---R m - 1 n - 1 ---R ((a n - a)q + (- b n + b)p)(a x + b) (p x + q) ---R * ---R x ---R ++ 1 ---I | ---------------------- d%L ---R ++ m n ---I (b + %L a) (q + %L p) ---R + ---R - 1 ---R / ---R m - 1 n - 1 ---R ((a n - a)q + (- b n + b)p)(a x + b) (p x + q) ---R Type: Expression Integer ---E -@ - \section{\cite{1}:14.111~~~~~$\displaystyle\int{\frac{ax+b}{px+q}~dx}$} $$\int{\frac{ax+b}{px+q}}=\frac{ax}{p}+\frac{bp-aq}{p^2}~\ln(px+q)$$ <<*>>= )clear all ---S +--S 25 aa:=integrate((a*x+b)/(p*x+q),x) --R --R @@ -345,9 +337,8 @@ aa:=integrate((a*x+b)/(p*x+q),x) --R p --R Type: Union(Expression Integer,...) --E -@ -<<*>>= ---S + +--S 26 bb:=(a*x)/p+(b*p-a*q)/p^2*log(p*x+q) --R --R @@ -357,9 +348,8 @@ bb:=(a*x)/p+(b*p-a*q)/p^2*log(p*x+q) --R p --R Type: Expression Integer --E -@ -<<*>>= ---S + +--S 27 14:111 Schaums and Axiom agree cc:=aa-bb --R --R @@ -383,7 +373,7 @@ $$\int{\frac{(ax+b)^m}{(px+q)^n}}=\left\{ <<*>>= )clear all ---S +--S 28 14:112 Axiom cannot do this integral aa:=integrate((a*x+b)^m/(p*x+q)^n,x) --R --R @@ -393,7 +383,6 @@ aa:=integrate((a*x+b)^m/(p*x+q)^n,x) --R ++ n --I (q + %L p) --R Type: Union(Expression Integer,...) ---R --E <<*>>= )spool diff --git a/src/input/schaum4.input.pamphlet b/src/input/schaum4.input.pamphlet index efd9edc..0edbbf9 100644 --- a/src/input/schaum4.input.pamphlet +++ b/src/input/schaum4.input.pamphlet @@ -16,7 +16,7 @@ $$\int{\frac{px+q}{\sqrt{ax+b}}}= )set message auto off )clear all ---S 1 of 7 +--S 1 aa:=integrate((p*x+q)/sqrt(a*x+b),x) --R --R @@ -27,6 +27,24 @@ aa:=integrate((p*x+q)/sqrt(a*x+b),x) --R 3a --R Type: Union(Expression Integer,...) --E + +--S 2 +bb:=(2*(a*p*x+3*a*q-2*b*p))/(3*a^2)*sqrt(a*x+b) +--R +--R +-------+ +--R (2a p x + 6a q - 4b p)\|a x + b +--R (2) -------------------------------- +--R 2 +--R 3a +--R Type: Expression Integer +--E + +--S 3 14:113 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.114~~~~~$\displaystyle @@ -43,7 +61,7 @@ $$ <<*>>= )clear all ---S 2 of 7 +--S 4 aa:=integrate(1/((p*x+q)*sqrt(a*x+b)),x) --R --R @@ -68,6 +86,157 @@ aa:=integrate(1/((p*x+q)*sqrt(a*x+b)),x) --R \|a p q - b p --R Type: Union(List Expression Integer,...) --E + +--S 5 +aa1:=aa.1 +--R +--R (2) +--R +--------------+ +--R 2 +-------+ | 2 +--R (2a p q - 2b p )\|a x + b + (a p x - a q + 2b p)\|- a p q + b p +--R log(------------------------------------------------------------------) +--R p x + q +--R ----------------------------------------------------------------------- +--R +--------------+ +--R | 2 +--R \|- a p q + b p +--R Type: Expression Integer +--E + +--S 6 +aa2:=aa.2 +--R +--R +------------+ +--R | 2 +-------+ +--R \|a p q - b p \|a x + b +--R 2atan(-------------------------) +--R a q - b p +--R (3) -------------------------------- +--R +------------+ +--R | 2 +--R \|a p q - b p +--R Type: Expression Integer +--E + +--S 7 +bb1:=1/sqrt(b*p-a*q)*log((sqrt(p*(a*x+b))-sqrt(b*p-a*q))/(sqrt(p*(a*x+b))+sqrt(b*p-a*q))) +--R +--R +-----------+ +-----------+ +--R \|a p x + b p - \|- a q + b p +--R log(-------------------------------) +--R +-----------+ +-----------+ +--R \|a p x + b p + \|- a q + b p +--R (4) ------------------------------------ +--R +-----------+ +--R \|- a q + b p +--R Type: Expression Integer +--E + +--S 8 +bb2:=2/(sqrt(a*q-b*p)*sqrt(p))*atan(sqrt((p*(a*x+b))/(a*q-b*p))) +--R +--R +-----------+ +--R |a p x + b p +--R 2atan( |----------- ) +--R \| a q - b p +--R (5) --------------------- +--R +-+ +---------+ +--R \|p \|a q - b p +--R Type: Expression Integer +--E + +--S 9 +cc1:=aa1-bb1 +--R +--R (6) +--R +-----------+ +--R \|- a q + b p +--R * +--R +--------------+ +--R 2 +-------+ | 2 +--R (2a p q - 2b p )\|a x + b + (a p x - a q + 2b p)\|- a p q + b p +--R log(------------------------------------------------------------------) +--R p x + q +--R + +--R +--------------+ +-----------+ +-----------+ +--R | 2 \|a p x + b p - \|- a q + b p +--R - \|- a p q + b p log(-------------------------------) +--R +-----------+ +-----------+ +--R \|a p x + b p + \|- a q + b p +--R / +--R +--------------+ +--R | 2 +-----------+ +--R \|- a p q + b p \|- a q + b p +--R Type: Expression Integer +--E + +--S 10 +cc2:=aa1-bb2 +--R +--R (7) +--R +-+ +---------+ +--R \|p \|a q - b p +--R * +--R +--------------+ +--R 2 +-------+ | 2 +--R (2a p q - 2b p )\|a x + b + (a p x - a q + 2b p)\|- a p q + b p +--R log(------------------------------------------------------------------) +--R p x + q +--R + +--R +--------------+ +-----------+ +--R | 2 |a p x + b p +--R - 2\|- a p q + b p atan( |----------- ) +--R \| a q - b p +--R / +--R +--------------+ +--R | 2 +-+ +---------+ +--R \|- a p q + b p \|p \|a q - b p +--R Type: Expression Integer +--E + +--S 11 +cc3:=aa2-bb1 +--R +--R (8) +--R +------------+ +-----------+ +-----------+ +--R | 2 \|a p x + b p - \|- a q + b p +--R - \|a p q - b p log(-------------------------------) +--R +-----------+ +-----------+ +--R \|a p x + b p + \|- a q + b p +--R + +--R +------------+ +--R | 2 +-------+ +--R +-----------+ \|a p q - b p \|a x + b +--R 2\|- a q + b p atan(-------------------------) +--R a q - b p +--R / +--R +------------+ +--R +-----------+ | 2 +--R \|- a q + b p \|a p q - b p +--R Type: Expression Integer +--E + +--S 12 14:114 Axiom cannot simplify these answers +cc4:=aa2-bb2 +--R +--R (9) +--R +------------+ +--R | 2 +-------+ +--R +-+ +---------+ \|a p q - b p \|a x + b +--R 2\|p \|a q - b p atan(-------------------------) +--R a q - b p +--R + +--R +------------+ +-----------+ +--R | 2 |a p x + b p +--R - 2\|a p q - b p atan( |----------- ) +--R \| a q - b p +--R / +--R +------------+ +--R +-+ +---------+ | 2 +--R \|p \|a q - b p \|a p q - b p +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.115~~~~~$\displaystyle\int{\frac{\sqrt{ax+b}}{px+q}}~dx$} @@ -83,7 +252,7 @@ $$\int{\frac{\sqrt{ax+b}}{px+q}}= <<*>>= )clear all ---S 3 of 7 +--S 13 aa:=integrate(sqrt(a*x+b)/(p*x+q),x) --R --R @@ -112,6 +281,150 @@ aa:=integrate(sqrt(a*x+b)/(p*x+q),x) --R p --R Type: Union(List Expression Integer,...) --E + +--S 14 +aa1:=aa.1 +--R +--R (2) +--R +-----------+ +--R |- a q + b p +-------+ +--R +-----------+ - 2p |----------- \|a x + b + a p x - a q + 2b p +--R |- a q + b p \| p +--R |----------- log(-------------------------------------------------) +--R \| p p x + q +--R + +--R +-------+ +--R 2\|a x + b +--R / +--R p +--R Type: Expression Integer +--E + +--S 15 +aa2:=aa.2 +--R +--R +---------+ +-------+ +--R |a q - b p \|a x + b +-------+ +--R - 2 |--------- atan(------------ + 2\|a x + b +--R \| p +---------+ +--R |a q - b p +--R |--------- +--R \| p +--R (3) ----------------------------------------------- +--R p +--R Type: Expression Integer +--E + +--S 16 +bb1:=(2*sqrt(a*x+b))/p+sqrt(b*p-a*q)/(p*sqrt(p))*log((sqrt(p*(a*x+b))-sqrt(b*p-a*q))/(sqrt(p*(a*x+b))+sqrt(b*p-a*q))) +--R +--R +-----------+ +-----------+ +--R +-----------+ \|a p x + b p - \|- a q + b p +-+ +-------+ +--R \|- a q + b p log(-------------------------------) + 2\|p \|a x + b +--R +-----------+ +-----------+ +--R \|a p x + b p + \|- a q + b p +--R (4) -------------------------------------------------------------------- +--R +-+ +--R p\|p +--R Type: Expression Integer +--E + +--S 17 +bb2:=(2*sqrt(a*x+b))/p-(2*sqrt(a*q-b*p))/(p*sqrt(p))*atan(sqrt((p*(a*x+b))/(a*q-b*p))) +--R +--R +-----------+ +--R +---------+ |a p x + b p +-+ +-------+ +--R - 2\|a q - b p atan( |----------- ) + 2\|p \|a x + b +--R \| a q - b p +--R (5) ----------------------------------------------------- +--R +-+ +--R p\|p +--R Type: Expression Integer +--E + +--S 18 +cc1:=aa1-bb1 +--R +--R (6) +--R +-----------+ +-----------+ +--R +-----------+ \|a p x + b p - \|- a q + b p +--R - \|- a q + b p log(-------------------------------) +--R +-----------+ +-----------+ +--R \|a p x + b p + \|- a q + b p +--R + +--R +-----------+ +--R |- a q + b p +-------+ +--R +-----------+ - 2p |----------- \|a x + b + a p x - a q + 2b p +--R |- a q + b p +-+ \| p +--R |----------- \|p log(-------------------------------------------------) +--R \| p p x + q +--R / +--R +-+ +--R p\|p +--R Type: Expression Integer +--E + +--S 19 +cc2:=aa1-bb2 +--R +--R (7) +--R +-----------+ +--R |- a q + b p +-------+ +--R +-----------+ - 2p |----------- \|a x + b + a p x - a q + 2b p +--R |- a q + b p +-+ \| p +--R |----------- \|p log(-------------------------------------------------) +--R \| p p x + q +--R + +--R +-----------+ +--R +---------+ |a p x + b p +--R 2\|a q - b p atan( |----------- ) +--R \| a q - b p +--R / +--R +-+ +--R p\|p +--R Type: Expression Integer +--E + +--S 20 +cc3:=aa2-bb1 +--R +--R (8) +--R +-----------+ +-----------+ +--R +-----------+ \|a p x + b p - \|- a q + b p +--R - \|- a q + b p log(-------------------------------) +--R +-----------+ +-----------+ +--R \|a p x + b p + \|- a q + b p +--R + +--R +---------+ +-------+ +--R +-+ |a q - b p \|a x + b +--R - 2\|p |--------- atan(------------) +--R \| p +---------+ +--R |a q - b p +--R |--------- +--R \| p +--R / +--R +-+ +--R p\|p +--R Type: Expression Integer +--E + +--S 21 14:115 Axiom cannot simplify these answers +cc4:=aa2-bb2 +--R +--R (9) +--R +---------+ +-------+ +-----------+ +--R +-+ |a q - b p \|a x + b +---------+ |a p x + b p +--R - 2\|p |--------- atan(------------) + 2\|a q - b p atan( |----------- ) +--R \| p +---------+ \| a q - b p +--R |a q - b p +--R |--------- +--R \| p +--R ------------------------------------------------------------------------- +--R +-+ +--R p\|p +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.116~~~~~$\displaystyle\int{(px+b)^n\sqrt{ax+b}}~dx$} @@ -122,7 +435,7 @@ $$\int{(px+b)^n\sqrt{ax+b}}= <<*>>= )clear all ---S 4 of 7 +--S 22 14:116 Axiom cannot compute this integral aa:=integrate((p*x+q)^n*sqrt(a*x+b),x) --R --R @@ -144,7 +457,7 @@ $$\int{\frac{1}{(px+b)^n\sqrt{ax+b}}}= <<*>>= )clear all ---S 5 of 7 +--S 23 14:117 Axiom cannot compute this integral aa:=integrate(1/((p*x+q)^n*sqrt(a*x+b)),x) --R --R @@ -166,7 +479,7 @@ $$\int{\frac{(px+q)^n}{\sqrt{ax+b}}}= <<*>>= )clear all ---S 6 of 7 +--S 24 14:118 Axiom cannot compute this integral aa:=integrate((p*x+q)^n/sqrt(a*x+b),x) --R --R @@ -187,7 +500,7 @@ $$\int{\frac{\sqrt{ax+b}}{(px+q)^n}}= <<*>>= )clear all ---S 7 of 7 +--S 25 14:119 Axiom cannot compute this integral aa:=integrate(sqrt(a*x+b)/(p*x+q)^n,x) --R --R diff --git a/src/input/schaum5.input.pamphlet b/src/input/schaum5.input.pamphlet index f8bccc8..50ea618 100644 --- a/src/input/schaum5.input.pamphlet +++ b/src/input/schaum5.input.pamphlet @@ -22,7 +22,7 @@ $$\int{\frac{1}{\sqrt{(ax+b)(px+q)}}}= )set message auto off )clear all ---S 1 of 5 +--S 1 aa:=integrate(1/sqrt((a*x+b)*(p*x+q)),x) --R --R @@ -53,6 +53,157 @@ aa:=integrate(1/sqrt((a*x+b)*(p*x+q)),x) --R \|- a p --R Type: Union(List Expression Integer,...) --E + +--S 2 +aa1:=aa.1 +--R +--R (2) +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R / +--R +---+ +--R \|a p +--R Type: Expression Integer +--E + +--S 3 +aa2:=aa.2 +--R +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R 2atan(-------------------------------------------------------) +--R a p x +--R (3) -------------------------------------------------------------- +--R +-----+ +--R \|- a p +--R Type: Expression Integer +--E + +--S 4 +bb1:=2/sqrt(a*p)*log(sqrt(a*(p*x+q))+sqrt(p*(a*x+b))) +--R +--R +-----------+ +-----------+ +--R 2log(\|a p x + a q + \|a p x + b p ) +--R (4) ------------------------------------- +--R +---+ +--R \|a p +--R Type: Expression Integer +--E + +--S 5 +bb2:=2/sqrt(-a*p)*atan(sqrt((-p*(a*x+b))/(a*(p*x+q)))) +--R +--R +-------------+ +--R |- a p x - b p +--R 2atan( |------------- ) +--R \| a p x + a q +--R (5) ----------------------- +--R +-----+ +--R \|- a p +--R Type: Expression Integer +--E + +--S 6 +cc1:=aa1-bb1 +--R +--R (6) +--R +-----------+ +-----------+ +--R - 2log(\|a p x + a q + \|a p x + b p ) +--R + +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R / +--R +---+ +--R \|a p +--R Type: Expression Integer +--E + +--S 7 +cc2:=aa1-bb2 +--R +--R (7) +--R +-----+ +--R \|- a p +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R +-------------+ +--R +---+ |- a p x - b p +--R - 2\|a p atan( |------------- ) +--R \| a p x + a q +--R / +--R +-----+ +---+ +--R \|- a p \|a p +--R Type: Expression Integer +--E + +--S 8 +cc3:=aa2-bb1 +--R +--R (8) +--R +-----+ +-----------+ +-----------+ +--R - 2\|- a p log(\|a p x + a q + \|a p x + b p ) +--R + +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R +---+ \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R 2\|a p atan(-------------------------------------------------------) +--R a p x +--R / +--R +-----+ +---+ +--R \|- a p \|a p +--R Type: Expression Integer +--E + +--S 9 14:120 Axiom cannot simplify these answers +cc4:=aa2-bb2 +--R +--R (9) +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R 2atan(-------------------------------------------------------) +--R a p x +--R + +--R +-------------+ +--R |- a p x - b p +--R - 2atan( |------------- ) +--R \| a p x + a q +--R / +--R +-----+ +--R \|- a p +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.121~~~~~$\displaystyle @@ -64,7 +215,7 @@ $$ <<*>>= )clear all ---S 2 of 5 +--S 10 aa:=integrate(x/sqrt((a*x+b)*(p*x+q)),x) --R --R @@ -133,6 +284,187 @@ aa:=integrate(x/sqrt((a*x+b)*(p*x+q)),x) --R ] --R Type: Union(List Expression Integer,...) --E + +--S 11 +bb1:=integrate(1/(sqrt(a*x+b)*(p*x+q)),x) +--R +--R (2) +--R +--------------+ +--R 2 +-------+ | 2 +--R (2a p q - 2b p )\|a x + b + (a p x - a q + 2b p)\|- a p q + b p +--R log(------------------------------------------------------------------) +--R p x + q +--R [-----------------------------------------------------------------------, +--R +--------------+ +--R | 2 +--R \|- a p q + b p +--R +------------+ +--R | 2 +-------+ +--R \|a p q - b p \|a x + b +--R 2atan(-------------------------) +--R a q - b p +--R --------------------------------] +--R +------------+ +--R | 2 +--R \|a p q - b p +--R Type: Union(List Expression Integer,...) +--E + +--S 12 +bb2:=sqrt((a*x+b)*(p*x+q))/(a*p)-(b*p+a*q)/(2*a*p) +--R +--R +---------------------------+ +--R | 2 +--R 2\|a p x + (a q + b p)x + b q - a q - b p +--R (3) ------------------------------------------- +--R 2a p +--R Type: Expression Integer +--E + +--S 13 +bb:=bb2*bb1 +--R +--R (4) +--R [ +--R +---------------------------+ +--R | 2 +--R (2\|a p x + (a q + b p)x + b q - a q - b p) +--R * +--R +--------------+ +--R 2 +-------+ | 2 +--R (2a p q - 2b p )\|a x + b + (a p x - a q + 2b p)\|- a p q + b p +--R log(------------------------------------------------------------------) +--R p x + q +--R / +--R +--------------+ +--R | 2 +--R 2a p\|- a p q + b p +--R , +--R +------------+ +--R +---------------------------+ | 2 +-------+ +--R | 2 \|a p q - b p \|a x + b +--R (2\|a p x + (a q + b p)x + b q - a q - b p)atan(-------------------------) +--R a q - b p +--R ---------------------------------------------------------------------------- +--R +------------+ +--R | 2 +--R a p\|a p q - b p +--R ] +--R Type: Vector Expression Integer +--E + +--S 14 14:121 Axiom cannot simplify this answer +cc:=aa-bb +--R +--R (5) +--R [ +--R +---+ +---+ +---+ +--R ((2a q + 2b p)\|a p \|b q + ((2a q + 2b p)x + 4b q)\|a p ) +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 2 +---+ +---+ +--R (- 4a p x + (- 4a q - 4b p)x - 4b q)\|a p \|b q +--R + +--R 2 2 2 2 2 2 +---+ +--R ((- a q - 2a b p q - b p )x - 2a b q - 2b p q)\|a p +--R * +--R +--------------+ +--R 2 +-------+ | 2 +--R (2a p q - 2b p )\|a x + b + (a p x - a q + 2b p)\|- a p q + b p +--R log(------------------------------------------------------------------) +--R p x + q +--R + +--R +--------------+ +---------------------------+ +--R | 2 +---+ | 2 +--R (2a q + 2b p)\|- a p q + b p \|b q \|a p x + (a q + b p)x + b q +--R + +--R +--------------+ +--R 2 2 2 2 2 2 | 2 +--R ((- a q - 2a b p q - b p )x - 2a b q - 2b p q)\|- a p q + b p +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q + 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R - 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R +--------------+ +---------------------------+ +--R | 2 +---+ | 2 +--R (- 2a q - 2b p)x\|- a p q + b p \|a p \|a p x + (a q + b p)x + b q +--R + +--R +--------------+ +--R 2 | 2 +---+ +---+ +--R (4a p x + (2a q + 2b p)x)\|- a p q + b p \|a p \|b q +--R / +--R +--------------+ +---------------------------+ +--R | 2 +---+ +---+ | 2 +--R 4a p\|- a p q + b p \|a p \|b q \|a p x + (a q + b p)x + b q +--R + +--R +--------------+ +--R 2 2 | 2 +---+ +--R ((- 2a p q - 2a b p )x - 4a b p q)\|- a p q + b p \|a p +--R , +--R +--R +------------+ +---------------------------+ +--R +---+ | 2 | 2 +--R (- 2a q - 2b p)\|b q \|a p q - b p \|a p x + (a q + b p)x + b q +--R + +--R +------------+ +--R 2 2 2 2 2 2 | 2 +--R ((a q + 2a b p q + b p )x + 2a b q + 2b p q)\|a p q - b p +--R * +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R atan(-------------------------------------------------------) +--R a p x +--R + +--R +-----+ +---+ +-----+ +--R ((2a q + 2b p)\|- a p \|b q + ((2a q + 2b p)x + 4b q)\|- a p ) +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 2 +-----+ +---+ +--R (- 4a p x + (- 4a q - 4b p)x - 4b q)\|- a p \|b q +--R + +--R 2 2 2 2 2 2 +-----+ +--R ((- a q - 2a b p q - b p )x - 2a b q - 2b p q)\|- a p +--R * +--R +------------+ +--R | 2 +-------+ +--R \|a p q - b p \|a x + b +--R atan(-------------------------) +--R a q - b p +--R + +--R +------------+ +---------------------------+ +--R +-----+ | 2 | 2 +--R (- a q - b p)x\|- a p \|a p q - b p \|a p x + (a q + b p)x + b q +--R + +--R +------------+ +--R 2 +-----+ +---+ | 2 +--R (2a p x + (a q + b p)x)\|- a p \|b q \|a p q - b p +--R / +--R +------------+ +---------------------------+ +--R +-----+ +---+ | 2 | 2 +--R 2a p\|- a p \|b q \|a p q - b p \|a p x + (a q + b p)x + b q +--R + +--R +------------+ +--R 2 2 +-----+ | 2 +--R ((- a p q - a b p )x - 2a b p q)\|- a p \|a p q - b p +--R ] +--R Type: Vector Expression Integer +--E @ \section{\cite{1}:14.122~~~~~$\displaystyle\int{\sqrt{(ax+b)(px+q)}}~dx$} @@ -143,7 +475,7 @@ $$ <<*>>= )clear all ---S 3 of 5 +--S 15 aa:=integrate(sqrt((a*x+b)*(p*x+q)),x) --R --R @@ -289,7 +621,639 @@ aa:=integrate(sqrt((a*x+b)*(p*x+q)),x) --R \|- a p --R ] --R Type: Union(List Expression Integer,...) ---E +--E +@ +Since there are two parts to the aa variable we split them: +<<*>>= +--S 16 +aa1:=aa.1 +--R +--R (2) +--R 3 3 2 2 2 2 3 3 2 3 2 2 +--R (4a q - 4a b p q - 4a b p q + 4b p )x + 8a b q - 16a b p q +--R + +--R 3 2 +--R 8b p q +--R * +--R +---------------------------+ +--R +---+ | 2 +--R \|b q \|a p x + (a q + b p)x + b q +--R + +--R 4 4 3 3 2 2 2 2 3 3 4 4 2 +--R (- a q - 4a b p q + 10a b p q - 4a b p q - b p )x +--R + +--R 3 4 2 2 3 3 2 2 4 3 2 2 4 3 3 +--R (- 8a b q + 8a b p q + 8a b p q - 8b p q)x - 8a b q + 16a b p q +--R + +--R 4 2 2 +--R - 8b p q +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q + 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R - 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R 3 2 2 2 2 3 3 +--R (- 4a p q - 24a b p q - 4a b p )x +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (- 2a q - 46a b p q - 46a b p q - 2b p )x +--R + +--R 2 3 2 2 3 2 +--R (- 8a b q - 48a b p q - 8b p q)x +--R * +--R +---------------------------+ +--R +---+ | 2 +--R \|a p \|a p x + (a q + b p)x + b q +--R + +--R 3 2 2 3 4 3 2 2 2 2 3 3 +--R (16a p q + 16a b p )x + (24a p q + 80a b p q + 24a b p )x +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (6a q + 74a b p q + 74a b p q + 6b p )x +--R + +--R 2 3 2 2 3 2 +--R (8a b q + 48a b p q + 8b p q)x +--R * +--R +---+ +---+ +--R \|a p \|b q +--R / +--R 2 2 +---+ +---+ +--R ((32a p q + 32a b p )x + 64a b p q)\|a p \|b q +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 2 2 2 2 3 2 2 2 2 2 +--R (- 8a p q - 48a b p q - 8a b p )x + (- 64a b p q - 64a b p q)x +--R + +--R 2 2 +--R - 64a b p q +--R * +--R +---+ +--R \|a p +--R Type: Expression Integer +--E + +--S 17 +aa2:=aa.2 +--R +--R (3) +--R 3 3 2 2 2 2 3 3 2 3 2 2 +--R (- 4a q + 4a b p q + 4a b p q - 4b p )x - 8a b q + 16a b p q +--R + +--R 3 2 +--R - 8b p q +--R * +--R +---------------------------+ +--R +---+ | 2 +--R \|b q \|a p x + (a q + b p)x + b q +--R + +--R 4 4 3 3 2 2 2 2 3 3 4 4 2 +--R (a q + 4a b p q - 10a b p q + 4a b p q + b p )x +--R + +--R 3 4 2 2 3 3 2 2 4 3 2 2 4 3 3 +--R (8a b q - 8a b p q - 8a b p q + 8b p q)x + 8a b q - 16a b p q +--R + +--R 4 2 2 +--R 8b p q +--R * +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R atan(-------------------------------------------------------) +--R a p x +--R + +--R 3 2 2 2 2 3 3 +--R (- 2a p q - 12a b p q - 2a b p )x +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (- a q - 23a b p q - 23a b p q - b p )x +--R + +--R 2 3 2 2 3 2 +--R (- 4a b q - 24a b p q - 4b p q)x +--R * +--R +---------------------------+ +--R +-----+ | 2 +--R \|- a p \|a p x + (a q + b p)x + b q +--R + +--R 3 2 2 3 4 3 2 2 2 2 3 3 +--R (8a p q + 8a b p )x + (12a p q + 40a b p q + 12a b p )x +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (3a q + 37a b p q + 37a b p q + 3b p )x +--R + +--R 2 3 2 2 3 2 +--R (4a b q + 24a b p q + 4b p q)x +--R * +--R +-----+ +---+ +--R \|- a p \|b q +--R / +--R 2 2 +-----+ +---+ +--R ((16a p q + 16a b p )x + 32a b p q)\|- a p \|b q +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 2 2 2 2 3 2 2 2 2 2 +--R (- 4a p q - 24a b p q - 4a b p )x + (- 32a b p q - 32a b p q)x +--R + +--R 2 2 +--R - 32a b p q +--R * +--R +-----+ +--R \|- a p +--R Type: Expression Integer +--E +@ +We break the books answer into 3 parts, the first term, the coefficient +of the second term, and the integral. +<<*>>= +--S 18 +bba:=((2*a*p*x+b*p+a*q)/(4*a*p))*sqrt((a*x+b)*(p*x+q)) +--R +--R +---------------------------+ +--R | 2 +--R (2a p x + a q + b p)\|a p x + (a q + b p)x + b q +--R (4) -------------------------------------------------- +--R 4a p +--R Type: Expression Integer +--E + +--S 19 +bbb:=-(b*p-a*q)^2/(8*a*p) +--R +--R 2 2 2 2 +--R - a q + 2a b p q - b p +--R (5) ------------------------ +--R 8a p +--R Type: Fraction Polynomial Integer +--E + +--S 20 +bbc:=integrate(1/sqrt((a*x+b)*(p*x+q)),x) +--R +--R (6) +--R [ +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R / +--R +---+ +--R \|a p +--R , +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R 2atan(-------------------------------------------------------) +--R a p x +--R --------------------------------------------------------------] +--R +-----+ +--R \|- a p +--R Type: Union(List Expression Integer,...) +--E +@ +Since the integral has two parts, we break them apart +<<*>>= +--S 21 +bbc1:=bbc.1 +--R +--R (7) +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R / +--R +---+ +--R \|a p +--R Type: Expression Integer +--E + +--S 22 +bbc2:=bbc.2 +--R +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R 2atan(-------------------------------------------------------) +--R a p x +--R (8) -------------------------------------------------------------- +--R +-----+ +--R \|- a p +--R Type: Expression Integer +--E +@ +And now we construct the two bb answers based on the integral parts +<<*>>= +--S 23 +bb1:=bba+bbb*bbc1 +--R +--R (9) +--R 2 2 2 2 +--R (- a q + 2a b p q - b p ) +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R +---------------------------+ +--R +---+ | 2 +--R (4a p x + 2a q + 2b p)\|a p \|a p x + (a q + b p)x + b q +--R / +--R +---+ +--R 8a p\|a p +--R Type: Expression Integer +--E + +--S 24 +bb2:=bba+bbb*bbc2 +--R +--R (10) +--R 2 2 2 2 +--R (- a q + 2a b p q - b p ) +--R * +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R atan(-------------------------------------------------------) +--R a p x +--R + +--R +---------------------------+ +--R +-----+ | 2 +--R (2a p x + a q + b p)\|- a p \|a p x + (a q + b p)x + b q +--R / +--R +-----+ +--R 4a p\|- a p +--R Type: Expression Integer +--E +@ +So there are 4 possible combinations that might yield an answer. +We construct all four. +<<*>>= +--S 25 +cc1:=aa1-bb1 +--R +--R (11) +--R 3 3 2 2 2 2 3 3 2 3 2 2 +--R (4a q - 4a b p q - 4a b p q + 4b p )x + 8a b q - 16a b p q +--R + +--R 3 2 +--R 8b p q +--R * +--R +---------------------------+ +--R +---+ | 2 +--R \|b q \|a p x + (a q + b p)x + b q +--R + +--R 4 4 3 3 2 2 2 2 3 3 4 4 2 +--R (- a q - 4a b p q + 10a b p q - 4a b p q - b p )x +--R + +--R 3 4 2 2 3 3 2 2 4 3 2 2 4 3 3 +--R (- 8a b q + 8a b p q + 8a b p q - 8b p q)x - 8a b q + 16a b p q +--R + +--R 4 2 2 +--R - 8b p q +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q + 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R - 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R 3 3 2 2 2 2 3 3 2 3 2 2 +--R (4a q - 4a b p q - 4a b p q + 4b p )x + 8a b q - 16a b p q +--R + +--R 3 2 +--R 8b p q +--R * +--R +---------------------------+ +--R +---+ | 2 +--R \|b q \|a p x + (a q + b p)x + b q +--R + +--R 4 4 3 3 2 2 2 2 3 3 4 4 2 +--R (- a q - 4a b p q + 10a b p q - 4a b p q - b p )x +--R + +--R 3 4 2 2 3 3 2 2 4 3 2 2 4 3 3 +--R (- 8a b q + 8a b p q + 8a b p q - 8b p q)x - 8a b q + 16a b p q +--R + +--R 4 2 2 +--R - 8b p q +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R 2 3 2 2 3 2 2 3 3 2 +---+ +--R ((8a b q + 16a b p q + 8b p q)x + 16a b q + 16b p q )\|a p +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (- 2a q - 14a b p q - 14a b p q - 2b p )x +--R + +--R 2 3 2 2 3 2 2 3 3 2 +--R (- 16a b q - 32a b p q - 16b p q)x - 16a b q - 16b p q +--R * +--R +---+ +---+ +--R \|a p \|b q +--R / +--R 2 2 +---+ +---+ +--R ((32a p q + 32a b p )x + 64a b p q)\|a p \|b q +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 2 2 2 2 3 2 2 2 2 2 +--R (- 8a p q - 48a b p q - 8a b p )x + (- 64a b p q - 64a b p q)x +--R + +--R 2 2 +--R - 64a b p q +--R * +--R +---+ +--R \|a p +--R Type: Expression Integer +--E + +--S 26 +cc2:=aa1-bb2 +--R +--R (12) +--R 3 3 2 2 2 2 3 3 2 3 2 2 +--R (4a q - 4a b p q - 4a b p q + 4b p )x + 8a b q - 16a b p q +--R + +--R 3 2 +--R 8b p q +--R * +--R +---------------------------+ +--R +-----+ +---+ | 2 +--R \|- a p \|b q \|a p x + (a q + b p)x + b q +--R + +--R 4 4 3 3 2 2 2 2 3 3 4 4 2 +--R (- a q - 4a b p q + 10a b p q - 4a b p q - b p )x +--R + +--R 3 4 2 2 3 3 2 2 4 3 2 2 4 +--R (- 8a b q + 8a b p q + 8a b p q - 8b p q)x - 8a b q +--R + +--R 3 3 4 2 2 +--R 16a b p q - 8b p q +--R * +--R +-----+ +--R \|- a p +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q + 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R - 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R 3 3 2 2 2 2 3 3 2 3 2 2 +--R (8a q - 8a b p q - 8a b p q + 8b p )x + 16a b q - 32a b p q +--R + +--R 3 2 +--R 16b p q +--R * +--R +---------------------------+ +--R +---+ +---+ | 2 +--R \|a p \|b q \|a p x + (a q + b p)x + b q +--R + +--R 4 4 3 3 2 2 2 2 3 3 4 4 2 +--R (- 2a q - 8a b p q + 20a b p q - 8a b p q - 2b p )x +--R + +--R 3 4 2 2 3 3 2 2 4 3 2 2 4 +--R (- 16a b q + 16a b p q + 16a b p q - 16b p q)x - 16a b q +--R + +--R 3 3 4 2 2 +--R 32a b p q - 16b p q +--R * +--R +---+ +--R \|a p +--R * +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R atan(-------------------------------------------------------) +--R a p x +--R + +--R 2 3 2 2 3 2 2 3 3 2 +-----+ +---+ +--R ((8a b q + 16a b p q + 8b p q)x + 16a b q + 16b p q )\|- a p \|a p +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (- 2a q - 14a b p q - 14a b p q - 2b p )x +--R + +--R 2 3 2 2 3 2 2 3 3 2 +--R (- 16a b q - 32a b p q - 16b p q)x - 16a b q - 16b p q +--R * +--R +-----+ +---+ +---+ +--R \|- a p \|a p \|b q +--R / +--R 2 2 +-----+ +---+ +---+ +--R ((32a p q + 32a b p )x + 64a b p q)\|- a p \|a p \|b q +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 2 2 2 2 3 2 2 2 2 2 +--R (- 8a p q - 48a b p q - 8a b p )x + (- 64a b p q - 64a b p q)x +--R + +--R 2 2 +--R - 64a b p q +--R * +--R +-----+ +---+ +--R \|- a p \|a p +--R Type: Expression Integer +--E + +--S 27 +cc3:=aa1-bb1 +--R +--R (13) +--R 3 3 2 2 2 2 3 3 2 3 2 2 +--R (4a q - 4a b p q - 4a b p q + 4b p )x + 8a b q - 16a b p q +--R + +--R 3 2 +--R 8b p q +--R * +--R +---------------------------+ +--R +---+ | 2 +--R \|b q \|a p x + (a q + b p)x + b q +--R + +--R 4 4 3 3 2 2 2 2 3 3 4 4 2 +--R (- a q - 4a b p q + 10a b p q - 4a b p q - b p )x +--R + +--R 3 4 2 2 3 3 2 2 4 3 2 2 4 3 3 +--R (- 8a b q + 8a b p q + 8a b p q - 8b p q)x - 8a b q + 16a b p q +--R + +--R 4 2 2 +--R - 8b p q +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q + 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R - 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R 3 3 2 2 2 2 3 3 2 3 2 2 +--R (4a q - 4a b p q - 4a b p q + 4b p )x + 8a b q - 16a b p q +--R + +--R 3 2 +--R 8b p q +--R * +--R +---------------------------+ +--R +---+ | 2 +--R \|b q \|a p x + (a q + b p)x + b q +--R + +--R 4 4 3 3 2 2 2 2 3 3 4 4 2 +--R (- a q - 4a b p q + 10a b p q - 4a b p q - b p )x +--R + +--R 3 4 2 2 3 3 2 2 4 3 2 2 4 3 3 +--R (- 8a b q + 8a b p q + 8a b p q - 8b p q)x - 8a b q + 16a b p q +--R + +--R 4 2 2 +--R - 8b p q +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R 2 3 2 2 3 2 2 3 3 2 +---+ +--R ((8a b q + 16a b p q + 8b p q)x + 16a b q + 16b p q )\|a p +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (- 2a q - 14a b p q - 14a b p q - 2b p )x +--R + +--R 2 3 2 2 3 2 2 3 3 2 +--R (- 16a b q - 32a b p q - 16b p q)x - 16a b q - 16b p q +--R * +--R +---+ +---+ +--R \|a p \|b q +--R / +--R 2 2 +---+ +---+ +--R ((32a p q + 32a b p )x + 64a b p q)\|a p \|b q +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 2 2 2 2 3 2 2 2 2 2 +--R (- 8a p q - 48a b p q - 8a b p )x + (- 64a b p q - 64a b p q)x +--R + +--R 2 2 +--R - 64a b p q +--R * +--R +---+ +--R \|a p +--R Type: Expression Integer +--E + +--S 28 14:122 Axiom cannot simplify this answer +cc4:=aa2-bb2 +--R +--R (14) +--R 2 3 2 2 3 2 2 3 3 2 +--R ((4a b q + 8a b p q + 4b p q)x + 8a b q + 8b p q ) +--R * +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (- a q - 7a b p q - 7a b p q - b p )x +--R + +--R 2 3 2 2 3 2 2 3 3 2 +--R (- 8a b q - 16a b p q - 8b p q)x - 8a b q - 8b p q +--R * +--R +---+ +--R \|b q +--R / +--R +---------------------------+ +--R 2 2 +---+ | 2 +--R ((16a p q + 16a b p )x + 32a b p q)\|b q \|a p x + (a q + b p)x + b q +--R + +--R 3 2 2 2 2 3 2 2 2 2 2 +--R (- 4a p q - 24a b p q - 4a b p )x + (- 32a b p q - 32a b p q)x +--R + +--R 2 2 +--R - 32a b p q +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.123~~~~~$\displaystyle\int{\sqrt{\frac{px+q}{ax+b}}}~dx$} @@ -300,7 +1264,7 @@ $$ <<*>>= )clear all ---S 4 of 5 +--S 29 aa:=integrate(sqrt((p*x+q)/(a*x+b)),x) --R --R @@ -332,6 +1296,310 @@ aa:=integrate(sqrt((p*x+q)/(a*x+b)),x) --R a\|- a p --R Type: Union(List Expression Integer,...) --E + +--S 30 +aa1:=aa.1 +--R +--R (2) +--R +-------+ +--R +---+ 2 |p x + q +--R (a q - b p)log((2a p x + a q + b p)\|a p + (2a p x + 2a b p) |------- ) +--R \|a x + b +--R + +--R +-------+ +--R |p x + q +---+ +--R (2a x + 2b) |------- \|a p +--R \|a x + b +--R / +--R +---+ +--R 2a\|a p +--R Type: Expression Integer +--E + +--S 31 +aa2:=aa.2 +--R +--R +-------+ +--R +-----+ |p x + q +--R \|- a p |------- +-------+ +--R \|a x + b +-----+ |p x + q +--R (a q - b p)atan(------------------) + (a x + b)\|- a p |------- +--R p \|a x + b +--R (3) ----------------------------------------------------------------- +--R +-----+ +--R a\|- a p +--R Type: Expression Integer +--E + +--S 32 +bba:=sqrt((a*x+b)*(p*x+q))/a +--R +--R +---------------------------+ +--R | 2 +--R \|a p x + (a q + b p)x + b q +--R (4) ------------------------------ +--R a +--R Type: Expression Integer +--E + +--S 33 +bbb:=(a*q-b*p)/(2*a) +--R +--R a q - b p +--R (5) --------- +--R 2a +--R Type: Fraction Polynomial Integer +--E + +--S 34 +bbc:=integrate(1/(sqrt((a*x+b)*(p*x+q))),x) +--R +--R (6) +--R [ +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R / +--R +---+ +--R \|a p +--R , +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R 2atan(-------------------------------------------------------) +--R a p x +--R --------------------------------------------------------------] +--R +-----+ +--R \|- a p +--R Type: Union(List Expression Integer,...) +--E + +--S 35 +bbc1:=bbc.1 +--R +--R (7) +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R / +--R +---+ +--R \|a p +--R Type: Expression Integer +--E + +--S 36 +bbc2:=bbc.2 +--R +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R 2atan(-------------------------------------------------------) +--R a p x +--R (8) -------------------------------------------------------------- +--R +-----+ +--R \|- a p +--R Type: Expression Integer +--E + +--S 37 +bb1:=bba+bbb*bbc1 +--R +--R (9) +--R (a q - b p) +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R +---------------------------+ +--R +---+ | 2 +--R 2\|a p \|a p x + (a q + b p)x + b q +--R / +--R +---+ +--R 2a\|a p +--R Type: Expression Integer +--E + +--S 38 +bb2:=bba+bbb*bbc2 +--R +--R (10) +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R (a q - b p)atan(-------------------------------------------------------) +--R a p x +--R + +--R +---------------------------+ +--R +-----+ | 2 +--R \|- a p \|a p x + (a q + b p)x + b q +--R / +--R +-----+ +--R a\|- a p +--R Type: Expression Integer +--E + +--S 39 +cc1:=aa1-bb1 +--R +--R (11) +--R +-------+ +--R +---+ 2 |p x + q +--R (a q - b p)log((2a p x + a q + b p)\|a p + (2a p x + 2a b p) |------- ) +--R \|a x + b +--R + +--R (- a q + b p) +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R +---------------------------+ +-------+ +--R +---+ | 2 |p x + q +---+ +--R - 2\|a p \|a p x + (a q + b p)x + b q + (2a x + 2b) |------- \|a p +--R \|a x + b +--R / +--R +---+ +--R 2a\|a p +--R Type: Expression Integer +--E + +--S 40 +cc2:=aa1-bb2 +--R +--R (12) +--R +-----+ +--R (a q - b p)\|- a p +--R * +--R +-------+ +--R +---+ 2 |p x + q +--R log((2a p x + a q + b p)\|a p + (2a p x + 2a b p) |------- ) +--R \|a x + b +--R + +--R +---+ +--R (- 2a q + 2b p)\|a p +--R * +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R atan(-------------------------------------------------------) +--R a p x +--R + +--R +---------------------------+ +--R +-----+ +---+ | 2 +--R - 2\|- a p \|a p \|a p x + (a q + b p)x + b q +--R + +--R +-------+ +--R +-----+ |p x + q +---+ +--R (2a x + 2b)\|- a p |------- \|a p +--R \|a x + b +--R / +--R +-----+ +---+ +--R 2a\|- a p \|a p +--R Type: Expression Integer +--E + +--S 41 +cc3:=aa2-bb1 +--R +--R (13) +--R +-----+ +--R (- a q + b p)\|- a p +--R * +--R log +--R +---------------------------+ +--R +---+ +---+ | 2 +--R (2\|a p \|b q - 2a p x)\|a p x + (a q + b p)x + b q +--R + +--R +---+ 2 +---+ +--R 2a p x\|b q + (- 2a p x + (- a q - b p)x - 2b q)\|a p +--R / +--R +---------------------------+ +--R +---+ | 2 +--R 2\|b q \|a p x + (a q + b p)x + b q + (- a q - b p)x - 2b q +--R + +--R +-------+ +--R +-----+ |p x + q +--R \|- a p |------- +--R +---+ \|a x + b +--R (2a q - 2b p)\|a p atan(------------------) +--R p +--R + +--R +---------------------------+ +--R +-----+ +---+ | 2 +--R - 2\|- a p \|a p \|a p x + (a q + b p)x + b q +--R + +--R +-------+ +--R +-----+ |p x + q +---+ +--R (2a x + 2b)\|- a p |------- \|a p +--R \|a x + b +--R / +--R +-----+ +---+ +--R 2a\|- a p \|a p +--R Type: Expression Integer +--E + +--S 42 14:88 Axiom cannot simplify these results +cc4:=aa2-bb2 +--R +--R (14) +--R (- a q + b p) +--R * +--R +---------------------------+ +--R +-----+ | 2 +-----+ +---+ +--R \|- a p \|a p x + (a q + b p)x + b q - \|- a p \|b q +--R atan(-------------------------------------------------------) +--R a p x +--R + +--R +-------+ +--R +-----+ |p x + q +--R \|- a p |------- +--R \|a x + b +--R (a q - b p)atan(------------------) +--R p +--R + +--R +---------------------------+ +-------+ +--R +-----+ | 2 +-----+ |p x + q +--R - \|- a p \|a p x + (a q + b p)x + b q + (a x + b)\|- a p |------- +--R \|a x + b +--R / +--R +-----+ +--R a\|- a p +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.124~~~~~$\displaystyle @@ -342,7 +1610,7 @@ $$ <<*>>= )clear all ---S 5 of 5 +--S 43 aa:=integrate(1/((p*x+q)*sqrt((a*x+b)*(p*x+q))),x) --R --R @@ -354,6 +1622,38 @@ aa:=integrate(1/((p*x+q)*sqrt((a*x+b)*(p*x+q))),x) --R Type: Union(Expression Integer,...) --E +--S 44 +bb:=(2*sqrt(a*x+b))/((a*q-b*p)*sqrt(p*x+q)) +--R +--R +-------+ +--R 2\|a x + b +--R (2) --------------------- +--R +-------+ +--R (a q - b p)\|p x + q +--R Type: Expression Integer +--E + +--S 45 14:124 Axiom cannot simplify this result +cc:=aa-bb +--R +--R (3) +--R +---------------------------+ +--R +-------+ | 2 +-------+ +--R - 2q\|a x + b \|a p x + (a q + b p)x + b q + (2a q - 2b p)x\|p x + q +--R + +--R +---+ +-------+ +--R (2p x + 2q)\|b q \|a x + b +--R / +--R +---------------------------+ +--R 2 +-------+ | 2 +--R (a q - b p q)\|p x + q \|a p x + (a q + b p)x + b q +--R + +--R 2 2 +---+ +-------+ +--R ((- a p q + b p )x - a q + b p q)\|b q \|p x + q +--R Type: Expression Integer +--E + + )spool )lisp (bye) @ diff --git a/src/input/schaum6.input.pamphlet b/src/input/schaum6.input.pamphlet index 9a08dc6..9b6f4f0 100644 --- a/src/input/schaum6.input.pamphlet +++ b/src/input/schaum6.input.pamphlet @@ -15,7 +15,7 @@ $$\int{\frac{1}{x^2+a^2}}=\frac{1}{a}\tan^{-1}\frac{x}{a}$$ )set message auto off )clear all ---S 1 of 19 +--S 1 aa:=integrate(1/(x^2+a^2),x) --R --R @@ -26,6 +26,25 @@ aa:=integrate(1/(x^2+a^2),x) --R a --R Type: Union(Expression Integer,...) --E + +--S 2 +bb:=(1/a)*atan(x/a) +--R +--R x +--R atan(-) +--R a +--R (2) ------- +--R a +--R Type: Expression Integer +--E + +--S 3 14:125 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.126~~~~~$\displaystyle\int{\frac{x~dx}{x^2+a^2}}$} @@ -33,7 +52,7 @@ $$\int{\frac{x}{x^2+a^2}}=\frac{1}{2}\ln(x^2+a^2)$$ <<*>>= )clear all ---S 2 of 19 +--S 4 aa:=integrate(x/(x^2+a^2),x) --R --R @@ -43,6 +62,23 @@ aa:=integrate(x/(x^2+a^2),x) --R 2 --R Type: Union(Expression Integer,...) --E + +--S 5 +bb:=(1/2)*log(x^2+a^2) +--R +--R 2 2 +--R log(x + a ) +--R (2) ------------ +--R 2 +--R Type: Expression Integer +--E + +--S 6 14:126 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.127~~~~~$\displaystyle\int{\frac{x^2~dx}{x^2+a^2}}$} @@ -50,7 +86,7 @@ $$\int{\frac{x^2}{x^2+a^2}}=x-a\tan^{-1}\frac{x}{a}$$ <<*>>= )clear all ---S 3 of 19 +--S 7 aa:=integrate(x^2/(x^2+a^2),x) --R --R @@ -59,6 +95,23 @@ aa:=integrate(x^2/(x^2+a^2),x) --R a --R Type: Union(Expression Integer,...) --E + +--S 8 +bb:=x-a*atan(x/a) +--R +--R x +--R (2) - a atan(-) + x +--R a +--R Type: Expression Integer +--E + +--S 9 14:127 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.128~~~~~$\displaystyle\int{\frac{x^3~dx}{x^2+a^2}}$} @@ -67,7 +120,7 @@ $$\int{\frac{x^3}{x^2+a^2}}=\frac{x^2}{2}-\frac{a^2}{2}\ln(x^2+a^2)$$ <<*>>= )clear all ---S 4 of 19 +--S 10 aa:=integrate(x^3/(x^2+a^2),x) --R --R @@ -77,6 +130,23 @@ aa:=integrate(x^3/(x^2+a^2),x) --R 2 --R Type: Union(Expression Integer,...) --E + +--S 11 +bb:=x^2/2-a^2/2*log(x^2+a^2) +--R +--R 2 2 2 2 +--R - a log(x + a ) + x +--R (2) --------------------- +--R 2 +--R Type: Expression Integer +--E + +--S 12 14:128 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.129~~~~~$\displaystyle\int{\frac{dx}{x(x^2+a^2)}}$} @@ -86,7 +156,7 @@ $$ <<*>>= )clear all ---S 5 of 19 +--S 13 aa:=integrate(1/(x*(x^2+a^2)),x) --R --R @@ -97,6 +167,70 @@ aa:=integrate(1/(x*(x^2+a^2)),x) --R 2a --R Type: Union(Expression Integer,...) --E + +--S 14 +bb:=1/(2*a^2)*log(x^2/(x^2+a^2)) +--R +--R 2 +--R x +--R log(-------) +--R 2 2 +--R x + a +--R (2) ------------ +--R 2 +--R 2a +--R Type: Expression Integer +--E + +--S 15 +cc:=aa-bb +--R +--R 2 +--R 2 2 x +--R - log(x + a ) + 2log(x) - log(-------) +--R 2 2 +--R x + a +--R (3) --------------------------------------- +--R 2 +--R 2a +--R Type: Expression Integer +--E + +--S 16 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 17 +dd:=divlog cc +--R +--R 2 +--R - log(x ) + 2log(x) +--R (5) ------------------- +--R 2 +--R 2a +--R Type: Expression Integer +--E + +--S 18 +logpow:=rule(log(a^n) == n*log(a)) +--R +--R n +--R (6) log(a ) == n log(a) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 19 14:129 Schaums and Axiom agree +ee:=logpow dd +--R +--R (7) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.130~~~~~$\displaystyle\int{\frac{dx}{x^2(x^2+a^2)}}$} @@ -106,7 +240,7 @@ $$ <<*>>= )clear all ---S 6 of 19 +--S 20 aa:=integrate(1/(x^2*(x^2+a^2)),x) --R --R @@ -118,6 +252,26 @@ aa:=integrate(1/(x^2*(x^2+a^2)),x) --R a x --R Type: Union(Expression Integer,...) --E + +--S 21 +bb:=-1/(a^2*x)-1/a^3*atan(x/a) +--R +--R x +--R - x atan(-) - a +--R a +--R (2) --------------- +--R 3 +--R a x +--R Type: Expression Integer +--E + +--S 22 14:130 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.131~~~~~$\displaystyle\int{\frac{dx}{x^3(x^2+a^2)}}$} @@ -127,7 +281,7 @@ $$ <<*>>= )clear all ---S 7 of 19 +--S 23 aa:=integrate(1/(x^3*(x^2+a^2)),x) --R --R @@ -138,6 +292,70 @@ aa:=integrate(1/(x^3*(x^2+a^2)),x) --R 2a x --R Type: Union(Expression Integer,...) --E + +--S 24 +bb:=-1/(2*a^2*x^2)-1/(2*a^4)*log(x^2/(x^2+a^2)) +--R +--R 2 +--R 2 x 2 +--R - x log(-------) - a +--R 2 2 +--R x + a +--R (2) --------------------- +--R 4 2 +--R 2a x +--R Type: Expression Integer +--E + +--S 25 +cc:=aa-bb +--R +--R 2 +--R 2 2 x +--R log(x + a ) - 2log(x) + log(-------) +--R 2 2 +--R x + a +--R (3) ------------------------------------- +--R 4 +--R 2a +--R Type: Expression Integer +--E + +--S 26 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 27 +dd:=divlog cc +--R +--R 2 +--R log(x ) - 2log(x) +--R (5) ----------------- +--R 4 +--R 2a +--R Type: Expression Integer +--E + +--S 28 +logpow:=rule(log(a^n) == n*log(a)) +--R +--R n +--R (6) log(a ) == n log(a) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 29 14:131 Schaums and Axiom agree +ee:=logpow dd +--R +--R (7) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.132~~~~~$\displaystyle\int{\frac{dx}{(x^2+a^2)^2}}$} @@ -147,7 +365,7 @@ $$ <<*>>= )clear all ---S 8 of 19 +--S 30 aa:=integrate(1/((x^2+a^2)^2),x) --R --R @@ -159,6 +377,26 @@ aa:=integrate(1/((x^2+a^2)^2),x) --R 2a x + 2a --R Type: Union(Expression Integer,...) --E + +--S 31 +bb:=x/(2*a^2*(x^2+a^2))+1/(2*a^3)*atan(x/a) +--R +--R 2 2 x +--R (x + a )atan(-) + a x +--R a +--R (2) ---------------------- +--R 3 2 5 +--R 2a x + 2a +--R Type: Expression Integer +--E + +--S 32 14:132 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.133~~~~~$\displaystyle\int{\frac{x~dx}{(x^2+a^2)^2}}$} @@ -168,7 +406,7 @@ $$ <<*>>= )clear all ---S 9 of 19 +--S 33 aa:=integrate(x/((x^2+a^2)^2),x) --R --R @@ -178,6 +416,23 @@ aa:=integrate(x/((x^2+a^2)^2),x) --R 2x + 2a --R Type: Union(Expression Integer,...) --E + +--S 34 +bb:=-1/(2*(x^2+a^2)) +--R +--R 1 +--R (2) - --------- +--R 2 2 +--R 2x + 2a +--R Type: Fraction Polynomial Integer +--E + +--S 35 14:133 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.134~~~~~$\displaystyle\int{\frac{x^2dx}{(x^2+a^2)^2}}$} @@ -187,7 +442,7 @@ $$ <<*>>= )clear all ---S 10 of 19 +--S 36 aa:=integrate(x^2/((x^2+a^2)^2),x) --R --R @@ -199,6 +454,25 @@ aa:=integrate(x^2/((x^2+a^2)^2),x) --R 2a x + 2a --R Type: Union(Expression Integer,...) --E + +--S 37 +bb:=-x/(2*(x^2+a^2))+1/(2*a)*atan(x/a) +--R +--R 2 2 x +--R (x + a )atan(-) - a x +--R a +--R (2) ---------------------- +--R 2 3 +--R 2a x + 2a +--R Type: Expression Integer +--E + +--S 38 14:134 Schaums and Axiom differ by a constant +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.135~~~~~$\displaystyle\int{\frac{x^3dx}{(x^2+a^2)^2}}$} @@ -208,7 +482,7 @@ $$ <<*>>= )clear all ---S 11 of 19 +--S 39 aa:=integrate(x^3/((x^2+a^2)^2),x) --R --R @@ -219,6 +493,24 @@ aa:=integrate(x^3/((x^2+a^2)^2),x) --R 2x + 2a --R Type: Union(Expression Integer,...) --E + +--S 40 +bb:=a^2/(2*(x^2+a^2))+1/2*log(x^2+a^2) +--R +--R 2 2 2 2 2 +--R (x + a )log(x + a ) + a +--R (2) -------------------------- +--R 2 2 +--R 2x + 2a +--R Type: Expression Integer +--E + +--S 41 14:135 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.136~~~~~$\displaystyle\int{\frac{dx}{x(x^2+a^2)^2}}$} @@ -228,7 +520,7 @@ $$ <<*>>= )clear all ---S 12 of 19 +--S 42 aa:=integrate(1/(x*(x^2+a^2)^2),x) --R --R @@ -239,6 +531,69 @@ aa:=integrate(1/(x*(x^2+a^2)^2),x) --R 2a x + 2a --R Type: Union(Expression Integer,...) --E + +--S 43 +bb:=1/(2*a^2*(x^2+a^2))+1/(2*a^4)*log(x^2/(x^2+a^2)) +--R +--R 2 +--R 2 2 x 2 +--R (x + a )log(-------) + a +--R 2 2 +--R x + a +--R (2) -------------------------- +--R 4 2 6 +--R 2a x + 2a +--R Type: Expression Integer +--E + +--S 44 +cc:=aa-bb +--R +--R 2 +--R 2 2 x +--R - log(x + a ) + 2log(x) - log(-------) +--R 2 2 +--R x + a +--R (3) --------------------------------------- +--R 4 +--R 2a +--R Type: Expression Integer +--E + +--S 45 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 46 +dd:=divlog cc +--R +--R 2 +--R - log(x ) + 2log(x) +--R (5) ------------------- +--R 4 +--R 2a +--R Type: Expression Integer +--E + +--S 47 +logpow:=rule(log(a^n) == n*log(a)) +--R +--R n +--R (6) log(a ) == n log(a) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 48 14:136 Schaums and Axiom agree +ee:=logpow dd +--R +--R (7) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.137~~~~~$\displaystyle\int{\frac{dx}{x^2(x^2+a^2)^2}}$} @@ -248,18 +603,36 @@ $$ <<*>>= )clear all ---S 13 of 19 -aa:=integrate(1/((x^2+a^2)^2),x) ---R +--S 49 +aa:=integrate(1/(x^2*(x^2+a^2)^2),x) --R ---R 2 2 x ---R (x + a )atan(-) + a x ---R a ---R (1) ---------------------- ---R 3 2 5 ---R 2a x + 2a +--R 3 2 x 2 3 +--R (- 3x - 3a x)atan(-) - 3a x - 2a +--R a +--R (1) ----------------------------------- +--R 5 3 7 +--R 2a x + 2a x --R Type: Union(Expression Integer,...) ---E +--E + +--S 50 +bb:=-1/(a^4*x)-x/(2*a^4*(x^2+a^2))-3/(2*a^5)*atan(x/a) +--R +--R 3 2 x 2 3 +--R (- 3x - 3a x)atan(-) - 3a x - 2a +--R a +--R (2) ----------------------------------- +--R 5 3 7 +--R 2a x + 2a x +--R Type: Expression Integer +--E + +--S 51 14:137 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E @ \section{\cite{1}:14.138~~~~~$\displaystyle\int{\frac{dx}{x^3(x^2+a^2)^2}}$} @@ -270,7 +643,7 @@ $$ <<*>>= )clear all ---S 14 of 19 +--S 52 aa:=integrate(1/(x^3*(x^2+a^2)^2),x) --R --R @@ -281,6 +654,70 @@ aa:=integrate(1/(x^3*(x^2+a^2)^2),x) --R 2a x + 2a x --R Type: Union(Expression Integer,...) --E + +--S 53 +bb:=-1/(2*a^4*x^2)-1/(2*a^4*(x^2+a^2))-1/a^6*log(x^2/(x^2+a^2)) +--R +--R 2 +--R 4 2 2 x 2 2 4 +--R (- 2x - 2a x )log(-------) - 2a x - a +--R 2 2 +--R x + a +--R (2) ---------------------------------------- +--R 6 4 8 2 +--R 2a x + 2a x +--R Type: Expression Integer +--E + +--S 54 +cc:=aa-bb +--R +--R 2 +--R 2 2 x +--R log(x + a ) - 2log(x) + log(-------) +--R 2 2 +--R x + a +--R (3) ------------------------------------- +--R 6 +--R a +--R Type: Expression Integer +--E + +--S 55 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 56 +dd:=divlog cc +--R +--R 2 +--R log(x ) - 2log(x) +--R (5) ----------------- +--R 6 +--R a +--R Type: Expression Integer +--E + +--S 57 +logpow:=rule(log(a^n) == n*log(a)) +--R +--R n +--R (6) log(a ) == n log(a) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 58 14:138 Schaums and Axiom agree +ee:=logpow dd +--R +--R (7) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.139~~~~~$\displaystyle\int{\frac{dx}{(x^2+a^2)^n}}$} @@ -291,7 +728,7 @@ $$ <<*>>= )clear all ---S 15 of 19 +--S 59 14:139 Axiom cannot do this integral aa:=integrate(1/((x^2+a^2)^n),x) --R --R @@ -311,7 +748,7 @@ $$ <<*>>= )clear all ---S 16 of 19 +--S 60 aa:=integrate(x/((x^2+a^2)^n),x) --R --R @@ -323,6 +760,48 @@ aa:=integrate(x/((x^2+a^2)^n),x) --R (2n - 2)%e --R Type: Union(Expression Integer,...) --E + +--S 61 +bb:=-1/(2*(n-1)*(x^2+a^2)^(n-1)) +--R +--R 1 +--R (2) - ---------------------- +--R 2 2 n - 1 +--R (2n - 2)(x + a ) +--R Type: Expression Integer +--E + +--S 62 +cc:=aa-bb +--R +--R 2 2 +--R n log(x + a ) 2 2 2 2 n - 1 +--R %e + (- x - a )(x + a ) +--R (3) -------------------------------------------- +--R 2 2 +--R 2 2 n - 1 n log(x + a ) +--R (2n - 2)(x + a ) %e +--R Type: Expression Integer +--E + +--S 63 +explog:=rule(%e^(n*log(x)) == x^n) +--R +--R n log(x) n +--R (4) %e == x +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 64 14:140 Schaums and Axiom cannot simplify this expression +dd:=explog cc +--R +--R 2 2 n 2 2 2 2 n - 1 +--R (x + a ) + (- x - a )(x + a ) +--R (5) -------------------------------------- +--R 2 2 n - 1 2 2 n +--R (2n - 2)(x + a ) (x + a ) +--R Type: Expression Integer +--E @ \section{\cite{1}:14.141~~~~~$\displaystyle\int{\frac{dx}{x(x^2+a^2)^n}}$} @@ -333,7 +812,7 @@ $$ <<*>>= )clear all ---S 17 of 19 +--S 65 14:141 Axiom cannot do this integral aa:=integrate(1/(x*(x^2+a^2)^n),x) --R --R @@ -354,7 +833,7 @@ $$ <<*>>= )clear all ---S 18 of 19 +--S 66 14:142 Axiom cannot do this integral aa:=integrate(x^m/((x^2+a^2)^n),x) --R --R @@ -375,7 +854,7 @@ $$ <<*>>= )clear all ---S 19 of 19 +--S 67 14:143 Axiom cannot do this integral aa:=integrate(1/(x^m*(x^2+a^2)^n),x) --R --R diff --git a/src/input/schaum7.input.pamphlet b/src/input/schaum7.input.pamphlet index 9226da0..3062d2e 100644 --- a/src/input/schaum7.input.pamphlet +++ b/src/input/schaum7.input.pamphlet @@ -16,7 +16,7 @@ $$\int{\frac{1}{x^2-a^2}}=-\frac{1}{a}\coth^{-1}\frac{x}{a}$$ )set message auto off )clear all ---S 1 of 19 +--S 1 aa:=integrate(1/(x^2-a^2),x) --R --R @@ -25,6 +25,45 @@ aa:=integrate(1/(x^2-a^2),x) --R 2a --R Type: Union(Expression Integer,...) --E + +--S 2 +bb:=1/(2*a)*log((x-a)/(x+a)) +--R +--R x - a +--R log(-----) +--R x + a +--R (2) ---------- +--R 2a +--R Type: Expression Integer +--E + +--S 3 +cc:=aa-bb +--R +--R x - a +--R - log(x + a) + log(x - a) - log(-----) +--R x + a +--R (3) -------------------------------------- +--R 2a +--R Type: Expression Integer +--E + +--S 4 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 5 14:144 Schaums and Axiom agree +dd:=divlog cc +--R +--R (5) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.145~~~~~$\displaystyle\int{\frac{x~dx}{x^2-a^2}}$} @@ -32,7 +71,7 @@ $$\int{\frac{x}{x^2-a^2}}=\frac{1}{2}\ln(x^2-a^2)$$ <<*>>= )clear all ---S 2 of 19 +--S 6 aa:=integrate(x/(x^2-a^2),x) --R --R @@ -42,6 +81,24 @@ aa:=integrate(x/(x^2-a^2),x) --R 2 --R Type: Union(Expression Integer,...) --E + +--S 7 +bb:=1/2*log(x^2-a^2) +--R +--R 2 2 +--R log(x - a ) +--R (2) ------------ +--R 2 +--R Type: Expression Integer +--E + +--S 8 14:145 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.146~~~~~$\displaystyle\int{\frac{x^2~dx}{x^2-a^2}}$} @@ -49,7 +106,7 @@ $$\int{\frac{x^2}{x^2-a^2}}=x+\frac{a}{2}\ln\left(\frac{x-a}{x+a}\right)$$ <<*>>= )clear all ---S 3 of 19 +--S 9 aa:=integrate(x^2/(x^2-a^2),x) --R --R @@ -58,6 +115,45 @@ aa:=integrate(x^2/(x^2-a^2),x) --R 2 --R Type: Union(Expression Integer,...) --E + +--S 10 +bb:=x+a/2*log((x-a)/(x+a)) +--R +--R x - a +--R a log(-----) + 2x +--R x + a +--R (2) ----------------- +--R 2 +--R Type: Expression Integer +--E + +--S 11 +cc:=aa-bb +--R +--R x - a +--R - a log(x + a) + a log(x - a) - a log(-----) +--R x + a +--R (3) -------------------------------------------- +--R 2 +--R Type: Expression Integer +--E + +--S 12 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 13 14:146 Schaums and Axiom agree +dd:=divlog cc +--R +--R (5) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.147~~~~~$\displaystyle\int{\frac{x^3~dx}{x^2-a^2}}$} @@ -66,7 +162,7 @@ $$\int{\frac{x^3}{x^2-a^2}}=\frac{x^2}{2}+\frac{a^2}{2}\ln(x^2-a^2)$$ <<*>>= )clear all ---S 4 of 19 +--S 14 aa:=integrate(x^3/(x^2-a^2),x) --R --R @@ -76,6 +172,24 @@ aa:=integrate(x^3/(x^2-a^2),x) --R 2 --R Type: Union(Expression Integer,...) --E + +--S 15 +bb:=x^2/2+a^2/2*log(x^2-a^2) +--R +--R 2 2 2 2 +--R a log(x - a ) + x +--R (2) ------------------- +--R 2 +--R Type: Expression Integer +--E + +--S 16 14:147 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.148~~~~~$\displaystyle\int{\frac{dx}{x(x^2-a^2)}}$} @@ -85,7 +199,7 @@ $$ <<*>>= )clear all ---S 5 of 19 +--S 17 aa:=integrate(1/(x*(x^2-a^2)),x) --R --R @@ -96,6 +210,70 @@ aa:=integrate(1/(x*(x^2-a^2)),x) --R 2a --R Type: Union(Expression Integer,...) --E + +--S 18 +bb:=1/(2*a^2)*log((x^2-a^2)/x^2) +--R +--R 2 2 +--R x - a +--R log(-------) +--R 2 +--R x +--R (2) ------------ +--R 2 +--R 2a +--R Type: Expression Integer +--E + +--S 19 +cc:=aa-bb +--R +--R 2 2 +--R 2 2 x - a +--R log(x - a ) - 2log(x) - log(-------) +--R 2 +--R x +--R (3) ------------------------------------- +--R 2 +--R 2a +--R Type: Expression Integer +--E + +--S 20 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 21 +dd:=divlog cc +--R +--R 2 +--R log(x ) - 2log(x) +--R (5) ----------------- +--R 2 +--R 2a +--R Type: Expression Integer +--E + +--S 22 +logpow:=rule(log(a^n) == n*log(a)) +--R +--R n +--R (6) log(a ) == n log(a) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 23 14:148 Schaums and Axiom agree +ee:=logpow dd +--R +--R (7) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.149~~~~~$\displaystyle\int{\frac{dx}{x^2(x^2-a^2)}}$} @@ -105,7 +283,7 @@ $$ <<*>>= )clear all ---S 6 of 19 +--S 24 aa:=integrate(1/(x^2*(x^2-a^2)),x) --R --R @@ -115,6 +293,47 @@ aa:=integrate(1/(x^2*(x^2-a^2)),x) --R 2a x --R Type: Union(Expression Integer,...) --E + +--S 25 +bb:=1/(a^2*x)+1/(2*a^3)*log((x-a)/(x+a)) +--R +--R x - a +--R x log(-----) + 2a +--R x + a +--R (2) ----------------- +--R 3 +--R 2a x +--R Type: Expression Integer +--E + +--S 26 +cc:=aa-bb +--R +--R x - a +--R - log(x + a) + log(x - a) - log(-----) +--R x + a +--R (3) -------------------------------------- +--R 3 +--R 2a +--R Type: Expression Integer +--E + +--S 27 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 28 14:149 Schaums and Axiom agree +dd:=divlog cc +--R +--R (5) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.150~~~~~$\displaystyle\int{\frac{dx}{x^3(x^2-a^2)}}$} @@ -124,7 +343,7 @@ $$ <<*>>= )clear all ---S 7 of 19 +--S 29 aa:=integrate(1/(x^3*(x^2-a^2)),x) --R --R @@ -135,6 +354,73 @@ aa:=integrate(1/(x^3*(x^2-a^2)),x) --R 2a x --R Type: Union(Expression Integer,...) --E + +--S 30 +bb:=1/(2*a^2*x*2)-1/(2*a^4)*log(x^2/(x^2-a^2)) +--R +--R 2 +--R x 2 +--R - 2x log(-------) + a +--R 2 2 +--R x - a +--R (2) ---------------------- +--R 4 +--R 4a x +--R Type: Expression Integer +--E + +--S 31 +cc:=aa-bb +--R +--R 2 +--R 2 2 2 2 2 x 2 2 +--R 2x log(x - a ) - 4x log(x) + 2x log(-------) - a x + 2a +--R 2 2 +--R x - a +--R (3) --------------------------------------------------------- +--R 4 2 +--R 4a x +--R Type: Expression Integer +--E + +--S 32 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 33 +dd:=divlog cc +--R +--R 2 2 2 2 2 +--R 2x log(x ) - 4x log(x) - a x + 2a +--R (5) ---------------------------------- +--R 4 2 +--R 4a x +--R Type: Expression Integer +--E + +--S 34 +logpow:=rule(log(a^n) == n*log(a)) +--R +--R n +--R (6) log(a ) == n log(a) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 35 14:150 Schaums and Axiom DISAGREE BY A NON-CONSTANT +ee:=logpow dd +--R +--R - x + 2 +--R (7) ------- +--R 2 2 +--R 4a x +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.151~~~~~$\displaystyle\int{\frac{dx}{(x^2-a^2)^2}}$} @@ -144,7 +430,7 @@ $$ <<*>>= )clear all ---S 8 of 19 +--S 36 aa:=integrate(1/((x^2-a^2)^2),x) --R --R @@ -155,6 +441,47 @@ aa:=integrate(1/((x^2-a^2)^2),x) --R 4a x - 4a --R Type: Union(Expression Integer,...) --E + +--S 37 +bb:=-x/(2*a^2*(x^2-a^2))-1/(4*a^3)*log((x-a)/(x+a)) +--R +--R 2 2 x - a +--R (- x + a )log(-----) - 2a x +--R x + a +--R (2) ---------------------------- +--R 3 2 5 +--R 4a x - 4a +--R Type: Expression Integer +--E + +--S 38 +cc:=aa-bb +--R +--R x - a +--R log(x + a) - log(x - a) + log(-----) +--R x + a +--R (3) ------------------------------------ +--R 3 +--R 4a +--R Type: Expression Integer +--E + +--S 39 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 40 14:151 Schaums and Axiom agree +dd:=divlog cc +--R +--R (5) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.152~~~~~$\displaystyle\int{\frac{x~dx}{(x^2-a^2)^2}}$} @@ -164,7 +491,7 @@ $$ <<*>>= )clear all ---S 9 of 19 +--S 41 aa:=integrate(x/((x^2-a^2)^2),x) --R --R @@ -174,6 +501,24 @@ aa:=integrate(x/((x^2-a^2)^2),x) --R 2x - 2a --R Type: Union(Expression Integer,...) --E + +--S 42 +bb:=-1/(2*(x^2-a^2)) +--R +--R 1 +--R (2) - --------- +--R 2 2 +--R 2x - 2a +--R Type: Fraction Polynomial Integer +--E + +--S 43 14:152 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.153~~~~~$\displaystyle\int{\frac{x^2dx}{(x^2-a^2)^2}}$} @@ -183,7 +528,7 @@ $$ <<*>>= )clear all ---S 10 of 19 +--S 44 aa:=integrate(x^2/((x^2-a^2)^2),x) --R --R @@ -194,6 +539,46 @@ aa:=integrate(x^2/((x^2-a^2)^2),x) --R 4a x - 4a --R Type: Union(Expression Integer,...) --E + +--S 45 +bb:=-x/(2*(x^2-a^2))+1/(4*a)*log((x-a)/(x+a)) +--R +--R 2 2 x - a +--R (x - a )log(-----) - 2a x +--R x + a +--R (2) -------------------------- +--R 2 3 +--R 4a x - 4a +--R Type: Expression Integer +--E + +--S 46 +cc:=aa-bb +--R +--R x - a +--R - log(x + a) + log(x - a) - log(-----) +--R x + a +--R (3) -------------------------------------- +--R 4a +--R Type: Expression Integer +--E + +--S 47 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 48 14:153 Schaums and Axiom agree +dd:=divlog cc +--R +--R (5) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.154~~~~~$\displaystyle\int{\frac{x^3dx}{(x^2-a^2)^2}}$} @@ -203,7 +588,7 @@ $$ <<*>>= )clear all ---S 11 of 19 +--S 49 aa:=integrate(x^3/((x^2-a^2)^2),x) --R --R @@ -214,6 +599,25 @@ aa:=integrate(x^3/((x^2-a^2)^2),x) --R 2x - 2a --R Type: Union(Expression Integer,...) --E + +--S 50 +bb:=-a^2/(2*(x^2-a^2))+1/2*log(x^2-a^2) +--R +--R 2 2 2 2 2 +--R (x - a )log(x - a ) - a +--R (2) -------------------------- +--R 2 2 +--R 2x - 2a +--R Type: Expression Integer +--E + +--S 51 14:154 Schaums and Axiom agree +cc:=aa-bb +--R +--R (3) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.155~~~~~$\displaystyle\int{\frac{dx}{x(x^2-a^2)^2}}$} @@ -223,7 +627,7 @@ $$ <<*>>= )clear all ---S 12 of 19 +--S 52 aa:=integrate(1/(x*(x^2-a^2)^2),x) --R --R @@ -234,6 +638,70 @@ aa:=integrate(1/(x*(x^2-a^2)^2),x) --R 2a x - 2a --R Type: Union(Expression Integer,...) --E + +--S 53 +bb:=-1/(2*a^2*(x^2-a^2))+1/(2*a^4)*log(x^2/(x^2-a^2)) +--R +--R 2 +--R 2 2 x 2 +--R (x - a )log(-------) - a +--R 2 2 +--R x - a +--R (2) -------------------------- +--R 4 2 6 +--R 2a x - 2a +--R Type: Expression Integer +--E + +--S 54 +cc:=aa-bb +--R +--R 2 +--R 2 2 x +--R - log(x - a ) + 2log(x) - log(-------) +--R 2 2 +--R x - a +--R (3) --------------------------------------- +--R 4 +--R 2a +--R Type: Expression Integer +--E + +--S 55 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 56 +dd:=divlog cc +--R +--R 2 +--R - log(x ) + 2log(x) +--R (5) ------------------- +--R 4 +--R 2a +--R Type: Expression Integer +--E + +--S 57 +logpow:=rule(log(a^n) == n*log(a)) +--R +--R n +--R (6) log(a ) == n log(a) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 58 14:155 Schaums and Axiom agree +ee:=logpow dd +--R +--R (7) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.156~~~~~$\displaystyle\int{\frac{dx}{x^2(x^2-a^2)^2}}$} @@ -244,17 +712,57 @@ $$ <<*>>= )clear all ---S 13 of 19 -aa:=integrate(1/((x^2-a^2)^2),x) ---R +--S 59 +aa:=integrate(1/(x^2*(x^2-a^2)^2),x) --R ---R 2 2 2 2 ---R (x - a )log(x + a) + (- x + a )log(x - a) - 2a x ---R (1) -------------------------------------------------- ---R 3 2 5 ---R 4a x - 4a +--R 3 2 3 2 2 3 +--R (3x - 3a x)log(x + a) + (- 3x + 3a x)log(x - a) - 6a x + 4a +--R (1) --------------------------------------------------------------- +--R 5 3 7 +--R 4a x - 4a x --R Type: Union(Expression Integer,...) --E + +--S 60 +bb:=-1/(a^4*x)-x/(2*a^4*(x^2-a^2))-3/(4*a^5)*log((x-a)/(x+a)) +--R +--R 3 2 x - a 2 3 +--R (- 3x + 3a x)log(-----) - 6a x + 4a +--R x + a +--R (2) -------------------------------------- +--R 5 3 7 +--R 4a x - 4a x +--R Type: Expression Integer +--E + +--S 61 +cc:=aa-bb +--R +--R x - a +--R 3log(x + a) - 3log(x - a) + 3log(-----) +--R x + a +--R (3) --------------------------------------- +--R 5 +--R 4a +--R Type: Expression Integer +--E + +--S 62 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 63 14:156 Schaums and Axiom agree +dd:=divlog cc +--R +--R (5) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.157~~~~~$\displaystyle\int{\frac{dx}{x^3(x^2-a^2)^2}}$} @@ -265,7 +773,7 @@ $$ <<*>>= )clear all ---S 14 of 19 +--S 64 aa:=integrate(1/(x^3*(x^2-a^2)^2),x) --R --R @@ -276,6 +784,70 @@ aa:=integrate(1/(x^3*(x^2-a^2)^2),x) --R 2a x - 2a x --R Type: Union(Expression Integer,...) --E + +--S 65 +bb:=-1/(2*a^4*x^2)-1/(2*a^4*(x^2-a^2))+1/a^6*log(x^2/(x^2-a^2)) +--R +--R 2 +--R 4 2 2 x 2 2 4 +--R (2x - 2a x )log(-------) - 2a x + a +--R 2 2 +--R x - a +--R (2) -------------------------------------- +--R 6 4 8 2 +--R 2a x - 2a x +--R Type: Expression Integer +--E + +--S 66 +cc:=aa-bb +--R +--R 2 +--R 2 2 x +--R - log(x - a ) + 2log(x) - log(-------) +--R 2 2 +--R x - a +--R (3) --------------------------------------- +--R 6 +--R a +--R Type: Expression Integer +--E + +--S 67 +divlog:=rule(log(a/b) == log(a) - log(b)) +--R +--R a +--R (4) log(-) == - log(b) + log(a) +--R b +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 68 +dd:=divlog cc +--R +--R 2 +--R - log(x ) + 2log(x) +--R (5) ------------------- +--R 6 +--R a +--R Type: Expression Integer +--E + +--S 69 +logpow:=rule(log(a^n) == n*log(a)) +--R +--R n +--R (6) log(a ) == n log(a) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 70 14:157 Schaums and Axiom agree +ee:=logpow dd +--R +--R (7) 0 +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.158~~~~~$\displaystyle\int{\frac{dx}{(x^2-a^2)^n}}$} @@ -286,7 +858,7 @@ $$ <<*>>= )clear all ---S 15 of 19 +--S 71 14:158 Axiom cannot do this integral aa:=integrate(1/((x^2-a^2)^n),x) --R --R @@ -306,7 +878,7 @@ $$ <<*>>= )clear all ---S 16 of 19 +--S 72 aa:=integrate(x/((x^2-a^2)^n),x) --R --R @@ -318,6 +890,49 @@ aa:=integrate(x/((x^2-a^2)^n),x) --R (2n - 2)%e --R Type: Union(Expression Integer,...) --E + +--S 73 +bb:=-1/(2*(n-1)*(x^2-a^2)^(n-1)) +--R +--R 1 +--R (2) - ---------------------- +--R 2 2 n - 1 +--R (2n - 2)(x - a ) +--R Type: Expression Integer +--E + +--S 74 +cc:=aa-bb +--R +--R 2 2 +--R n log(x - a ) 2 2 2 2 n - 1 +--R %e + (- x + a )(x - a ) +--R (3) -------------------------------------------- +--R 2 2 +--R 2 2 n - 1 n log(x - a ) +--R (2n - 2)(x - a ) %e +--R Type: Expression Integer +--E + +--S 75 +explog:=rule(%e^(n*log(x)) == x^n) +--R +--R n log(x) n +--R (4) %e == x +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E + +--S 76 14:159 Axiom cannot simplify this expression +dd:=explog cc +--R +--R 2 2 n 2 2 2 2 n - 1 +--R (x - a ) + (- x + a )(x - a ) +--R (5) -------------------------------------- +--R 2 2 n - 1 2 2 n +--R (2n - 2)(x - a ) (x - a ) +--R Type: Expression Integer +--E + @ \section{\cite{1}:14.160~~~~~$\displaystyle\int{\frac{dx}{x(x^2-a^2)^n}}$} @@ -328,7 +943,7 @@ $$ <<*>>= )clear all ---S 17 of 19 +--S 77 14:160 Axiom cannot compute this integral aa:=integrate(1/(x*(x^2-a^2)^n),x) --R --R @@ -349,7 +964,7 @@ $$ <<*>>= )clear all ---S 18 of 19 +--S 78 14:161 Axiom cannot compute this integral aa:=integrate(x^m/((x^2-a^2)^n),x) --R --R @@ -370,7 +985,7 @@ $$ <<*>>= )clear all ---S 19 of 19 +--S 79 14:162 Axiom cannot compute this integral aa:=integrate(1/(x^m*(x^2-a^2)^n),x) --R --R