diff --git a/books/bookvol0.pamphlet b/books/bookvol0.pamphlet index 68278a6..f529554 100644 --- a/books/bookvol0.pamphlet +++ b/books/bookvol0.pamphlet @@ -86,10 +86,7 @@ \def\erf{\mathop{\rm erf}\nolimits} \def\zag#1#2{ - {{\hfill \left. {#1} \right|} - \over - {\left| {#2} \right. \hfill} - } + {\frac{\hfill \left. {#1} \right|}{\left| {#2} \right. \hfill}} } @@ -338,18 +335,18 @@ mathematical problem solving. Do you need to solve an equation, to expand a series, or to obtain an integral? If so, just ask Axiom to do it. -Given $$\int\left({{1\over{(x^3 \ {(a+b x)}^{1/3})}}}\right)dx$$ +Given $$\int\left({{\frac{1}{(x^3 \ {(a+b x)}^{1/3})}}}\right)dx$$ we would enter this into Axiom as: \spadcommand{integrate(1/(x**3 * (a+b*x)**(1/3)),x)} which would give the result: $$ -{\left( +\frac{\left( \begin{array}{@{}l} \displaystyle --{2 \ {b^2}\ {x^2}\ {\sqrt{3}}\ {\log \left({{{\root{3}\of{a}}\ {{\root{3}\of{{b -\ x}+ a}}^2}}+{{{\root{3}\of{a}}^2}\ {\root{3}\of{{b \ x}+ -a}}}+ a}\right)}}+ +-{2 \ {b^2}\ {x^2}\ {\sqrt{3}}\ {\log +\left({{{\root{3}\of{a}}\ {{\root{3}\of{{b \ x}+ a}}^2}} ++{{{\root{3}\of{a}}^2}\ {\root{3}\of{{b \ x}+ a}}}+ a}\right)}}+ \\ \\ \displaystyle @@ -358,16 +355,15 @@ a}}}+ a}\right)}}+ \\ \\ \displaystyle -{{12}\ {b^2}\ {x^2}\ {\arctan \left({{{2 \ {\sqrt{3}}\ {{\root{3}\of{a}}^ -2}\ {\root{3}\of{{b \ x}+ a}}}+{a \ {\sqrt{3}}}}\over{3 \ a}}\right)}}+ - +{{12}\ {b^2}\ {x^2}\ {\arctan \left({\frac{{2 \ {\sqrt{3}}\ {{\root{3}\of{a}}^ +2}\ {\root{3}\of{{b \ x}+ a}}}+{a \ {\sqrt{3}}}}{3 \ a}}\right)}}+ \\ \\ \displaystyle -{{\left({{12}\ b \ x}-{9 \ a}\right)}\ {\sqrt{3}}\ {\root{3}\of{a}}\ {{\root{3}\of{{b -\ x}+ a}}^2}} +{{\left({{12}\ b \ x}-{9 \ a}\right)} +\ {\sqrt{3}}\ {\root{3}\of{a}}\ {{\root{3}\of{{b \ x}+ a}}^2}} \end{array} -\right)}\over{{18}\ {a^2}\ {x^2}\ {\sqrt{3}}\ {\root{3}\of{a}}} +\right)}{{18}\ {a^2}\ {x^2}\ {\sqrt{3}}\ {\root{3}\of{a}}} $$ \returnType{Type: Union(Expression Integer,...)} Axiom provides state-of-the-art algebraic machinery to handle your @@ -521,9 +517,12 @@ What is the tenth Legendre polynomial? Compiling function p as a recurrence relation. \end{verbatim} $$ -{{{46189} \over {256}} \ {x \sp {10}}} -{{{109395} \over {256}} \ {x \sp -8}}+{{{45045} \over {128}} \ {x \sp 6}} -{{{15015} \over {128}} \ {x \sp -4}}+{{{3465} \over {256}} \ {x \sp 2}} -{{63} \over {256}} +{{\frac{46189}{256}} \ {x \sp {10}}} +-{{\frac{109395}{256}} \ {x \sp 8}} ++{{\frac{45045}{128}} \ {x \sp 6}} +-{{\frac{15015}{128}} \ {x \sp 4}} ++{{\frac{3465}{256}} \ {x \sp 2}} +-{\frac{63}{256}} $$ \returnType{Type: Polynomial Fraction Integer} Axiom applies the above pieces for $p$ to obtain the value @@ -540,7 +539,7 @@ What is the coefficient of $x^{90}$ in $p(90)$? \spadcommand{coefficient(p(90),x,90)} $$ -{5688265542052017822223458237426581853561497449095175} \over +\frac{5688265542052017822223458237426581853561497449095175} {77371252455336267181195264} $$ \returnType{Type: Polynomial Fraction Integer} @@ -562,32 +561,34 @@ Create the infinite stream of derivatives of Legendre polynomials. $$ \begin{array}{@{}l} \displaystyle -\left[ 1, {3 \ x}, {{{{15}\over 2}\ {x^2}}-{3 \over 2}}, - {{{{35}\over 2}\ {x^3}}-{{{15}\over 2}\ x}}, {{{{315}\over -8}\ {x^4}}-{{{105}\over 4}\ {x^2}}+{{15}\over 8}}, \right. +\left[ 1, {3 \ x}, +{{{\frac{15}{2}}\ {x^2}}-{\frac{3}{2}}}, +{{{\frac{35}{2}}\ {x^3}}-{{\frac{15}{2}}\ x}}, +{{{\frac{315}{8}}\ {x^4}}-{{\frac{105}{4}}\ {x^2}}+{\frac{15}{8}}}, \right. \\ \\ \displaystyle -\left.{{{{693}\over 8}\ {x^5}}-{{{315}\over 4}\ {x^3}}+{{{105}\over -8}\ x}}, {{{{3003}\over{16}}\ {x^6}}-{{{3465}\over{16}}\ {x^ -4}}+{{{945}\over{16}}\ {x^2}}-{{35}\over{16}}}, \right. +\left.{{{\frac{693}{8}}\ {x^5}}-{{\frac{315}{4}}\ {x^3}} ++{{\frac{105}{8}}\ x}}, +{{{\frac{3003}{16}}\ {x^6}}-{{\frac{3465}{16}}\ {x^4}} ++{{\frac{945}{16}}\ {x^2}}-{\frac{35}{16}}}, \right. \\ \\ \displaystyle -\left.{{{{6435}\over{16}}\ {x^7}}-{{{9009}\over{16}}\ {x^5}}+ -{{{3465}\over{16}}\ {x^3}}-{{{315}\over{16}}\ x}}, \right. +\left.{{{\frac{6435}{16}}\ {x^7}}-{{\frac{9009}{16}}\ {x^5}}+ +{{\frac{3465}{16}}\ {x^3}}-{{\frac{315}{16}}\ x}}, \right. \\ \\ \displaystyle -\left.{{{{109395}\over{128}}\ {x^8}}-{{{45045}\over{32}}\ {x^ -6}}+{{{45045}\over{64}}\ {x^4}}-{{{3465}\over{32}}\ {x^2}}+{{3 -15}\over{128}}}, \right. +\left.{{{\frac{109395}{128}}\ {x^8}}-{{\frac{45045}{32}}\ {x^6}} ++{{\frac{45045}{64}}\ {x^4}}-{{\frac{3465}{32}}\ {x^2}} ++{\frac{315}{128}}}, \right. \\ \\ \displaystyle -\left.{{{{230945}\over{128}}\ {x^9}}-{{{109395}\over{32}}\ {x^ -7}}+{{{135135}\over{64}}\ {x^5}}-{{{15015}\over{32}}\ {x^3}}+ -{{{3465}\over{128}}\ x}}, \ldots \right] +\left.{{{\frac{230945}{128}}\ {x^9}}-{{\frac{109395}{32}}\ {x^7}} ++{{\frac{135135}{64}}\ {x^5}}-{{\frac{15015}{32}}\ {x^3}}+ +{{\frac{3465}{128}}\ x}}, \ldots \right] \end{array} $$ \returnType{Type: Stream Polynomial Fraction Integer} @@ -613,16 +614,16 @@ about $x=\pi/2$? $$ \begin{array}{@{}l} \displaystyle -{\log \left({{-{2 \ x}+ \pi}\over 2}\right)}+ -{{1 \over 3}\ {{\left(x -{\pi \over 2}\right)}^2}}+ -{{7 \over{90}}\ {{\left(x -{\pi \over 2}\right)}^4}}+ -{{{62}\over{2835}}\ {{\left(x -{\pi \over 2}\right)}^6}}+ +{\log \left({\frac{-{2 \ x}+ \pi}{2}}\right)}+ +{{\frac{1}{3}}\ {{\left(x -{\frac{\pi}{2}}\right)}^2}}+ +{{\frac{7}{90}}\ {{\left(x -{\frac{\pi}{2}}\right)}^4}}+ +{{\frac{62}{2835}}\ {{\left(x -{\frac{\pi}{2}}\right)}^6}}+ \\ \\ \displaystyle -{{{127}\over{18900}}\ {{\left(x -{\pi \over 2}\right)}^8}}+ -{{{146}\over{66825}}\ {{\left(x -{\pi \over 2}\right)}^{10}}}+ -{O \left({{\left(x -{\pi \over 2}\right)}^{11}}\right)} +{{\frac{127}{18900}}\ {{\left(x -{\frac{\pi}{2}}\right)}^8}}+ +{{\frac{146}{66825}}\ {{\left(x -{\frac{\pi}{2}}\right)}^{10}}}+ +{O \left({{\left(x -{\frac{\pi}{2}}\right)}^{11}}\right)} \end{array} $$ \returnType{Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)} @@ -635,7 +636,7 @@ term of this series? \spadcommand{coefficient(\%,50)} $$ -{44590788901016030052447242300856550965644} \over +\frac{44590788901016030052447242300856550965644} {7131469286438669111584090881309360354581359130859375} $$ \returnType{Type: Expression Integer} @@ -671,8 +672,8 @@ are fractions. $$ \left[ \begin{array}{cc} -{1 \over {x+i}} & 0 \\ -{1 \over {{2 \ x}+{2 \ i}}} & -{1 \over 2} +{\frac{1}{x+i}} & 0 \\ +{\frac{1}{{2 \ x}+{2 \ i}}} & -{\frac{1}{2}} \end{array} \right] $$ @@ -759,8 +760,8 @@ Solve the system $S$ using rational number arithmetic and \spadcommand{solve(S,1/10**30)} $$ \left[ -{\left[ {y=-2}, {x={{1757879671211184245283070414507} \over -{2535301200456458802993406410752}}} +{\left[ {y=-2}, {x={ +\frac{1757879671211184245283070414507}{2535301200456458802993406410752}}} \right]}, {\left[ {y=2}, {x=-1} \right]} @@ -775,19 +776,21 @@ $$ \begin{array}{@{}l} \displaystyle \left[{\left[{y = 2}, {x = - 1}\right]}, {\left[{y = 2}, -{x ={{-{\sqrt{- 3}}+ 1}\over 2}}\right]}, \right. +{x ={\frac{-{\sqrt{- 3}}+ 1}{2}}}\right]}, \right. \\ \\ \displaystyle -\left.{\left[{y = 2}, {x ={{{\sqrt{- 3}}+ 1}\over 2}}\right]}, - {\left[{y = - 2}, {x ={1 \over{\root{3}\of{3}}}}\right]}, +\left.{\left[{y = 2}, {x ={\frac{{\sqrt{- 3}}+ 1}{2}}}\right]}, + {\left[{y = - 2}, {x ={\frac{1}{\root{3}\of{3}}}}\right]}, \right. \\ \\ \displaystyle -\left.{\left[{y = - 2}, {x ={{{{\sqrt{- 1}}\ {\sqrt{3}}}- 1}\over{2 -\ {\root{3}\of{3}}}}}\right]}, {\left[{y = - 2}, {x ={{-{{\sqrt{- - 1}}\ {\sqrt{3}}}- 1}\over{2 \ {\root{3}\of{3}}}}}\right]}\right] +\left.{\left[{y = - 2}, +{x ={\frac{{{\sqrt{- 1}}\ {\sqrt{3}}}- 1}{2 \ {\root{3}\of{3}}}}}\right]}, +{\left[{y = - 2}, +{x ={\frac{-{{\sqrt{- 1}}\ {\sqrt{3}}}- 1}{2 \ {\root{3}\of{3}}}}}\right]} +\right] \end{array} $$ \returnType{Type: List List Equation Expression Integer} @@ -1220,7 +1223,7 @@ but integer division isn't quite so obvious. For example, if one types: \spadcommand{4/6} $$ -2 \over 3 +\frac{2}{3} $$ \returnType{Type: Fraction Integer} @@ -1255,7 +1258,7 @@ following conversion appears to be without error but others might not: \spadcommand{\%::Fraction Integer} $$ -{23} \over 5 +\frac{23}{5} $$ \returnType{Type: Fraction Integer} @@ -1536,7 +1539,7 @@ entered just like other expressions. \spadcommand{(2/3 + \%i)**3} $$ --{{46} \over {27}}+{{1 \over 3} \ i} +-{\frac{46}{27}}+{{\frac{1}{3}} \ i} $$ \returnType{Type: Complex Fraction Integer} @@ -1677,25 +1680,25 @@ reverse: \spadcommand{partialFraction(234,40)} $$ -6 -{3 \over {2 \sp 2}}+{3 \over 5} +6 -{\frac{3}{2 \sp 2}}+{\frac{3}{5}} $$ \returnType{Type: PartialFraction Integer} \spadcommand{padicFraction(\%)} $$ -6 -{1 \over 2} -{1 \over {2 \sp 2}}+{3 \over 5} +6 -{\frac{1}{2}} -{\frac{1}{2 \sp 2}}+{\frac{3}{5}} $$ \returnType{Type: PartialFraction Integer} \spadcommand{compactFraction(\%)} $$ -6 -{3 \over {2 \sp 2}}+{3 \over 5} +6 -{\frac{3}{2 \sp 2}}+{\frac{3}{5}} $$ \returnType{Type: PartialFraction Integer} \spadcommand{padicFraction(234/40)} $$ -{117} \over {20} +\frac{117}{20} $$ \returnType{Type: PartialFraction Fraction Integer} @@ -1708,7 +1711,7 @@ be found using the function {\bf numberOf FractionalTerms}: \spadcommand{t := partialFraction(234,40)} $$ -6 -{3 \over {2 \sp 2}}+{3 \over 5} +6 -{\frac{3}{2 \sp 2}}+{\frac{3}{5}} $$ \returnType{Type: PartialFraction Integer} @@ -1726,7 +1729,7 @@ $$ \spadcommand{p := nthFractionalTerm(t,1)} $$ --{3 \over {2 \sp 2}} +-{\frac{3}{2 \sp 2}} $$ \returnType{Type: PartialFraction Integer} @@ -2633,7 +2636,7 @@ $$ \spadcommand{vector([1/2,1/3,1/14])} $$ \left[ -{1 \over 2}, {1 \over 3}, {1 \over {14}} +{\frac{1}{2}}, {\frac{1}{3}}, {\frac{1}{14}} \right] $$ \returnType{Type: Vector Fraction Integer} @@ -3753,14 +3756,14 @@ Axiom puts implicit parentheses around operations of higher precedence, and groups those of equal precedence from left to right. \spadcommand{1 + 2 - 3 / 4 * 3 ** 2 - 1} $$ --{{19} \over 4} +-{\frac{19}{4}} $$ \returnType{Type: Fraction Integer} The above expression is equivalent to this. \spadcommand{((1 + 2) - ((3 / 4) * (3 ** 2))) - 1} $$ --{{19} \over 4} +-{\frac{19}{4}} $$ \returnType{Type: Fraction Integer} @@ -3769,7 +3772,7 @@ the parenthesized subexpressions are evaluated first (from left to right, from inside out). \spadcommand{1 + 2 - 3/ (4 * 3 ** (2 - 1))} $$ -{11} \over 4 +\frac{11}{4} $$ \returnType{Type: Fraction Integer} @@ -3845,7 +3848,7 @@ $$ Here a negative integer exponent produces a fraction. \spadcommand{x**(-8)} $$ -1 \over {x \sp 8} +\frac{1}{x \sp 8} $$ \returnType{Type: Fraction Polynomial Integer} @@ -3888,7 +3891,7 @@ $$ This gives the value $z + 3/5$ (a polynomial) to $x$. \spadcommand{x := z + 3/5} $$ -z+{3 \over 5} +z+{\frac{3}{5}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -4002,7 +4005,7 @@ This produces a polynomial with rational number coefficients. \spadcommand{p := r**2 + 2/3} $$ -{r \sp 2}+{2 \over 3} +{r \sp 2}+{\frac{2}{3}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -4011,7 +4014,7 @@ by using ``{\tt ::}''. \spadcommand{p :: Fraction Polynomial Integer } $$ -{{3 \ {r \sp 2}}+2} \over 3 +\frac{{3 \ {r \sp 2}}+2}{3} $$ \returnType{Type: Fraction Polynomial Integer} @@ -4203,7 +4206,7 @@ Rational number arithmetic is also exact. \spadcommand{r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9} $$ -{55739} \over {2520} +\frac{55739}{2520} $$ \returnType{Type: Fraction Integer} @@ -4212,7 +4215,7 @@ and denominator. \spadcommand{map(factor,r)} $$ -{{139} \ {401}} \over {{2 \sp 3} \ {3 \sp 2} \ 5 \ 7} +\frac{{139} \ {401}}{{2 \sp 3} \ {3 \sp 2} \ 5 \ 7} $$ \returnType{Type: Fraction Factored Integer} @@ -4280,14 +4283,14 @@ Here are complex numbers with rational numbers as real and \index{complex numbers} imaginary parts. \spadcommand{(2/3 + \%i)**3} $$ --{{46} \over {27}}+{{1 \over 3} \ i} +-{\frac{46}{27}}+{{\frac{1}{3}} \ i} $$ \returnType{Type: Complex Fraction Integer} The standard operations on complex numbers are available. \spadcommand{conjugate \% } $$ --{{46} \over {27}} -{{1 \over 3} \ i} +-{\frac{46}{27}} -{{\frac{1}{3}} \ i} $$ \returnType{Type: Complex Fraction Integer} @@ -4350,17 +4353,18 @@ compact format \index{fraction!partial} \spadcommand{partialFraction(1,factorial(10))} $$ -{{159} \over {2 \sp 8}} -{{23} \over {3 \sp 4}} -{{12} \over {5 \sp 2}}+{1 -\over 7} +{\frac{159}{2 \sp 8}} -{\frac{23}{3 \sp 4}} +-{\frac{12}{5 \sp 2}}+{\frac{1}{7}} $$ \returnType{Type: PartialFraction Integer} or expanded format. \spadcommand{padicFraction(\%)} $$ -{1 \over 2}+{1 \over {2 \sp 4}}+{1 \over {2 \sp 5}}+{1 \over {2 \sp 6}}+{1 -\over {2 \sp 7}}+{1 \over {2 \sp 8}} -{2 \over {3 \sp 2}} -{1 \over {3 \sp -3}} -{2 \over {3 \sp 4}} -{2 \over 5} -{2 \over {5 \sp 2}}+{1 \over 7} +{\frac{1}{2}}+{\frac{1}{2 \sp 4}}+{\frac{1}{2 \sp 5}}+{\frac{1}{2 \sp 6}} ++{\frac{1}{2 \sp 7}}+{\frac{1}{2 \sp 8}} -{\frac{2}{3 \sp 2}} +-{\frac{1}{3 \sp 3}} -{\frac{2}{3 \sp 4}} -{\frac{2}{5}} +-{\frac{2}{5 \sp 2}}+{\frac{1}{7}} $$ \returnType{Type: PartialFraction Integer} @@ -4377,7 +4381,7 @@ Of course, there are complex versions of these as well. Axiom decides to make the result a complex rational number. \spadcommand{\% + 2/3*\%i} $$ -{4 \over 7}+{{2 \over 3} \ i} +{\frac{4}{7}}+{{\frac{2}{3}} \ i} $$ \returnType{Type: Complex Fraction Integer} @@ -4473,7 +4477,7 @@ $$ Do some arithmetic. \spadcommand{2/(b - 1)} $$ -2 \over {b -1} +\frac{2}{b -1} $$ \returnType{Type: Expression Integer} @@ -4498,7 +4502,7 @@ $$ If we do this, we should get $b$. \spadcommand{2/\%+1} $$ -{\left( +\frac{\left( \begin{array}{@{}l} \displaystyle {{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ {b^3}}+{{\left({a^ @@ -4506,10 +4510,10 @@ $$ \\ \\ \displaystyle -{{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ b}+{a^4}-{a^ -3}+{2 \ {a^2}}- a + 3 +{{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ b}+{a^4} +-{a^3}+{2 \ {a^2}}- a + 3 \end{array} -\right)}\over{\left( +\right)}{\left( \begin{array}{@{}l} \displaystyle {{\left({a^4}-{a^3}+{2 \ {a^2}}- a + 1 \right)}\ {b^3}}+{{\left({a^ @@ -4667,7 +4671,7 @@ operation {\bf oneDimensionalArray} to a list of elements. \spadcommand{a := oneDimensionalArray [1, -7, 3, 3/2]} $$ \left[ -1, -7, 3, {3 \over 2} +1, -7, 3, {\frac{3}{2}} \right] $$ \returnType{Type: OneDimensionalArray Fraction Integer} @@ -4677,7 +4681,7 @@ constituent elements ``in place.'' \spadcommand{a.3 := 11; a} $$ \left[ -1, -7, {11}, {3 \over 2} +1, -7, {11}, {\frac{3}{2}} \right] $$ \returnType{Type: OneDimensionalArray Fraction Integer} @@ -4820,7 +4824,7 @@ Create sets using braces ``\{`` and ``\}'' rather than brackets. \spadcommand{fs := set[1/3,4/5,-1/3,4/5]} $$ \left\{ --{1 \over 3}, {1 \over 3}, {4 \over 5} +-{\frac{1}{3}}, {\frac{1}{3}}, {\frac{4}{5}} \right\} $$ \returnType{Type: Set Fraction Integer} @@ -4980,10 +4984,10 @@ entries are given by formulas. \index{matrix!Hilbert} $$ \left[ \begin{array}{cccc} --{1 \over {x -2}} & -{1 \over {x -3}} & -{1 \over {x -4}} & -{1 \over {x -5}} \\ --{1 \over {x -3}} & -{1 \over {x -4}} & -{1 \over {x -5}} & -{1 \over {x -6}} \\ --{1 \over {x -4}} & -{1 \over {x -5}} & -{1 \over {x -6}} & -{1 \over {x -7}} \\ --{1 \over {x -5}} & -{1 \over {x -6}} & -{1 \over {x -7}} & -{1 \over {x -8}} +-{\frac{1}{x -2}}&-{\frac{1}{x -3}}&-{\frac{1}{x -4}}&-{\frac{1}{x -5}}\\ +-{\frac{1}{x -3}}&-{\frac{1}{x -4}}&-{\frac{1}{x -5}}&-{\frac{1}{x -6}}\\ +-{\frac{1}{x -4}}&-{\frac{1}{x -5}}&-{\frac{1}{x -6}}&-{\frac{1}{x -7}}\\ +-{\frac{1}{x -5}}&-{\frac{1}{x -6}}&-{\frac{1}{x -7}}&-{\frac{1}{x -8}} \end{array} \right] $$ @@ -5420,28 +5424,21 @@ You can take limits of functions with parameters. \index{limit!of function with parameters} \spadcommand{g := csc(a*x) / csch(b*x)} $$ -{\csc -\left( -{{a \ x}} -\right)} -\over {\csch -\left( -{{b \ x}} -\right)} +\frac{\csc \left({{a \ x}} \right)}{\csch \left({{b \ x}} \right)} $$ \returnType{Type: Expression Integer} As you can see, the limit is expressed in terms of the parameters. \spadcommand{limit(g,x=0)} $$ -b \over a +\frac{b}{a} $$ \returnType{Type: Union(OrderedCompletion Expression Integer,...)} A variable may also approach plus or minus infinity: \spadcommand{h := (1 + k/x)**x} $$ -{{x+k} \over x} \sp x +{\frac{x+k}{x}} \sp x $$ \returnType{Type: Expression Integer} @@ -5500,12 +5497,12 @@ operation {\bf series}. In this example, {\tt sin(a*x)} is expanded in powers of $(x - 0)$, that is, in powers of $x$. \spadcommand{series(sin(a*x),x = 0)} $$ -{a \ x} -{{{a \sp 3} \over 6} \ {x \sp 3}}+{{{a \sp 5} \over {120}} \ {x -\sp 5}} -{{{a \sp 7} \over {5040}} \ {x \sp 7}}+{{{a \sp 9} \over {362880}} -\ {x \sp 9}} -{{{a \sp {11}} \over {39916800}} \ {x \sp {11}}}+{O -\left( -{{x \sp {12}}} -\right)} +{a \ x} -{{\frac{a \sp 3}{6}} \ {x \sp 3}} ++{{\frac{a \sp 5}{120}} \ {x \sp 5}} +-{{\frac{a \sp 7}{5040}} \ {x \sp 7}} ++{{\frac{a \sp 9}{362880}} \ {x \sp 9}} +-{{\frac{a \sp {11}}{39916800}} \ {x \sp {11}}} ++{O \left({{x \sp {12}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -5513,40 +5510,39 @@ This expression expands {\tt sin(a*x)} in powers of {\tt (x - \%pi/4)}. \spadcommand{series(sin(a*x),x = \%pi/4)} $$ {\sin -\left({{{a \ \pi} \over 4}}\right)}+ -{a \ {\cos \left({{{a \ \pi} \over 4}} \right)} -\ {\left( x -{\pi \over 4} \right)}}- +\left({{\frac{a \ \pi}{4}}}\right)}+ +{a \ {\cos \left({{\frac{a \ \pi}{4}}} \right)} +\ {\left( x -{\frac{\pi}{4}} \right)}}- \hbox{\hskip 2.0cm} $$ $$ -{{{{a \sp 2} \ {\sin \left({{{a \ \pi} \over 4}} \right)}}\over 2} -\ {{\left( x -{\pi \over 4} \right)}\sp 2}} - -{{{{a \sp 3} \ {\cos \left({{{a \ \pi} \over 4}} \right)}}\over 6} -\ {{\left( x -{\pi \over 4} \right)}\sp 3}} + +{{\frac{{a \sp 2} \ {\sin \left({{\frac{a \ \pi}{4}}} \right)}}{2}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp 2}} - +{{\frac{{a \sp 3} \ {\cos \left({{\frac{a \ \pi}{4}}} \right)}}{6}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp 3}} + $$ $$ -{{{{a \sp 4} \ {\sin \left({{{a \ \pi} \over 4}} \right)}}\over {24}} -\ {{\left( x -{\pi \over 4} \right)}\sp 4}} + -{{{{a \sp 5} \ {\cos \left({{{a \ \pi} \over 4}} \right)}}\over {120}} -\ {{\left( x -{\pi \over 4} \right)}\sp 5}} - +{{\frac{{a \sp 4} \ {\sin \left({{\frac{a \ \pi}{4}}} \right)}}{24}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp 4}} + +{{\frac{{a \sp 5} \ {\cos \left({{\frac{a \ \pi}{4}}} \right)}}{120}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp 5}} - $$ $$ -{{{{a \sp 6} \ {\sin \left({{{a \ \pi} \over 4}} \right)}}\over {720}} -\ {{\left( x -{\pi \over 4} \right)}\sp 6}} - -{{{{a \sp 7} \ {\cos \left({{{a \ \pi} \over 4}} \right)}}\over {5040}} -\ {{\left( x -{\pi \over 4} \right)}\sp 7}} + +{{\frac{{a \sp 6} \ {\sin \left({{\frac{a \ \pi}{4}}} \right)}}{720}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp 6}} - +{{\frac{{a \sp 7} \ {\cos \left({{\frac{a \ \pi}{4}}} \right)}}{5040}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp 7}} + $$ $$ -{{{{a \sp 8} \ {\sin \left({{{a \ \pi} \over 4}} \right)}}\over {40320}} -\ {{\left( x -{\pi \over 4} \right)}\sp 8}} + -{{{{a \sp 9} \ {\cos \left({{{a \ \pi} \over 4}} \right)}}\over {362880}} -\ {{\left( x -{\pi \over 4} \right)}\sp 9}} - +{{\frac{{a \sp 8} \ {\sin \left({{\frac{a \ \pi}{4}}} \right)}}{40320}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp 8}} + +{{\frac{{a \sp 9} \ {\cos \left({{\frac{a \ \pi}{4}}} \right)}}{362880}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp 9}} - $$ $$ -{{{{a \sp {10}} \ {\sin \left({{{a \ \pi} \over 4}} \right)}} -\over {3628800}} -\ {{\left( x -{\pi \over 4} \right)}\sp {10}}} + -{O \left({{{\left( x -{\pi \over 4} \right)}\sp {11}}} \right)} +{{\frac{{a \sp {10}} \ {\sin \left({{\frac{a \ \pi}{4}}} \right)}}{3628800}} +\ {{\left( x -{\frac{\pi}{4}} \right)}\sp {10}}} + +{O \left({{{\left( x -{\frac{\pi}{4}} \right)}\sp {11}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)} @@ -5558,10 +5554,8 @@ computes the $n$-th coefficient. (Recall that the \spadcommand{series(n +-> (-1)**((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)} %%NOTE: the paper book shows O(x^4) but Axiom computes O(x^5) $$ -{x \sp {4 \over 3}} -{{1 \over 6} \ {x \sp {{10} \over 3}}}+{O -\left( -{{x \sp 5}} -\right)} +{x \sp {\frac{4}{3}}} -{{\frac{1}{6}} \ {x \sp {\frac{10}{3}}}} ++{O \left({{x \sp 5}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -5570,11 +5564,8 @@ operations on that series. We compute the Taylor expansion of $1/(1-x)$. \index{series!Taylor} \spadcommand{f := series(1/(1-x),x = 0)} $$ -1+x+{x \sp 2}+{x \sp 3}+{x \sp 4}+{x \sp 5}+{x \sp 6}+{x \sp 7}+{x \sp 8}+{x -\sp 9}+{x \sp {10}}+{O -\left( -{{x \sp {11}}} -\right)} +1+x+{x \sp 2}+{x \sp 3}+{x \sp 4}+{x \sp 5}+{x \sp 6}+{x \sp 7}+{x \sp 8} ++{x \sp 9}+{x \sp {10}}+{O \left({{x \sp {11}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -5607,19 +5598,19 @@ $$ $$ \begin{array}{@{}l} x+ -{{1 \over 2} \ {x \sp 2}}+ -{{1 \over 3} \ {x \sp 3}}+ -{{1 \over 4} \ {x \sp 4}}+ -{{1 \over 5} \ {x \sp 5}}+ -{{1 \over 6} \ {x \sp 6}}+ -{{1 \over 7} \ {x \sp 7}}+ +{{\frac{1}{2}} \ {x \sp 2}}+ +{{\frac{1}{3}} \ {x \sp 3}}+ +{{\frac{1}{4}} \ {x \sp 4}}+ +{{\frac{1}{5}} \ {x \sp 5}}+ +{{\frac{1}{6}} \ {x \sp 6}}+ +{{\frac{1}{7}} \ {x \sp 7}}+ \\ \\ \displaystyle -{{1 \over 8} \ {x \sp 8}}+ -{{1 \over 9} \ {x \sp 9}}+ -{{1 \over {10}} \ {x \sp {10}}}+ -{{1 \over {11}} \ {x \sp {11}}}+ +{{\frac{1}{8}} \ {x \sp 8}}+ +{{\frac{1}{9}} \ {x \sp 9}}+ +{{\frac{1}{10}} \ {x \sp {10}}}+ +{{\frac{1}{11}} \ {x \sp {11}}}+ {O \left({{x \sp {12}}} \right)} \end{array} $$ @@ -5643,18 +5634,20 @@ $e$ from the Taylor series expansion of {\bf exp}(x). First create the desired Taylor expansion. \spadcommand{f := taylor(exp(x))} $$ -1+x+{{1 \over 2} \ {x \sp 2}}+{{1 \over 6} \ {x \sp 3}}+{{1 \over {24}} \ -{x \sp 4}}+{{1 \over {120}} \ {x \sp 5}}+{{1 \over {720}} \ {x \sp 6}} + +1+x ++{{\frac{1}{2}} \ {x \sp 2}} ++{{\frac{1}{6}} \ {x \sp 3}} ++{{\frac{1}{24}} \ {x \sp 4}} ++{{\frac{1}{120}} \ {x \sp 5}} ++{{\frac{1}{720}} \ {x \sp 6}} + \hbox{\hskip 1.0cm} $$ $$ -{{1 -\over {5040}} \ {x \sp 7}} + -{{1 \over {40320}} \ {x \sp 8}}+{{1 \over -{362880}} \ {x \sp 9}}+{{1 \over {3628800}} \ {x \sp {10}}}+{O -\left( -{{x \sp {11}}} -\right)} +{{\frac{1}{5040}} \ {x \sp 7}} ++{{\frac{1}{40320}} \ {x \sp 8}} ++{{\frac{1}{362880}} \ {x \sp 9}} ++{{\frac{1}{3628800}} \ {x \sp {10}}} ++{O \left({{x \sp {11}}} \right)} $$ \returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)} @@ -5823,7 +5816,7 @@ then evaluates {\tt dadz}. \spadcommand{eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1))} $$ -{\left( +\frac{\left( \begin{array}{@{}l} \displaystyle {{\left({2 \ {z^2}}+{2 \ z}\right)}\ {{F_{, 3}}\left({{e^z}, @@ -5839,7 +5832,7 @@ z}, {\log \left({z + 1}\right)}, {z^2}}\right)}+ {{\left(z + 1 \right)}\ {e^z}\ {{F_{, 1}}\left({{e^z}, {\log \left({z + 1}\right)}, {z^2}}\right)}}+ z + 1 \end{array} -\right)}\over{z + 1} +\right)}{z + 1} $$ \returnType{Type: Expression Integer} @@ -5861,7 +5854,7 @@ $$ \spadcommand{D(\%, z)} $$ -{\left( +\frac{\left( \begin{array}{@{}l} \displaystyle {{\left({2 \ {z^2}}+{2 \ z}\right)}\ {{F_{, 3}}\left({{e^ @@ -5877,8 +5870,7 @@ z}, {\log \left({z + 1}\right)}, {z^2}}\right)}}+ + 1 \right)}\ {e^z}\ {{F_{, 1}}\left({{e^z}, {\log \left({z + 1}\right)}, {z^2}}\right)}}+ z + 1 \end{array} -\right)} -\over{z + 1} +\right)}{z + 1} $$ \returnType{Type: Expression Integer} @@ -5897,11 +5889,7 @@ algebraic numbers. We use a factorization-free algorithm. \spadcommand{integrate((x**2+2*x+1)/((x+1)**6+1),x)} $$ -{\arctan -\left( -{{{x \sp 3}+{3 \ {x \sp 2}}+{3 \ x}+1}} -\right)} -\over 3 +\frac{\arctan \left({{{x \sp 3}+{3 \ {x \sp 2}}+{3 \ x}+1}} \right)}{3} $$ \returnType{Type: Union(Expression Integer,...)} @@ -5913,17 +5901,11 @@ all possible answers. \spadcommand{integrate(1/(x**2 + a),x)} $$ \left[ -{{\log -\left( -{{{{{\left( {x \sp 2} -a -\right)} -\ {\sqrt {-a}}}+{2 \ a \ x}} \over {{x \sp 2}+a}}} -\right)} -\over {2 \ {\sqrt {-a}}}}, {{\arctan -\left( -{{{x \ {\sqrt {a}}} \over a}} -\right)} -\over {\sqrt {a}}} +{\frac{\log +\left({{ +\frac{{{\left( {x \sp 2} -a \right)}\ {\sqrt {-a}}}+{2 \ a \ x}} +{{x \sp 2}+a}}} \right)}{2 \ {\sqrt {-a}}}}, +{\frac{\arctan \left({{\frac{x \ {\sqrt {a}}}{a}}} \right)}{\sqrt {a}}} \right] $$ \returnType{Type: Union(List Expression Integer,...)} @@ -5940,15 +5922,12 @@ answer by ``prepending'' the word ``complex'' to the command name: %%NOTE: the expression in the book is different but they differentiate %%to exactly the same answer. $$ -{{\log +\frac{{\log \left( -{{{{x \ {\sqrt {-a}}}+a} \over {\sqrt {-a}}}} +{{\frac{{x \ {\sqrt {-a}}}+a}{\sqrt {-a}}}} \right)} --{\log -\left( -{{{{x \ {\sqrt {-a}}} -a} \over {\sqrt {-a}}}} -\right)}} -\over {2 \ {\sqrt {-a}}} +-{\log \left({{\frac{{x \ {\sqrt {-a}}} -a}{\sqrt {-a}}}} \right)}} +{2 \ {\sqrt {-a}}} $$ \returnType{Type: Expression Integer} @@ -5961,10 +5940,10 @@ The next one looks very similar but the answer is much more complicated. \spadcommand{integrate(x**3 / (a+b*x)**(1/3),x)} $$ -{{\left( {{120} \ {b \sp 3} \ {x \sp 3}} -{{135} \ a \ {b \sp 2} \ {x -\sp 2}}+{{162} \ {a \sp 2} \ b \ x} -{{243} \ {a \sp 3}} -\right)} -\ {{\root {3} \of {{{b \ x}+a}}} \sp 2}} \over {{440} \ {b \sp 4}} +\frac{{\left( {{120} \ {b \sp 3} \ {x \sp 3}} +-{{135} \ a \ {b \sp 2} \ {x \sp 2}} ++{{162} \ {a \sp 2} \ b \ x} -{{243} \ {a \sp 3}} \right)} +\ {{\root {3} \of {{{b \ x}+a}}} \sp 2}}{{440} \ {b \sp 4}} $$ \returnType{Type: Union(Expression Integer,...)} @@ -5973,12 +5952,12 @@ must be added in order to find a solution. \spadcommand{integrate(1 / (x**3 * (a+b*x)**(1/3)),x)} $$ -\left( +\frac{\left( \begin{array}{@{}l} -{2 \ {b \sp 2} \ {x \sp 2} \ {\sqrt {3}} \ {\log \left( -{{{{\root {3} \of {a}} \ {{\root {3} \of {{{b \ x}+a}}} \sp 2}}+{{{\root -{3} \of {a}} \sp 2} \ {\root {3} \of {{{b \ x}+a}}}}+a}} +{{{{\root {3} \of {a}} \ {{\root {3} \of {{{b \ x}+a}}} \sp 2}} ++{{{\root {3} \of {a}} \sp 2} \ {\root {3} \of {{{b \ x}+a}}}}+a}} \right)}}+ \\ \\ @@ -5992,8 +5971,9 @@ $$ \displaystyle {{12}\ {b \sp 2} \ {x \sp 2} \ {\arctan \left( -{{{{2 \ {\sqrt {3}} \ {{\root {3} \of {a}} \sp 2} \ {\root {3} \of {{{b \ -x}+a}}}}+{a \ {\sqrt {3}}}} \over {3 \ a}}} +{{\frac{{2 \ {\sqrt {3}} \ {{\root {3} \of {a}} \sp 2} \ +{\root {3} \of {{{b \ x}+a}}}} ++{a \ {\sqrt {3}}}}{3 \ a}}} \right)}}+ \\ \\ @@ -6004,9 +5984,7 @@ x}+a}}}}+{a \ {\sqrt {3}}}} \over {3 \ a}}} \ {\sqrt {3}} \ {\root {3} \of {a}} \ {{\root {3} \of {{{b \ x}+a}}} \sp 2}} \end{array} -\right) -\over {{18} \ {a \sp 2} \ {x \sp 2} \ {\sqrt {3}} \ {\root {3} \of -{a}}} +\right)}{{18} \ {a \sp 2} \ {x \sp 2} \ {\sqrt {3}} \ {\root {3} \of {a}}} $$ \returnType{Type: Union(Expression Integer,...)} @@ -6022,11 +6000,8 @@ exists as an elementary function. \spadcommand{integrate(log(1 + sqrt(a*x + b)) / x,x)} $$ -\int \sp{\displaystyle x} {{{\log -\left( -{{{\sqrt {{b+{ \%Q \ a}}}}+1}} -\right)} -\over \%Q} \ {d \%Q}} +\int \sp{\displaystyle x} {{\frac{\log +\left({{{\sqrt {{b+{ \%Q \ a}}}}+1}} \right)}{\%Q}} \ {d \%Q}} $$ \returnType{Type: Union(Expression Integer,...)} @@ -6042,18 +6017,9 @@ functions present in the integrand. $$ {2 \ {\log \left( -{{{-{2 \ {\cosh -\left( -{{{\sqrt {{x+b}}}+1}} -\right)}} --{2 \ x}} \over {{\sinh -\left( -{{{\sqrt {{x+b}}}+1}} -\right)} --{\cosh -\left( -{{{\sqrt {{x+b}}}+1}} -\right)}}}} +{{\frac{-{2 \ {\cosh \left({{{\sqrt {{x+b}}}+1}} \right)}}-{2 \ x}} +{{\sinh\left({{{\sqrt {{x+b}}}+1}} \right)} +-{\cosh \left({{{\sqrt {{x+b}}}+1}} \right)}}}} \right)}} -{2 \ {\sqrt {{x+b}}}} $$ @@ -6066,43 +6032,19 @@ relationships between functions. %%NOTE: the book has a trailing ``+16'' term in the numerator %%This is not generated by Axiom $$ -\left( +\frac{\left( \begin{array}{@{}l} -{8 \ {\log -\left( -{{{3 \ {{\tan -\left( -{{{\arctan -\left( -{x} -\right)} -\over 3}} -\right)} +{8 \ {\log \left({{{3 \ {{\tan \left({{ +\frac{\arctan \left({x} \right)}{3}}} \right)} \sp 2}} -1}} \right)}} --{3 \ {{\tan -\left( -{{{\arctan -\left( -{x} -\right)} -\over 3}} -\right)} -\sp 2}}+ +-{3 \ {{\tan \left({{\frac{\arctan \left({x} \right)}{3}}} \right)} \sp 2}}+ \\ \\ \displaystyle -{{18} \ x \ {\tan -\left( -{{{\arctan -\left( -{x} -\right)} -\over 3}} -\right)}} +{{18} \ x \ {\tan \left({{\frac{\arctan \left({x} \right)}{3}}} \right)}} \end{array} -\right) -\over {18} +\right)}{18} $$ \returnType{Type: Union(Expression Integer,...)} @@ -6115,11 +6057,11 @@ If $x=\tan t$ and $g=\tan (t/3)$ then the following algebraic relation is true: $${g^3-3xg^2-3g+x=0}$$ \item Integrate $g$ using this algebraic relation; this produces: -$${{(24g^2 - 8)\log(3g^2 - 1) + (81x^2 + 24)g^2 + 72xg - 27x^2 - 16} -\over{54g^2 - 18}}$$ +$${\frac{(24g^2 - 8)\log(3g^2 - 1) + (81x^2 + 24)g^2 + 72xg - 27x^2 - 16} +{54g^2 - 18}}$$ \item Rationalize the denominator, producing: -$${8\log(3g^2-1) - 3g^2 + 18xg + 16} \over {18}$$ +$$\frac{8\log(3g^2-1) - 3g^2 + 18xg + 16}{18}$$ Replace $g$ by the initial definition $g = \tan(\arctan(x)/3)$ to produce the final result. @@ -6129,14 +6071,8 @@ This is an example of a mixed function where the algebraic layer is over the transcendental one. \spadcommand{integrate((x + 1) / (x*(x + log x) ** (3/2)), x)} $$ --{{2 \ {\sqrt {{{\log -\left( -{x} -\right)}+x}}}} -\over {{\log -\left( -{x} -\right)}+x}} +-{\frac{2 \ {\sqrt {{{\log \left({x} \right)}+x}}}} +{{\log \left({x} \right)}+x}} $$ \returnType{Type: Union(Expression Integer,...)} @@ -6144,28 +6080,10 @@ While incomplete for non-elementary functions, Axiom can handle some of them. \spadcommand{integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)} $$ -{{{\left( {\erf -\left( -{x} -\right)} --1 -\right)} -\ {\sqrt {\pi}} \ {\log -\left( -{{{{\erf -\left( -{x} -\right)} --1} \over {{\erf -\left( -{x} -\right)}+1}}} -\right)}} --{2 \ {\sqrt {\pi}}}} \over {{8 \ {\erf -\left( -{x} -\right)}} --8} +\frac{{{\left( {\erf \left({x} \right)}-1 \right)}\ {\sqrt {\pi}} \ {\log +\left({{\frac{{\erf \left({x} \right)}-1} +{{\erf \left({x} \right)}+1}}}\right)}} +-{2 \ {\sqrt {\pi}}}}{{8 \ {\erf \left({x} \right)}}-8} $$ \returnType{Type: Union(Expression Integer,...)} @@ -6214,16 +6132,16 @@ $$ $$ \begin{array}{@{}l} \left[ -{particular={{{x \sp 5} -{{10} \ {x \sp 3}}+{{20} \ {x \sp 2}}+4} \over +{particular={\frac{{x \sp 5} -{{10} \ {x \sp 3}}+{{20} \ {x \sp 2}}+4} {{15} \ x}}}, \right. \\ \\ \displaystyle \left. -{basis={\left[ {{{2 \ {x \sp 3}} -{3 \ {x \sp 2}}+1} -\over x}, {{{x \sp 3} -1} \over x}, {{{x \sp 3} -{3 \ {x \sp 2}} -1} -\over x} +{basis={\left[ {\frac{{2 \ {x \sp 3}} -{3 \ {x \sp 2}}+1}{x}}, +{\frac{{x \sp 3} -1}{x}}, +{\frac{{x \sp 3} -{3 \ {x \sp 2}} -1}{x}} \right]}} \right] \end{array} @@ -6234,19 +6152,9 @@ $$ Here we find all the algebraic function solutions of the equation. \spadcommand{deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0} $$ -{{{\left( {x \sp 2}+1 -\right)} -\ {{y \sb {{\ }} \sp {,,}} -\left( -{x} -\right)}}+{3 -\ x \ {{y \sb {{\ }} \sp {,}} -\left( -{x} -\right)}}+{y -\left( -{x} -\right)}}=0 +{{{\left( {x \sp 2}+1 \right)}\ {{y \sb {{\ }} \sp {,,}} +\left({x} \right)}}+{3\ x \ {{y \sb {{\ }} \sp {,}} +\left({x} \right)}}+{y\left({x} \right)}}=0 $$ \returnType{Type: Equation Expression Integer} @@ -6254,12 +6162,9 @@ $$ $$ \left[ {particular=0}, -{basis={\left[ {1 \over {\sqrt {{{x \sp 2}+1}}}}, -{{\log -\left( -{{{\sqrt {{{x \sp 2}+1}}} -x}} -\right)} -\over {\sqrt {{{x \sp 2}+1}}}} +{basis={\left[ {\frac{1}{\sqrt {{{x \sp 2}+1}}}}, +{\frac{\log \left({{{\sqrt {{{x \sp 2}+1}}} -x}} \right)} +{\sqrt {{{x \sp 2}+1}}}} \right]}} \right] $$ @@ -6275,26 +6180,16 @@ algebraic function of degree two. \spadcommand{eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x} $$ {2 \ {x \sp 3} \ {{y \sb {{\ }} \sp {,,}} -\left( -{x} -\right)}}+{3 -\ {x \sp 2} \ {{y \sb {{\ }} \sp {,}} -\left( -{x} -\right)}} --{2 \ {y -\left( -{x} -\right)}} +\left({x} \right)}}+{3\ {x \sp 2} \ {{y \sb {{\ }} \sp {,}} +\left({x} \right)}}-{2 \ {y \left({x} \right)}} $$ \returnType{Type: Expression Integer} \spadcommand{solve(eq,y,x).basis} $$ \left[ -{e \sp {\left( -{2 \over {\sqrt {x}}} -\right)}}, - {e \sp {2 \over {\sqrt {x}}}} +{e \sp {\left( -{\frac{2}{\sqrt {x}}} \right)}}, +{e \sp {\frac{2}{\sqrt {x}}}} \right] $$ \returnType{Type: List Expression Integer} @@ -6303,43 +6198,17 @@ Here's another differential equation to solve. \spadcommand{deq := D(y x, x) = y(x) / (x + y(x) * log y x)} $$ {{y \sb {{\ }} \sp {,}} -\left( -{x} -\right)}={{y -\left( -{x} -\right)} -\over {{{y -\left( -{x} -\right)} -\ {\log -\left( -{{y -\left( -{x} -\right)}} -\right)}}+x}} +\left({x} \right)} +={\frac{y\left({x} \right)} +{{{y \left({x} \right)}\ {\log \left({{y \left({x} \right)}}\right)}}+x}} $$ \returnType{Type: Equation Expression Integer} \spadcommand{solve(deq, y, x)} $$ -{{{y -\left( -{x} -\right)} -\ {{\log -\left( -{{y -\left( -{x} -\right)}} -\right)} -\sp 2}} -{2 \ x}} \over {2 \ {y -\left( -{x} -\right)}} +\frac{{{y \left({x} \right)}\ { +{\log \left({{y \left({x} \right)}}\right)}\sp 2}} -{2 \ x}} +{2 \ {y \left({x} \right)}} $$ \returnType{Type: Union(Expression Integer,...)} @@ -6397,10 +6266,10 @@ $[{\rm series\ for\ }x(t), {\rm series\ for\ }y(t)]$. $$ \left[ {\ t+ -{{1 \over 3} \ {t \sp 3}}+ -{{2 \over {15}} \ {t \sp 5}}+ -{{{17} \over {315}} \ {t \sp 7}}+ -{{{62} \over {2835}} \ {t \sp 9}}+ +{{\frac{1}{3}} \ {t \sp 3}}+ +{{\frac{2}{15}} \ {t \sp 5}}+ +{{\frac{17}{315}} \ {t \sp 7}}+ +{{\frac{62}{2835}} \ {t \sp 9}}+ {O \left({{t \sp {11}}} \right)}}, \right. \hbox{\hskip 2.0cm} @@ -6409,11 +6278,11 @@ $$ \hbox{\hskip 0.4cm} \left. {1+ -{{1 \over 2} \ {t \sp 2}}+ -{{5 \over {24}} \ {t \sp 4}}+ -{{{61} \over {720}} \ {t \sp 6}}+ -{{{277} \over {8064}} \ {t \sp 8}}+ -{{{50521} \over {3628800}} \ {t \sp {10}}}+ +{{\frac{1}{2}} \ {t \sp 2}}+ +{{\frac{5}{24}} \ {t \sp 4}}+ +{{\frac{61}{720}} \ {t \sp 6}}+ +{{\frac{277}{8064}} \ {t \sp 8}}+ +{{\frac{50521}{3628800}} \ {t \sp {10}}}+ {O \left({{t \sp {11}}}\right)}} \right] $$ @@ -6439,15 +6308,13 @@ rational arithmetic, correct to within $1/10^{20}$. \spadcommand{solve(S(19),1/10**20)} $$ \left[ -{\left[ {y=5}, {x=-{{2451682632253093442511} \over -{295147905179352825856}}} +{\left[ {y=5}, {x=-{\frac{2451682632253093442511}{295147905179352825856}}} \right]}, \right. $$ $$ \left. -{\left[ {y=5}, {x={{2451682632253093442511} \over -{295147905179352825856}}} +{\left[ {y=5}, {x={\frac{2451682632253093442511}{295147905179352825856}}} \right]} \right] $$ @@ -6485,8 +6352,8 @@ $$ $$ \hbox{\hskip 0.7cm} \left. -{\left[ {x=1}, {y={\sqrt {{{-a+1} \over 2}}}} \right]}, -{\left[ {x=1}, {y=-{\sqrt {{{-a+1} \over 2}}}} \right]} +{\left[ {x=1}, {y={\sqrt {{\frac{-a+1}{2}}}}} \right]}, +{\left[ {x=1}, {y=-{\sqrt {{\frac{-a+1}{2}}}}} \right]} \right] $$ \returnType{Type: List List Equation Expression Integer} @@ -6515,7 +6382,7 @@ reducing the solution to triangular form. \spadcommand{solve(eqns,[x,y,z])} $$ \left[ -{\left[ {x=-{a \over b}}, {y=0}, {z=-{{a \sp 2} \over {b \sp 2}}} +{\left[ {x=-{\frac{a}{b}}}, {y=0}, {z=-{\frac{a \sp 2}{b \sp 2}}} \right]}, \right. \hbox{\hskip 10.0cm} @@ -6524,7 +6391,7 @@ $$ \left. \begin{array}{@{}l} \left[ -{x={{{z \sp 3}+{2 \ b \ {z \sp 2}}+{{b \sp 2} \ z} -a} \over b}}, +{x={\frac{{z \sp 3}+{2 \ b \ {z \sp 2}}+{{b \sp 2} \ z} -a}{b}}}, {y={z+b}}, \right. \hbox{\hskip 10.0cm} @@ -6640,12 +6507,14 @@ two mutually dependent functions $f$ and $g$ piece-wise.'' ``What is value of $f(3)$?'' \spadcommand{f(3)} $$ --{x \sp 3}+{{\left( e+{{1 \over 3} \ d} -\right)} -\ {x \sp 2}}+{{\left( -{{1 \over 4} \ {e \sp 2}} -{{1 \over 6} \ d \ e} --{{1 \over 9} \ {d \sp 2}} -\right)} -\ x}+{{1 \over 8} \ {e \sp 3}} +-{x \sp 3}+{{\left( e+{{\frac{1}{3}} \ d} \right)} +\ {x \sp 2}} ++{{\left( +-{{\frac{1}{4}} \ {e \sp 2}} +-{{\frac{1}{6}} \ d \ e} +-{{\frac{1}{9}} \ {d \sp 2}} +\right)}\ x} ++{{\frac{1}{8}} \ {e \sp 3}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -6691,8 +6560,9 @@ f(3) +++ |*1;f;1;G82322| redefined \end{verbatim} $$ --{x \sp 3}+{d \ {x \sp 2}} -{{1 \over 3} \ {d \sp 2} \ x}+{{1 \over {27}} -\ {d \sp 3}} +-{x \sp 3}+{d \ {x \sp 2}} +-{{\frac{1}{3}} \ {d \sp 2} \ x} ++{{\frac{1}{27}} \ {d \sp 3}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -6727,12 +6597,13 @@ the environment to that immediately after $(4)$.'' +++ |*1;f;1;G82322| redefined \end{verbatim} $$ --{x \sp 3}+{{\left( e+{{1 \over 3} \ d} -\right)} -\ {x \sp 2}}+{{\left( -{{1 \over 4} \ {e \sp 2}} -{{1 \over 6} \ d \ e} --{{1 \over 9} \ {d \sp 2}} -\right)} -\ x}+{{1 \over 8} \ {e \sp 3}} +-{x \sp 3}+{{\left( e+{{\frac{1}{3}} \ d} \right)}\ {x \sp 2}} ++{{\left( +-{{\frac{1}{4}} \ {e \sp 2}} +-{{\frac{1}{6}} \ d \ e} +-{{\frac{1}{9}} \ {d \sp 2}} +\right)}\ x} ++{{\frac{1}{8}} \ {e \sp 3}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -7317,7 +7188,7 @@ If you supply computation target type information then you should enclose the argument in parentheses. \spadcommand{(2/3)@Fraction(Polynomial(Integer))} $$ -2 \over 3 +\frac{2}{3} $$ \returnType{Type: Fraction Polynomial Integer} @@ -7326,7 +7197,7 @@ case of the first example above, then the parentheses can usually be omitted. \spadcommand{(2/3)@Fraction(Polynomial Integer)} $$ -2 \over 3 +\frac{2}{3} $$ \returnType{Type: Fraction Polynomial Integer} @@ -7548,7 +7419,7 @@ $$ This complex object has fractional symbolic real and imaginary parts. \spadcommand{n := complex(4/(x + y),y/x)} $$ -{4 \over {y+x}}+{{y \over x} \ i} +{\frac{4}{y+x}}+{{\frac{y}{x}} \ i} $$ \returnType{Type: Complex Fraction Polynomial Integer} @@ -7572,7 +7443,7 @@ rational number coefficients. $$ \left[ \begin{array}{c} -{x -{2 \over 3}} +{x -{\frac{2}{3}}} \end{array} \right] $$ @@ -7943,7 +7814,7 @@ $$ Assign it a rational number. \spadcommand{r := 3/2} $$ -3 \over 2 +\frac{3}{2} $$ \returnType{Type: Fraction Integer} @@ -8052,7 +7923,7 @@ Assign a list of mixed type values to $u$ \spadcommand{u := [1, 7.2, 3/2, x**2, "wally"]} $$ \left[ -1, {7.2}, {3 \over 2}, {x \sp 2}, \mbox{\tt "wally"} +1, {7.2}, {\frac{3}{2}}, {x \sp 2}, \mbox{\tt "wally"} \right] $$ \returnType{Type: List Any} @@ -8068,7 +7939,7 @@ Actually, these objects belong to {\tt Any} but Axiom automatically converts them to their natural types for you. \spadcommand{u.3} $$ -3 \over 2 +\frac{3}{2} $$ \returnType{Type: Fraction Integer} @@ -8139,8 +8010,8 @@ number coefficients. \index{SquareMatrix} $$ \left[ \begin{array}{cc} -{x -{{3 \over 4} \ i}} & {{{y \sp 2} \ z}+{1 \over 2}} \\ -{{{3 \over 7} \ i \ {y \sp 4}} -x} & {{12} -{{9 \over 5} \ i}} +{x -{{\frac{3}{4}} \ i}} & {{{y \sp 2} \ z}+{\frac{1}{2}}} \\ +{{{\frac{3}{7}} \ i \ {y \sp 4}} -x} & {{12} -{{\frac{9}{5}} \ i}} \end{array} \right] $$ @@ -8153,8 +8024,8 @@ expression. $$ \left[ \begin{array}{cc} -{x -{{3 \ i} \over 4}} & {{{y \sp 2} \ z}+{1 \over 2}} \\ -{{{{3 \ i} \over 7} \ {y \sp 4}} -x} & {{{60} -{9 \ i}} \over 5} +{x -{\frac{3 \ i}{4}}} & {{{y \sp 2} \ z}+{\frac{1}{2}}} \\ +{{{\frac{3 \ i}{7}} \ {y \sp 4}} -x} & {\frac{{60} -{9 \ i}}{5}} \end{array} \right] $$ @@ -8165,8 +8036,8 @@ Interchange the {\tt Polynomial} and the {\tt Fraction} levels. $$ \left[ \begin{array}{cc} -{{{4 \ x} -{3 \ i}} \over 4} & {{{2 \ {y \sp 2} \ z}+1} \over 2} \\ -{{{3 \ i \ {y \sp 4}} -{7 \ x}} \over 7} & {{{60} -{9 \ i}} \over 5} +{\frac{{4 \ x} -{3 \ i}}{4}} & {\frac{{2 \ {y \sp 2} \ z}+1}{2}} \\ +{\frac{{3 \ i \ {y \sp 4}} -{7 \ x}}{7}} & {\frac{{60} -{9 \ i}}{5}} \end{array} \right] $$ @@ -8177,8 +8048,8 @@ Interchange the {\tt Polynomial} and the {\tt Complex} levels. $$ \left[ \begin{array}{cc} -{{{4 \ x} -{3 \ i}} \over 4} & {{{2 \ {y \sp 2} \ z}+1} \over 2} \\ -{{-{7 \ x}+{3 \ {y \sp 4} \ i}} \over 7} & {{{60} -{9 \ i}} \over 5} +{\frac{{4 \ x} -{3 \ i}}{4}} & {\frac{{2 \ {y \sp 2} \ z}+1}{2}} \\ +{\frac{-{7 \ x}+{3 \ {y \sp 4} \ i}}{7}} & {\frac{{60} -{9 \ i}}{5}} \end{array} \right] $$ @@ -8193,8 +8064,8 @@ In fact, we could have combined all these into one conversion. $$ \left[ \begin{array}{cc} -{{{4 \ x} -{3 \ i}} \over 4} & {{{2 \ {y \sp 2} \ z}+1} \over 2} \\ -{{-{7 \ x}+{3 \ {y \sp 4} \ i}} \over 7} & {{{60} -{9 \ i}} \over 5} +{\frac{{4 \ x} -{3 \ i}}{4}} & {\frac{{2 \ {y \sp 2} \ z}+1}{2}} \\ +{\frac{-{7 \ x}+{3 \ {y \sp 4} \ i}}{7}} & {\frac{{60} -{9 \ i}}{5}} \end{array} \right] $$ @@ -8222,8 +8093,8 @@ Recall that $m$ looks like this. $$ \left[ \begin{array}{cc} -{x -{{3 \over 4} \ i}} & {{{y \sp 2} \ z}+{1 \over 2}} \\ -{{{3 \over 7} \ i \ {y \sp 4}} -x} & {{12} -{{9 \over 5} \ i}} +{x -{{\frac{3}{4}} \ i}} & {{{y \sp 2} \ z}+{\frac{1}{2}}} \\ +{{{\frac{3}{7}} \ i \ {y \sp 4}} -x} & {{12} -{{\frac{9}{5}} \ i}} \end{array} \right] $$ @@ -8240,13 +8111,15 @@ $$ 0 & 0 \end{array} \right]} -\ {y \sp 2} \ z}+{{\left[ +\ {y \sp 2} \ z} ++{{\left[ \begin{array}{cc} 0 & 0 \\ -{{3 \over 7} \ i} & 0 +{{\frac{3}{7}} \ i} & 0 \end{array} \right]} -\ {y \sp 4}}+{{\left[ +\ {y \sp 4}} ++{{\left[ \begin{array}{cc} 1 & 0 \\ -1 & 0 @@ -8254,8 +8127,8 @@ $$ \right]} \ x}+{\left[ \begin{array}{cc} --{{3 \over 4} \ i} & {1 \over 2} \\ -0 & {{12} -{{9 \over 5} \ i}} +-{{\frac{3}{4}} \ i} & {\frac{1}{2}} \\ +0 & {{12} -{{\frac{9}{5}} \ i}} \end{array} \right]} $$ @@ -8277,7 +8150,7 @@ $$ \ {y \sp 2} \ z}+{{\left[ \begin{array}{cc} 0 & 0 \\ -{{3 \over 7} \ i} & 0 +{{\frac{3}{7}} \ i} & 0 \end{array} \right]} \ {y \sp 4}}+{{\left[ @@ -8288,8 +8161,8 @@ $$ \right]} \ x}+{\left[ \begin{array}{cc} --{{3 \over 4} \ i} & {1 \over 2} \\ -0 & {{12} -{{9 \over 5} \ i}} +-{{\frac{3}{4}} \ i} & {\frac{1}{2}} \\ +0 & {{12} -{{\frac{9}{5}} \ i}} \end{array} \right]} $$ @@ -8309,7 +8182,7 @@ $$ \ {y \sp 2} \ z}+{{\left[ \begin{array}{cc} 0 & 0 \\ -{{3 \ i} \over 7} & 0 +{\frac{3 \ i}{7}} & 0 \end{array} \right]} \ {y \sp 4}}+{{\left[ @@ -8320,8 +8193,8 @@ $$ \right]} \ x}+{\left[ \begin{array}{cc} --{{3 \ i} \over 4} & {1 \over 2} \\ -0 & {{{60} -{9 \ i}} \over 5} +-{\frac{3 \ i}{4}} & {\frac{1}{2}} \\ +0 & {\frac{{60} -{9 \ i}}{5}} \end{array} \right]} $$ @@ -8414,7 +8287,7 @@ $$ This is an element of {\tt Fraction Integer}. \spadcommand{2 ** (-2)} $$ -1 \over 4 +\frac{1}{4} $$ \returnType{Type: Fraction Integer} @@ -8509,7 +8382,7 @@ Use the \spadopFrom{/}{Fraction} from {\tt Fraction Integer} to create a fraction of two integers. \spadcommand{2/3} $$ -2 \over 3 +\frac{2}{3} $$ \returnType{Type: Fraction Integer} @@ -8524,7 +8397,7 @@ $$ Perhaps we actually wanted a fraction of complex integers. \spadcommand{(2/3)\$Fraction(Complex Integer)} $$ -2 \over 3 +\frac{2}{3} $$ \returnType{Type: Float} @@ -8665,8 +8538,8 @@ by calling \spadfunFrom{map}{MatrixCategoryFunctions2} with the $$ \left[ \begin{array}{cc} -{1 \over 8} & {1 \over 6} \\ --{1 \over 4} & {1 \over 9} +{\frac{1}{8}} & {\frac{1}{6}} \\ +-{\frac{1}{4}} & {\frac{1}{9}} \end{array} \right] $$ @@ -8677,8 +8550,8 @@ We could have been a bit less verbose and used abbreviations. $$ \left[ \begin{array}{cc} -{1 \over 8} & {1 \over 6} \\ --{1 \over 4} & {1 \over 9} +{\frac{1}{8}} & {\frac{1}{6}} \\ +-{\frac{1}{4}} & {\frac{1}{9}} \end{array} \right] $$ @@ -8690,8 +8563,8 @@ We can just say this. $$ \left[ \begin{array}{cc} -{1 \over 8} & {1 \over 6} \\ --{1 \over 4} & {1 \over 9} +{\frac{1}{8}} & {\frac{1}{6}} \\ +-{\frac{1}{4}} & {\frac{1}{9}} \end{array} \right] $$ @@ -9645,9 +9518,7 @@ are all standard except for the following definitions: \def\erf{\mathop{\rm erf}\nolimits} \def\zag#1#2{ - {{\hfill \left. {#1} \right|} - \over - {\left| {#2} \right. \hfill} + {\frac{\hfill \left. {#1} \right|}{\left| {#2} \right. \hfill} } } \end{verbatim} @@ -10201,7 +10072,7 @@ a := 1 / i \end{verbatim} $$ -1 \over {23323} +\frac{1}{23323} $$ \returnType{Type: Fraction Integer} @@ -10209,7 +10080,7 @@ Here is the same block written on one line. This is how you are required to enter it at the input prompt. \spadcommand{a := (i := gcd(234,672); i := 3*i**5 - i + 1; 1 / i)} $$ -1 \over {23323} +\frac{1}{23323} $$ \returnType{Type: Fraction Integer} @@ -11472,57 +11343,57 @@ $$ {\left[ 2, 3, 4, 5, 6, 7, 8, 9, {10}, {11}, \ldots \right]}, - {\left[ {3 \over 2}, 2, {5 \over 2}, 3, {7 \over 2}, 4, -{9 \over 2}, 5, {{11} \over 2}, 6, \ldots + {\left[ {\frac{3}{2}}, 2, {\frac{5}{2}}, 3, {\frac{7}{2}}, 4, +{\frac{9}{2}}, 5, {\frac{11}{2}}, 6, \ldots \right]}, \right. \\ \\ \displaystyle - {\left[ {4 \over 3}, {5 \over 3}, 2, {7 \over 3}, {8 \over 3}, - 3, {{10} \over 3}, {{11} \over 3}, 4, {{13} \over 3}, + {\left[ {\frac{4}{3}}, {\frac{5}{3}}, 2, {\frac{7}{3}}, {\frac{8}{3}}, + 3, {\frac{10}{3}}, {\frac{11}{3}}, 4, {\frac{13}{3}}, \ldots \right]}, - {\left[ {5 \over 4}, {3 \over 2}, {7 \over 4}, 2, {9 \over 4}, - {5 \over 2}, {{11} \over 4}, 3, {{13} \over 4}, {7 \over 2}, + {\left[ {\frac{5}{4}}, {\frac{3}{2}}, {\frac{7}{4}}, 2, {\frac{9}{4}}, + {\frac{5}{2}}, {\frac{11}{4}}, 3, {\frac{13}{4}}, {\frac{7}{2}}, \ldots \right]}, \\ \\ \displaystyle - {\left[ {6 \over 5}, {7 \over 5}, {8 \over 5}, {9 \over 5}, 2, - {{11} \over 5}, {{12} \over 5}, {{13} \over 5}, {{14} \over 5}, + {\left[ {\frac{6}{5}}, {\frac{7}{5}}, {\frac{8}{5}}, {\frac{9}{5}}, 2, + {\frac{11}{5}}, {\frac{12}{5}}, {\frac{13}{5}}, {\frac{14}{5}}, 3, \ldots \right]}, - {\left[ {7 \over 6}, {4 \over 3}, {3 \over 2}, {5 \over 3}, -{{11} \over 6}, 2, {{13} \over 6}, {7 \over 3}, {5 \over 2}, -{8 \over 3}, \ldots + {\left[ {\frac{7}{6}}, {\frac{4}{3}}, {\frac{3}{2}}, {\frac{5}{3}}, +{\frac{11}{6}}, 2, {\frac{13}{6}}, {\frac{7}{3}}, {\frac{5}{2}}, +{\frac{8}{3}}, \ldots \right]}, \\ \\ \displaystyle - {\left[ {8 \over 7}, {9 \over 7}, {{10} \over 7}, {{11} \over 7}, - {{12} \over 7}, {{13} \over 7}, 2, {{15} \over 7}, {{16} \over -7}, {{17} \over 7}, \ldots + {\left[ {\frac{8}{7}}, {\frac{9}{7}}, {\frac{10}{7}}, {\frac{11}{7}}, + {\frac{12}{7}}, {\frac{13}{7}}, 2, {\frac{15}{7}}, {\frac{16}{7}}, + {\frac{17}{7}}, \ldots \right]}, - {\left[ {9 \over 8}, {5 \over 4}, {{11} \over 8}, {3 \over 2}, -{{13} \over 8}, {7 \over 4}, {{15} \over 8}, 2, {{17} \over 8}, - {9 \over 4}, \ldots + {\left[ {\frac{9}{8}}, {\frac{5}{4}}, {\frac{11}{8}}, {\frac{3}{2}}, + {\frac{13}{8}}, {\frac{7}{4}}, {\frac{15}{8}}, 2, {\frac{17}{8}}, + {\frac{9}{4}}, \ldots \right]}, \\ \\ \displaystyle - {\left[ {{10} \over 9}, {{11} \over 9}, {4 \over 3}, {{13} \over -9}, {{14} \over 9}, {5 \over 3}, {{16} \over 9}, {{17} \over 9}, - 2, {{19} \over 9}, \ldots + {\left[ {\frac{10}{9}}, {\frac{11}{9}}, {\frac{4}{3}}, {\frac{13}{9}}, + {\frac{14}{9}}, {\frac{5}{3}}, {\frac{16}{9}}, {\frac{17}{9}}, + 2, {\frac{19}{9}}, \ldots \right]}, \\ \\ \displaystyle \left. - {\left[ {{11} \over {10}}, {6 \over 5}, {{13} \over {10}}, {7 -\over 5}, {3 \over 2}, {8 \over 5}, {{17} \over {10}}, {9 \over -5}, {{19} \over {10}}, 2, \ldots + {\left[ {\frac{11}{10}}, {\frac{6}{5}}, {\frac{13}{10}}, {\frac{7}{5}}, + {\frac{3}{2}}, {\frac{8}{5}}, {\frac{17}{10}}, {\frac{9}{5}}, + {\frac{19}{10}}, 2, \ldots \right]}, \ldots \right] @@ -11535,9 +11406,9 @@ You can use parallel iteration across lists and streams to create \spadcommand{[i/j for i in 3.. by 10 for j in 2..]} $$ \left[ -{3 \over 2}, {{13} \over 3}, {{23} \over 4}, {{33} \over 5}, -{{43} \over 6}, {{53} \over 7}, {{63} \over 8}, {{73} \over 9}, -{{83} \over {10}}, {{93} \over {11}}, \ldots +{\frac{3}{2}}, {\frac{13}{3}}, {\frac{23}{4}}, {\frac{33}{5}}, +{\frac{43}{6}}, {\frac{53}{7}}, {\frac{63}{8}}, {\frac{73}{9}}, +{\frac{83}{10}}, {\frac{93}{11}}, \ldots \right] $$ \returnType{Type: Stream Fraction Integer} @@ -11911,7 +11782,7 @@ run out of space because of an infinite nesting loop. This new macro is fine as it does not produce a loop. \spadcommand{gg(1/w)} $$ -{{{13} \ {w \sp 2}} -{{24} \ w}+{36}} \over {9 \ {w \sp 2}} +\frac{{{13} \ {w \sp 2}} -{{24} \ w}+{36}}{9 \ {w \sp 2}} $$ \returnType{Type: Fraction Polynomial Integer} @@ -12162,7 +12033,7 @@ This function computes $1 + 1/2 + 1/3 + ... + 1/n$. \spadcommand{s 50} $$ -{13943237577224054960759} \over {3099044504245996706400} +\frac{13943237577224054960759}{3099044504245996706400} $$ \returnType{Type: Fraction Integer} @@ -12275,7 +12146,7 @@ each new kind of argument used. Compiling function g with type Fraction Integer -> Fraction Integer \end{verbatim} $$ -5 \over 3 +\frac{5}{3} $$ \returnType{Type: Fraction Integer} @@ -13171,8 +13042,8 @@ Compute the Legendre polynomial of degree $6.$ Compiling function p as a recurrence relation. \end{verbatim} $$ -{{{231} \over {16}} \ {x \sp 6}} -{{{315} \over {16}} \ {x \sp 4}}+{{{105} -\over {16}} \ {x \sp 2}} -{5 \over {16}} +{{\frac{231}{16}} \ {x \sp 6}} -{{\frac{315}{16}} \ {x \sp 4}} ++{{\frac{105}{16}} \ {x \sp 2}} -{\frac{5}{16}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -13314,26 +13185,9 @@ declare a function whose body is to be generated by \spadcommand{D(sin(x-y)/cos(x+y),x)} $$ -{-{{\sin -\left( -{{y -x}} -\right)} -\ {\sin -\left( -{{y+x}} -\right)}}+{{\cos -\left( -{{y -x}} -\right)} -\ {\cos -\left( -{{y+x}} -\right)}}} -\over {{\cos -\left( -{{y+x}} -\right)} -\sp 2} +\frac{-{{\sin \left({{y -x}} \right)}\ {\sin \left({{y+x}} \right)}} ++{{\cos\left({{y -x}} \right)}\ {\cos \left({{y+x}} \right)}}} +{{\cos \left({{y+x}} \right)}\sp 2} $$ \returnType{Type: Expression Integer} @@ -13345,28 +13199,9 @@ $$ \spadcommand{g} $$ -g \ {\left( x, y -\right)} -\ == \ {{-{{\sin -\left( -{{y -x}} -\right)} -\ {\sin -\left( -{{y+x}} -\right)}}+{{\cos -\left( -{{y -x}} -\right)} -\ {\cos -\left( -{{y+x}} -\right)}}} -\over {{\cos -\left( -{{y+x}} -\right)} -\sp 2}} +g \ {\left( x, y \right)}\ == \ {\frac{-{{\sin \left({{y -x}} \right)} +\ {\sin \left({{y+x}} \right)}}+{{\cos\left({{y -x}} \right)} +\ {\cos \left({{y+x}} \right)}}}{{\cos \left({{y+x}} \right)}\sp 2}} $$ \returnType{Type: FunctionCalled g} @@ -14617,27 +14452,13 @@ logrules := rule y * log x == log(x ** y) \end{verbatim} $$ -\left\{ -{{{\log -\left( -{y} -\right)}+{\log -\left( -{x} -\right)}+ - \%B} \mbox{\rm == } {{\log -\left( -{{x \ y}} -\right)}+ - \%B}}, {{y \ {\log -\left( -{x} -\right)}} -\mbox{\rm == } {\log -\left( -{{x \sp y}} -\right)}} -\right\} +\left\{{{{\log \left({y} \right)} ++{\log\left({x} \right)}+ \%B} +\mbox{\rm == } +{{\log \left({{x \ y}} \right)}+ \%B}}, +{{y \ {\log \left({x} \right)}} +\mbox{\rm == } +{\log \left({{x \sp y}} \right)}}\right\} $$ \returnType{Type: Ruleset(Integer,Integer,Expression Integer)} @@ -14661,14 +14482,7 @@ $$ Apply the ruleset {\bf logrules} to $f$. \spadcommand{logrules f} $$ -\log -\left( -{{{{\sin -\left( -{x} -\right)} -\sp a} \over {x \sp 2}}} -\right) +\log \left({{\frac{{\sin \left({x} \right)}\sp a}{x \sp 2}}} \right) $$ \returnType{Type: Expression Integer} @@ -14694,59 +14508,28 @@ logrules2 := rule (y | integer? y) * log x == log(x ** y) \end{verbatim} $$ -\left\{ -{{{\log -\left( -{y} -\right)}+{\log -\left( -{x} -\right)}+ - \%D} \mbox{\rm == } {{\log -\left( -{{x \ y}} -\right)}+ - \%D}}, {{y \ {\log -\left( -{x} -\right)}} -\mbox{\rm == } {\log -\left( -{{x \sp y}} -\right)}} -\right\} +\left\{{{{\log \left({y} \right)} ++{\log\left({x} \right)}+ \%D} +\mbox{\rm == } +{{\log \left({{x \ y}} \right)}+ \%D}}, +{{y \ {\log \left({x} \right)}} +\mbox{\rm == } +{\log \left({{x \sp y}} \right)}}\right\} $$ \returnType{Type: Ruleset(Integer,Integer,Expression Integer)} Compare this with the result of applying the previous set of rules. \spadcommand{f} $$ -{a \ {\log -\left( -{{\sin -\left( -{x} -\right)}} -\right)}} --{2 \ {\log -\left( -{x} -\right)}} +{a \ {\log \left({{\sin \left({x} \right)}}\right)}} +-{2 \ {\log \left({x} \right)}} $$ \returnType{Type: Expression Integer} \spadcommand{logrules2 f} $$ -{a \ {\log -\left( -{{\sin -\left( -{x} -\right)}} -\right)}}+{\log -\left( -{{1 \over {x \sp 2}}} -\right)} +{a \ {\log \left({{\sin \left({x} \right)}}\right)}} ++{\log\left({{\frac{1}{x \sp 2}}} \right)} $$ \returnType{Type: Expression Integer} @@ -14758,28 +14541,15 @@ Here we use {\tt integer} because $n$ has type {\tt Expression Integer} but {\bf even?} is an operation defined on integers. \spadcommand{evenRule := rule cos(x)**(n | integer? n and even? integer n)==(1-sin(x)**2)**(n/2)} $$ -{{\cos -\left( -{x} -\right)} -\sp n} \mbox{\rm == } {{\left( -{{\sin -\left( -{x} -\right)} -\sp 2}+1 -\right)} -\sp {n \over 2}} +{{\cos \left({x} \right)}\sp n} \mbox{\rm == } +{{\left( -{{\sin \left({x} \right)}\sp 2}+1 \right)}\sp {\frac{n}{2}}} $$ \returnType{Type: RewriteRule(Integer,Integer,Expression Integer)} Here is the application of the rule. \spadcommand{evenRule( cos(x)**2 )} $$ --{{\sin -\left( -{x} -\right)} -\sp 2}+1 +-{{\sin \left({x} \right)}\sp 2}+1 $$ \returnType{Type: Expression Integer} @@ -14795,28 +14565,9 @@ sinCosProducts == rule \spadcommand{g := sin(a)*sin(b) + cos(b)*cos(a) + sin(2*a)*cos(2*a)} $$ -{{\sin -\left( -{a} -\right)} -\ {\sin -\left( -{b} -\right)}}+{{\cos -\left( -{{2 \ a}} -\right)} -\ {\sin -\left( -{{2 \ a}} -\right)}}+{{\cos -\left( -{a} -\right)} -\ {\cos -\left( -{b} -\right)}} +{{\sin \left({a} \right)}\ {\sin \left({b} \right)}} ++{{\cos\left({{2 \ a}} \right)}\ {\sin \left({{2 \ a}} \right)}} ++{{\cos\left({a} \right)}\ {\cos \left({b} \right)}} $$ \returnType{Type: Expression Integer} @@ -14826,15 +14577,7 @@ $$ Ruleset(Integer,Integer,Expression Integer) \end{verbatim} $$ -{{\sin -\left( -{{4 \ a}} -\right)}+{2 -\ {\cos -\left( -{{b -a}} -\right)}}} -\over 2 +\frac{{\sin \left({{4 \ a}} \right)}+{2\ {\cos \left({{b -a}} \right)}}}{2} $$ \returnType{Type: Expression Integer} @@ -14849,8 +14592,7 @@ If identical elements were matched, pattern matching would generally loop. Here is an expansion rule for exponentials. \spadcommand{exprule := rule exp(a + b) == exp(a) * exp(b)} $$ -{e \sp {\left( b+a -\right)}} +{e \sp {\left( b+a \right)}} \mbox{\rm == } {{e \sp a} \ {e \sp b}} $$ \returnType{Type: RewriteRule(Integer,Integer,Expression Integer)} @@ -14878,39 +14620,24 @@ a pattern variable $?y$ to indicate that an expression may or may not occur. \spadcommand{eirule := rule integral((?y + exp x)/x,x) == integral(y/x,x) + Ei x} $$ -{\int \sp{\displaystyle x} {{{{e \sp \%M}+y} \over \%M} \ {d \%M}}} +{\int \sp{\displaystyle x} {{\frac{{e \sp \%M}+y}{\%M}} \ {d \%M}}} \mbox{\rm == } {{{{\tt '}integral} -\left( -{{y \over x}, x} -\right)}+{{{\tt -'}Ei} -\left( -{x} -\right)}} +\left({{\frac{y}{x}}, x} \right)}+{{{\tt'}Ei} \left({x} \right)}} $$ \returnType{Type: RewriteRule(Integer,Integer,Expression Integer)} Apply rule {\tt eirule} to an integral without this term. \spadcommand{eirule integral(exp u/u, u)} $$ -Ei -\left( -{u} -\right) +Ei \left({u} \right) $$ \returnType{Type: Expression Integer} Apply rule {\tt eirule} to an integral with this term. \spadcommand{eirule integral(sin u + exp u/u, u)} $$ -{\int \sp{\displaystyle u} {{\sin -\left( -{ \%M} -\right)} -\ {d \%M}}}+{Ei -\left( -{u} -\right)} +{\int \sp{\displaystyle u} {{\sin \left({ \%M} \right)}\ {d \%M}}} ++{Ei \left({u} \right)} $$ \returnType{Type: Expression Integer} @@ -14945,31 +14672,15 @@ First define {\tt myRule} with no restrictions on the pattern variables $x$ and $y$. \spadcommand{myRule := rule u(x + y) == u x + v y} $$ -{u -\left( -{{y+x}} -\right)} -\mbox{\rm == } {{{{\tt '}v} -\left( -{y} -\right)}+{{{\tt -'}u} -\left( -{x} -\right)}} +{u \left({{y+x}} \right)}\mbox{\rm == } +{{{{\tt '}v} \left({y} \right)}+{{{\tt'}u} \left({x} \right)}} $$ \returnType{Type: RewriteRule(Integer,Integer,Expression Integer)} Apply {\tt myRule} to an expression. \spadcommand{myRule u(a + b + c + d)} $$ -{v -\left( -{{d+c+b}} -\right)}+{u -\left( -{a} -\right)} +{v \left({{d+c+b}} \right)}+{u\left({a} \right)} $$ \returnType{Type: Expression Integer} @@ -14977,37 +14688,18 @@ Define {\tt myOtherRule} to match several terms so that the rule gets applied recursively. \spadcommand{myOtherRule := rule u(:x + y) == u x + v y} $$ -{u -\left( -{{y+x}} -\right)} -\mbox{\rm == } {{{{\tt '}v} -\left( -{y} -\right)}+{{{\tt -'}u} -\left( -{x} -\right)}} +{u \left({{y+x}} \right)}\mbox{\rm == } +{{{{\tt '}v} \left({y} \right)}+{{{\tt'}u} \left({x} \right)}} $$ \returnType{Type: RewriteRule(Integer,Integer,Expression Integer)} Apply {\tt myOtherRule} to the same expression. \spadcommand{myOtherRule u(a + b + c + d)} $$ -{v -\left( -{c} -\right)}+{v -\left( -{b} -\right)}+{v -\left( -{a} -\right)}+{u -\left( -{d} -\right)} +{v \left({c} \right)} ++{v\left({b} \right)} ++{v\left({a} \right)} ++{u\left({d} \right)} $$ \returnType{Type: Expression Integer} @@ -15258,8 +14950,8 @@ Non-singular means that the curve is ``smooth'' in that it does not cross itself or come to a point (cusp). Algebraically, this means that for any point $(x,y)$ on the curve, that is, a point such that $p(x,y) = 0$, the partial derivatives -${{\partial p}\over{\partial x}}(x,y)$ and -${{\partial p}\over{\partial y}}(x,y)$ are not both zero. +${\frac{\partial p}{\partial x}}(x,y)$ and +${\frac{\partial p}{\partial y}}(x,y)$ are not both zero. \index{curve!smooth} \index{curve!non-singular} \index{smooth curve} \index{non-singular curve} @@ -18555,10 +18247,11 @@ $legendreP(n,z)$ evaluates to the $n$-th Legendre polynomial, \spadcommand{[legendreP(i,z) for i in 0..5]} $$ \left[ -1, z, {{{3 \over 2} \ {z \sp 2}} -{1 \over 2}}, {{{5 \over 2} \ {z -\sp 3}} -{{3 \over 2} \ z}}, {{{{35} \over 8} \ {z \sp 4}} -{{{15} \over -4} \ {z \sp 2}}+{3 \over 8}}, {{{{63} \over 8} \ {z \sp 5}} -{{{35} -\over 4} \ {z \sp 3}}+{{{15} \over 8} \ z}} +1, z, {{{\frac{3}{2}} \ {z \sp 2}} -{\frac{1}{2}}}, +{{{\frac{5}{2}} \ {z \sp 3}} -{{\frac{3}{2}} \ z}}, +{{{\frac{35}{8}} \ {z \sp 4}} -{{\frac{15}{4}} \ {z \sp 2}}+{\frac{3}{8}}}, +{{{\frac{63}{8}} \ {z \sp 5}} -{{\frac{35}{4}} \ {z \sp 3}} ++{{\frac{15}{8}} \ z}} \right] $$ \returnType{Type: List Polynomial Fraction Integer} @@ -18606,7 +18299,7 @@ polynomial. \spadcommand{bernoulliB(3, z)} $$ -{z \sp 3} -{{3 \over 2} \ {z \sp 2}}+{{1 \over 2} \ z} +{z \sp 3} -{{\frac{3}{2}} \ {z \sp 2}}+{{\frac{1}{2}} \ z} $$ \returnType{Type: Polynomial Fraction Integer} @@ -18622,7 +18315,7 @@ $eulerE(n,z)$ evaluates to the $n$-th Euler polynomial. \spadcommand{eulerE(3, z)} $$ -{z \sp 3} -{{3 \over 2} \ {z \sp 2}}+{1 \over 4} +{z \sp 3} -{{\frac{3}{2}} \ {z \sp 2}}+{\frac{1}{4}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -18756,17 +18449,21 @@ rational number coefficients. \spadcommand{w := (4*x**3+(2/3)*x**2+1)*(12*x**5-(1/2)*x**3+12) } $$ -{{48} \ {x \sp 8}}+{8 \ {x \sp 7}} -{2 \ {x \sp 6}}+{{{35} \over 3} \ {x -\sp 5}}+{{{95} \over 2} \ {x \sp 3}}+{8 \ {x \sp 2}}+{12} +{{48} \ {x \sp 8}} ++{8 \ {x \sp 7}} +-{2 \ {x \sp 6}} ++{{\frac{35}{3}} \ {x \sp 5}} ++{{\frac{95}{2}} \ {x \sp 3}} ++{8 \ {x \sp 2}}+{12} $$ \returnType{Type: Polynomial Fraction Integer} \spadcommand{factor w } $$ -{48} \ {\left( {x \sp 3}+{{1 \over 6} \ {x \sp 2}}+{1 \over 4} -\right)} -\ {\left( {x \sp 5} -{{1 \over {24}} \ {x \sp 3}}+1 -\right)} +{48} \ {\left( {x \sp 3} ++{{\frac{1}{6}} \ {x \sp 2}} ++{\frac{1}{4}} \right)}\ {\left( {x \sp 5} +-{{\frac{1}{24}} \ {x \sp 3}}+1 \right)} $$ \returnType{Type: Factored Polynomial Fraction Integer} @@ -18966,14 +18663,8 @@ a fraction of the factored results. \spadcommand{factorFraction((x**2-4)/(y**2-4))} $$ -{{\left( x -2 -\right)} -\ {\left( x+2 -\right)}} -\over {{\left( y -2 -\right)} -\ {\left( y+2 -\right)}} +\frac{{\left( x -2 \right)}\ {\left( x+2 \right)}} +{{\left( y -2 \right)}\ {\left( y+2 \right)}} $$ \returnType{Type: Fraction Factored Polynomial Integer} @@ -18983,14 +18674,8 @@ to the numerator and denominator. \spadcommand{map(factor,(x**2-4)/(y**2-4))} $$ -{{\left( x -2 -\right)} -\ {\left( x+2 -\right)}} -\over {{\left( y -2 -\right)} -\ {\left( y+2 -\right)}} +\frac{{\left( x -2 \right)}\ {\left( x+2 \right)}} +{{\left( y -2 \right)}\ {\left( y+2 \right)}} $$ \returnType{Type: Fraction Factored Polynomial Integer} @@ -19071,7 +18756,7 @@ $$ \spadcommand{zeroOf(d**2+d+1,d)} $$ -{{\sqrt {-3}} -1} \over 2 +\frac{{\sqrt {-3}} -1}{2} $$ \returnType{Type: Expression Integer} @@ -19174,9 +18859,10 @@ radicals. \spadcommand{zerosOf(y**4+1,y) } $$ \left[ -{{{\sqrt {-1}}+1} \over {\sqrt {2}}}, {{{\sqrt {-1}} -1} \over {\sqrt -{2}}}, {{-{\sqrt {-1}} -1} \over {\sqrt {2}}}, {{-{\sqrt {-1}}+1} \over -{\sqrt {2}}} +{\frac{{\sqrt {-1}}+1}{\sqrt {2}}}, +{\frac{{\sqrt {-1}} -1}{\sqrt {2}}}, +{\frac{-{\sqrt {-1}} -1}{\sqrt {2}}}, +{\frac{-{\sqrt {-1}}+1}{\sqrt {2}}} \right] $$ \returnType{Type: List Expression Integer} @@ -19241,7 +18927,7 @@ $$ {\left[ \begin{array}{c} 0 \\ --{1 \over 2} \\ +-{\frac{1}{2}} \\ 1 \end{array} \right]} @@ -19273,7 +18959,7 @@ $$ {\left[ \begin{array}{c} 0 \\ --{1 \over 2} \\ +-{\frac{1}{2}} \\ 1 \end{array} \right]} @@ -19312,10 +18998,10 @@ in terms of radicals. $$ \begin{array}{@{}l} \left[ -{\left[ {radval={{{\sqrt {{21}}}+1} \over 2}}, {radmult=1}, +{\left[ {radval={\frac{{\sqrt {{21}}}+1}{2}}}, {radmult=1}, {radvect={\left[ {\left[ \begin{array}{c} -{{{\sqrt {{21}}}+1} \over 2} \\ +{\frac{{\sqrt {{21}}}+1}{2}} \\ 2 \\ 1 \end{array} @@ -19326,10 +19012,10 @@ $$ \\ \\ \displaystyle - \left[ {radval={{-{\sqrt {{21}}}+1} \over 2}}, {radmult=1}, + \left[ {radval={\frac{-{\sqrt {{21}}}+1}{2}}}, {radmult=1}, {radvect={\left[ {\left[ \begin{array}{c} -{{-{\sqrt {{21}}}+1} \over 2} \\ +{\frac{-{\sqrt {{21}}}+1}{2}} \\ 2 \\ 1 \end{array} @@ -19344,7 +19030,7 @@ $$ {radvect={\left[ {\left[ \begin{array}{c} 0 \\ --{1 \over 2} \\ +-{\frac{1}{2}} \\ 1 \end{array} \right]} @@ -19380,7 +19066,7 @@ $$ {\left[ {outval=5}, {outmult=1}, {outvect={\left[ {\left[ \begin{array}{c} 0 \\ --{1 \over 2} \\ +-{\frac{1}{2}} \\ 1 \end{array} \right]} @@ -19390,10 +19076,10 @@ $$ \\ \\ \displaystyle - {\left[ {outval={{5717} \over {2048}}}, {outmult=1}, + {\left[ {outval={\frac{5717}{2048}}}, {outmult=1}, {outvect={\left[ {\left[ \begin{array}{c} -{{5717} \over {2048}} \\ +{\frac{5717}{2048}} \\ 2 \\ 1 \end{array} @@ -19404,10 +19090,10 @@ $$ \\ \displaystyle \left. - {\left[ {outval=-{{3669} \over {2048}}}, {outmult=1}, + {\left[ {outval=-{\frac{3669}{2048}}}, {outmult=1}, {outvect={\left[ {\left[ \begin{array}{c} --{{3669} \over {2048}} \\ +-{\frac{3669}{2048}} \\ 2 \\ 1 \end{array} @@ -19427,8 +19113,8 @@ gives you a matrix of the eigenvectors. $$ \left[ \begin{array}{ccc} -{{{\sqrt {{21}}}+1} \over 2} & {{-{\sqrt {{21}}}+1} \over 2} & 0 \\ -2 & 2 & -{1 \over 2} \\ +{\frac{{\sqrt {{21}}}+1}{2}} & {\frac{-{\sqrt {{21}}}+1}{2}} & 0 \\ +2 & 2 & -{\frac{1}{2}} \\ 1 & 1 & 1 \end{array} \right] @@ -19475,14 +19161,14 @@ $$ \left[ {\left[ \begin{array}{c} --{1 \over {\sqrt {2}}} \\ -{1 \over {\sqrt {2}}} +-{\frac{1}{\sqrt {2}}} \\ +{\frac{1}{\sqrt {2}}} \end{array} \right]}, {\left[ \begin{array}{c} -{1 \over {\sqrt {2}}} \\ -{1 \over {\sqrt {2}}} +{\frac{1}{\sqrt {2}}} \\ +{\frac{1}{\sqrt {2}}} \end{array} \right]} \right] @@ -19715,7 +19401,7 @@ if you give the precision as a rational number you get a rational result. \spadcommand{solve(x**3-2,1/1000)} $$ \left[ -{x={{2581} \over {2048}}} +{x={\frac{2581}{2048}}} \right] $$ \returnType{Type: List Equation Polynomial Fraction Integer} @@ -19753,8 +19439,8 @@ in each of the real and imaginary parts. \spadcommand{complexSolve(x**2-2*\%i+1,1/100)} $$ \left[ -{x={-{{13028925} \over {16777216}} -{{{325} \over {256}} \ i}}}, -{x={{{13028925} \over {16777216}}+{{{325} \over {256}} \ i}}} +{x={-{\frac{13028925}{16777216}} -{{\frac{325}{256}} \ i}}}, +{x={{\frac{13028925}{16777216}}+{{\frac{325}{256}} \ i}}} \right] $$ \returnType{Type: List Equation Polynomial Complex Fraction Integer} @@ -19771,7 +19457,7 @@ Solutions where the denominator vanishes are discarded. \spadcommand{radicalSolve(1/x**3 + 1/x**2 + 1/x = 0,x)} $$ \left[ -{x={{-{\sqrt {-3}} -1} \over 2}}, {x={{{\sqrt {-3}} -1} \over 2}} +{x={\frac{-{\sqrt {-3}} -1}{2}}}, {x={\frac{{\sqrt {-3}} -1}{2}}} \right] $$ \returnType{Type: List Equation Expression Integer} @@ -19829,8 +19515,8 @@ $$ \spadcommand{solve([x = y**2-19,y = z**2+x+3,z = 3*x],[x,y,z])} $$ \left[ -{\left[ {x={z \over 3}}, -{y={{{3 \ {z \sp 2}}+z+9} \over 3}}, +{\left[ {x={\frac{z}{3}}}, +{y={\frac{{3 \ {z \sp 2}}+z+9}{3}}}, {{{9 \ {z \sp 4}}+{6 \ {z \sp 3}}+{{55} \ {z \sp 2}}+{{15} \ z} -{90}}=0} \right]} \right] @@ -19844,21 +19530,21 @@ in terms of radicals. $$ \begin{array}{@{}l} \left[ -{\left[ {x={{{\sqrt {-3}}+1} \over 2}}, {y=2} \right]}, -{\left[ {x={{-{\sqrt {-3}}+1} \over 2}}, {y=2} \right]}, +{\left[ {x={\frac{{\sqrt {-3}}+1}{2}}}, {y=2} \right]}, +{\left[ {x={\frac{-{\sqrt {-3}}+1}{2}}}, {y=2} \right]}, \right. \\ \\ \displaystyle -{\left[ {x={{-{{\sqrt {-1}} \ {\sqrt {3}}} -1} \over {2 \ {\root {3} \of -{3}}}}}, {y=-2} \right]}, -{\left[ {x={{{{\sqrt {-1}} \ {\sqrt {3}}} -1} \over {2 \ {\root {3} \of -{3}}}}}, {y=-2} \right]}, +{\left[ {x={\frac{-{{\sqrt {-1}} \ {\sqrt {3}}} -1} +{2 \ {\root {3} \of {3}}}}}, {y=-2} \right]}, +{\left[ {x={\frac{{{\sqrt {-1}} \ {\sqrt {3}}} -1} +{2 \ {\root {3} \of {3}}}}}, {y=-2} \right]}, \\ \\ \displaystyle \left. -{\left[ {x={1 \over {\root {3} \of {3}}}}, {y=-2} \right]}, +{\left[ {x={\frac{1}{\root {3} \of {3}}}}, {y=-2} \right]}, {\left[ {x=-1}, {y=2} \right]} \right] \end{array} @@ -19888,22 +19574,22 @@ which takes the same arguments as in the real case. $$ \begin{array}{@{}l} \left[ -{\left[ {y={{1625} \over {1024}}}, {x={{1625} \over {2048}}} \right]}, +{\left[ {y={\frac{1625}{1024}}}, {x={\frac{1625}{2048}}} \right]}, \right. \\ \\ \displaystyle -{\left[ {y={-{{435445573689} \over {549755813888}} -{{{1407} \over {1024}} -\ i}}}, -{x={-{{435445573689} \over {1099511627776}} -{{{1407} \over {2048}} \ i}}} +{\left[ +{y={-{\frac{435445573689}{549755813888}} -{{\frac{1407}{1024}} \ i}}}, +{x={-{\frac{435445573689}{1099511627776}} -{{\frac{1407}{2048}} \ i}}} \right]}, \\ \\ \displaystyle \left. -{\left[ {y={-{{435445573689} \over {549755813888}}+{{{1407} \over {1024}} -\ i}}}, -{x={-{{435445573689} \over {1099511627776}}+{{{1407} \over {2048}} \ i}}} +{\left[ +{y={-{\frac{435445573689}{549755813888}}+{{\frac{1407}{1024}} \ i}}}, +{x={-{\frac{435445573689}{1099511627776}}+{{\frac{1407}{2048}} \ i}}} \right]} \right] \end{array} @@ -19934,16 +19620,19 @@ discarded. $$ \begin{array}{@{}l} \left[ -{\left[ {x=-{\sqrt {{{-{a \sp 4}+{2 \ {a \sp 3}}+{3 \ {a \sp 2}}+{3 \ -a}+1} \over {a \sp 2}}}}}, {y={{-a -1} \over a}} +{\left[ +{x=-{\sqrt {{\frac{-{a \sp 4}+{2 \ {a \sp 3}}+{3 \ {a \sp 2}}+{3 \ +a}+1}{a \sp 2}}}}}, +{y={\frac{-a -1}{a}}} \right]}, \right. \\ \\ \displaystyle \left. -{\left[ {x={\sqrt {{{-{a \sp 4}+{2 \ {a \sp 3}}+{3 \ {a \sp 2}}+{3 \ -a}+1} \over {a \sp 2}}}}}, {y={{-a -1} \over a}} +{\left[ {x={\sqrt {{\frac{-{a \sp 4}+{2 \ {a \sp 3}}+{3 \ {a \sp 2}}+{3 \ +a}+1}{a \sp 2}}}}}, +{y={\frac{-a -1}{a}}} \right]} \right] \end{array} @@ -19961,12 +19650,12 @@ If you do not specify a direction, Axiom attempts to compute a two-sided limit. Issue this to compute the limit -$$\lim_{x \rightarrow 1}{{\displaystyle x^2 - 3x + -2}\over{\displaystyle x^2 - 1}}.$$ +$$\lim_{x \rightarrow 1}{\frac{\displaystyle x^2 - 3x + 2} +{\displaystyle x^2 - 1}}.$$ \spadcommand{limit((x**2 - 3*x + 2)/(x**2 - 1),x = 1)} $$ --{1 \over 2} +-{\frac{1}{2}} $$ \returnType{Type: Union(OrderedCompletion Fraction Polynomial Integer,...)} @@ -20028,8 +19717,8 @@ Here is another example, this time using a more complicated function. \spadcommand{limit(sqrt(1 - cos(t))/t,t = 0)} $$ \left[ -{leftHandLimit=-{1 \over {\sqrt {2}}}}, -{rightHandLimit={1 \over {\sqrt {2}}}} +{leftHandLimit=-{\frac{1}{\sqrt {2}}}}, +{rightHandLimit={\frac{1}{\sqrt {2}}}} \right] $$ \returnType{Type: Union(Record(leftHandLimit: @@ -20044,13 +19733,13 @@ To do this, use the constants $\%plusInfinity$ and $\%minusInfinity$. \spadcommand{limit(sqrt(3*x**2 + 1)/(5*x),x = \%plusInfinity)} $$ -{\sqrt {3}} \over 5 +\frac{\sqrt {3}}{5} $$ \returnType{Type: Union(OrderedCompletion Expression Integer,...)} \spadcommand{limit(sqrt(3*x**2 + 1)/(5*x),x = \%minusInfinity)} $$ --{{\sqrt {3}} \over 5} +-{\frac{\sqrt {3}}{5}} $$ \returnType{Type: Union(OrderedCompletion Expression Integer,...)} @@ -20060,7 +19749,7 @@ As you can see, the limit is expressed in terms of the parameters. \spadcommand{limit(sinh(a*x)/tan(b*x),x = 0)} $$ -a \over b +\frac{a}{b} $$ \returnType{Type: Union(OrderedCompletion Expression Integer,...)} @@ -20157,7 +19846,7 @@ $laplace(F(t), t, s)$. \spadcommand{laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t), t, s)} $$ -{4 \ {a \sp 3}} \over {{s \sp 4}+{4 \ {a \sp 4}}} +\frac{4 \ {a \sp 3}}{{s \sp 4}+{4 \ {a \sp 4}}} $$ \returnType{Type: Expression Integer} @@ -20177,15 +19866,14 @@ $$ \spadcommand{laplace(exp(-a*t) * sin(b*t) / b**2, t, s)} $$ -1 \over {{b \ {s \sp 2}}+{2 \ a \ b \ s}+{b \sp 3}+{{a \sp 2} \ b}} +\frac{1}{{b \ {s \sp 2}}+{2 \ a \ b \ s}+{b \sp 3}+{{a \sp 2} \ b}} $$ \returnType{Type: Expression Integer} \spadcommand{laplace((cos(a*t) - cos(b*t))/t, t, s)} $$ -{{\log \left({{{s \sp 2}+{b \sp 2}}} \right)}- -{\log \left({{{s \sp 2}+{a \sp 2}}} \right)}} -\over 2 +\frac{{\log \left({{{s \sp 2}+{b \sp 2}}} \right)}- +{\log \left({{{s \sp 2}+{a \sp 2}}} \right)}}{2} $$ \returnType{Type: Expression Integer} @@ -20193,14 +19881,14 @@ Axiom also knows about a few special functions. \spadcommand{laplace(exp(a*t+b)*Ei(c*t), t, s)} $$ -{{e \sp b} \ {\log \left({{{s+c -a} \over c}} \right)}}\over {s -a} +\frac{{e \sp b} \ {\log \left({{\frac{s+c -a}{c}}} \right)}}{s -a} $$ \returnType{Type: Expression Integer} \spadcommand{laplace(a*Ci(b*t) + c*Si(d*t), t, s)} $$ -{{a \ {\log \left({{{{s \sp 2}+{b \sp 2}} \over {b \sp 2}}} \right)}}+ -{2\ c \ {\arctan \left({{d \over s}} \right)}}}\over {2 \ s} +\frac{{a \ {\log \left({{\frac{{s \sp 2}+{b \sp 2}}{b \sp 2}}} \right)}}+ +{2\ c \ {\arctan \left({{\frac{d}{s}}} \right)}}}{2 \ s} $$ \returnType{Type: Expression Integer} @@ -20209,9 +19897,9 @@ it keeps it as a formal transform in the answer. \spadcommand{laplace(sin(a*t) - a*t*cos(a*t) + exp(t**2), t, s)} $$ -{{{\left( {s \sp 4}+{2 \ {a \sp 2} \ {s \sp 2}}+{a \sp 4} \right)} +\frac{{{\left( {s \sp 4}+{2 \ {a \sp 2} \ {s \sp 2}}+{a \sp 4} \right)} \ {laplace \left({{e \sp {t \sp 2}}, t, s} \right)}}+ -{2\ {a \sp 3}}} \over {{s \sp 4}+{2 \ {a \sp 2} \ {s \sp 2}}+{a \sp 4}} +{2\ {a \sp 3}}}{{s \sp 4}+{2 \ {a \sp 2} \ {s \sp 2}}+{a \sp 4}} $$ \returnType{Type: Expression Integer} @@ -20231,9 +19919,9 @@ for integrating real-valued elementary functions. \spadcommand{integrate(cosh(a*x)*sinh(a*x), x)} $$ -{{{\sinh \left({{a \ x}} \right)}\sp 2}+ +\frac{{{\sinh \left({{a \ x}} \right)}\sp 2}+ {{\cosh \left({{a \ x}} \right)}\sp 2}} -\over {4 \ a} +{4 \ a} $$ \returnType{Type: Union(Expression Integer,...)} @@ -20242,11 +19930,8 @@ terms of elementary functions. \spadcommand{integrate(log(1 + sqrt(a * x + b)) / x, x)} $$ -\int \sp{\displaystyle x} {{{\log -\left( -{{{\sqrt {{b+{ \%M \ a}}}}+1}} -\right)} -\over \%M} \ {d \%M}} +\int \sp{\displaystyle x} {{ +\frac{\log \left({{{\sqrt {{b+{ \%M \ a}}}}+1}} \right)}{\%M}} \ {d \%M}} $$ \returnType{Type: Union(Expression Integer,...)} @@ -20262,15 +19947,16 @@ depends on the sign of a constant that appears in the function. \spadcommand{integrate(1/(x**2 - 2),x)} $$ -{\log \left({{{{{\left( {x \sp 2}+2 \right)}\ {\sqrt {2}}} -{4 \ x}} -\over {{x \sp 2} -2}}} \right)} -\over {2 \ {\sqrt {2}}} +\frac{\log \left({{ +\frac{{{\left( {x \sp 2}+2 \right)}\ {\sqrt {2}}} -{4 \ x}} +{{x \sp 2} -2}}} \right)} +{2 \ {\sqrt {2}}} $$ \returnType{Type: Union(Expression Integer,...)} \spadcommand{integrate(1/(x**2 + 2),x)} $$ -{\arctan \left({{{x \ {\sqrt {2}}} \over 2}} \right)}\over {\sqrt {2}} +\frac{\arctan \left({{\frac{x \ {\sqrt {2}}}{2}}} \right)}{\sqrt {2}} $$ \returnType{Type: Union(Expression Integer,...)} @@ -20286,23 +19972,23 @@ functions} the answer involving the square root of $-a$ when $a < 0$. $$ \begin{array}{@{}l} \left[ -{{{\log +{\frac{{\log \left( -{{{{{\left( {x \sp 2}+a \right)} -\ {\sqrt {a}}} -{2 \ a \ x}} \over {{x \sp 2} -a}}} +{{\frac{{{\left( {x \sp 2}+a \right)} +\ {\sqrt {a}}} -{2 \ a \ x}}{{x \sp 2} -a}}} \right)}+ -{2\ {\arctan \left({{{x \ {\sqrt {a}}} \over a}} \right)}}} -\over {4 \ {\sqrt {a}}}}, +{2\ {\arctan \left({{\frac{x \ {\sqrt {a}}}{a}}} \right)}}} +{4 \ {\sqrt {a}}}}, \right. \\ \\ \displaystyle \left. -{{{\log \left({{{{{\left( {x \sp 2} -a \right)} -\ {\sqrt {-a}}}+{2 \ a \ x}} \over {{x \sp 2}+a}}} +{\frac{{\log \left({{\frac{{{\left( {x \sp 2} -a \right)} +\ {\sqrt {-a}}}+{2 \ a \ x}}{{x \sp 2}+a}}} \right)} --{2 \ {\arctan \left({{{x \ {\sqrt {-a}}} \over a}} \right)}}} -\over {4 \ {\sqrt {-a}}}} +-{2 \ {\arctan \left({{\frac{x \ {\sqrt {-a}}}{a}}} \right)}}} +{4 \ {\sqrt {-a}}}} \right] \end{array} $$ @@ -20322,30 +20008,30 @@ functions. \spadcommand{complexIntegrate(x**2 / (x**4 - a**2), x)} $$ -\left( +\frac{\left( \begin{array}{@{}l} {{\sqrt {{4 \ a}}} \ {\log \left( -{{{{x \ {\sqrt {-{4 \ a}}}}+{2 \ a}} \over {\sqrt {-{4 \ a}}}}} +{{\frac{{x \ {\sqrt {-{4 \ a}}}}+{2 \ a}}{\sqrt {-{4 \ a}}}}} \right)}} - {{\sqrt {-{4 \ a}}} \ {\log \left( -{{{{x \ {\sqrt {{4 \ a}}}}+{2 \ a}} \over {\sqrt {{4 \ a}}}}} +{{\frac{{x \ {\sqrt {{4 \ a}}}}+{2 \ a}}{\sqrt {{4 \ a}}}}} \right)}}+ \\ \\ \displaystyle {{\sqrt{-{4 \ a}}} \ {\log \left( -{{{{x \ {\sqrt {{4 \ a}}}} -{2 \ a}} \over {\sqrt {{4 \ a}}}}} +{{\frac{{x \ {\sqrt {{4 \ a}}}} -{2 \ a}}{\sqrt {{4 \ a}}}}} \right)}} -{{\sqrt {{4 \ a}}} \ {\log \left( -{{{{x \ {\sqrt {-{4 \ a}}}} -{2 \ a}} \over {\sqrt {-{4 \ a}}}}} +{{\frac{{x \ {\sqrt {-{4 \ a}}}} -{2 \ a}}{\sqrt {-{4 \ a}}}}} \right)}} \end{array} -\right) -\over {2 \ {\sqrt {-{4 \ a}}} \ {\sqrt {{4 \ a}}}} +\right)} +{2 \ {\sqrt {-{4 \ a}}} \ {\sqrt {{4 \ a}}}} $$ \returnType{Type: Expression Integer} @@ -20355,8 +20041,7 @@ functions cannot be expressed in terms of elementary functions. \spadcommand{complexIntegrate(log(1 + sqrt(a * x + b)) / x, x)} $$ \int \sp{\displaystyle x} -{{{\log \left({{{\sqrt {{b+{ \%M \ a}}}}+1}} \right)} -\over \%M} \ {d \%M}} +{{\frac{\log \left({{{\sqrt {{b+{ \%M \ a}}}}+1}} \right)}{\%M}} \ {d \%M}} $$ \returnType{Type: Expression Integer} @@ -20382,11 +20067,11 @@ for integrating real-valued rational functions. \spadcommand{integrate((x**4 - 3*x**2 + 6)/(x**6-5*x**4+5*x**2+4), x = 1..2)} $$ -{{2 \ {\arctan \left({8} \right)}}+ +\frac{{2 \ {\arctan \left({8} \right)}}+ {2\ {\arctan \left({5} \right)}}+ {2\ {\arctan \left({2} \right)}}+ -{2\ {\arctan \left({{1 \over 2}} \right)}} --\pi} \over 2 +{2\ {\arctan \left({{\frac{1}{2}}} \right)}} +-\pi}{2} $$ \returnType{Type: Union(f1: OrderedCompletion Expression Integer,...)} @@ -20425,29 +20110,30 @@ $1$ and $2.$ $$ \begin{array}{@{}l} \left[ -\left( +\displaystyle +\frac{\left( \begin{array}{@{}l} --{\log \left({{{{{\left( -{4 \ {a \sp 2}} -{4 \ a} \right)} -\ {\sqrt {a}}}+{a \sp 3}+{6 \ {a \sp 2}}+a} \over {{a \sp 2} -{2 \ a}+1}}} +-{\log \left({{\frac{{{\left( -{4 \ {a \sp 2}} -{4 \ a} \right)} +\ {\sqrt {a}}}+{a \sp 3}+{6 \ {a \sp 2}}+a}{{a \sp 2} -{2 \ a}+1}}} \right)}+ \\ \\ \displaystyle -{\log\left({{{{{\left( -{8 \ {a \sp 2}} -{{32} \ a} \right)} -\ {\sqrt {a}}}+{a \sp 3}+{{24} \ {a \sp 2}}+{{16} \ a}} \over {{a \sp 2} +{\log\left({{\frac{{{\left( -{8 \ {a \sp 2}} -{{32} \ a} \right)} +\ {\sqrt {a}}}+{a \sp 3}+{{24} \ {a \sp 2}}+{{16} \ a}}{{a \sp 2} -{8 \ a}+{16}}}} \right)} \end{array} -\right) -\over {4 \ {\sqrt {a}}}, +\right)} +{4 \ {\sqrt {a}}}, \right. \\ \\ \displaystyle \left. -{{-{\arctan \left({{{2 \ {\sqrt {-a}}} \over a}} \right)}+ -{\arctan\left({{{\sqrt {-a}} \over a}} \right)}} -\over {\sqrt {-a}}} +{\frac{-{\arctan \left({{\frac{2 \ {\sqrt {-a}}}{a}}} \right)}+ +{\arctan\left({{\frac{\sqrt {-a}}{a}}} \right)}} +{\sqrt {-a}}} \right] \end{array} $$ @@ -20521,11 +20207,11 @@ This series has coefficients that are rational numbers. \spadcommand{sin(x) } $$ x - -{{1 \over 6} \ {x \sp 3}}+ -{{1 \over {120}} \ {x \sp 5}} - -{{1 \over {5040}} \ {x \sp 7}}+ -{{1 \over {362880}} \ {x \sp 9}} - -{{1 \over {39916800}} \ {x \sp {11}}}+ +{{\frac{1}{6}} \ {x \sp 3}}+ +{{\frac{1}{120}} \ {x \sp 5}} - +{{\frac{1}{5040}} \ {x \sp 7}}+ +{{\frac{1}{362880}} \ {x \sp 9}} - +{{\frac{1}{39916800}} \ {x \sp {11}}}+ {O \left({{x \sp {12}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -20538,18 +20224,18 @@ $$ \begin{array}{@{}l} {\sin \left({1} \right)}+ {{\cos\left({1} \right)}\ x} - -{{{\sin \left({1} \right)}\over 2} \ {x \sp 2}} - -{{{\cos \left({1} \right)}\over 6} \ {x \sp 3}}+ -{{{\sin \left({1} \right)}\over {24}} \ {x \sp 4}}+ -{{{\cos \left({1} \right)}\over {120}} \ {x \sp 5}} - -{{{\sin \left({1} \right)}\over {720}} \ {x \sp 6}} - +{{\frac{\sin \left({1} \right)}{2}} \ {x \sp 2}} - +{{\frac{\cos \left({1} \right)}{6}} \ {x \sp 3}}+ +{{\frac{\sin \left({1} \right)}{24}} \ {x \sp 4}}+ +{{\frac{\cos \left({1} \right)}{120}} \ {x \sp 5}} - +{{\frac{\sin \left({1} \right)}{720}} \ {x \sp 6}} - \\ \\ \displaystyle -{{{\cos \left({1} \right)}\over {5040}} \ {x \sp 7}}+ -{{{\sin \left({1} \right)}\over {40320}} \ {x \sp 8}}+ -{{{\cos \left({1} \right)}\over {362880}} \ {x \sp 9}} - -{{{\sin \left({1} \right)}\over {3628800}} \ {x \sp {10}}}+ +{{\frac{\cos \left({1} \right)}{5040}} \ {x \sp 7}}+ +{{\frac{\sin \left({1} \right)}{40320}} \ {x \sp 8}}+ +{{\frac{\cos \left({1} \right)}{362880}} \ {x \sp 9}} - +{{\frac{\sin \left({1} \right)}{3628800}} \ {x \sp {10}}}+ {O \left({{x \sp {11}}} \right)} \end{array} $$ @@ -20561,11 +20247,11 @@ the variable $a$ appears in the resulting series expansion. \spadcommand{sin(a * x) } $$ {a \ x} - -{{{a \sp 3} \over 6} \ {x \sp 3}}+ -{{{a \sp 5} \over {120}} \ {x \sp 5}} - -{{{a \sp 7} \over {5040}} \ {x \sp 7}}+ -{{{a \sp 9} \over {362880}} \ {x \sp 9}} - -{{{a \sp {11}} \over {39916800}} \ {x \sp {11}}}+ +{{\frac{a \sp 3}{6}} \ {x \sp 3}}+ +{{\frac{a \sp 5}{120}} \ {x \sp 5}} - +{{\frac{a \sp 7}{5040}} \ {x \sp 7}}+ +{{\frac{a \sp 9}{362880}} \ {x \sp 9}} - +{{\frac{a \sp {11}}{39916800}} \ {x \sp {11}}}+ {O \left({{x \sp {12}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -20579,21 +20265,21 @@ on page~\pageref{ugxProblemSeriesConversions}. $$ \begin{array}{@{}l} {{\left( y -1 \right)}\sp {\left( -1 \right)}}+ -{1\over 2} -{{1 \over {12}} \ {\left( y -1 \right)}}+ -{{1\over {24}} \ {{\left( y -1 \right)}\sp 2}} - -{{{19} \over {720}} \ {{\left( y -1 \right)}\sp 3}}+ -{{3 \over {160}} \ {{\left( y -1 \right)}\sp 4}} - +{\frac{1}{2}} -{{\frac{1}{12}} \ {\left( y -1 \right)}}+ +{{\frac{1}{24}} \ {{\left( y -1 \right)}\sp 2}} - +{{\frac{19}{720}} \ {{\left( y -1 \right)}\sp 3}}+ +{{\frac{3}{160}} \ {{\left( y -1 \right)}\sp 4}} - \\ \\ \displaystyle -{{{863} \over {60480}} \ {{\left( y -1 \right)}\sp 5}}+ -{{{275} \over {24192}} \ {{\left( y -1 \right)}\sp 6}} - -{{{33953} \over {3628800}} \ {{\left( y -1 \right)}\sp 7}}+ +{{\frac{863}{60480}} \ {{\left( y -1 \right)}\sp 5}}+ +{{\frac{275}{24192}} \ {{\left( y -1 \right)}\sp 6}} - +{{\frac{33953}{3628800}} \ {{\left( y -1 \right)}\sp 7}}+ \\ \\ \displaystyle -{{{8183} \over {1036800}} \ {{\left( y -1 \right)}\sp 8}} - -{{{3250433} \over {479001600}} \ {{\left( y -1 \right)}\sp 9}}+ +{{\frac{8183}{1036800}} \ {{\left( y -1 \right)}\sp 8}} - +{{\frac{3250433}{479001600}} \ {{\left( y -1 \right)}\sp 9}}+ {O \left({{{\left( y -1 \right)}\sp {10}}} \right)} \end{array} $$ @@ -20655,18 +20341,18 @@ expansion of $exp(w)$ at $w = 0$. $$ \begin{array}{@{}l} 1+w+ -{{1 \over 2} \ {w \sp 2}}+ -{{1 \over 6} \ {w \sp 3}}+ -{{1 \over {24}} \ {w \sp 4}}+ -{{1 \over {120}} \ {w \sp 5}}+ -{{1 \over {720}} \ {w \sp 6}}+ -{{1 \over {5040}} \ {w \sp 7}}+ +{{\frac{1}{2}} \ {w \sp 2}}+ +{{\frac{1}{6}} \ {w \sp 3}}+ +{{\frac{1}{24}} \ {w \sp 4}}+ +{{\frac{1}{120}} \ {w \sp 5}}+ +{{\frac{1}{720}} \ {w \sp 6}}+ +{{\frac{1}{5040}} \ {w \sp 7}}+ \\ \\ \displaystyle -{{1 \over {40320}} \ {w \sp 8}}+ -{{1 \over {362880}} \ {w \sp 9}}+ -{{1 \over {3628800}} \ {w \sp {10}}}+ +{{\frac{1}{40320}} \ {w \sp 8}}+ +{{\frac{1}{362880}} \ {w \sp 9}}+ +{{\frac{1}{3628800}} \ {w \sp {10}}}+ {O \left({{w \sp {11}}} \right)} \end{array} $$ @@ -20699,16 +20385,16 @@ $$ \begin{array}{@{}l} x+ {x \sp 2}+ -{{1 \over 3} \ {x \sp 3}} - -{{1 \over {30}} \ {x \sp 5}} - -{{1 \over {90}} \ {x \sp 6}} - -{{1 \over {630}} \ {x \sp 7}}+ -{{1 \over {22680}} \ {x \sp 9}}+ +{{\frac{1}{3}} \ {x \sp 3}} - +{{\frac{1}{30}} \ {x \sp 5}} - +{{\frac{1}{90}} \ {x \sp 6}} - +{{\frac{1}{630}} \ {x \sp 7}}+ +{{\frac{1}{22680}} \ {x \sp 9}}+ \\ \\ \displaystyle -{{1 \over {113400}} \ {x \sp {10}}}+ -{{1 \over {1247400}} \ {x \sp {11}}}+ +{{\frac{1}{113400}} \ {x \sp {10}}}+ +{{\frac{1}{1247400}} \ {x \sp {11}}}+ {O \left({{x \sp {12}}} \right)} \end{array} $$ @@ -20718,7 +20404,7 @@ This coefficient is readily available. \spadcommand{coefficient(y,6) } $$ --{1 \over {90}} +-{\frac{1}{90}} $$ \returnType{Type: Expression Integer} @@ -20726,7 +20412,7 @@ But let's get the fifteenth coefficient of $y$. \spadcommand{coefficient(y,15) } $$ --{1 \over {10216206000}} +-{\frac{1}{10216206000}} $$ \returnType{Type: Expression Integer} @@ -20738,19 +20424,19 @@ $$ \begin{array}{@{}l} x+ {x \sp 2}+ -{{1 \over 3} \ {x \sp 3}} - -{{1 \over {30}} \ {x \sp 5}} - -{{1 \over {90}} \ {x \sp 6}} - -{{1 \over {630}} \ {x \sp 7}}+ -{{1 \over {22680}} \ {x \sp 9}}+ -{{1 \over {113400}} \ {x \sp {10}}}+ +{{\frac{1}{3}} \ {x \sp 3}} - +{{\frac{1}{30}} \ {x \sp 5}} - +{{\frac{1}{90}} \ {x \sp 6}} - +{{\frac{1}{630}} \ {x \sp 7}}+ +{{\frac{1}{22680}} \ {x \sp 9}}+ +{{\frac{1}{113400}} \ {x \sp {10}}}+ \\ \\ \displaystyle -{{1 \over {1247400}} \ {x \sp {11}}} - -{{1 \over {97297200}} \ {x \sp {13}}} - -{{1 \over {681080400}} \ {x \sp {14}}} - -{{1 \over {10216206000}} \ {x \sp {15}}}+ +{{\frac{1}{1247400}} \ {x \sp {11}}} - +{{\frac{1}{97297200}} \ {x \sp {13}}} - +{{\frac{1}{681080400}} \ {x \sp {14}}} - +{{\frac{1}{10216206000}} \ {x \sp {15}}}+ {O \left({{x \sp {16}}} \right)} \end{array} $$ @@ -20834,17 +20520,17 @@ $$ \begin{array}{@{}l} 1+ {x \sp 2}+ -{{3 \over 2} \ {x \sp 3}}+ -{{7 \over 3} \ {x \sp 4}}+ -{{{43} \over {12}} \ {x \sp 5}}+ -{{{649} \over {120}} \ {x \sp 6}}+ -{{{241} \over {30}} \ {x \sp 7}}+ -{{{3706} \over {315}} \ {x \sp 8}}+ +{{\frac{3}{2}} \ {x \sp 3}}+ +{{\frac{7}{3}} \ {x \sp 4}}+ +{{\frac{43}{12}} \ {x \sp 5}}+ +{{\frac{649}{120}} \ {x \sp 6}}+ +{{\frac{241}{30}} \ {x \sp 7}}+ +{{\frac{3706}{315}} \ {x \sp 8}}+ \\ \\ \displaystyle -{{{85763} \over {5040}} \ {x \sp 9}}+ -{{{245339} \over {10080}} \ {x \sp {10}}}+ +{{\frac{85763}{5040}} \ {x \sp 9}}+ +{{\frac{245339}{10080}} \ {x \sp {10}}}+ {O \left({{x \sp {11}}} \right)} \end{array} $$ @@ -20861,7 +20547,7 @@ functions To demonstrate this, we first create the power series expansion of the rational function -$${\displaystyle x^2} \over {\displaystyle 1 - 6x + x^2}$$ +$$\frac{\displaystyle x^2}{\displaystyle 1 - 6x + x^2}$$ about $x = 0$. @@ -20895,7 +20581,7 @@ $$ If you want to compute the series expansion of -$$\sin\left({\displaystyle x^2} \over {\displaystyle 1 - 6x + x^2}\right)$$ +$$\sin\left(\frac{\displaystyle x^2}{\displaystyle 1 - 6x + x^2}\right)$$ you simply compute the sine of $rat$. @@ -20906,16 +20592,16 @@ $$ {6 \ {x \sp 3}}+ {{35} \ {x \sp 4}}+ {{204} \ {x \sp 5}}+ -{{{7133} \over 6} \ {x \sp 6}}+ +{{\frac{7133}{6}} \ {x \sp 6}}+ {{6927} \ {x \sp 7}}+ -{{{80711} \over 2} \ {x \sp 8}}+ +{{\frac{80711}{2}} \ {x \sp 8}}+ {{235068} \ {x \sp 9}}+ \\ \\ \displaystyle -{{{164285281} \over {120}} \ {x \sp {10}}}+ -{{{31888513} \over 4} \ {x \sp {11}}}+ -{{{371324777} \over 8} \ {x \sp {12}}}+ +{{\frac{164285281}{120}} \ {x \sp {10}}}+ +{{\frac{31888513}{4}} \ {x \sp {11}}}+ +{{\frac{371324777}{8}} \ {x \sp {12}}}+ {O \left({{x \sp {13}}} \right)} \end{array} $$ @@ -20948,18 +20634,18 @@ these series have rational coefficients. $$ \begin{array}{@{}l} 1+y+ -{{1 \over 2} \ {y \sp 2}}+ -{{1 \over 6} \ {y \sp 3}}+ -{{1 \over {24}} \ {y \sp 4}}+ -{{1 \over {120}} \ {y \sp 5}}+ -{{1 \over {720}} \ {y \sp 6}}+ -{{1 \over {5040}} \ {y \sp 7}}+ -{{1 \over {40320}} \ {y \sp 8}}+ +{{\frac{1}{2}} \ {y \sp 2}}+ +{{\frac{1}{6}} \ {y \sp 3}}+ +{{\frac{1}{24}} \ {y \sp 4}}+ +{{\frac{1}{120}} \ {y \sp 5}}+ +{{\frac{1}{720}} \ {y \sp 6}}+ +{{\frac{1}{5040}} \ {y \sp 7}}+ +{{\frac{1}{40320}} \ {y \sp 8}}+ \\ \\ \displaystyle -{{1 \over {362880}} \ {y \sp 9}}+ -{{1 \over {3628800}} \ {y \sp {10}}}+ +{{\frac{1}{362880}} \ {y \sp 9}}+ +{{\frac{1}{3628800}} \ {y \sp {10}}}+ {O \left({{y \sp {11}}} \right)} \end{array} $$ @@ -20971,8 +20657,8 @@ functions to series in $y$ that have no constant terms. \spadcommand{tan(y**2) } $$ {y \sp 2}+ -{{1 \over 3} \ {y \sp 6}}+ -{{2 \over {15}} \ {y \sp {10}}}+ +{{\frac{1}{3}} \ {y \sp 6}}+ +{{\frac{2}{15}} \ {y \sp {10}}}+ {O \left({{y \sp {11}}} \right)} $$ \returnType{Type: UnivariateTaylorSeries(Fraction Integer,y,0)} @@ -20980,11 +20666,11 @@ $$ \spadcommand{cos(y + y**5) } $$ 1 - -{{1 \over 2} \ {y \sp 2}}+ -{{1 \over {24}} \ {y \sp 4}} - -{{{721} \over {720}} \ {y \sp 6}}+ -{{{6721} \over {40320}} \ {y \sp 8}} - -{{{1844641} \over {3628800}} \ {y \sp {10}}}+ +{{\frac{1}{2}} \ {y \sp 2}}+ +{{\frac{1}{24}} \ {y \sp 4}} - +{{\frac{721}{720}} \ {y \sp 6}}+ +{{\frac{6721}{40320}} \ {y \sp 8}} - +{{\frac{1844641}{3628800}} \ {y \sp {10}}}+ {O \left({{y \sp {11}}} \right)} $$ \returnType{Type: UnivariateTaylorSeries(Fraction Integer,y,0)} @@ -20996,18 +20682,18 @@ coefficients if the constant coefficient is $1.$ $$ \begin{array}{@{}l} y - -{{1 \over 2} \ {y \sp 2}}+ -{{1 \over 6} \ {y \sp 3}} - -{{1 \over {12}} \ {y \sp 4}}+ -{{1 \over {24}} \ {y \sp 5}} - -{{1 \over {45}} \ {y \sp 6}}+ -{{{61} \over {5040}} \ {y \sp 7}} - -{{{17} \over {2520}} \ {y \sp 8}}+ -{{{277} \over {72576}} \ {y \sp 9}} - +{{\frac{1}{2}} \ {y \sp 2}}+ +{{\frac{1}{6}} \ {y \sp 3}} - +{{\frac{1}{12}} \ {y \sp 4}}+ +{{\frac{1}{24}} \ {y \sp 5}} - +{{\frac{1}{45}} \ {y \sp 6}}+ +{{\frac{61}{5040}} \ {y \sp 7}} - +{{\frac{17}{2520}} \ {y \sp 8}}+ +{{\frac{277}{72576}} \ {y \sp 9}} - \\ \\ \displaystyle -{{{31} \over {14175}} \ {y \sp {10}}}+ +{{\frac{31}{14175}} \ {y \sp {10}}}+ {O \left({{y \sp {11}}} \right)} \end{array} $$ @@ -21039,18 +20725,18 @@ $$ \begin{array}{@{}l} {e \sp 2}+ {{e \sp 2} \ z}+ -{{{e \sp 2} \over 2} \ {z \sp 2}}+ -{{{e \sp 2} \over 2} \ {z \sp 3}}+ -{{{3 \ {e \sp 2}} \over 8} \ {z \sp 4}}+ -{{{{37} \ {e \sp 2}} \over {120}} \ {z \sp 5}}+ -{{{{59} \ {e \sp 2}} \over {240}} \ {z \sp 6}}+ -{{{{137} \ {e \sp 2}} \over {720}} \ {z \sp 7}}+ +{{\frac{e \sp 2}{2}} \ {z \sp 2}}+ +{{\frac{e \sp 2}{2}} \ {z \sp 3}}+ +{{\frac{3 \ {e \sp 2}}{8}} \ {z \sp 4}}+ +{{\frac{{37} \ {e \sp 2}}{120}} \ {z \sp 5}}+ +{{\frac{{59} \ {e \sp 2}}{240}} \ {z \sp 6}}+ +{{\frac{{137} \ {e \sp 2}}{720}} \ {z \sp 7}}+ \\ \\ \displaystyle -{{{{871} \ {e \sp 2}} \over {5760}} \ {z \sp 8}}+ -{{{{41641} \ {e \sp 2}} \over {362880}} \ {z \sp 9}}+ -{{{{325249} \ {e \sp 2}} \over {3628800}} \ {z \sp {10}}}+ +{{\frac{{871} \ {e \sp 2}}{5760}} \ {z \sp 8}}+ +{{\frac{{41641} \ {e \sp 2}}{362880}} \ {z \sp 9}}+ +{{\frac{{325249} \ {e \sp 2}}{3628800}} \ {z \sp {10}}}+ {O \left({{z \sp {11}}} \right)} \end{array} $$ @@ -21074,18 +20760,18 @@ $$ \begin{array}{@{}l} {e \sp 2}+ {{e \sp 2} \ w}+ -{{{e \sp 2} \over 2} \ {w \sp 2}}+ -{{{e \sp 2} \over 2} \ {w \sp 3}}+ -{{{3 \ {e \sp 2}} \over 8} \ {w \sp 4}}+ -{{{{37} \ {e \sp 2}} \over {120}} \ {w \sp 5}}+ -{{{{59} \ {e \sp 2}} \over {240}} \ {w \sp 6}}+ -{{{{137} \ {e \sp 2}} \over {720}} \ {w \sp 7}}+ +{{\frac{e \sp 2}{2}} \ {w \sp 2}}+ +{{\frac{e \sp 2}{2}} \ {w \sp 3}}+ +{{\frac{3 \ {e \sp 2}}{8}} \ {w \sp 4}}+ +{{\frac{{37} \ {e \sp 2}}{120}} \ {w \sp 5}}+ +{{\frac{{59} \ {e \sp 2}}{240}} \ {w \sp 6}}+ +{{\frac{{137} \ {e \sp 2}}{720}} \ {w \sp 7}}+ \\ \\ \displaystyle -{{{{871} \ {e \sp 2}} \over {5760}} \ {w \sp 8}}+ -{{{{41641} \ {e \sp 2}} \over {362880}} \ {w \sp 9}}+ -{{{{325249} \ {e \sp 2}} \over {3628800}} \ {w \sp {10}}}+ +{{\frac{{871} \ {e \sp 2}}{5760}} \ {w \sp 8}}+ +{{\frac{{41641} \ {e \sp 2}}{362880}} \ {w \sp 9}}+ +{{\frac{{325249} \ {e \sp 2}}{3628800}} \ {w \sp {10}}}+ {O \left({{w \sp {11}}} \right)} \end{array} $$ @@ -21107,10 +20793,10 @@ expanded in power of $(x - 0)$, that is, in power of $x$. \spadcommand{taylor(sin(x),x = 0)} $$ x - -{{1 \over 6} \ {x \sp 3}}+ -{{1 \over {120}} \ {x \sp 5}} - -{{1 \over {5040}} \ {x \sp 7}}+ -{{1 \over {362880}} \ {x \sp 9}}+ +{{\frac{1}{6}} \ {x \sp 3}}+ +{{\frac{1}{120}} \ {x \sp 5}} - +{{\frac{1}{5040}} \ {x \sp 7}}+ +{{\frac{1}{362880}} \ {x \sp 9}}+ {O \left({{x \sp {11}}} \right)} $$ \returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)} @@ -21120,24 +20806,24 @@ Here is the Taylor expansion of $sin x$ about $x = \frac{\pi}{6}$: \spadcommand{taylor(sin(x),x = \%pi/6)} $$ \begin{array}{@{}l} -{1 \over 2}+ -{{{\sqrt {3}} \over 2} \ {\left( x -{\pi \over 6} \right)}} --{{1 \over 4} \ {{\left( x -{\pi \over 6} \right)}\sp 2}} - -{{{\sqrt {3}} \over {12}} \ {{\left( x -{\pi \over 6} \right)}\sp 3}}+ -{{1 \over {48}} \ {{\left( x -{\pi \over 6} \right)}\sp 4}}+ +{\frac{1}{2}}+ +{{\frac{\sqrt {3}}{2}} \ {\left( x -{\frac{\pi}{6}} \right)}} +-{{\frac{1}{4}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp 2}} - +{{\frac{\sqrt {3}}{12}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp 3}}+ +{{\frac{1}{48}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp 4}}+ \\ \\ \displaystyle -{{{\sqrt {3}} \over {240}} \ {{\left( x -{\pi \over 6} \right)}\sp 5}} - -{{1 \over {1440}} \ {{\left( x -{\pi \over 6} \right)}\sp 6}} - -{{{\sqrt {3}} \over {10080}} \ {{\left( x -{\pi \over 6} \right)}\sp 7}}+ -{{1 \over {80640}} \ {{\left( x -{\pi \over 6} \right)}\sp 8}}+ +{{\frac{\sqrt {3}}{240}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp 5}} - +{{\frac{1}{1440}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp 6}} - +{{\frac{\sqrt {3}}{10080}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp 7}}+ +{{\frac{1}{80640}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp 8}}+ \\ \\ \displaystyle -{{{\sqrt {3}} \over {725760}} \ {{\left( x -{\pi \over 6} \right)}\sp 9}} - -{{1 \over {7257600}} \ {{\left( x -{\pi \over 6} \right)}\sp {10}}}+ -{O \left({{{\left( x -{\pi \over 6} \right)}\sp {11}}} \right)} +{{\frac{\sqrt {3}}{725760}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp 9}} - +{{\frac{1}{7257600}} \ {{\left( x -{\frac{\pi}{6}} \right)}\sp {10}}}+ +{O \left({{{\left( x -{\frac{\pi}{6}} \right)}\sp {11}}} \right)} \end{array} $$ \returnType{Type: UnivariateTaylorSeries(Expression Integer,x,pi/6)} @@ -21151,10 +20837,10 @@ For example, we may expand $tan(x*y)$ as a Taylor series in $x$ \spadcommand{taylor(tan(x*y),x = 0)} $$ {y \ x}+ -{{{y \sp 3} \over 3} \ {x \sp 3}}+ -{{{2 \ {y \sp 5}} \over {15}} \ {x \sp 5}}+ -{{{{17} \ {y \sp 7}} \over {315}} \ {x \sp 7}}+ -{{{{62} \ {y \sp 9}} \over {2835}} \ {x \sp 9}}+ +{{\frac{y \sp 3}{3}} \ {x \sp 3}}+ +{{\frac{2 \ {y \sp 5}}{15}} \ {x \sp 5}}+ +{{\frac{{17} \ {y \sp 7}}{315}} \ {x \sp 7}}+ +{{\frac{{62} \ {y \sp 9}}{2835}} \ {x \sp 9}}+ {O \left({{x \sp {11}}} \right)} $$ \returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)} @@ -21164,16 +20850,16 @@ or as a Taylor series in $y$. \spadcommand{taylor(tan(x*y),y = 0)} $$ {x \ y}+ -{{{x \sp 3} \over 3} \ {y \sp 3}}+ -{{{2 \ {x \sp 5}} \over {15}} \ {y \sp 5}}+ -{{{{17} \ {x \sp 7}} \over {315}} \ {y \sp 7}}+ -{{{{62} \ {x \sp 9}} \over {2835}} \ {y \sp 9}}+ +{{\frac{x \sp 3}{3}} \ {y \sp 3}}+ +{{\frac{2 \ {x \sp 5}}{15}} \ {y \sp 5}}+ +{{\frac{{17} \ {x \sp 7}}{315}} \ {y \sp 7}}+ +{{\frac{{62} \ {x \sp 9}}{2835}} \ {y \sp 9}}+ {O \left({{y \sp {11}}} \right)} $$ \returnType{Type: UnivariateTaylorSeries(Expression Integer,y,0)} A more interesting function is -$${\displaystyle t e^{x t}} \over{\displaystyle e^t - 1}$$ +$$\frac{\displaystyle t e^{x t}}{\displaystyle e^t - 1}$$ When we expand this function as a Taylor series in $t$ the $n$-th order coefficient is the $n$-th Bernoulli \index{Bernoulli!polynomial} polynomial \index{polynomial!Bernoulli} @@ -21183,40 +20869,40 @@ divided by $n!$. $$ \begin{array}{@{}l} 1+ -{{{{2 \ x} -1} \over 2} \ t}+ -{{{{6 \ {x \sp 2}} -{6 \ x}+1} \over {12}} \ {t \sp 2}}+ -{{{{2 \ {x \sp 3}} -{3 \ {x \sp 2}}+x} \over {12}} \ {t \sp 3}}+ +{{\frac{{2 \ x} -1}{2}} \ t}+ +{{\frac{{6 \ {x \sp 2}} -{6 \ x}+1}{12}} \ {t \sp 2}}+ +{{\frac{{2 \ {x \sp 3}} -{3 \ {x \sp 2}}+x}{12}} \ {t \sp 3}}+ \\ \\ \displaystyle -{{{{{30} \ {x \sp 4}} -{{60} \ {x \sp 3}}+{{30} \ {x \sp 2}} -1} \over +{{\frac{{{30} \ {x \sp 4}} -{{60} \ {x \sp 3}}+{{30} \ {x \sp 2}} -1} {720}} \ {t \sp 4}}+ -{{{{6 \ {x \sp 5}} -{{15} \ {x \sp 4}}+{{10} \ {x \sp -3}} -x} \over {720}} \ {t \sp 5}}+ +{{\frac{{6 \ {x \sp 5}} -{{15} \ {x \sp 4}}+{{10} \ {x \sp +3}} -x}{720}} \ {t \sp 5}}+ \\ \\ \displaystyle -{{{{{42} \ {x \sp 6}} -{{126} \ {x \sp 5}}+{{105} \ {x \sp 4}} -{{21} -\ {x \sp 2}}+1} \over {30240}} \ {t \sp 6}}+ -{{{{6 \ {x \sp 7}} -{{21} \ {x \sp 6}}+{{21} \ {x \sp 5}} -{7 \ {x -\sp 3}}+x} \over {30240}} \ {t \sp 7}}+ +{{\frac{{{42} \ {x \sp 6}} -{{126} \ {x \sp 5}}+{{105} \ {x \sp 4}} -{{21} +\ {x \sp 2}}+1}{30240}} \ {t \sp 6}}+ +{{\frac{{6 \ {x \sp 7}} -{{21} \ {x \sp 6}}+{{21} \ {x \sp 5}} -{7 \ {x +\sp 3}}+x}{30240}} \ {t \sp 7}}+ \\ \\ \displaystyle -{{{{{30} \ {x \sp 8}} -{{120} \ {x \sp 7}}+{{140} \ {x \sp 6}} - -{{70} \ {x \sp 4}}+{{20} \ {x \sp 2}} -1} \over {1209600}} \ {t \sp 8}}+ +{{\frac{{{30} \ {x \sp 8}} -{{120} \ {x \sp 7}}+{{140} \ {x \sp 6}} - +{{70} \ {x \sp 4}}+{{20} \ {x \sp 2}} -1}{1209600}} \ {t \sp 8}}+ \\ \\ \displaystyle -{{{{{10} \ {x \sp 9}} -{{45} \ {x \sp 8}}+{{60} \ {x \sp 7}} - +{{\frac{{{10} \ {x \sp 9}} -{{45} \ {x \sp 8}}+{{60} \ {x \sp 7}} - {{42} \ {x \sp 5}}+{{20} \ {x \sp 3}} -{3 \ x}} -\over {3628800}} \ {t \sp 9}}+ +{3628800}} \ {t \sp 9}}+ \\ \\ \displaystyle -{{{{{66} \ {x \sp {10}}} -{{330} \ {x \sp 9}}+{{495} \ {x \sp 8}} - +{{\frac{{{66} \ {x \sp {10}}} -{{330} \ {x \sp 9}}+{{495} \ {x \sp 8}} - {{462} \ {x \sp 6}}+{{330} \ {x \sp 4}} -{{99} \ {x \sp 2}}+5} -\over {239500800}} \ {t \sp {10}}}+ +{239500800}} \ {t \sp {10}}}+ {O \left({{t \sp {11}}} \right)} \end{array} $$ @@ -21226,11 +20912,11 @@ Therefore, this and the next expression produce the same result. \spadcommand{factorial(6) * coefficient(bern,6) } $$ -{{{42} \ {x \sp 6}} - +\frac{{{42} \ {x \sp 6}} - {{126} \ {x \sp 5}}+ {{105} \ {x \sp 4}} - {{21} \ {x \sp 2}}+1} -\over {42} +{42} $$ \returnType{Type: Expression Integer} @@ -21238,9 +20924,9 @@ $$ $$ {x \sp 6} - {3 \ {x \sp 5}}+ -{{5 \over 2} \ {x \sp 4}} - -{{1 \over 2} \ {x \sp 2}}+ -{1 \over {42}} +{{\frac{5}{2}} \ {x \sp 4}} - +{{\frac{1}{2}} \ {x \sp 2}}+ +{\frac{1}{42}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -21260,22 +20946,22 @@ You get the desired series expansion by issuing this. $$ \begin{array}{@{}l} {{\left( x -1 \right)}\sp {\left( -1\right)}}+ -{3\over 2}+ -{{5 \over {12}} \ {\left( x -1 \right)}} --{{1 \over {24}} \ {{\left( x -1 \right)}\sp 2}}+ -{{{11} \over {720}} \ {{\left( x -1 \right)}\sp 3}} - -{{{11} \over {1440}} \ {{\left( x -1 \right)}\sp 4}}+ +{\frac{3}{2}}+ +{{\frac{5}{12}} \ {\left( x -1 \right)}} +-{{\frac{1}{24}} \ {{\left( x -1 \right)}\sp 2}}+ +{{\frac{11}{720}} \ {{\left( x -1 \right)}\sp 3}} - +{{\frac{11}{1440}} \ {{\left( x -1 \right)}\sp 4}}+ \\ \\ \displaystyle -{{{271} \over {60480}} \ {{\left( x -1 \right)}\sp 5}} - -{{{13} \over {4480}} \ {{\left( x -1 \right)}\sp 6}}+ -{{{7297} \over {3628800}} \ {{\left( x -1 \right)}\sp 7}} - -{{{425} \over {290304}} \ {{\left( x -1 \right)}\sp 8}}+ +{{\frac{271}{60480}} \ {{\left( x -1 \right)}\sp 5}} - +{{\frac{13}{4480}} \ {{\left( x -1 \right)}\sp 6}}+ +{{\frac{7297}{3628800}} \ {{\left( x -1 \right)}\sp 7}} - +{{\frac{425}{290304}} \ {{\left( x -1 \right)}\sp 8}}+ \\ \\ \displaystyle -{{{530113} \over {479001600}} \ {{\left( x -1 \right)}\sp 9}}+ +{{\frac{530113}{479001600}} \ {{\left( x -1 \right)}\sp 9}}+ {O \left({{{\left( x -1 \right)}\sp {10}}} \right)} \end{array} $$ @@ -21292,10 +20978,12 @@ However, this command produces what you want. \spadcommand{puiseux(sqrt(sec(x)),x = 3 * \%pi/2)} $$ -{{\left( x -{{3 \ \pi} \over 2} \right)}\sp {\left( -{1 \over 2} \right)}}+ -{{1\over {12}} \ {{\left( x -{{3 \ \pi} \over 2} \right)}\sp {3 \over 2}}}+ -{{1 \over {160}} \ {{\left( x -{{3 \ \pi} \over 2} \right)}\sp {7 \over 2}}}+ -{O \left({{{\left( x -{{3 \ \pi} \over 2} \right)}\sp 5}} \right)} +{{\left( x -{\frac{3 \ \pi}{2}} \right)}\sp {\left( -{\frac{1}{2}} \right)}}+ +{{\frac{1}{12}} \ {{\left( x -{\frac{3 \ \pi}{2}} \right)}\sp +{\frac{3}{2}}}}+ +{{\frac{1}{160}} \ {{\left( x -{\frac{3 \ \pi}{2}} \right)}\sp +{\frac{7}{2}}}}+ +{O \left({{{\left( x -{\frac{3 \ \pi}{2}} \right)}\sp 5}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,(3*pi)/2)} @@ -21313,18 +21001,18 @@ $$ \begin{array}{@{}l} 1+ {{\log \left({x} \right)}\ x}+ -{{{{\log \left({x} \right)}\sp 2} \over 2} \ {x \sp 2}}+ -{{{{\log \left({x} \right)}\sp 3} \over 6} \ {x \sp 3}}+ -{{{{\log \left({x} \right)}\sp 4} \over {24}} \ {x \sp 4}}+ -{{{{\log \left({x} \right)}\sp 5} \over {120}} \ {x \sp 5}}+ -{{{{\log \left({x} \right)}\sp 6} \over {720}} \ {x \sp 6}}+ +{{\frac{{\log \left({x} \right)}\sp 2}{2}} \ {x \sp 2}}+ +{{\frac{{\log \left({x} \right)}\sp 3}{6}} \ {x \sp 3}}+ +{{\frac{{\log \left({x} \right)}\sp 4}{24}} \ {x \sp 4}}+ +{{\frac{{\log \left({x} \right)}\sp 5}{120}} \ {x \sp 5}}+ +{{\frac{{\log \left({x} \right)}\sp 6}{720}} \ {x \sp 6}}+ \\ \\ \displaystyle -{{{{\log \left({x} \right)}\sp 7} \over {5040}} \ {x \sp 7}}+ -{{{{\log \left({x} \right)}\sp 8} \over {40320}} \ {x \sp 8}}+ -{{{{\log \left({x} \right)}\sp 9} \over {362880}} \ {x \sp 9}}+ -{{{{\log \left({x} \right)}\sp {10}} \over {3628800}} \ {x \sp {10}}}+ +{{\frac{{\log \left({x} \right)}\sp 7}{5040}} \ {x \sp 7}}+ +{{\frac{{\log \left({x} \right)}\sp 8}{40320}} \ {x \sp 8}}+ +{{\frac{{\log \left({x} \right)}\sp 9}{362880}} \ {x \sp 9}}+ +{{\frac{{\log \left({x} \right)}\sp {10}}{3628800}} \ {x \sp {10}}}+ {O \left({{x \sp {11}}} \right)} \end{array} $$ @@ -21371,18 +21059,18 @@ This is how you create this series in Axiom. $$ \begin{array}{@{}l} 1+x+ -{{1 \over 2} \ {x \sp 2}}+ -{{1 \over 6} \ {x \sp 3}}+ -{{1 \over {24}} \ {x \sp 4}}+ -{{1 \over {120}} \ {x \sp 5}}+ -{{1 \over {720}} \ {x \sp 6}}+ -{{1 \over {5040}} \ {x \sp 7}}+ -{{1 \over {40320}} \ {x \sp 8}}+ +{{\frac{1}{2}} \ {x \sp 2}}+ +{{\frac{1}{6}} \ {x \sp 3}}+ +{{\frac{1}{24}} \ {x \sp 4}}+ +{{\frac{1}{120}} \ {x \sp 5}}+ +{{\frac{1}{720}} \ {x \sp 6}}+ +{{\frac{1}{5040}} \ {x \sp 7}}+ +{{\frac{1}{40320}} \ {x \sp 8}}+ \\ \\ \displaystyle -{{1 \over {362880}} \ {x \sp 9}}+ -{{1 \over {3628800}} \ {x \sp {10}}}+ +{{\frac{1}{362880}} \ {x \sp 9}}+ +{{\frac{1}{3628800}} \ {x \sp {10}}}+ {O \left({{x \sp {11}}} \right)} \end{array} $$ @@ -21418,19 +21106,19 @@ $n = 1, ...$ are to be computed. $$ \begin{array}{@{}l} {\left( x -1 \right)} --{{1 \over 2} \ {{\left( x -1 \right)}\sp 2}}+ -{{1 \over 3} \ {{\left( x -1 \right)}\sp 3}} - -{{1 \over 4} \ {{\left( x -1 \right)}\sp 4}}+ -{{1 \over 5} \ {{\left( x -1 \right)}\sp 5}} - -{{1 \over 6} \ {{\left( x -1 \right)}\sp 6}}+ +-{{\frac{1}{2}} \ {{\left( x -1 \right)}\sp 2}}+ +{{\frac{1}{3}} \ {{\left( x -1 \right)}\sp 3}} - +{{\frac{1}{4}} \ {{\left( x -1 \right)}\sp 4}}+ +{{\frac{1}{5}} \ {{\left( x -1 \right)}\sp 5}} - +{{\frac{1}{6}} \ {{\left( x -1 \right)}\sp 6}}+ \\ \\ \displaystyle -{{1 \over 7} \ {{\left( x -1 \right)}\sp 7}} - -{{1 \over 8} \ {{\left( x -1 \right)}\sp 8}}+ -{{1 \over 9} \ {{\left( x -1 \right)}\sp 9}} - -{{1 \over {10}} \ {{\left( x -1 \right)}\sp {10}}}+ -{{1 \over {11}} \ {{\left( x -1 \right)}\sp {11}}}+ +{{\frac{1}{7}} \ {{\left( x -1 \right)}\sp 7}} - +{{\frac{1}{8}} \ {{\left( x -1 \right)}\sp 8}}+ +{{\frac{1}{9}} \ {{\left( x -1 \right)}\sp 9}} - +{{\frac{1}{10}} \ {{\left( x -1 \right)}\sp {10}}}+ +{{\frac{1}{11}} \ {{\left( x -1 \right)}\sp {11}}}+ \\ \\ \displaystyle @@ -21455,11 +21143,11 @@ next of degree $1 + 2 + 2$, etc. \spadcommand{series(n +-> (-1)**((n-1)/2)/factorial(n),x = 0,1..,2)} $$ x - -{{1 \over 6} \ {x \sp 3}}+ -{{1 \over {120}} \ {x \sp 5}} - -{{1 \over {5040}} \ {x \sp 7}}+ -{{1 \over {362880}} \ {x \sp 9}} - -{{1 \over {39916800}} \ {x \sp {11}}}+ +{{\frac{1}{6}} \ {x \sp 3}}+ +{{\frac{1}{120}} \ {x \sp 5}} - +{{\frac{1}{5040}} \ {x \sp 7}}+ +{{\frac{1}{362880}} \ {x \sp 9}} - +{{\frac{1}{39916800}} \ {x \sp {11}}}+ {O \left({{x \sp {12}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -21470,12 +21158,12 @@ $\sin(x^{\frac{1}{3}})$. \spadcommand{series(n +-> (-1)**((3*n-1)/2)/factorial(3*n),x = 0,1/3..,2/3)} $$ -{x \sp {1 \over 3}} - -{{1 \over 6} \ x}+ -{{1 \over {120}} \ {x \sp {5 \over 3}}} - -{{1 \over {5040}} \ {x \sp {7 \over 3}}}+ -{{1 \over {362880}} \ {x \sp 3}} - -{{1 \over {39916800}} \ {x \sp {{11} \over 3}}}+ +{x \sp {\frac{1}{3}}} - +{{\frac{1}{6}} \ x}+ +{{\frac{1}{120}} \ {x \sp {\frac{5}{3}}}} - +{{\frac{1}{5040}} \ {x \sp {\frac{7}{3}}}}+ +{{\frac{1}{362880}} \ {x \sp 3}} - +{{\frac{1}{39916800}} \ {x \sp {\frac{11}{3}}}}+ {O \left({{x \sp 4}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -21488,11 +21176,11 @@ arguments.) \spadcommand{cscx := series(n +-> (-1)**((n-1)/2) * 2 * (2**n-1) * bernoulli(numer(n+1)) / factorial(n+1), x=0, -1..,2) } $$ {x \sp {\left( -1 \right)}}+ -{{1\over 6} \ x}+ -{{7 \over {360}} \ {x \sp 3}}+ -{{{31} \over {15120}} \ {x \sp 5}}+ -{{{127} \over {604800}} \ {x \sp 7}}+ -{{{73} \over {3421440}} \ {x \sp 9}}+ +{{\frac{1}{6}} \ x}+ +{{\frac{7}{360}} \ {x \sp 3}}+ +{{\frac{31}{15120}} \ {x \sp 5}}+ +{{\frac{127}{604800}} \ {x \sp 7}}+ +{{\frac{73}{3421440}} \ {x \sp 9}}+ {O \left({{x \sp {10}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -21503,11 +21191,11 @@ of $sin(x)$. \spadcommand{1/cscx } $$ x - -{{1 \over 6} \ {x \sp 3}}+ -{{1 \over {120}} \ {x \sp 5}} - -{{1 \over {5040}} \ {x \sp 7}}+ -{{1 \over {362880}} \ {x \sp 9}} - -{{1 \over {39916800}} \ {x \sp {11}}}+ +{{\frac{1}{6}} \ {x \sp 3}}+ +{{\frac{1}{120}} \ {x \sp 5}} - +{{\frac{1}{5040}} \ {x \sp 7}}+ +{{\frac{1}{362880}} \ {x \sp 9}} - +{{\frac{1}{39916800}} \ {x \sp {11}}}+ {O \left({{x \sp {12}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -21517,11 +21205,11 @@ As a final example,here is the Taylor expansion of $asin(x)$ about $x = 0$. \spadcommand{asinx := series(n +-> binomial(n-1,(n-1)/2)/(n*2**(n-1)),x=0,1..,2) } $$ x+ -{{1 \over 6} \ {x \sp 3}}+ -{{3 \over {40}} \ {x \sp 5}}+ -{{5 \over {112}} \ {x \sp 7}}+ -{{{35} \over {1152}} \ {x \sp 9}}+ -{{{63} \over {2816}} \ {x \sp {11}}}+ +{{\frac{1}{6}} \ {x \sp 3}}+ +{{\frac{3}{40}} \ {x \sp 5}}+ +{{\frac{5}{112}} \ {x \sp 7}}+ +{{\frac{35}{1152}} \ {x \sp 9}}+ +{{\frac{63}{2816}} \ {x \sp {11}}}+ {O \left({{x \sp {12}}} \right)} $$ \returnType{Type: UnivariatePuiseuxSeries(Expression Integer,x,0)} @@ -21582,18 +21270,18 @@ First you create the desired Taylor expansion. $$ \begin{array}{@{}l} 1+x+ -{{1 \over 2} \ {x \sp 2}}+ -{{1 \over 6} \ {x \sp 3}}+ -{{1 \over {24}} \ {x \sp 4}}+ -{{1 \over {120}} \ {x \sp 5}}+ -{{1 \over {720}} \ {x \sp 6}}+ -{{1 \over {5040}} \ {x \sp 7}}+ +{{\frac{1}{2}} \ {x \sp 2}}+ +{{\frac{1}{6}} \ {x \sp 3}}+ +{{\frac{1}{24}} \ {x \sp 4}}+ +{{\frac{1}{120}} \ {x \sp 5}}+ +{{\frac{1}{720}} \ {x \sp 6}}+ +{{\frac{1}{5040}} \ {x \sp 7}}+ \\ \\ \displaystyle -{{1 \over {40320}} \ {x \sp 8}}+ -{{1 \over {362880}} \ {x \sp 9}}+ -{{1 \over {3628800}} \ {x \sp {10}}}+ +{{\frac{1}{40320}} \ {x \sp 8}}+ +{{\frac{1}{362880}} \ {x \sp 9}}+ +{{\frac{1}{3628800}} \ {x \sp {10}}}+ {O \left({{x \sp {11}}} \right)} \end{array} $$ @@ -21653,7 +21341,7 @@ powers, where $k$ is an unspecified positive integer. \spadcommand{sum4 := sum(m**4, m = 1..k) } $$ -{{6 \ {k \sp 5}}+{{15} \ {k \sp 4}}+{{10} \ {k \sp 3}} -k} \over {30} +\frac{{6 \ {k \sp 5}}+{{15} \ {k \sp 4}}+{{10} \ {k \sp 3}} -k}{30} $$ \returnType{Type: Fraction Polynomial Integer} @@ -21678,7 +21366,7 @@ First consider this function of $t$ and $x$. \spadcommand{f := t*exp(x*t) / (exp(t) - 1) } $$ -{t \ {e \sp {\left( t \ x \right)}}}\over {{e \sp t} -1} +\frac{t \ {e \sp {\left( t \ x \right)}}}{{e \sp t} -1} $$ \returnType{Type: Expression Integer} @@ -21697,16 +21385,16 @@ in $x$. $$ \begin{array}{@{}l} 1+ -{{{{2 \ x} -1} \over 2} \ t}+ -{{{{6 \ {x \sp 2}} -{6 \ x}+1} \over {12}} \ {t \sp 2}}+ -{{{{2 \ {x \sp 3}} -{3 \ {x \sp 2}}+x} \over {12}} \ {t \sp 3}}+ +{{\frac{{2 \ x} -1}{2}} \ t}+ +{{\frac{{6 \ {x \sp 2}} -{6 \ x}+1}{12}} \ {t \sp 2}}+ +{{\frac{{2 \ {x \sp 3}} -{3 \ {x \sp 2}}+x}{12}} \ {t \sp 3}}+ \\ \\ \displaystyle -{{{{{30} \ {x \sp 4}} -{{60} \ {x \sp 3}}+{{30} \ {x \sp 2}} -1} \over +{{\frac{{{30} \ {x \sp 4}} -{{60} \ {x \sp 3}}+{{30} \ {x \sp 2}} -1} {720}} \ {t \sp 4}}+ -{{{{6 \ {x \sp 5}} -{{15} \ {x \sp 4}}+{{10} \ {x \sp -3}} -x} \over {720}} \ {t \sp 5}}+ +{{\frac{{6 \ {x \sp 5}} -{{15} \ {x \sp 4}}+{{10} \ {x \sp +3}} -x}{720}} \ {t \sp 5}}+ {O \left({{t \sp 6}} \right)} \end{array} $$ @@ -21716,7 +21404,7 @@ $$ In fact, the $n$-th coefficient in this series is essentially the $n$-th Bernoulli polynomial: the $n$-th coefficient of the series is -${1 \over {n!}} B_n(x)$, where $B_n(x)$ is the $n$-th Bernoulli +${\frac{1}{n!}} B_n(x)$, where $B_n(x)$ is the $n$-th Bernoulli polynomial. Thus, to obtain the $n$-th Bernoulli polynomial, we multiply the $n$-th coefficient of the series $ff$ by $n!$. @@ -21724,8 +21412,8 @@ For example, the sixth Bernoulli polynomial is this. \spadcommand{factorial(6) * coefficient(ff,6) } $$ -{{{42} \ {x \sp 6}} -{{126} \ {x \sp 5}}+{{105} \ {x \sp 4}} - -{{21} \ {x \sp 2}}+1} \over {42} +\frac{{{42} \ {x \sp 6}} -{{126} \ {x \sp 5}}+{{105} \ {x \sp 4}} - +{{21} \ {x \sp 2}}+1}{42} $$ \returnType{Type: Expression Integer} @@ -21734,9 +21422,9 @@ First we compute $f(x + 1,t) - f(x,t)$. \spadcommand{g := eval(f, x = x + 1) - f } $$ -{{t \ {e \sp {\left( {t \ x}+t \right)}}} +\frac{{t \ {e \sp {\left( {t \ x}+t \right)}}} -{t \ {e \sp {\left( t \ x \right)}}}} -\over {{e \sp t} -1} +{{e \sp t} -1} $$ \returnType{Type: Expression Integer} @@ -21749,7 +21437,7 @@ $$ \returnType{Type: Expression Integer} From this it follows that the $n$-th coefficient in the Taylor -expansion of $g(x,t)$ at $t = 0$ is $${1\over{(n-1)!}}x^{n-1}$$. +expansion of $g(x,t)$ at $t = 0$ is $${\frac{1}{(n-1)!}}x^{n-1}$$. If you want to check this, evaluate the next expression. @@ -21757,9 +21445,9 @@ If you want to check this, evaluate the next expression. $$ t+ {x \ {t \sp 2}}+ -{{{x \sp 2} \over 2} \ {t \sp 3}}+ -{{{x \sp 3} \over 6} \ {t \sp 4}}+ -{{{x \sp 4} \over {24}} \ {t \sp 5}}+ +{{\frac{x \sp 2}{2}} \ {t \sp 3}}+ +{{\frac{x \sp 3}{6}} \ {t \sp 4}}+ +{{\frac{x \sp 4}{24}} \ {t \sp 5}}+ {O \left({{t \sp 6}} \right)} $$ \returnType{Type: UnivariateTaylorSeries(Expression Integer,t,0)} @@ -21767,23 +21455,23 @@ $$ However, since $$g(x,t) = f(x+1,t)-f(x,t)$$ it follows that the $n$-th coefficient is -$${1 \over {n!}}(B_n(x+1)-B_n(x))$$ Equating +$${\frac{1}{n!}}(B_n(x+1)-B_n(x))$$ Equating coefficients, we see that -$${1\over{(n-1)!}}x^{n-1} = {1\over{n!}}(B_n(x + 1) - B_n(x))$$ +$${\frac{1}{(n-1)!}}x^{n-1} = {\frac{1}{n!}}(B_n(x + 1) - B_n(x))$$ and, therefore, -$$x^{n-1} = {1\over{n}}(B_n(x + 1) - B_n(x))$$ +$$x^{n-1} = {\frac{1}{n}}(B_n(x + 1) - B_n(x))$$ Let's apply this formula repeatedly, letting $x$ vary between two integers $a$ and $b$, with $a < b$: $$ \begin{array}{lcl} - a^{n-1} & = & {1 \over n} (B_n(a + 1) - B_n(a)) \\ - (a + 1)^{n-1} & = & {1 \over n} (B_n(a + 2) - B_n(a + 1)) \\ - (a + 2)^{n-1} & = & {1 \over n} (B_n(a + 3) - B_n(a + 2)) \\ + a^{n-1} & = & {\frac{1}{n}} (B_n(a + 1) - B_n(a)) \\ + (a + 1)^{n-1} & = & {\frac{1}{n}} (B_n(a + 2) - B_n(a + 1)) \\ + (a + 2)^{n-1} & = & {\frac{1}{n}} (B_n(a + 3) - B_n(a + 2)) \\ & \vdots & \\ - (b - 1)^{n-1} & = & {1 \over n} (B_n(b) - B_n(b - 1)) \\ - b^{n-1} & = & {1 \over n} (B_n(b + 1) - B_n(b)) + (b - 1)^{n-1} & = & {\frac{1}{n}} (B_n(b) - B_n(b - 1)) \\ + b^{n-1} & = & {\frac{1}{n}} (B_n(b + 1) - B_n(b)) \end{array} $$ @@ -21794,11 +21482,11 @@ the sum of the $$(n-1)^{\hbox{\small\rm st}}$$ powers from $a$ to $b$. The sum of the right-hand sides is a ``telescoping series.'' After cancellation, the sum is simply -$${1\over{n}}(B_n(b + 1) - B_n(a))$$ +$${\frac{1}{n}}(B_n(b + 1) - B_n(a))$$ Replacing $n$ by $n + 1$, we have shown that $$ -\sum_{m = a}^{b} m^n = {1 \over {\displaystyle n + 1}} +\sum_{m = a}^{b} m^n = {\frac{1}{\displaystyle n + 1}} (B_{n+1}(b + 1) - B_{n+1}(a)) $$ @@ -21808,7 +21496,7 @@ First we obtain the Bernoulli polynomial $B_5$. \spadcommand{B5 := factorial(5) * coefficient(ff,5) } $$ -{{6 \ {x \sp 5}} -{{15} \ {x \sp 4}}+{{10} \ {x \sp 3}} -x} \over 6 +\frac{{6 \ {x \sp 5}} -{{15} \ {x \sp 4}}+{{10} \ {x \sp 3}} -x}{6} $$ \returnType{Type: Expression Integer} @@ -21817,7 +21505,7 @@ we multiply $1/5$ by $B_5(k+1) - B_5(1)$. \spadcommand{1/5 * (eval(B5, x = k + 1) - eval(B5, x = 1)) } $$ -{{6 \ {k \sp 5}}+{{15} \ {k \sp 4}}+{{10} \ {k \sp 3}} -k} \over {30} +\frac{{6 \ {k \sp 5}}+{{15} \ {k \sp 4}}+{{10} \ {k \sp 3}} -k}{30} $$ \returnType{Type: Expression Integer} @@ -21825,7 +21513,7 @@ This is the same formula that we obtained via $sum(m**4, m = 1..k)$. \spadcommand{sum4 } $$ -{{6 \ {k \sp 5}}+{{15} \ {k \sp 4}}+{{10} \ {k \sp 3}} -k} \over {30} +\frac{{6 \ {k \sp 5}}+{{15} \ {k \sp 4}}+{{10} \ {k \sp 3}} -k}{30} $$ \returnType{Type: Fraction Polynomial Integer} @@ -21905,10 +21593,10 @@ So, to solve the above equation, we enter this. $$ \left[ {particular=0}, {basis={\left[ -{{\cos \left({{{x \ {\sqrt {3}}} \over 2}} \right)} -\ {e \sp {\left( -{x \over 2} \right)}}}, -{{e \sp {\left( -{x \over 2} \right)}} -\ {\sin \left({{{x \ {\sqrt {3}}} \over 2}} \right)}}\right]}} +{{\cos \left({{\frac{x \ {\sqrt {3}}}{2}}} \right)} +\ {e \sp {\left( -{\frac{x}{2}} \right)}}}, +{{e \sp {\left( -{\frac{x}{2}} \right)}} +\ {\sin \left({{\frac{x \ {\sqrt {3}}}{2}}} \right)}}\right]}} \right] $$ \returnType{Type: Union(Record(particular: Expression Integer,basis: @@ -21972,7 +21660,7 @@ $$ $$ \begin{array}{@{}l} \left[ -{particular={{{x \sp 5} -{{10} \ {x \sp 3}}+{{20} \ {x \sp 2}}+4} \over +{particular={\frac{{x \sp 5} -{{10} \ {x \sp 3}}+{{20} \ {x \sp 2}}+4} {{15} \ x}}}, \right. \\ @@ -21980,9 +21668,9 @@ $$ \displaystyle \left. {basis={\left[ -{{{2 \ {x \sp 3}} -{3 \ {x \sp 2}}+1} \over x}, -{{{x \sp 3} -1} \over x}, -{{{x \sp 3} -{3 \ {x \sp 2}} -1} \over x} +{\frac{{2 \ {x \sp 3}} -{3 \ {x \sp 2}}+1}{x}}, +{\frac{{x \sp 3} -1}{x}}, +{\frac{{x \sp 3} -{3 \ {x \sp 2}} -1}{x}} \right]}} \right] \end{array} @@ -22007,11 +21695,11 @@ $$ \left[ {particular=0}, {basis={\left[ -{x \over {{x \sp 6}+1}}, -{{x \ {e \sp {\left( -{{\sqrt {{91}}} \ {\log \left({x} \right)}}\right)}}} -\over {{x \sp 6}+1}}, -{{x \ {e \sp {\left( {\sqrt {{91}}} \ {\log \left({x} \right)}\right)}}} -\over {{x \sp 6}+1}} +{\frac{x}{{x \sp 6}+1}}, +{\frac{x \ {e \sp {\left( -{{\sqrt {{91}}} \ +{\log \left({x} \right)}}\right)}}}{{x \sp 6}+1}}, +{\frac{x \ {e \sp {\left( {\sqrt {{91}}} \ {\log \left({x} \right)}\right)}}} +{{x \sp 6}+1}} \right]}} \right] $$ @@ -22050,9 +21738,9 @@ $$ $$ \left[ {particular=0}, -{basis={\left[ {1 \over {\sqrt {{{x \sp 2}+1}}}}, -{{\log \left({{{\sqrt {{{x \sp 2}+1}}} -x}} \right)} -\over {\sqrt {{{x \sp 2}+1}}}} \right]}} +{basis={\left[ {\frac{1}{\sqrt {{{x \sp 2}+1}}}}, +{\frac{\log \left({{{\sqrt {{{x \sp 2}+1}}} -x}} \right)} +{\sqrt {{{x \sp 2}+1}}}} \right]}} \right] $$ \returnType{Type: Union(Record(particular: Expression Integer,basis: @@ -22120,7 +21808,7 @@ $$ \left[ {particular=0}, {basis={\left[ -{1 \over +{\frac{1} {{{y \sp 2} \ {{\log \left({y} \right)}\sp 2}}+ {2 \ x \ y \ {\log \left({y} \right)}}+ {x\sp 2}}} \right]}} @@ -22145,7 +21833,7 @@ $$ $$ \left[ {particular=0}, -{basis={\left[ {1 \over {y \sp 2}} \right]}} +{basis={\left[ {\frac{1}{y \sp 2}} \right]}} \right] $$ \returnType{Type: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)} @@ -22158,19 +21846,19 @@ initial equation (that is, $m$ and $n$) by the integrating factor. \spadcommand{intFactor := sb.basis.1 } $$ -1 \over {y \sp 2} +\frac{1}{y \sp 2} $$ \returnType{Type: Expression Integer} \spadcommand{m := intFactor * m } $$ --{1 \over y} +-{\frac{1}{y}} $$ \returnType{Type: Expression Integer} \spadcommand{n := intFactor * n } $$ -{{y \ {\log \left({y} \right)}}+x}\over {y \sp 2} +\frac{{y \ {\log \left({y} \right)}}+x}{y \sp 2} $$ \returnType{Type: Expression Integer} @@ -22196,7 +21884,7 @@ $$ \spadcommand{sol := h y + integrate(m, x) } $$ -{{y \ {h \left({y} \right)}}-x} \over y +\frac{{y \ {h \left({y} \right)}}-x}{y} $$ \returnType{Type: Expression Integer} @@ -22204,15 +21892,15 @@ All we want is to find $h(y)$ such that $ds/dy = n$. \spadcommand{dsol := D(sol, y) } $$ -{{{y \sp 2} \ {{h \sb {{\ }} \sp {,}} -\left({y} \right)}}+x}\over {y \sp 2} +\frac{{{y \sp 2} \ {{h \sb {{\ }} \sp {,}} +\left({y} \right)}}+x}{y \sp 2} $$ \returnType{Type: Expression Integer} \spadcommand{nsol := solve(dsol = n, h, y) } $$ \left[ -{particular={{{\log \left({y} \right)}\sp 2} \over 2}}, +{particular={\frac{{\log \left({y} \right)}\sp 2}{2}}}, {basis={\left[ 1 \right]}} \right] $$ @@ -22224,7 +21912,7 @@ $h(y)$ by it in the implicit solution. \spadcommand{eval(sol, h y = nsol.particular) } $$ -{{y \ {{\log \left({y} \right)}\sp 2}} -{2 \ x}} \over {2 \ y} +\frac{{y \ {{\log \left({y} \right)}\sp 2}} -{2 \ x}}{2 \ y} $$ \returnType{Type: Expression Integer} @@ -22247,7 +21935,7 @@ Next we create the differential equation. \spadcommand{deq := D(y x, x) = y(x) / (x + y(x) * log y x) } $$ {{y \sb {{\ }} \sp {,}} \left({x} \right)}= -{{y\left({x} \right)}\over +{\frac{y\left({x} \right)} {{{y \left({x} \right)}\ {\log \left({{y \left({x} \right)}}\right)}}+x}} $$ \returnType{Type: Equation Expression Integer} @@ -22256,8 +21944,9 @@ Finally, we solve it. \spadcommand{solve(deq, y, x) } $$ -{{{y \left({x} \right)}\ {{\log \left({{y \left({x} \right)}}\right)}\sp 2}}- -{2 \ x}} \over {2 \ {y \left({x} \right)}} +\frac{{{y \left({x} \right)}\ +{{\log \left({{y \left({x} \right)}}\right)}\sp 2}}- +{2 \ x}}{2 \ {y \left({x} \right)}} $$ \returnType{Type: Union(Expression Integer,...)} @@ -22306,11 +21995,11 @@ $y(0) = 1, y'(0) = y''(0) = 0$. \spadcommand{seriesSolve(eq, y, x = 0, [1, 0, 0])} $$ 1+ -{{1 \over 6} \ {x \sp 3}}+ -{{e \over {24}} \ {x \sp 4}}+ -{{{{e \sp 2} -1} \over {120}} \ {x \sp 5}}+ -{{{{e \sp 3} -{2 \ e}} \over {720}} \ {x \sp 6}}+ -{{{{e \sp 4} -{8 \ {e \sp 2}}+{4 \ e}+1} \over {5040}} \ {x \sp 7}}+ +{{\frac{1}{6}} \ {x \sp 3}}+ +{{\frac{e}{24}} \ {x \sp 4}}+ +{{\frac{{e \sp 2} -1}{120}} \ {x \sp 5}}+ +{{\frac{{e \sp 3} -{2 \ e}}{720}} \ {x \sp 6}}+ +{{\frac{{e \sp 4} -{8 \ {e \sp 2}}+{4 \ e}+1}{5040}} \ {x \sp 7}}+ {O \left({{x \sp 8}} \right)} $$ \returnType{Type: UnivariateTaylorSeries(Expression Integer,x,0)} @@ -22360,13 +22049,13 @@ $$[{\rm series\ for\ } x(t), {\rm \ series\ for\ }y(t)]$$ $$ \left[ {t+ -{{1 \over 3} \ {t \sp 3}}+ -{{2 \over {15}} \ {t \sp 5}}+ -{{{17} \over {315}} \ {t \sp 7}}+ +{{\frac{1}{3}} \ {t \sp 3}}+ +{{\frac{2}{15}} \ {t \sp 5}}+ +{{\frac{17}{315}} \ {t \sp 7}}+ {O \left({{t \sp 8}} \right)}}, -{1+{{1 \over 2} \ {t \sp 2}}+ -{{5 \over {24}} \ {t \sp 4}}+ -{{{61} \over {720}} \ {t \sp 6}}+ +{1+{{\frac{1}{2}} \ {t \sp 2}}+ +{{\frac{5}{24}} \ {t \sp 4}}+ +{{\frac{61}{720}} \ {t \sp 6}}+ {O \left({{t \sp 8}} \right)}} \right] $$ @@ -23720,7 +23409,7 @@ This correspond to the sum of the associated ideals. \spadcommand{id := ideal m + ideal n } $$ \left[ -{{x \sp 2} -{1 \over 2}}, {{y \sp 2} -{1 \over 2}} +{{x \sp 2} -{\frac{1}{2}}}, {{y \sp 2} -{\frac{1}{2}}} \right] $$ \returnType{Type: PolynomialIdeals(Fraction Integer, @@ -23792,8 +23481,8 @@ DistributedMultivariatePolynomial([x,y,z],Fraction Integer)} \spadcommand{ld:=primaryDecomp ideal l } $$ \left[ -{\left[ {x+{{1 \over 2} \ y}}, {y \sp 2}, {z+2} \right]}, -{\left[ {x -{{1 \over 2} \ y}}, {y \sp 2}, {z -2} \right]} +{\left[ {x+{{\frac{1}{2}} \ y}}, {y \sp 2}, {z+2} \right]}, +{\left[ {x -{{\frac{1}{2}} \ y}}, {y \sp 2}, {z -2} \right]} \right] $$ \returnType{Type: List PolynomialIdeals(Fraction Integer, @@ -23806,7 +23495,7 @@ We can intersect back. \spadcommand{reduce(intersect,ld) } $$ \left[ -{x -{{1 \over 4} \ y \ z}}, {y \sp 2}, {{z \sp 2} -4} +{x -{{\frac{1}{4}} \ y \ z}}, {y \sp 2}, {{z \sp 2} -4} \right] $$ \returnType{Type: PolynomialIdeals(Fraction Integer, @@ -24004,7 +23693,7 @@ $$ \begin{array}{@{}l} {\left( x+ -{\left( +{\frac{\left( \begin{array}{@{}l} -{{85} \ {b \sp 9}} - {{116} \ {b \sp 8}}+ @@ -24020,52 +23709,51 @@ x+ {{405200} \ b}+ {2062400} \end{array} -\right) -\over {1339200}} +\right)}{1339200}} \right)} \\ \\ \displaystyle {\left( x+ -{{-{{17} \ {b \sp 8}}+ +{\frac{-{{17} \ {b \sp 8}}+ {{156} \ {b \sp 6}}+ {{2979} \ {b \sp 4}} - {{25410} \ {b \sp 2}} - -{14080}} \over {66960}} +{14080}}{66960}} \right)} \\ \\ \displaystyle \ {\left( x+ -{{{{143} \ {b \sp 8}} - +{\frac{{{143} \ {b \sp 8}} - {{2100} \ {b \sp 6}} - {{10485} \ {b \sp 4}}+ {{290550} \ {b \sp 2}} - {{334800} \ b} - {960800}} -\over {669600}} +{669600}} \right)} \\ \\ \displaystyle \ {\left( x+ -{{{{143} \ {b \sp 8}} - +{\frac{{{143} \ {b \sp 8}} - {{2100} \ {b \sp 6}} - {{10485} \ {b \sp 4}}+ {{290550} \ {b \sp 2}}+ {{334800} \ b} - {960800}} -\over {669600}} +{669600}} \right)} \\ \\ \displaystyle {\left( x+ -{\left( +{\frac{\left( \begin{array}{@{}l} {{85} \ {b \sp 9}} - {{116} \ {b \sp 8}} - @@ -24081,8 +23769,8 @@ x+ {{405200} \ b}+ {2062400} \end{array} -\right) -\over {1339200}} +\right)} +{1339200}} \right)} \end{array} $$ @@ -24132,7 +23820,7 @@ one of the factors of $p(x)$. $$ x+ { -\left( +\frac{\left( \begin{array}{@{}l} -{{85} \ {b \sp 9}} - {{116} \ {b \sp 8}}+ @@ -24148,14 +23836,13 @@ x+ {{405200} \ b}+ {2062400} \end{array} -\right) -\over {1339200}} +\right)}{1339200}} $$ \returnType{Type: UnivariatePolynomial(x,AlgebraicNumber)} \spadcommand{root1 := -coefficient(factor1,0) } $$ -\left( +\frac{\left( \begin{array}{@{}l} {{85} \ {b \sp 9}}+ {{116} \ {b \sp 8}} - @@ -24171,8 +23858,7 @@ $$ {{405200} \ b} - {2062400} \end{array} -\right) -\over {1339200} +\right)}{1339200} $$ \returnType{Type: AlgebraicNumber} @@ -24182,7 +23868,7 @@ We can obtain a list of all the roots in this way. $$ \begin{array}{@{}l} \left[ -\left( +\frac{\left( \begin{array}{@{}l} {{85} \ {b \sp 9}}+ {{116} \ {b \sp 8}} - @@ -24198,42 +23884,38 @@ $$ {{405200} \ b} - {2062400} \end{array} -\right) -\over {1339200}, +\right)}{1339200}, \right. \\ \\ \displaystyle -{{{{17} \ {b \sp 8}} - +{\frac{{{17} \ {b \sp 8}} - {{156} \ {b \sp 6}} - {{2979} \ {b \sp 4}}+ {{25410} \ {b \sp 2}}+ -{14080}} -\over {66960}}, +{14080}}{66960}}, \\ \\ \displaystyle -{{-{{143} \ {b \sp 8}}+ +{\frac{-{{143} \ {b \sp 8}}+ {{2100} \ {b \sp 6}}+ {{10485} \ {b \sp 4}} - {{290550} \ {b \sp 2}}+ {{334800} \ b}+ -{960800}} -\over {669600}}, +{960800}}{669600}}, \\ \\ \displaystyle -{{-{{143} \ {b \sp 8}}+ +{\frac{-{{143} \ {b \sp 8}}+ {{2100} \ {b \sp 6}}+ {{10485} \ {b \sp 4}} - {{290550} \ {b \sp 2}} - -{{334800} \ b}+{960800}} -\over {669600}}, +{{334800} \ b}+{960800}}{669600}}, \\ \\ \displaystyle \left. -\left( +\frac{\left( \begin{array}{@{}l} -{{85} \ {b \sp 9}}+ {{116} \ {b \sp 8}}+ @@ -24249,8 +23931,7 @@ $$ {{405200} \ b} - {2062400} \end{array} -\right) -\over {1339200} +\right)}{1339200} \right] \end{array} $$ @@ -24267,7 +23948,7 @@ Assign the roots as the values of the variables $a1,...,a5$. \spadcommand{(a1,a2,a3,a4,a5) := (roots.1,roots.2,roots.3,roots.4,roots.5) } $$ -\left( +\frac{\left( \begin{array}{@{}l} -{{85} \ {b \sp 9}}+ {{116} \ {b \sp 8}}+ @@ -24283,8 +23964,7 @@ $$ {{405200} \ b} - {2062400} \end{array} -\right) -\over {1339200} +\right)}{1339200} $$ \returnType{Type: AlgebraicNumber} @@ -24312,7 +23992,7 @@ $$ \spadcommand{eval(r,x,a1 - a3) } $$ -\left( +\frac{\left( \begin{array}{@{}l} {{47905} \ {b \sp 9}}+ {{66920} \ {b \sp 8}} - @@ -24328,8 +24008,7 @@ $$ {{184600000} \ b} - {710912000} \end{array} -\right) -\over {4464} +\right)}{4464} $$ \returnType{Type: Polynomial AlgebraicNumber} @@ -24341,12 +24020,11 @@ $$ \spadcommand{eval(r,x,a1 - a5) } $$ -{{{405} \ {b \sp 8}}+ +\frac{{{405} \ {b \sp 8}}+ {{3450} \ {b \sp 6}} - {{19875} \ {b \sp 4}} - {{198000} \ {b \sp 2}} - -{588000}} -\over {31} +{588000}}{31} $$ \returnType{Type: Polynomial AlgebraicNumber} @@ -24357,7 +24035,7 @@ For example, if $eval(r,x,a1 - a4)$ returned $0$, you would enter this. \spadcommand{bb := a1 - a4 } $$ -\left( +\frac{\left( \begin{array}{@{}l} {{85} \ {b \sp 9}}+ {{402} \ {b \sp 8}} - @@ -24373,8 +24051,7 @@ $$ {{1074800} \ b} - {3984000} \end{array} -\right) -\over {1339200} +\right)}{1339200} $$ \returnType{Type: AlgebraicNumber} @@ -24389,19 +24066,18 @@ We compute the images of the roots $a1,...,a5$ under this automorphism: \spadcommand{aa1 := subst(a1,beta = bb) } $$ -{-{{143} \ {b \sp 8}}+ +\frac{-{{143} \ {b \sp 8}}+ {{2100} \ {b \sp 6}}+ {{10485} \ {b \sp 4}}- {{290550} \ {b \sp 2}}+ {{334800} \ b}+ -{960800}} -\over {669600} +{960800}}{669600} $$ \returnType{Type: AlgebraicNumber} \spadcommand{aa2 := subst(a2,beta = bb) } $$ -\left( +\frac{\left( \begin{array}{@{}l} -{{85} \ {b \sp 9}}+ {{116} \ {b \sp 8}}+ @@ -24417,14 +24093,13 @@ $$ {{405200} \ b} - {2062400} \end{array} -\right) -\over {1339200} +\right)}{1339200} $$ \returnType{Type: AlgebraicNumber} \spadcommand{aa3 := subst(a3,beta = bb) } $$ -\left( +\frac{\left( \begin{array}{@{}l} {{85} \ {b \sp 9}}+ {{116} \ {b \sp 8}} - @@ -24440,31 +24115,28 @@ $$ {{405200} \ b} - {2062400} \end{array} -\right) -\over {1339200} +\right)}{1339200} $$ \returnType{Type: AlgebraicNumber} \spadcommand{aa4 := subst(a4,beta = bb) } $$ -{-{{143} \ {b \sp 8}}+ +\frac{-{{143} \ {b \sp 8}}+ {{2100} \ {b \sp 6}}+ {{10485} \ {b \sp 4}}- {{290550} \ {b \sp 2}} - {{334800} \ b}+ -{960800}} -\over {669600} +{960800}}{669600} $$ \returnType{Type: AlgebraicNumber} \spadcommand{aa5 := subst(a5,beta = bb) } $$ -{{{17} \ {b \sp 8}} - +\frac{{{17} \ {b \sp 8}} - {{156} \ {b \sp 6}} - {{2979} \ {b \sp 4}}+ {{25410} \ {b \sp 2}}+ -{14080}} -\over {66960} +{14080}}{66960} $$ \returnType{Type: AlgebraicNumber} @@ -24555,7 +24227,7 @@ Technical Report, IBM Heidelberg Scientific Center, 1992.} Mendel's genetic laws are often written in a form like -$$Aa \times Aa = {1\over 4}AA + {1\over 2}Aa + {1\over 4}aa$$ +$$Aa \times Aa = {\frac{1}{4}}AA + {\frac{1}{2}}Aa + {\frac{1}{4}}aa$$ The implementation of general algebras in Axiom allows us to \index{Mendel's genetic laws} use this as the definition for @@ -24570,8 +24242,8 @@ particular, see example 1.3.} We assume that there is an infinitely large random mating population. Random mating of two gametes $a_i$ and $a_j$ gives zygotes \index{zygote} $a_ia_j$, which produce new gametes. \index{gamete} In -classical Mendelian segregation we have $a_ia_j = {1 \over 2}a_i+{1 -\over 2}a_j$. In general, we have +classical Mendelian segregation we have +$a_ia_j = {\frac{1}{2}}a_i+{\frac{1}{2}}a_j$. In general, we have $$a_ia_j = \sum_{k=1}^n \gamma_{i,j}^k\ a_k.$$ @@ -24588,7 +24260,7 @@ and $a_4 = ab$ {$a1 := AB, a2 := Ab, a3 := aB,$ and $a4 := ab$}. The zygotes $a_ia_j$ produce gametes $a_i$ and $a_j$ with classical Mendelian segregation. Zygote $a_1a_4$ undergoes transition to $a_2a_3$ and vice versa with probability -$0 \le \theta \le {1\over2}$. +$0 \le \theta \le {\frac{1}{2}}$. Define a list $[(\gamma_{i,j}^k) 1 \le k \le 4]$ of four four-by-four matrices giving the segregation rates. We use the value $1/10$ for @@ -24600,18 +24272,18 @@ $$ \left[ {\left[ \begin{array}{cccc} -1 & {1 \over 2} & {1 \over 2} & {9 \over {20}} \\ -{1 \over 2} & 0 & {1 \over {20}} & 0 \\ -{1 \over 2} & {1 \over {20}} & 0 & 0 \\ -{9 \over {20}} & 0 & 0 & 0 +1 & {\frac{1}{2}} & {\frac{1}{2}} & {\frac{9}{20}} \\ +{\frac{1}{2}} & 0 & {\frac{1}{20}} & 0 \\ +{\frac{1}{2}} & {\frac{1}{20}} & 0 & 0 \\ +{\frac{9}{20}} & 0 & 0 & 0 \end{array} \right]}, {\left[ \begin{array}{cccc} -0 & {1 \over 2} & 0 & {1 \over {20}} \\ -{1 \over 2} & 1 & {9 \over {20}} & {1 \over 2} \\ -0 & {9 \over {20}} & 0 & 0 \\ -{1 \over {20}} & {1 \over 2} & 0 & 0 +0 & {\frac{1}{2}} & 0 & {\frac{1}{20}} \\ +{\frac{1}{2}} & 1 & {\frac{9}{20}} & {\frac{1}{2}} \\ +0 & {\frac{9}{20}} & 0 & 0 \\ +{\frac{1}{20}} & {\frac{1}{2}} & 0 & 0 \end{array} \right]}, \right. @@ -24621,18 +24293,18 @@ $$ \left. {\left[ \begin{array}{cccc} -0 & 0 & {1 \over 2} & {1 \over {20}} \\ -0 & 0 & {9 \over {20}} & 0 \\ -{1 \over 2} & {9 \over {20}} & 1 & {1 \over 2} \\ -{1 \over {20}} & 0 & {1 \over 2} & 0 +0 & 0 & {\frac{1}{2}} & {\frac{1}{20}} \\ +0 & 0 & {\frac{9}{20}} & 0 \\ +{\frac{1}{2}} & {\frac{9}{20}} & 1 & {\frac{1}{2}} \\ +{\frac{1}{20}} & 0 & {\frac{1}{2}} & 0 \end{array} \right]}, {\left[ \begin{array}{cccc} -0 & 0 & 0 & {9 \over {20}} \\ -0 & 0 & {1 \over {20}} & {1 \over 2} \\ -0 & {1 \over {20}} & 0 & {1 \over 2} \\ -{9 \over {20}} & {1 \over 2} & {1 \over 2} & 1 +0 & 0 & 0 & {\frac{9}{20}} \\ +0 & 0 & {\frac{1}{20}} & {\frac{1}{2}} \\ +0 & {\frac{1}{20}} & 0 & {\frac{1}{2}} \\ +{\frac{9}{20}} & {\frac{1}{2}} & {\frac{1}{2}} & 1 \end{array} \right]} \right] @@ -24678,10 +24350,10 @@ AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab], \spadcommand{a.1*a.4} $$ -{{9 \over {20}} \ ab}+ -{{1 \over {20}} \ aB}+ -{{1 \over {20}} \ Ab}+ -{{9 \over {20}} \ AB} +{{\frac{9}{20}} \ ab}+ +{{\frac{1}{20}} \ aB}+ +{{\frac{1}{20}} \ Ab}+ +{{\frac{9}{20}} \ AB} $$ \returnType{Type: AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab], @@ -24748,10 +24420,10 @@ $$ \begin{array}{@{}l} {Y \sp 3}+ {{\left( --{{{29} \over {20}} \ \%x4} - -{{{29} \over {20}} \ \%x3} - -{{{29} \over {20}} \ \%x2} - -{{{29} \over {20}} \ \%x1} +-{{\frac{29}{20}} \ \%x4} - +{{\frac{29}{20}} \ \%x3} - +{{\frac{29}{20}} \ \%x2} - +{{\frac{29}{20}} \ \%x1} \right)}\ {Y \sp 2}}+ \\ \\ @@ -24759,25 +24431,25 @@ $$ { \left( \begin{array}{@{}l} -\left( {{9 \over {20}} \ { \%x4 \sp 2}}+ +\left( {{\frac{9}{20}} \ { \%x4 \sp 2}}+ {{\left( -{{9 \over {10}} \ \%x3}+ -{{9 \over {10}} \ \%x2}+ -{{9 \over {10}} \ \%x1} +{{\frac{9}{10}} \ \%x3}+ +{{\frac{9}{10}} \ \%x2}+ +{{\frac{9}{10}} \ \%x1} \right)}\ \%x4}+ \right. \\ \\ \displaystyle -{{9 \over {20}} \ { \%x3 \sp 2}}+ -{{\left( {{9 \over {10}} \ \%x2}+{{9 \over {10}} \ \%x1} \right)}\ \%x3}+ -{{9 \over {20}} \ { \%x2 \sp 2}}+ +{{\frac{9}{20}} \ { \%x3 \sp 2}}+ +{{\left( {{\frac{9}{10}} \ \%x2}+{{\frac{9}{10}} \ \%x1} \right)}\ \%x3}+ +{{\frac{9}{20}} \ { \%x2 \sp 2}}+ \\ \\ \displaystyle \left. -{{9 \over {10}} \ \%x1 \ \%x2}+ -{{9 \over {20}} \ { \%x1 \sp 2}} +{{\frac{9}{10}} \ \%x1 \ \%x2}+ +{{\frac{9}{20}} \ { \%x1 \sp 2}} \right) \end{array} \right) @@ -24787,7 +24459,7 @@ $$ \returnType{Type: UnivariatePolynomial(Y,Polynomial Fraction Integer)} -Because the coefficient ${9 \over 20}$ has absolute value less than 1, +Because the coefficient ${\frac{9}{20}}$ has absolute value less than 1, all distributions do converge, by a theorem of this theory. \spadcommand{factor(q :: POLY FRAC INT) } @@ -24799,10 +24471,10 @@ $$ \displaystyle {\left( Y - -{{9 \over {20}} \ \%x4} - -{{9 \over {20}} \ \%x3} - -{{9 \over {20}} \ \%x2} - -{{9 \over {20}} \ \%x1} +{{\frac{9}{20}} \ \%x4} - +{{\frac{9}{20}} \ \%x3} - +{{\frac{9}{20}} \ \%x2} - +{{\frac{9}{20}} \ \%x1} \right)} \ Y \end{array} @@ -24815,8 +24487,8 @@ The second question is answered by searching for idempotents in the algebra. $$ \begin{array}{@{}l} \left[ -{{{9 \over {10}} \ \%x1 \ \%x4}+ -{{\left( {{1 \over {10}} \ \%x2}+ \%x1 \right)}\ \%x3}+ +{{{\frac{9}{10}} \ \%x1 \ \%x4}+ +{{\left( {{\frac{1}{10}} \ \%x2}+ \%x1 \right)}\ \%x3}+ { \%x1 \ \%x2}+ { \%x1 \sp 2} - \%x1}, @@ -24824,23 +24496,23 @@ $$ \\ \\ \displaystyle -{{{\left( \%x2+{{1 \over {10}} \ \%x1} \right)}\ \%x4}+ -{{9 \over {10}} \ \%x2 \ \%x3}+ +{{{\left( \%x2+{{\frac{1}{10}} \ \%x1} \right)}\ \%x4}+ +{{\frac{9}{10}} \ \%x2 \ \%x3}+ { \%x2 \sp 2}+ {{\left( \%x1 -1 \right)}\ \%x2}}, \\ \\ \displaystyle -{{{\left( \%x3+{{1 \over {10}} \ \%x1} \right)}\ \%x4}+ +{{{\left( \%x3+{{\frac{1}{10}} \ \%x1} \right)}\ \%x4}+ { \%x3 \sp 2}+ -{{\left( {{9 \over {10}} \ \%x2}+ \%x1 -1 \right)}\ \%x3}}, +{{\left( {{\frac{9}{10}} \ \%x2}+ \%x1 -1 \right)}\ \%x3}}, \\ \\ \displaystyle \left. {{ \%x4 \sp 2}+ -{{\left( \%x3+ \%x2+{{9 \over {10}} \ \%x1} -1 \right)}\ \%x4}+ -{{1 \over {10}} \ \%x2 \ \%x3}} +{{\left( \%x3+ \%x2+{{\frac{9}{10}} \ \%x1} -1 \right)}\ \%x4}+ +{{\frac{1}{10}} \ \%x2 \ \%x3}} \right] \end{array} $$ @@ -24878,7 +24550,7 @@ $$ \displaystyle \left. {\left[ { \%x4 -1}, \%x3, \%x2, \%x1 \right]}, -{\left[ { \%x4 -{1 \over 2}}, { \%x3 -{1 \over 2}}, \%x2, \%x1 \right]} +{\left[ { \%x4 -{\frac{1}{2}}}, { \%x3 -{\frac{1}{2}}}, \%x2, \%x1 \right]} \right] \end{array} $$ @@ -24911,10 +24583,10 @@ values. $$ \left[ {\left[ -{ \%x4={2 \over 5}}, -{ \%x3={2 \over 5}}, -{ \%x2={1 \over {10}}}, -{ \%x1={1 \over {10}}} +{ \%x4={\frac{2}{5}}}, +{ \%x3={\frac{2}{5}}}, +{ \%x2={\frac{1}{10}}}, +{ \%x1={\frac{1}{10}}} \right]} \right] $$ @@ -24922,10 +24594,10 @@ $$ \spadcommand{e : A := represents reverse (map(rhs, sol.1) :: List FRAC INT) } $$ -{{2 \over 5} \ ab}+ -{{2 \over 5} \ aB}+ -{{1 \over {10}} \ Ab}+ -{{1 \over {10}} \ AB} +{{\frac{2}{5}} \ ab}+ +{{\frac{2}{5}} \ aB}+ +{{\frac{1}{10}} \ Ab}+ +{{\frac{1}{10}} \ AB} $$ \returnType{Type: AlgebraGivenByStructuralConstants(Fraction Integer,4,[AB,Ab,aB,ab], @@ -25281,10 +24953,10 @@ To solve the above equation, enter this. $$ \left[ {particular=0}, -{basis={\left[ {{\cos \left({{{x \ {\sqrt {3}}} \over 2}} \right)} -\ {e \sp {\left( -{x \over 2} \right)}}}, -{{e \sp {\left( -{x \over 2} \right)}} -\ {\sin \left({{{x \ {\sqrt {3}}} \over 2}} \right)}} +{basis={\left[ {{\cos \left({{\frac{x \ {\sqrt {3}}}{2}}} \right)} +\ {e \sp {\left( -{\frac{x}{2}} \right)}}}, +{{e \sp {\left( -{\frac{x}{2}} \right)}} +\ {\sin \left({{\frac{x \ {\sqrt {3}}}{2}}} \right)}} \right]}} \right] $$ @@ -27398,13 +27070,13 @@ Complex objects are created by the \spadfunFrom{complex}{Complex} operation. \spadcommand{a := complex(4/3,5/2) } $$ -{4 \over 3}+{{5 \over 2} \ i} +{\frac{4}{3}}+{{\frac{5}{2}} \ i} $$ \returnType{Type: Complex Fraction Integer} \spadcommand{b := complex(4/3,-5/2) } $$ -{4 \over 3} -{{5 \over 2} \ i} +{\frac{4}{3}} -{{\frac{5}{2}} \ i} $$ \returnType{Type: Complex Fraction Integer} @@ -27412,7 +27084,7 @@ The standard arithmetic operations are available. \spadcommand{a + b } $$ -8 \over 3 +\frac{8}{3} $$ \returnType{Type: Complex Fraction Integer} @@ -27424,7 +27096,7 @@ $$ \spadcommand{a * b } $$ -{289} \over {36} +\frac{289}{36} $$ \returnType{Type: Complex Fraction Integer} @@ -27432,7 +27104,7 @@ If {\tt R} is a field, you can also divide the complex objects. \spadcommand{a / b } $$ --{{161} \over {289}}+{{{240} \over {289}} \ i} +-{\frac{161}{289}}+{{\frac{240}{289}} \ i} $$ \returnType{Type: Complex Fraction Integer} @@ -27443,7 +27115,7 @@ to view the last object as a fraction of complex integers. \spadcommand{\% :: Fraction Complex Integer } $$ -{-{15}+{8 \ i}} \over {{15}+{8 \ i}} +\frac{-{15}+{8 \ i}}{{15}+{8 \ i}} $$ \returnType{Type: Fraction Complex Integer} @@ -27460,13 +27132,13 @@ You can also compute the \spadfunFrom{conjugate}{Complex} and \spadcommand{conjugate a } $$ -{4 \over 3} -{{5 \over 2} \ i} +{\frac{4}{3}} -{{\frac{5}{2}} \ i} $$ \returnType{Type: Complex Fraction Integer} \spadcommand{norm a } $$ -{289} \over {36} +\frac{289}{36} $$ \returnType{Type: Fraction Integer} @@ -27475,13 +27147,13 @@ are provided to extract the real and imaginary parts, respectively. \spadcommand{real a } $$ -4 \over 3 +\frac{4}{3} $$ \returnType{Type: Fraction Integer} \spadcommand{imag a } $$ -5 \over 2 +\frac{5}{2} $$ \returnType{Type: Fraction Integer} @@ -27607,8 +27279,8 @@ convergent is $a_1$, the second is $a_1 + 1/a_2$ and so on. \spadcommand{convergents c } $$ \left[ -3, {{22} \over 7}, {{333} \over {106}}, {{355} \over {113}}, -{{9208} \over {2931}}, {{9563} \over {3044}}, {{76149} \over {24239}}, +3, {\frac{22}{7}}, {\frac{333}{106}}, {\frac{355}{113}}, +{\frac{9208}{2931}}, {\frac{9563}{3044}}, {\frac{76149}{24239}}, \ldots \right] $$ @@ -27622,8 +27294,8 @@ stream, though it may just repeat the ``last'' value. \spadcommand{approximants c } $$ \left[ -3, {{22} \over 7}, {{333} \over {106}}, {{355} \over {113}}, -{{9208} \over {2931}}, {{9563} \over {3044}}, {{76149} \over {24239}}, +3, {\frac{22}{7}}, {\frac{333}{106}}, {\frac{355}{113}}, +{\frac{9208}{2931}}, {\frac{9563}{3044}}, {\frac{76149}{24239}}, \ldots \right] $$ @@ -27711,8 +27383,8 @@ These are the rational number convergents. \spadcommand{ccf := convergents cf } $$ \left[ -0, 1, {6 \over 7}, {{61} \over {71}}, {{860} \over {1001}}, -{{15541} \over {18089}}, {{342762} \over {398959}}, \ldots +0, 1, {\frac{6}{7}}, {\frac{61}{71}}, {\frac{860}{1001}}, +{\frac{15541}{18089}}, {\frac{342762}{398959}}, \ldots \right] $$ \returnType{Type: Stream Fraction Integer} @@ -27723,8 +27395,8 @@ adding {\tt 1}. \spadcommand{eConvergents := [2*e + 1 for e in ccf] } $$ \left[ -1, 3, {{19} \over 7}, {{193} \over {71}}, {{2721} \over {1001}}, -{{49171} \over {18089}}, {{1084483} \over {398959}}, \ldots +1, 3, {\frac{19}{7}}, {\frac{193}{71}}, {\frac{2721}{1001}}, +{\frac{49171}{18089}}, {\frac{1084483}{398959}}, \ldots \right] $$ \returnType{Type: Stream Fraction Integer} @@ -27789,8 +27461,8 @@ $$ \spadcommand{ccf := convergents cf } $$ \left[ -1, {3 \over 2}, {{15} \over {13}}, {{105} \over {76}}, {{315} -\over {263}}, {{3465} \over {2578}}, {{45045} \over {36979}}, \ldots +1, {\frac{3}{2}}, {\frac{15}{13}}, {\frac{105}{76}}, {\frac{315}{263}}, +{\frac{3465}{2578}}, {\frac{45045}{36979}}, \ldots \right] $$ \returnType{Type: Stream Fraction Integer} @@ -27798,8 +27470,8 @@ $$ \spadcommand{piConvergents := [4/p for p in ccf] } $$ \left[ -4, {8 \over 3}, {{52} \over {15}}, {{304} \over {105}}, {{1052} -\over {315}}, {{10312} \over {3465}}, {{147916} \over {45045}}, +4, {\frac{8}{3}}, {\frac{52}{15}}, {\frac{304}{105}}, +{\frac{1052}{315}}, {\frac{10312}{3465}}, {\frac{147916}{45045}}, \ldots \right] $$ @@ -27846,14 +27518,15 @@ with rational number coefficients. \spadcommand{r := ((x - 1) * (x - 2)) / ((x-3) * (x-4)) } $$ -{{x \sp 2} -{3 \ x}+2} \over {{x \sp 2} -{7 \ x}+{12}} +\frac{{x \sp 2} -{3 \ x}+2}{{x \sp 2} -{7 \ x}+{12}} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)} \spadcommand{continuedFraction r } $$ -1+ \zag{1}{{{{1 \over 4} \ x} -{9 \over 8}}}+ \zag{1}{{{{{16} \over 3} \ x} --{{40} \over 3}}} +1+ \zag{1}{{{{\frac{1}{4}} \ x} -{\frac{9}{8}}}}+ +\zag{1}{{{{\frac{16}{3}} \ x} +-{\frac{40}{3}}}} $$ \returnType{Type: ContinuedFraction UnivariatePolynomial(x,Fraction Integer)} @@ -27931,48 +27604,43 @@ $$ \spadcommand{complete 2} $$ -{{1 \over 2} \ {\left( 2 -\right)}}+{{1 -\over 2} \ {\left( 1 \sp 2 -\right)}} +{{\frac{1}{2}} \ {\left( 2 \right)}}+{{\frac{1}{2}} \ +{\left( 1 \sp 2 \right)}} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} \spadcommand{complete 3} $$ -{{1 \over 3} \ {\left( 3 -\right)}}+{{1 -\over 2} \ {\left( {2 \sp {\ }} \ 1 -\right)}}+{{1 -\over 6} \ {\left( 1 \sp 3 -\right)}} +{{\frac{1}{3}} \ {\left( 3 \right)}} ++{{\frac{1}{2}} \ {\left( {2 \sp {\ }} \ 1 \right)}} ++{{\frac{1}{6}} \ {\left( 1 \sp 3 \right)}} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} \spadcommand{complete 7} $$ \begin{array}{@{}l} -{{1 \over 7} \ {\left( 7 \right)}}+ -{{1\over 6} \ {\left( {6 \sp {\ }} \ 1 \right)}}+ -{{1\over {10}} \ {\left( {5 \sp {\ }} \ 2 \right)}}+ -{{1\over {10}} \ {\left( {5 \sp {\ }} \ {1 \sp 2} \right)}}+ -{{1\over {12}} \ {\left( {4 \sp {\ }} \ 3 \right)}}+ -{{1\over 8} \ {\left( {4 \sp {\ }} \ {2 \sp {\ }} \ 1 \right)}}+ +{{\frac{1}{7}} \ {\left( 7 \right)}}+ +{{\frac{1}{6}} \ {\left( {6 \sp {\ }} \ 1 \right)}}+ +{{\frac{1}{10}} \ {\left( {5 \sp {\ }} \ 2 \right)}}+ +{{\frac{1}{10}} \ {\left( {5 \sp {\ }} \ {1 \sp 2} \right)}}+ +{{\frac{1}{12}} \ {\left( {4 \sp {\ }} \ 3 \right)}}+ +{{\frac{1}{8}} \ {\left( {4 \sp {\ }} \ {2 \sp {\ }} \ 1 \right)}}+ \\ \\ \displaystyle -{{1\over {24}} \ {\left( {4 \sp {\ }} \ {1 \sp 3} \right)}}+ -{{1\over {18}} \ {\left( {3 \sp 2} \ 1 \right)}}+ -{{1\over {24}} \ {\left( {3 \sp {\ }} \ {2 \sp 2} \right)}}+ -{{1\over {12}} \ {\left( {3 \sp {\ }} \ {2 \sp {\ }} \ {1 \sp 2} \right)}}+ -{{1\over {72}} \ {\left( {3 \sp {\ }} \ {1 \sp 4} \right)}}+ +{{\frac{1}{24}} \ {\left( {4 \sp {\ }} \ {1 \sp 3} \right)}}+ +{{\frac{1}{18}} \ {\left( {3 \sp 2} \ 1 \right)}}+ +{{\frac{1}{24}} \ {\left( {3 \sp {\ }} \ {2 \sp 2} \right)}}+ +{{\frac{1}{12}} \ {\left( {3 \sp {\ }} \ {2 \sp {\ }} \ {1 \sp 2} \right)}}+ +{{\frac{1}{72}} \ {\left( {3 \sp {\ }} \ {1 \sp 4} \right)}}+ \\ \\ \displaystyle -{{1\over {48}} \ {\left( {2 \sp 3} \ 1 \right)}}+ -{{1\over {48}} \ {\left( {2 \sp 2} \ {1 \sp 3} \right)}}+ -{{1\over {240}} \ {\left( {2 \sp {\ }} \ {1 \sp 5} \right)}}+ -{{1\over {5040}} \ {\left( 1 \sp 7 \right)}} +{{\frac{1}{48}} \ {\left( {2 \sp 3} \ 1 \right)}}+ +{{\frac{1}{48}} \ {\left( {2 \sp 2} \ {1 \sp 3} \right)}}+ +{{\frac{1}{240}} \ {\left( {2 \sp {\ }} \ {1 \sp 5} \right)}}+ +{{\frac{1}{5040}} \ {\left( 1 \sp 7 \right)}} \end{array} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -27983,27 +27651,27 @@ elementary symmetric function for argument {\tt n.} \spadcommand{elementary 7} $$ \begin{array}{@{}l} -{{1 \over 7} \ {\left( 7 \right)}} --{{1 \over 6} \ {\left( {6 \sp {\ }} \ 1 \right)}} --{{1 \over {10}} \ {\left( {5 \sp {\ }} \ 2 \right)}}+ -{{1\over {10}} \ {\left( {5 \sp {\ }} \ {1 \sp 2} \right)}} --{{1 \over {12}} \ {\left( {4 \sp {\ }} \ 3 \right)}}+ -{{1\over 8} \ {\left( {4 \sp {\ }} \ {2 \sp {\ }} \ 1 \right)}} +{{\frac{1}{7}} \ {\left( 7 \right)}} +-{{\frac{1}{6}} \ {\left( {6 \sp {\ }} \ 1 \right)}} +-{{\frac{1}{10}} \ {\left( {5 \sp {\ }} \ 2 \right)}}+ +{{\frac{1}{10}} \ {\left( {5 \sp {\ }} \ {1 \sp 2} \right)}} +-{{\frac{1}{12}} \ {\left( {4 \sp {\ }} \ 3 \right)}}+ +{{\frac{1}{8}} \ {\left( {4 \sp {\ }} \ {2 \sp {\ }} \ 1 \right)}} \\ \\ \displaystyle --{{1 \over {24}} \ {\left( {4 \sp {\ }} \ {1 \sp 3} \right)}}+ -{{1\over {18}} \ {\left( {3 \sp 2} \ 1 \right)}}+ -{{1\over {24}} \ {\left( {3 \sp {\ }} \ {2 \sp 2} \right)}} --{{1 \over {12}} \ {\left( {3 \sp {\ }} \ {2 \sp {\ }} \ {1 \sp 2} \right)}} -+{{1\over {72}} \ {\left( {3 \sp {\ }} \ {1 \sp 4} \right)}} +-{{\frac{1}{24}} \ {\left( {4 \sp {\ }} \ {1 \sp 3} \right)}}+ +{{\frac{1}{18}} \ {\left( {3 \sp 2} \ 1 \right)}}+ +{{\frac{1}{24}} \ {\left( {3 \sp {\ }} \ {2 \sp 2} \right)}} +-{{\frac{1}{12}} \ {\left( {3 \sp {\ }} \ {2 \sp {\ }} \ {1 \sp 2} \right)}} ++{{\frac{1}{72}} \ {\left( {3 \sp {\ }} \ {1 \sp 4} \right)}} \\ \\ \displaystyle --{{1 \over {48}} \ {\left( {2 \sp 3} \ 1 \right)}}+ -{{1\over {48}} \ {\left( {2 \sp 2} \ {1 \sp 3} \right)}} --{{1 \over {240}} \ {\left( {2 \sp {\ }} \ {1 \sp 5} \right)}}+ -{{1\over {5040}} \ {\left( 1 \sp 7 \right)}} +-{{\frac{1}{48}} \ {\left( {2 \sp 3} \ 1 \right)}}+ +{{\frac{1}{48}} \ {\left( {2 \sp 2} \ {1 \sp 3} \right)}} +-{{\frac{1}{240}} \ {\left( {2 \sp {\ }} \ {1 \sp 5} \right)}}+ +{{\frac{1}{5040}} \ {\left( 1 \sp 7 \right)}} \end{array} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -28014,17 +27682,17 @@ group having an even number of even parts in each cycle partition. \spadcommand{alternating 7} $$ \begin{array}{@{}l} -{{2 \over 7} \ {\left( 7 \right)}}+ -{{1\over 5} \ {\left( {5 \sp {\ }} \ {1 \sp 2} \right)}}+ -{{1\over 4} \ {\left( {4 \sp {\ }} \ {2 \sp {\ }} \ 1 \right)}}+ -{{1\over 9} \ {\left( {3 \sp 2} \ 1 \right)}}+ -{{1\over {12}} \ {\left( {3 \sp {\ }} \ {2 \sp 2} \right)}}+ -{{1\over {36}} \ {\left( {3 \sp {\ }} \ {1 \sp 4} \right)}}+ +{{\frac{2}{7}} \ {\left( 7 \right)}}+ +{{\frac{1}{5}} \ {\left( {5 \sp {\ }} \ {1 \sp 2} \right)}}+ +{{\frac{1}{4}} \ {\left( {4 \sp {\ }} \ {2 \sp {\ }} \ 1 \right)}}+ +{{\frac{1}{9}} \ {\left( {3 \sp 2} \ 1 \right)}}+ +{{\frac{1}{12}} \ {\left( {3 \sp {\ }} \ {2 \sp 2} \right)}}+ +{{\frac{1}{36}} \ {\left( {3 \sp {\ }} \ {1 \sp 4} \right)}}+ \\ \\ \displaystyle -{{1\over {24}} \ {\left( {2 \sp 2} \ {1 \sp 3} \right)}}+ -{{1\over {2520}} \ {\left( 1 \sp 7 \right)}} +{{\frac{1}{24}} \ {\left( {2 \sp 2} \ {1 \sp 3} \right)}}+ +{{\frac{1}{2520}} \ {\left( 1 \sp 7 \right)}} \end{array} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -28033,8 +27701,8 @@ The operation {\tt cyclic} returns the cycle index of the cyclic group. \spadcommand{cyclic 7} $$ -{{6 \over 7} \ {\left( 7 \right)}}+ -{{1\over 7} \ {\left( 1 \sp 7 \right)}} +{{\frac{6}{7}} \ {\left( 7 \right)}}+ +{{\frac{1}{7}} \ {\left( 1 \sp 7 \right)}} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -28043,9 +27711,9 @@ dihedral group. \spadcommand{dihedral 7} $$ -{{3 \over 7} \ {\left( 7 \right)}}+ -{{1\over 2} \ {\left( {2 \sp 3} \ 1 \right)}}+ -{{1\over {14}} \ {\left( 1 \sp 7 \right)}} +{{\frac{3}{7}} \ {\left( 7 \right)}}+ +{{\frac{1}{2}} \ {\left( {2 \sp 3} \ 1 \right)}}+ +{{\frac{1}{14}} \ {\left( 1 \sp 7 \right)}} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -28057,16 +27725,16 @@ nodes. \spadcommand{graphs 5} $$ \begin{array}{@{}l} -{{1 \over 6} \ {\left( {6 \sp {\ }} \ {3 \sp {\ }} \ 1 \right)}}+ -{{1\over 5} \ {\left( 5 \sp 2 \right)}}+ -{{1\over 4} \ {\left( {4 \sp 2} \ 2 \right)}}+ -{{1\over 6} \ {\left( {3 \sp 3} \ 1 \right)}}+ -{{1\over 8} \ {\left( {2 \sp 4} \ {1 \sp 2} \right)}}+ +{{\frac{1}{6}} \ {\left( {6 \sp {\ }} \ {3 \sp {\ }} \ 1 \right)}}+ +{{\frac{1}{5}} \ {\left( 5 \sp 2 \right)}}+ +{{\frac{1}{4}} \ {\left( {4 \sp 2} \ 2 \right)}}+ +{{\frac{1}{6}} \ {\left( {3 \sp 3} \ 1 \right)}}+ +{{\frac{1}{8}} \ {\left( {2 \sp 4} \ {1 \sp 2} \right)}}+ \\ \\ \displaystyle -{{1\over {12}} \ {\left( {2 \sp 3} \ {1 \sp 4} \right)}}+ -{{1\over {120}} \ {\left( 1 \sp {10} \right)}} +{{\frac{1}{12}} \ {\left( {2 \sp 3} \ {1 \sp 4} \right)}}+ +{{\frac{1}{120}} \ {\left( 1 \sp {10} \right)}} \end{array} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -28152,10 +27820,10 @@ The cycle index of vertices of a square is dihedral 4. \spadcommand{square:=dihedral 4} $$ -{{1 \over 4} \ {\left( 4 \right)}}+ -{{3\over 8} \ {\left( 2 \sp 2 \right)}}+ -{{1\over 4} \ {\left( {2 \sp {\ }} \ {1 \sp 2} \right)}}+ -{{1\over 8} \ {\left( 1 \sp 4 \right)}} +{{\frac{1}{4}} \ {\left( 4 \right)}}+ +{{\frac{3}{8}} \ {\left( 2 \sp 2 \right)}}+ +{{\frac{1}{4}} \ {\left( {2 \sp {\ }} \ {1 \sp 2} \right)}}+ +{{\frac{1}{8}} \ {\left( 1 \sp 4 \right)}} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -28194,10 +27862,10 @@ The cycle index of rotations of vertices of a cube. SymmetricPolynomial Fraction Integer \end{verbatim} $$ -{{1 \over 4} \ {\left( 4 \sp 2 \right)}}+ -{{1\over 3} \ {\left( {3 \sp 2} \ {1 \sp 2} \right)}}+ -{{3\over 8} \ {\left( 2 \sp 4 \right)}}+ -{{1\over {24}} \ {\left( 1 \sp 8 \right)}} +{{\frac{1}{4}} \ {\left( 4 \sp 2 \right)}}+ +{{\frac{1}{3}} \ {\left( {3 \sp 2} \ {1 \sp 2} \right)}}+ +{{\frac{3}{8}} \ {\left( 2 \sp 4 \right)}}+ +{{\frac{1}{24}} \ {\left( 1 \sp 8 \right)}} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -28459,27 +28127,27 @@ ascending order in the columns and a non-descending order in the rows. \spadcommand{sf3221:= SFunction [3,2,2,1] } $$ \begin{array}{@{}l} -{{1 \over {12}} \ {\left( {6 \sp {\ }} \ 2 \right)}} --{{1 \over {12}} \ {\left( {6 \sp {\ }} \ {1 \sp 2} \right)}} --{{1 \over {16}} \ {\left( 4 \sp 2 \right)}}+ -{{1\over {12}} \ {\left( {4 \sp {\ }} \ {3 \sp {\ }} \ 1 \right)}}+ -{{1\over {24}} \ {\left( {4 \sp {\ }} \ {1 \sp 4} \right)}} --{{1 \over {36}} \ {\left( {3 \sp 2} \ 2 \right)}}+ +{{\frac{1}{12}} \ {\left( {6 \sp {\ }} \ 2 \right)}} +-{{\frac{1}{12}} \ {\left( {6 \sp {\ }} \ {1 \sp 2} \right)}} +-{{\frac{1}{16}} \ {\left( 4 \sp 2 \right)}}+ +{{\frac{1}{12}} \ {\left( {4 \sp {\ }} \ {3 \sp {\ }} \ 1 \right)}}+ +{{\frac{1}{24}} \ {\left( {4 \sp {\ }} \ {1 \sp 4} \right)}} +-{{\frac{1}{36}} \ {\left( {3 \sp 2} \ 2 \right)}}+ \\ \\ \displaystyle -{{1\over {36}} \ {\left( {3 \sp 2} \ {1 \sp 2} \right)}} --{{1 \over {24}} \ {\left( {3 \sp {\ }} \ {2 \sp 2} \ 1 \right)}} --{{1 \over {36}} \ {\left( {3 \sp {\ }} \ {2 \sp {\ }} \ {1 \sp 3} \right)}} --{{1 \over {72}} \ {\left( {3 \sp {\ }} \ {1 \sp 5} \right)}} --{{1 \over {192}} \ {\left( 2 \sp 4 \right)}}+ +{{\frac{1}{36}} \ {\left( {3 \sp 2} \ {1 \sp 2} \right)}} +-{{\frac{1}{24}} \ {\left( {3 \sp {\ }} \ {2 \sp 2} \ 1 \right)}} +-{{\frac{1}{36}} \ {\left( {3 \sp {\ }} \ {2 \sp {\ }} \ {1 \sp 3} \right)}} +-{{\frac{1}{72}} \ {\left( {3 \sp {\ }} \ {1 \sp 5} \right)}} +-{{\frac{1}{192}} \ {\left( 2 \sp 4 \right)}}+ \\ \\ \displaystyle -{{1\over {48}} \ {\left( {2 \sp 3} \ {1 \sp 2} \right)}}+ -{{1\over {96}} \ {\left( {2 \sp 2} \ {1 \sp 4} \right)}} --{{1 \over {144}} \ {\left( {2 \sp {\ }} \ {1 \sp 6} \right)}}+ -{{1\over {576}} \ {\left( 1 \sp 8 \right)}} +{{\frac{1}{48}} \ {\left( {2 \sp 3} \ {1 \sp 2} \right)}}+ +{{\frac{1}{96}} \ {\left( {2 \sp 2} \ {1 \sp 4} \right)}} +-{{\frac{1}{144}} \ {\left( {2 \sp {\ }} \ {1 \sp 6} \right)}}+ +{{\frac{1}{576}} \ {\left( 1 \sp 8 \right)}} \end{array} $$ \returnType{Type: SymmetricPolynomial Fraction Integer} @@ -29128,36 +28796,36 @@ $$ \begin{array}{@{}l} \left[ {z - -{{{1568} \over {2745}} \ {x \sp 6}} - -{{{1264} \over {305}} \ {x \sp 5}}+ -{{6 \over {305}} \ {x \sp 4}}+ -{{{182} \over {549}} \ {x \sp 3}} --{{{2047} \over {610}} \ {x \sp 2}} - -{{{103} \over {2745}} \ x} - -{{2857} \over {10980}}}, +{{\frac{1568}{2745}} \ {x \sp 6}} - +{{\frac{1264}{305}} \ {x \sp 5}}+ +{{\frac{6}{305}} \ {x \sp 4}}+ +{{\frac{182}{549}} \ {x \sp 3}} +-{{\frac{2047}{610}} \ {x \sp 2}} - +{{\frac{103}{2745}} \ x} - +{\frac{2857}{10980}}}, \right. \\ \\ \displaystyle {{y \sp 2}+ -{{{112} \over {2745}} \ {x \sp 6}} - -{{{84} \over {305}} \ {x \sp 5}} - -{{{1264} \over {305}} \ {x \sp 4}} - -{{{13} \over {549}} \ {x \sp 3}}+ -{{{84} \over {305}} \ {x \sp 2}}+ -{{{1772} \over {2745}} \ x}+ -{2 \over {2745}}}, +{{\frac{112}{2745}} \ {x \sp 6}} - +{{\frac{84}{305}} \ {x \sp 5}} - +{{\frac{1264}{305}} \ {x \sp 4}} - +{{\frac{13}{549}} \ {x \sp 3}}+ +{{\frac{84}{305}} \ {x \sp 2}}+ +{{\frac{1772}{2745}} \ x}+ +{\frac{2}{2745}}}, \\ \\ \displaystyle \left. {{x \sp 7}+ -{{{29} \over 4} \ {x \sp 6}} - -{{{17} \over {16}} \ {x \sp 4}} - -{{{11} \over 8} \ {x \sp 3}}+ -{{1 \over {32}} \ {x \sp 2}}+ -{{{15} \over {16}} \ x}+ -{1 \over 4}} +{{\frac{29}{4}} \ {x \sp 6}} - +{{\frac{17}{16}} \ {x \sp 4}} - +{{\frac{11}{8}} \ {x \sp 3}}+ +{{\frac{1}{32}} \ {x \sp 2}}+ +{{\frac{15}{16}} \ x}+ +{\frac{1}{4}}} \right] \end{array} $$ @@ -29193,38 +28861,38 @@ $$ \left[ {{y \sp 4}+ {2 \ {x \sp 3}} - -{{3 \over 2} \ {x \sp 2}}+ -{{1 \over 2} \ z} - -{1 \over 8}}, +{{\frac{3}{2}} \ {x \sp 2}}+ +{{\frac{1}{2}} \ z} - +{\frac{1}{8}}}, \right. \\ \\ \displaystyle {{x \sp 4}+ -{{{29} \over 4} \ {x \sp 3}} - -{{1 \over 8} \ {y \sp 2}} - -{{7 \over 4} \ z \ x} - -{{9 \over {16}} \ x} - -{1 \over 4}}, +{{\frac{29}{4}} \ {x \sp 3}} - +{{\frac{1}{8}} \ {y \sp 2}} - +{{\frac{7}{4}} \ z \ x} - +{{\frac{9}{16}} \ x} - +{\frac{1}{4}}}, \\ \\ \displaystyle {{z \ {y \sp 2}}+ {2 \ x}+ -{1 \over 2}}, +{\frac{1}{2}}}, \\ \\ \displaystyle {{{y \sp 2} \ x}+ {4 \ {x \sp 2}} - z+ -{1 \over 4}}, +{\frac{1}{4}}}, \\ \\ \displaystyle {{z \ {x \sp 2}} - {y \sp 2} - -{{1 \over 2} \ x}}, +{{\frac{1}{2}} \ x}}, \\ \\ \displaystyle @@ -29232,8 +28900,8 @@ z+ {{z \sp 2} - {4 \ {y \sp 2}}+ {2 \ {x \sp 2}} - -{{1 \over 4} \ z} - -{{3 \over 2} \ x}} +{{\frac{1}{4}} \ z} - +{{\frac{3}{2}} \ x}} \right] \end{array} $$ @@ -29623,12 +29291,11 @@ products, square roots, and a quotient. \spadcommand{(tan sqrt 7 - sin sqrt 11)**2 / (4 - cos(x - y))} $$ -{-{{\tan \left({{\sqrt {7}}} \right)}\sp 2}+ +\frac{-{{\tan \left({{\sqrt {7}}} \right)}\sp 2}+ {2 \ {\sin \left({{\sqrt {{11}}}} \right)} \ {\tan \left({{\sqrt {7}}} \right)}} -{{\sin \left({{\sqrt {{11}}}} \right)}\sp 2}} -\over {{\cos \left({{y -x}} \right)} --4} +{{\cos \left({{y -x}} \right)}-4} $$ \returnType{Type: Expression Integer} @@ -29713,10 +29380,9 @@ extract the numerator and denominator of an expression. \spadcommand{e := (sin(x) - 4)**2 / ( 1 - 2*y*sqrt(- y) ) } $$ -{-{{\sin \left({x} \right)}\sp 2}+ +\frac{-{{\sin \left({x} \right)}\sp 2}+ {8 \ {\sin \left({x} \right)}} --{16}} -\over {{2 \ y \ {\sqrt {-y}}} -1} +-{16}}{{2 \ y \ {\sqrt {-y}}} -1} $$ \returnType{Type: Expression Integer} @@ -29740,12 +29406,12 @@ Use \spadfunFrom{D}{Expression} to compute partial derivatives. \spadcommand{D(e, x) } $$ -{{{\left( +\frac{{{\left( {4 \ y \ {\cos \left({x} \right)}\ {\sin \left({x} \right)}}- {{16} \ y \ {\cos \left({x} \right)}}\right)}\ {\sqrt {-y}}} - {2 \ {\cos \left({x} \right)}\ {\sin \left({x} \right)}}+ {8\ {\cos \left({x} \right)}}} -\over {{4 \ y \ {\sqrt {-y}}}+{4 \ {y \sp 3}} -1} +{{4 \ y \ {\sqrt {-y}}}+{4 \ {y \sp 3}} -1} $$ \returnType{Type: Expression Integer} @@ -29756,7 +29422,7 @@ for more examples of expressions and derivatives. \spadcommand{D(e, [x, y], [1, 2]) } $$ -\left( +\frac{\left( \begin{array}{@{}l} {{\left( {{\left( -{{2304} \ {y \sp 7}}+{{960} \ {y \sp 4}} \right)} \ {\cos \left({x} \right)}\ {\sin \left({x} \right)}}+ @@ -29774,9 +29440,8 @@ $$ {{3840} \ {y \sp 9}} -{{8640} \ {y \sp 6}}+{{720} \ {y \sp 3}}+{12} \right)}\ {\cos \left({x} \right)}} \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} {{\left( {{256} \ {y \sp {12}}} -{{1792} \ {y \sp 9}}+{{1120} \ {y \sp 6}} -{{112} \ {y \sp 3}}+1 \right)}\ {\sqrt {-y}}} - @@ -29786,7 +29451,7 @@ $$ {{1024} \ {y \sp {11}}}+{{1792} \ {y \sp 8}} -{{448} \ {y \sp 5}}+{{16} \ {y \sp 2}} \end{array} -\right) +\right)} $$ \returnType{Type: Expression Integer} @@ -29873,7 +29538,7 @@ $$ \spadcommand{cos(\%pi / 4)} $$ -{\sqrt {2}} \over 2 +\frac{\sqrt {2}}{2} $$ \returnType{Type: Expression Integer} @@ -29890,7 +29555,7 @@ $$ \spadcommand{simplify \% } $$ -1 \over {{\cos \left({x} \right)}\sp 6} +\frac{1}{{\cos \left({x} \right)}\sp 6} $$ \returnType{Type: Expression Integer} @@ -30908,7 +30573,7 @@ $$ \spadcommand{r :: Fraction Integer } $$ -3 \over 7 +\frac{3}{7} $$ \returnType{Type: Fraction Integer} @@ -31118,34 +30783,43 @@ exact result. $$ \left[ \begin{array}{cccccccccc} -1 & {1 \over 2} & {1 \over 3} & {1 \over 4} & {1 \over 5} & {1 \over 6} & -{1 \over 7} & {1 \over 8} & {1 \over 9} & {1 \over {10}} \\ -{1 \over 2} & {1 \over 3} & {1 \over 4} & {1 \over 5} & {1 \over 6} & -{1 \over 7} & {1 \over 8} & {1 \over 9} & {1 \over {10}} & {1 \over {11}} \\ -{1 \over 3} & {1 \over 4} & {1 \over 5} & {1 \over 6} & {1 \over 7} & -{1 \over 8} & {1 \over 9} & {1 \over {10}} & {1 \over {11}} & -{1 \over {12}} \\ -{1 \over 4} & {1 \over 5} & {1 \over 6} & {1 \over 7} & {1 \over 8} & -{1 \over 9} & {1 \over {10}} & {1 \over {11}} & {1 \over {12}} & -{1 \over {13}} \\ -{1 \over 5} & {1 \over 6} & {1 \over 7} & {1 \over 8} & {1 \over 9} & -{1 \over {10}} & {1 \over {11}} & {1 \over {12}} & {1 \over {13}} & -{1 \over {14}} \\ -{1 \over 6} & {1 \over 7} & {1 \over 8} & {1 \over 9} & {1 \over {10}} & -{1 \over {11}} & {1 \over {12}} & {1 \over {13}} & {1 \over {14}} & -{1 \over {15}} \\ -{1 \over 7} & {1 \over 8} & {1 \over 9} & {1 \over {10}} & {1 \over {11}} & -{1 \over {12}} & {1 \over {13}} & {1 \over {14}} & {1 \over {15}} & -{1 \over {16}} \\ -{1 \over 8} & {1 \over 9} & {1 \over {10}} & {1 \over {11}} & {1 \over {12}} -& {1 \over {13}} & {1 \over {14}} & {1 \over {15}} & {1 \over {16}} & -{1 \over {17}} \\ -{1 \over 9} & {1 \over {10}} & {1 \over {11}} & {1 \over {12}} & -{1 \over {13}} & {1 \over {14}} & {1 \over {15}} & {1 \over {16}} & -{1 \over {17}} & {1 \over {18}} \\ -{1 \over {10}} & {1 \over {11}} & {1 \over {12}} & {1 \over {13}} & -{1 \over {14}} & {1 \over {15}} & {1 \over {16}} & {1 \over {17}} & -{1 \over {18}} & {1 \over {19}} +1 & {\frac{1}{2}} & {\frac{1}{3}} & {\frac{1}{4}} & {\frac{1}{5}} & +{\frac{1}{6}} & +{\frac{1}{7}} & {\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} \\ +{\frac{1}{2}} & {\frac{1}{3}} & {\frac{1}{4}} & {\frac{1}{5}} & +{\frac{1}{6}} & +{\frac{1}{7}} & {\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} & +{\frac{1}{11}} \\ +{\frac{1}{3}} & {\frac{1}{4}} & {\frac{1}{5}} & {\frac{1}{6}} & +{\frac{1}{7}} & +{\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} & {\frac{1}{11}} & +{\frac{1}{12}} \\ +{\frac{1}{4}} & {\frac{1}{5}} & {\frac{1}{6}} & {\frac{1}{7}} & +{\frac{1}{8}} & +{\frac{1}{9}} & {\frac{1}{10}} & {\frac{1}{11}} & {\frac{1}{12}} & +{\frac{1}{13}} \\ +{\frac{1}{5}} & {\frac{1}{6}} & {\frac{1}{7}} & {\frac{1}{8}} & +{\frac{1}{9}} & +{\frac{1}{10}} & {\frac{1}{11}} & {\frac{1}{12}} & {\frac{1}{13}} & +{\frac{1}{14}} \\ +{\frac{1}{6}} & {\frac{1}{7}} & {\frac{1}{8}} & {\frac{1}{9}} & +{\frac{1}{10}} & +{\frac{1}{11}} & {\frac{1}{12}} & {\frac{1}{13}} & {\frac{1}{14}} & +{\frac{1}{15}} \\ +{\frac{1}{7}} & {\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} & +{\frac{1}{11}} & +{\frac{1}{12}} & {\frac{1}{13}} & {\frac{1}{14}} & {\frac{1}{15}} & +{\frac{1}{16}} \\ +{\frac{1}{8}} & {\frac{1}{9}} & {\frac{1}{10}} & {\frac{1}{11}} & +{\frac{1}{12}} +& {\frac{1}{13}} & {\frac{1}{14}} & {\frac{1}{15}} & {\frac{1}{16}} & +{\frac{1}{17}} \\ +{\frac{1}{9}} & {\frac{1}{10}} & {\frac{1}{11}} & {\frac{1}{12}} & +{\frac{1}{13}} & {\frac{1}{14}} & {\frac{1}{15}} & {\frac{1}{16}} & +{\frac{1}{17}} & {\frac{1}{18}} \\ +{\frac{1}{10}} & {\frac{1}{11}} & {\frac{1}{12}} & {\frac{1}{13}} & +{\frac{1}{14}} & {\frac{1}{15}} & {\frac{1}{16}} & {\frac{1}{17}} & +{\frac{1}{18}} & {\frac{1}{19}} \end{array} \right] $$ @@ -31155,7 +30829,7 @@ This version of \spadfunFrom{determinant}{Matrix} uses Gaussian elimination. \spadcommand{d:= determinant a } $$ -1 \over {46206893947914691316295628839036278726983680000000000} +\frac{1}{46206893947914691316295628839036278726983680000000000} $$ \returnType{Type: Fraction Integer} @@ -31220,13 +30894,13 @@ Use \spadopFrom{/}{Fraction} to create a fraction. \spadcommand{a := 11/12 } $$ -{11} \over {12} +\frac{11}{12} $$ \returnType{Type: Fraction Integer} \spadcommand{b := 23/24 } $$ -{23} \over {24} +\frac{23}{24} $$ \returnType{Type: Fraction Integer} @@ -31234,7 +30908,7 @@ The standard arithmetic operations are available. \spadcommand{3 - a*b**2 + a + b/a } $$ -{313271} \over {76032} +\frac{313271}{76032} $$ \returnType{Type: Fraction Integer} @@ -31267,7 +30941,7 @@ them to fractions. \spadcommand{r := (x**2 + 2*x + 1)/(x**2 - 2*x + 1) } $$ -{{x \sp 2}+{2 \ x}+1} \over {{x \sp 2} -{2 \ x}+1} +\frac{{x \sp 2}+{2 \ x}+1}{{x \sp 2} -{2 \ x}+1} $$ \returnType{Type: Fraction Polynomial Integer} @@ -31276,7 +30950,7 @@ definitions. \spadcommand{factor(r) } $$ -{{x \sp 2}+{2 \ x}+1} \over {{x \sp 2} -{2 \ x}+1} +\frac{{x \sp 2}+{2 \ x}+1}{{x \sp 2} -{2 \ x}+1} $$ \returnType{Type: Factored Fraction Polynomial Integer} @@ -31285,11 +30959,7 @@ the numerator and denominator, which is probably what you mean. \spadcommand{map(factor,r) } $$ -{{\left( x+1 -\right)} -\sp 2} \over {{\left( x -1 -\right)} -\sp 2} +\frac{{\left( x+1 \right)}\sp 2}{{\left( x -1 \right)}\sp 2} $$ \returnType{Type: Fraction Factored Polynomial Integer} @@ -31310,7 +30980,7 @@ additional information and examples. \spadcommand{partialFraction(7,12)} $$ -1 -{3 \over {2 \sp 2}}+{1 \over 3} +1 -{\frac{3}{2 \sp 2}}+{\frac{1}{3}} $$ \returnType{Type: PartialFraction Integer} @@ -31319,7 +30989,7 @@ moved in and out of the numerator and denominator. \spadcommand{g := 2/3 + 4/5*\%i } $$ -{2 \over 3}+{{4 \over 5} \ i} +{\frac{2}{3}}+{{\frac{4}{5}} \ i} $$ \returnType{Type: Complex Fraction Integer} @@ -31329,7 +30999,7 @@ on page~\pageref{ugTypesConvertPage}. \spadcommand{g :: FRAC COMPLEX INT } $$ -{{10}+{{12} \ i}} \over {15} +\frac{{10}+{{12} \ i}}{15} $$ \returnType{Type: Fraction Complex Integer} @@ -31352,8 +31022,7 @@ Here is a simple-looking rational function. \spadcommand{f : Fx := 36 / (x**5-2*x**4-2*x**3+4*x**2+x-2) } $$ -{36} \over {{x \sp 5} -{2 \ {x \sp 4}} -{2 \ {x \sp 3}}+{4 \ {x \sp 2}}+x --2} +\frac{36}{{x \sp 5} -{2 \ {x \sp 4}} -{2 \ {x \sp 3}}+{4 \ {x \sp 2}}+x -2} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)} @@ -31362,9 +31031,9 @@ to convert it to an object of type {\tt FullPartialFractionExpansion}. \spadcommand{g := fullPartialFraction f } $$ -{4 \over {x -2}} -{4 \over {x+1}}+ +{\frac{4}{x -2}} -{\frac{4}{x+1}}+ {\sum \sb{\displaystyle {{{ \%A \sp 2} -1}=0}} -{{-{3 \ \%A} -6} \over {{\left( x - \%A \right)}\sp 2}}} +{\frac{-{3 \ \%A} -6}{{\left( x - \%A \right)}\sp 2}}} $$ \returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))} @@ -31372,8 +31041,7 @@ Use a coercion to change it back into a quotient. \spadcommand{g :: Fx } $$ -{36} \over {{x \sp 5} -{2 \ {x \sp 4}} -{2 \ {x \sp 3}}+{4 \ {x \sp 2}}+x --2} +\frac{36}{{x \sp 5} -{2 \ {x \sp 4}} -{2 \ {x \sp 3}}+{4 \ {x \sp 2}}+x -2} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)} @@ -31381,16 +31049,16 @@ Full partial fractions differentiate faster than rational functions. \spadcommand{g5 := D(g, 5) } $$ --{{480} \over {{\left( x -2 \right)}\sp 6}}+ -{{480} \over {{\left( x+1 \right)}\sp 6}}+ +-{\frac{480}{{\left( x -2 \right)}\sp 6}}+ +{\frac{480}{{\left( x+1 \right)}\sp 6}}+ {\sum \sb{\displaystyle {{{ \%A \sp 2} -1}=0}} -{{{{2160} \ \%A}+{4320}} \over {{\left( x - \%A \right)}\sp 7}}} +{\frac{{{2160} \ \%A}+{4320}}{{\left( x - \%A \right)}\sp 7}}} $$ \returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))} \spadcommand{f5 := D(f, 5) } $$ -\left( +\frac{\left( \begin{array}{@{}l} -{{544320} \ {x \sp {10}}}+ {{4354560} \ {x \sp 9}} - @@ -31409,9 +31077,8 @@ $$ {{5870880} \ {x \sp 2}}+ {{3317760} \ x}+{246240} \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} {x \sp {20}} - {{12} \ {x \sp {19}}}+ @@ -31444,7 +31111,7 @@ $$ {{192} \ x} - {64} \end{array} -\right) +\right)} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)} @@ -31460,36 +31127,33 @@ Here are some examples that are more complicated. \spadcommand{f : Fx := (x**5 * (x-1)) / ((x**2 + x + 1)**2 * (x-2)**3) } $$ -{{x \sp 6} - -{x \sp 5}} -\over +\frac{{x \sp 6} -{x \sp 5}} {{x \sp 7} - {4 \ {x \sp 6}}+ {3 \ {x \sp 5}}+ {9 \ {x \sp 3}} - {6 \ {x \sp 2}} - -{4 \ x} - -8} +{4 \ x} - 8} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)} \spadcommand{g := fullPartialFraction f } $$ \begin{array}{@{}l} -{{{1952} \over {2401}} \over {x -2}}+ -{{{464} \over {343}} \over {{\left( x -2 \right)}\sp 2}}+ -{{{32} \over {49}} \over {{\left( x -2 \right)}\sp 3}}+ +{\frac{\frac{1952}{2401}}{x -2}}+ +{\frac{\frac{464}{343}}{{\left( x -2 \right)}\sp 2}}+ +{\frac{\frac{32}{49}}{{\left( x -2 \right)}\sp 3}}+ \\ \\ \displaystyle {\sum \sb{\displaystyle {{{ \%A \sp 2}+ \%A+1}=0}} -{{-{{{179} \over {2401}} \ \%A}+{{135} \over {2401}}} \over {x - \%A}}}+ +{\frac{-{{\frac{179}{2401}} \ \%A}+{\frac{135}{2401}}}{x - \%A}}}+ \\ \\ \displaystyle {\sum \sb{\displaystyle {{{ \%A \sp 2}+ \%A+1}=0}} -{{{{{37} \over {1029}} \ \%A}+ -{{20} \over {1029}}} \over {{\left( x - \%A \right)}\sp 2}}} +{\frac{{{\frac{37}{1029}} \ \%A}+ +{\frac{20}{1029}}}{{\left( x - \%A \right)}\sp 2}}} \end{array} $$ \returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))} @@ -31502,8 +31166,7 @@ $$ \spadcommand{f : Fx := (2*x**7-7*x**5+26*x**3+8*x) / (x**8-5*x**6+6*x**4+4*x**2-8) } $$ -{{2 \ {x \sp 7}} -{7 \ {x \sp 5}}+{{26} \ {x \sp 3}}+{8 \ x}} -\over +\frac{{2 \ {x \sp 7}} -{7 \ {x \sp 5}}+{{26} \ {x \sp 3}}+{8 \ x}} {{x \sp 8} -{5 \ {x \sp 6}}+{6 \ {x \sp 4}}+{4 \ {x \sp 2}} -8} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)} @@ -31512,17 +31175,17 @@ $$ $$ \begin{array}{@{}l} {\sum \sb{\displaystyle {{{ \%A \sp 2} -2}=0}} -{{1 \over 2} \over {x - \%A}}}+ +{\frac{\frac{1}{2}}{x - \%A}}}+ \\ \\ \displaystyle {\sum \sb{\displaystyle {{{ \%A \sp 2} -2}=0}} -{1 \over {{\left( x - \%A \right)}\sp 3}}}+ +{\frac{1}{{\left( x - \%A \right)}\sp 3}}}+ \\ \\ \displaystyle {\sum \sb{\displaystyle {{{ \%A \sp 2}+1}=0}} -{{1 \over 2} \over {x - \%A}}} +{\frac{\frac{1}{2}}{x - \%A}}} \end{array} $$ \returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))} @@ -31535,9 +31198,8 @@ $$ \spadcommand{f:Fx := x**3 / (x**21 + 2*x**20 + 4*x**19 + 7*x**18 + 10*x**17 + 17*x**16 + 22*x**15 + 30*x**14 + 36*x**13 + 40*x**12 + 47*x**11 + 46*x**10 + 49*x**9 + 43*x**8 + 38*x**7 + 32*x**6 + 23*x**5 + 19*x**4 + 10*x**3 + 7*x**2 + 2*x + 1)} $$ -{x \sp 3} -\over -\left( +\frac{x \sp 3} +{\left( \begin{array}{@{}l} {x \sp {21}}+ {2 \ {x \sp {20}}}+ @@ -31567,7 +31229,7 @@ $$ {2 \ x}+ 1 \end{array} -\right) +\right)} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Fraction Integer)} @@ -31575,69 +31237,72 @@ $$ $$ \begin{array}{@{}l} {\sum \sb{\displaystyle {{{ \%A \sp 2}+1}=0}} -{{{1 \over 2} \ \%A} \over {x - \%A}}}+ +{\frac{{\frac{1}{2}} \ \%A}{x - \%A}}}+ {\sum \sb{\displaystyle {{{ \%A \sp 2}+ \%A+1}=0}} -{{{{1 \over 9} \ \%A} -{{19} \over {27}}} \over {x - \%A}}}+ +{\frac{{{\frac{1}{9}} \ \%A} -{\frac{19}{27}}}{x - \%A}}}+ \\ \\ \displaystyle {\sum \sb{\displaystyle {{{ \%A \sp 2}+ \%A+1}=0}} -{{{{1 \over {27}} \ \%A} -{1 \over {27}}} -\over {{\left( x - \%A \right)}\sp 2}}}+ +{\frac{{{\frac{1}{27}} \ \%A} -{\frac{1}{27}}} +{{\left( x - \%A \right)}\sp 2}}}+ \\ \\ \displaystyle \sum \sb{\displaystyle {{{ \%A \sp 5}+{ \%A \sp 2}+1}=0}} -\left( +\displaystyle +\frac{\left( \begin{array}{@{}l} --{{{96556567040} \over {912390759099}} \ { \%A \sp 4}}+ -{{{420961732891} \over {912390759099}} \ { \%A \sp 3}} - +-{{\frac{96556567040}{912390759099}} \ { \%A \sp 4}}+ +{{\frac{420961732891}{912390759099}} \ { \%A \sp 3}} - \\ \\ \displaystyle -{{{59101056149} \over {912390759099}} \ { \%A \sp 2}} - -{{{373545875923} \over {912390759099}} \ \%A}+ +{{\frac{59101056149}{912390759099}} \ { \%A \sp 2}} - +{{\frac{373545875923}{912390759099}} \ \%A}+ \\ \\ \displaystyle -{{529673492498} \over {912390759099}} +{\frac{529673492498}{912390759099}} \end{array} -\right) -\over {x - \%A}+ +\right)} +{x - \%A}+ \\ \\ \displaystyle \sum \sb{\displaystyle {{{ \%A \sp 5}+{ \%A \sp 2}+1}=0}} -\left( +\displaystyle +\frac{\left( \begin{array}{@{}l} --{{{5580868} \over {94070601}} \ { \%A \sp 4}} - -{{{2024443} \over {94070601}} \ { \%A \sp 3}}+ -{{{4321919} \over {94070601}} \ { \%A \sp 2}} - +-{{\frac{5580868}{94070601}} \ { \%A \sp 4}} - +{{\frac{2024443}{94070601}} \ { \%A \sp 3}}+ +{{\frac{4321919}{94070601}} \ { \%A \sp 2}} - \\ \\ \displaystyle -{{{84614} \over {1542141}} \ \%A} - -{{5070620} \over {94070601}} +{{\frac{84614}{1542141}} \ \%A} - +{\frac{5070620}{94070601}} \end{array} -\right) -\over {{\left( x - \%A \right)}\sp 2}+ +\right)} +{{\left( x - \%A \right)}\sp 2}+ \\ \\ \displaystyle \sum \sb{\displaystyle {{{ \%A \sp 5}+{ \%A \sp 2}+1}=0}} -\left( +\displaystyle +\frac{\left( \begin{array}{@{}l} -{{{1610957} \over {94070601}} \ { \%A \sp 4}}+ -{{{2763014} \over {94070601}} \ { \%A \sp 3}} - -{{{2016775} \over {94070601}} \ { \%A \sp 2}}+ +{{\frac{1610957}{94070601}} \ { \%A \sp 4}}+ +{{\frac{2763014}{94070601}} \ { \%A \sp 3}} - +{{\frac{2016775}{94070601}} \ { \%A \sp 2}}+ \\ \\ \displaystyle -{{{266953} \over {94070601}} \ \%A}+ -{{4529359} \over {94070601}} +{{\frac{266953}{94070601}} \ \%A}+ +{\frac{4529359}{94070601}} \end{array} -\right) -\over {{\left( x - \%A \right)}\sp 3} +\right)} +{{\left( x - \%A \right)}\sp 3} \end{array} $$ \returnType{Type: FullPartialFractionExpansion(Fraction Integer,UnivariatePolynomial(x,Fraction Integer))} @@ -31762,11 +31427,11 @@ $$ \left[ \begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & {8 \over 3} & x & {8 \over 3} \\ -1 & 1 & 0 & 1 & {8 \over 3} & y \\ -1 & {8 \over 3} & 1 & 0 & 1 & {8 \over 3} \\ -1 & x & {8 \over 3} & 1 & 0 & 1 \\ -1 & {8 \over 3} & y & {8 \over 3} & 1 & 0 +1 & 0 & 1 & {\frac{8}{3}} & x & {\frac{8}{3}} \\ +1 & 1 & 0 & 1 & {\frac{8}{3}} & y \\ +1 & {\frac{8}{3}} & 1 & 0 & 1 & {\frac{8}{3}} \\ +1 & x & {\frac{8}{3}} & 1 & 0 & 1 \\ +1 & {\frac{8}{3}} & y & {\frac{8}{3}} & 1 & 0 \end{array} \right] $$ @@ -31778,17 +31443,17 @@ For the cyclohexan, the distances have to satisfy this equation. $$ \begin{array}{@{}l} -{{x \sp 2} \ {y \sp 2}}+ -{{{22} \over 3} \ {x \sp 2} \ y} - -{{{25} \over 9} \ {x \sp 2}}+ -{{{22} \over 3} \ x \ {y \sp 2}} - -{{{388} \over 9} \ x \ y} - +{{\frac{22}{3}} \ {x \sp 2} \ y} - +{{\frac{25}{9}} \ {x \sp 2}}+ +{{\frac{22}{3}} \ x \ {y \sp 2}} - +{{\frac{388}{9}} \ x \ y} - \\ \\ \displaystyle -{{{250} \over {27}} \ x} - -{{{25} \over 9} \ {y \sp 2}} - -{{{250} \over {27}} \ y}+ -{{14575} \over {81}} +{{\frac{250}{27}} \ x} - +{{\frac{25}{9}} \ {y \sp 2}} - +{{\frac{250}{27}} \ y}+ +{\frac{14575}{81}} \end{array} $$ \returnType{Type: DistributedMultivariatePolynomial([x,y,z],Fraction Integer)} @@ -31805,41 +31470,41 @@ $$ \left[ {x \ y}+ {x \ z} - -{{{22} \over 3} \ x}+ +{{\frac{22}{3}} \ x}+ {y \ z} - -{{{22} \over 3} \ y} - -{{{22} \over 3} \ z}+ -{{121} \over 3}, +{{\frac{22}{3}} \ y} - +{{\frac{22}{3}} \ z}+ +{\frac{121}{3}}, \right. \\ \\ \displaystyle {x \ {z \sp 2}} - -{{{22} \over 3} \ x \ z}+ -{{{25} \over 9} \ x}+ +{{\frac{22}{3}} \ x \ z}+ +{{\frac{25}{9}} \ x}+ {y \ {z \sp 2}} - -{{{22} \over 3} \ y \ z}+ -{{{25} \over 9} \ y} - -{{{22} \over 3} \ {z \sp 2}}+ -{{{388} \over 9} \ z}+ -{{250} \over {27}}, +{{\frac{22}{3}} \ y \ z}+ +{{\frac{25}{9}} \ y} - +{{\frac{22}{3}} \ {z \sp 2}}+ +{{\frac{388}{9}} \ z}+ +{\frac{250}{27}}, \\ \\ \displaystyle \left. \begin{array}{@{}l} {{y \sp 2} \ {z \sp 2}} - -{{{22} \over 3} \ {y \sp 2} \ z}+ -{{{25} \over 9} \ {y \sp 2}} - -{{{22} \over 3} \ y \ {z \sp 2}}+ -{{{388} \over 9} \ y \ z}+ -{{{250} \over {27}} \ y}+ +{{\frac{22}{3}} \ {y \sp 2} \ z}+ +{{\frac{25}{9}} \ {y \sp 2}} - +{{\frac{22}{3}} \ y \ {z \sp 2}}+ +{{\frac{388}{9}} \ y \ z}+ +{{\frac{250}{27}} \ y}+ \\ \\ \displaystyle -{{{25} \over 9} \ {z \sp 2}}+ -{{{250} \over {27}} \ z} - -{{14575} \over {81}} +{{\frac{25}{9}} \ {z \sp 2}}+ +{{\frac{250}{27}} \ z} - +{\frac{14575}{81}} \end{array} \right], \end{array} @@ -31848,53 +31513,53 @@ $$ \\ \displaystyle {\left[ -{x+y -{{21994} \over {5625}}}, -{{y \sp 2} -{{{21994} \over {5625}} \ y}+{{4427} \over {675}}}, -{z -{{463} \over {87}}} +{x+y -{\frac{21994}{5625}}}, +{{y \sp 2} -{{\frac{21994}{5625}} \ y}+{\frac{4427}{675}}}, +{z -{\frac{463}{87}}} \right]}, \\ \\ \displaystyle {\left[ {{x \sp 2} - -{{1 \over 2} \ x \ z} - -{{{11} \over 2} \ x} - -{{5 \over 6} \ z}+ -{{265} \over {18}}}, +{{\frac{1}{2}} \ x \ z} - +{{\frac{11}{2}} \ x} - +{{\frac{5}{6}} \ z}+ +{\frac{265}{18}}}, {y -z}, -{{z \sp 2} -{{{38} \over 3} \ z}+{{265} \over 9}} +{{z \sp 2} -{{\frac{38}{3}} \ z}+{\frac{265}{9}}} \right]}, \\ \\ \displaystyle {\left[ -{x -{{25} \over 9}}, -{y -{{11} \over 3}}, -{z -{{11} \over 3}} \right]}, +{x -{\frac{25}{9}}}, +{y -{\frac{11}{3}}}, +{z -{\frac{11}{3}}} \right]}, \\ \\ \displaystyle {\left[ -{x -{{11} \over 3}}, -{y -{{11} \over 3}}, -{z -{{11} \over 3}} +{x -{\frac{11}{3}}}, +{y -{\frac{11}{3}}}, +{z -{\frac{11}{3}}} \right]}, \\ \\ \displaystyle {\left[ -{x+{5 \over 3}}, -{y+{5 \over 3}}, -{z+{5 \over 3}} +{x+{\frac{5}{3}}}, +{y+{\frac{5}{3}}}, +{z+{\frac{5}{3}}} \right]}, \\ \\ \displaystyle \left. {\left[ -{x -{{19} \over 3}}, -{y+{5 \over 3}}, -{z+{5 \over 3}} +{x -{\frac{19}{3}}}, +{y+{\frac{5}{3}}}, +{z+{\frac{5}{3}}} \right]} \right] \end{array} @@ -32321,7 +31986,7 @@ in \ref{FractionXmpPage} on page~\pageref{FractionXmpPage}. \spadcommand{13 / 4} $$ -{13} \over 4 +\frac{13}{4} $$ \returnType{Type: Fraction Integer} @@ -32652,7 +32317,7 @@ To express a given element in terms of other elements, use the operation \spadcommand{solveLinearlyOverQ(vector [m1, m3], m2) } $$ \left[ -{1 \over 2}, {1 \over 2} +{\frac{1}{2}}, {\frac{1}{2}} \right] $$ \returnType{Type: Union(Vector Fraction Integer,...)} @@ -32744,7 +32409,7 @@ by $${F(n) = \sum_{d \mid n} f(n)}$$ sum of {\tt f(n)} over {\tt d | n}} where the sum is taken over the positive divisors of {\tt n}. Then the values of {\tt f(n)} can be recovered from the values of {\tt F(n)}: -$${f(n) = \sum_{d \mid n} \mu(n) F({{n}\over{d}})}$$ +$${f(n) = \sum_{d \mid n} \mu(n) F({\frac{n}{d}})}$$ where again the sum is taken over the positive divisors of {\tt n}. When {\tt f(n) = 1}, then {\tt F(n) = d(n)}. Thus, if you sum $\mu(d) @@ -32829,13 +32494,13 @@ $$ Quadratic symbols can be computed with the operations \spadfunFrom{legendre}{IntegerNumberTheoryFunctions} and \spadfunFrom{jacobi}{IntegerNumberTheoryFunctions}. The Legendre -symbol $\left({a \over p}\right)$ is defined for integers $a$ and +symbol $\left({\frac{a}{p}}\right)$ is defined for integers $a$ and $p$ with $p$ an odd prime number. By definition, -$\left({a\over p}\right)$ = +1, when $a$ is a square $({\rm mod\ }p)$, -$\left({a \over p}\right)$ = -1, when $a$ is not a square $({\rm mod\ }p)$, -and $\left({a \over p}\right)$ = 0, when $a$ is divisible by $p$. +$\left({\frac{a}{p}}\right)$ = +1, when $a$ is a square $({\rm mod\ }p)$, +$\left({\frac{a}{p}}\right)$ = -1, when $a$ is not a square $({\rm mod\ }p)$, +and $\left({\frac{a}{p}}\right)$ = 0, when $a$ is divisible by $p$. -You compute $\left({a \over p}\right)$ via the command {\tt legendre(a,p)}. +You compute $\left({\frac{a}{p}}\right)$ via the command {\tt legendre(a,p)}. \spadcommand{legendre(3,5)} $$ @@ -32849,7 +32514,7 @@ $$ $$ \returnType{Type: Integer} -The Jacobi symbol $\left({a \over n}\right)$ is the usual extension of +The Jacobi symbol $\left({\frac{a}{n}}\right)$ is the usual extension of the Legendre symbol, where {\tt n} is an arbitrary integer. The most important property of the Jacobi symbol is the following: if {\tt K} is a quadratic field with discriminant {\tt d} and quadratic character @@ -36542,64 +36207,64 @@ $$ \\ \\ \displaystyle -{{{7865521} \over {6006689520}} \ {{ \%B{41}} \sp {31}}} - -{{{6696179241} \over {2002229840}} \ {{ \%B{41}} \sp {25}}} - +{{\frac{7865521}{6006689520}} \ {{ \%B{41}} \sp {31}}} - +{{\frac{6696179241}{2002229840}} \ {{ \%B{41}} \sp {25}}} - \\ \\ \displaystyle -{{{25769893181} \over {49235160}} \ {{ \%B{41}} \sp {19}}} - -{{{1975912990729} \over {3003344760}} \ {{ \%B{41}} \sp {13}}} - +{{\frac{25769893181}{49235160}} \ {{ \%B{41}} \sp {19}}} - +{{\frac{1975912990729}{3003344760}} \ {{ \%B{41}} \sp {13}}} - \\ \\ \displaystyle -{{{1048460696489} \over {2002229840}} \ {{ \%B{41}} \sp 7}} - -{{{21252634831} \over {6006689520}} \ { \%B{41}}}, +{{\frac{1048460696489}{2002229840}} \ {{ \%B{41}} \sp 7}} - +{{\frac{21252634831}{6006689520}} \ { \%B{41}}}, \\ \\ \displaystyle --{{{778171189} \over {1387545279120}} \ {{ \%B{41}} \sp {31}}}+ -{{{1987468196267} \over {1387545279120}} \ {{ \%B{41}} \sp {25}}}+ +-{{\frac{778171189}{1387545279120}} \ {{ \%B{41}} \sp {31}}}+ +{{\frac{1987468196267}{1387545279120}} \ {{ \%B{41}} \sp {25}}}+ \\ \\ \displaystyle -{{{155496778477189} \over {693772639560}} \ {{ \%B{41}} \sp {19}}}+ -{{{191631411158401} \over {693772639560}} \ {{ \%B{41}} \sp {13}}}+ +{{\frac{155496778477189}{693772639560}} \ {{ \%B{41}} \sp {19}}}+ +{{\frac{191631411158401}{693772639560}} \ {{ \%B{41}} \sp {13}}}+ \\ \\ \displaystyle -{{{300335488637543} \over {1387545279120}} \ {{ \%B{41}} \sp 7}} - -{{{755656433863} \over {198220754160}} \ { \%B{41}}}, +{{\frac{300335488637543}{1387545279120}} \ {{ \%B{41}} \sp 7}} - +{{\frac{755656433863}{198220754160}} \ { \%B{41}}}, \\ \\ \displaystyle -{{{1094352947} \over {462515093040}} \ {{ \%B{41}} \sp {31}}} - -{{{2794979430821} \over {462515093040}} \ {{ \%B{41}} \sp {25}}} - +{{\frac{1094352947}{462515093040}} \ {{ \%B{41}} \sp {31}}} - +{{\frac{2794979430821}{462515093040}} \ {{ \%B{41}} \sp {25}}} - \\ \\ \displaystyle -{{{218708802908737} \over {231257546520}} \ {{ \%B{41}} \sp {19}}} - -{{{91476663003591} \over {77085848840}} \ {{ \%B{41}} \sp {13}}} - +{{\frac{218708802908737}{231257546520}} \ {{ \%B{41}} \sp {19}}} - +{{\frac{91476663003591}{77085848840}} \ {{ \%B{41}} \sp {13}}} - \\ \\ \displaystyle -{{{145152550961823} \over {154171697680}} \ {{ \%B{41}} \sp 7}} - -{{{1564893370717} \over {462515093040}} \ { \%B{41}}}, +{{\frac{145152550961823}{154171697680}} \ {{ \%B{41}} \sp 7}} - +{{\frac{1564893370717}{462515093040}} \ { \%B{41}}}, \\ \\ \displaystyle --{ \%B{51}} -{{{4321823003} \over {1387545279120}} \ {{ \%B{41}} \sp {31}}}+ -{{{180949546069} \over {22746643920}} \ {{ \%B{41}} \sp {25}}}+ +-{ \%B{51}} -{{\frac{4321823003}{1387545279120}} \ {{ \%B{41}} \sp {31}}}+ +{{\frac{180949546069}{22746643920}} \ {{ \%B{41}} \sp {25}}}+ \\ \\ \displaystyle -{{{863753195062493} \over {693772639560}} \ {{ \%B{41}} \sp {19}}}+ -{{{1088094456732317} \over {693772639560}} \ {{ \%B{41}} \sp {13}}}+ +{{\frac{863753195062493}{693772639560}} \ {{ \%B{41}} \sp {19}}}+ +{{\frac{1088094456732317}{693772639560}} \ {{ \%B{41}} \sp {13}}}+ \\ \\ \displaystyle \left. -{{{1732620732685741} \over {1387545279120}} \ {{ \%B{41}} \sp 7}}+ -{{{13506088516033} \over {1387545279120}} \ { \%B{41}}} +{{\frac{1732620732685741}{1387545279120}} \ {{ \%B{41}} \sp 7}}+ +{{\frac{13506088516033}{1387545279120}} \ { \%B{41}}} \right],\hbox{\hskip 3.5cm} \end{array} $$ @@ -36611,61 +36276,61 @@ $$ \\ \\ \displaystyle -{{{7865521} \over {6006689520}} \ {{ \%B{41}} \sp {31}}} - -{{{6696179241} \over {2002229840}} \ {{ \%B{41}} \sp {25}}} - -{{{25769893181} \over {49235160}} \ {{ \%B{41}} \sp {19}}} - +{{\frac{7865521}{6006689520}} \ {{ \%B{41}} \sp {31}}} - +{{\frac{6696179241}{2002229840}} \ {{ \%B{41}} \sp {25}}} - +{{\frac{25769893181}{49235160}} \ {{ \%B{41}} \sp {19}}} - \\ \\ \displaystyle -{{{1975912990729} \over {3003344760}} \ {{ \%B{41}} \sp {13}}} - -{{{1048460696489} \over {2002229840}} \ {{ \%B{41}} \sp 7}} - -{{{21252634831} \over {6006689520}} \ { \%B{41}}}, +{{\frac{1975912990729}{3003344760}} \ {{ \%B{41}} \sp {13}}} - +{{\frac{1048460696489}{2002229840}} \ {{ \%B{41}} \sp 7}} - +{{\frac{21252634831}{6006689520}} \ { \%B{41}}}, \\ \\ \displaystyle --{{{778171189} \over {1387545279120}} \ {{ \%B{41}} \sp {31}}}+ -{{{1987468196267} \over {1387545279120}} \ {{ \%B{41}} \sp {25}}}+ +-{{\frac{778171189}{1387545279120}} \ {{ \%B{41}} \sp {31}}}+ +{{\frac{1987468196267}{1387545279120}} \ {{ \%B{41}} \sp {25}}}+ \\ \\ \displaystyle -{{{155496778477189} \over {693772639560}} \ {{ \%B{41}} \sp {19}}}+ -{{{191631411158401} \over {693772639560}} \ {{ \%B{41}} \sp {13}}}+ +{{\frac{155496778477189}{693772639560}} \ {{ \%B{41}} \sp {19}}}+ +{{\frac{191631411158401}{693772639560}} \ {{ \%B{41}} \sp {13}}}+ \\ \\ \displaystyle -{{{300335488637543} \over {1387545279120}} \ {{ \%B{41}} \sp 7}} - -{{{755656433863} \over {198220754160}} \ { \%B{41}}}, +{{\frac{300335488637543}{1387545279120}} \ {{ \%B{41}} \sp 7}} - +{{\frac{755656433863}{198220754160}} \ { \%B{41}}}, \\ \\ \displaystyle -{{{1094352947} \over {462515093040}} \ {{ \%B{41}} \sp {31}}} - -{{{2794979430821} \over {462515093040}} \ {{ \%B{41}} \sp {25}}} - +{{\frac{1094352947}{462515093040}} \ {{ \%B{41}} \sp {31}}} - +{{\frac{2794979430821}{462515093040}} \ {{ \%B{41}} \sp {25}}} - \\ \\ \displaystyle -{{{218708802908737} \over {231257546520}} \ {{ \%B{41}} \sp {19}}} - -{{{91476663003591} \over {77085848840}} \ {{ \%B{41}} \sp {13}}} - +{{\frac{218708802908737}{231257546520}} \ {{ \%B{41}} \sp {19}}} - +{{\frac{91476663003591}{77085848840}} \ {{ \%B{41}} \sp {13}}} - \\ \\ \displaystyle -{{{145152550961823} \over {154171697680}} \ {{ \%B{41}} \sp 7}} - -{{{1564893370717} \over {462515093040}} \ { \%B{41}}}, +{{\frac{145152550961823}{154171697680}} \ {{ \%B{41}} \sp 7}} - +{{\frac{1564893370717}{462515093040}} \ { \%B{41}}}, \\ \\ \displaystyle --{ \%B{52}} -{{{4321823003} \over {1387545279120}} \ {{ \%B{41}} \sp {31}}}+ -{{{180949546069} \over {22746643920}} \ {{ \%B{41}} \sp {25}}}+ +-{ \%B{52}} -{{\frac{4321823003}{1387545279120}} \ {{ \%B{41}} \sp {31}}}+ +{{\frac{180949546069}{22746643920}} \ {{ \%B{41}} \sp {25}}}+ \\ \\ \displaystyle -{{{863753195062493} \over {693772639560}} \ {{ \%B{41}} \sp {19}}}+ -{{{1088094456732317} \over {693772639560}} \ {{ \%B{41}} \sp {13}}}+ +{{\frac{863753195062493}{693772639560}} \ {{ \%B{41}} \sp {19}}}+ +{{\frac{1088094456732317}{693772639560}} \ {{ \%B{41}} \sp {13}}}+ \\ \\ \displaystyle \left. -{{{1732620732685741} \over {1387545279120}} \ {{ \%B{41}} \sp 7}}+ -{{{13506088516033} \over {1387545279120}} \ { \%B{41}}} +{{\frac{1732620732685741}{1387545279120}} \ {{ \%B{41}} \sp 7}}+ +{{\frac{13506088516033}{1387545279120}} \ { \%B{41}}} \right],\hbox{\hskip 3.5cm} \end{array} $$ @@ -36677,64 +36342,64 @@ $$ \\ \\ \displaystyle -{{{7865521} \over {6006689520}} \ {{ \%B{42}} \sp {31}}} - -{{{6696179241} \over {2002229840}} \ {{ \%B{42}} \sp {25}}} - +{{\frac{7865521}{6006689520}} \ {{ \%B{42}} \sp {31}}} - +{{\frac{6696179241}{2002229840}} \ {{ \%B{42}} \sp {25}}} - \\ \\ \displaystyle -{{{25769893181} \over {49235160}} \ {{ \%B{42}} \sp {19}}} - -{{{1975912990729} \over {3003344760}} \ {{ \%B{42}} \sp {13}}} - +{{\frac{25769893181}{49235160}} \ {{ \%B{42}} \sp {19}}} - +{{\frac{1975912990729}{3003344760}} \ {{ \%B{42}} \sp {13}}} - \\ \\ \displaystyle -{{{1048460696489} \over {2002229840}} \ {{ \%B{42}} \sp 7}} - -{{{21252634831} \over {6006689520}} \ { \%B{42}}}, +{{\frac{1048460696489}{2002229840}} \ {{ \%B{42}} \sp 7}} - +{{\frac{21252634831}{6006689520}} \ { \%B{42}}}, \\ \\ \displaystyle --{{{778171189} \over {1387545279120}} \ {{ \%B{42}} \sp {31}}}+ -{{{1987468196267} \over {1387545279120}} \ {{ \%B{42}} \sp {25}}}+ +-{{\frac{778171189}{1387545279120}} \ {{ \%B{42}} \sp {31}}}+ +{{\frac{1987468196267}{1387545279120}} \ {{ \%B{42}} \sp {25}}}+ \\ \\ \displaystyle -{{{155496778477189} \over {693772639560}} \ {{ \%B{42}} \sp {19}}}+ -{{{191631411158401} \over {693772639560}} \ {{ \%B{42}} \sp {13}}}+ +{{\frac{155496778477189}{693772639560}} \ {{ \%B{42}} \sp {19}}}+ +{{\frac{191631411158401}{693772639560}} \ {{ \%B{42}} \sp {13}}}+ \\ \\ \displaystyle -{{{300335488637543} \over {1387545279120}} \ {{ \%B{42}} \sp 7}} - -{{{755656433863} \over {198220754160}} \ { \%B{42}}}, +{{\frac{300335488637543}{1387545279120}} \ {{ \%B{42}} \sp 7}} - +{{\frac{755656433863}{198220754160}} \ { \%B{42}}}, \\ \\ \displaystyle -{{{1094352947} \over {462515093040}} \ {{ \%B{42}} \sp {31}}} - -{{{2794979430821} \over {462515093040}} \ {{ \%B{42}} \sp {25}}} - +{{\frac{1094352947}{462515093040}} \ {{ \%B{42}} \sp {31}}} - +{{\frac{2794979430821}{462515093040}} \ {{ \%B{42}} \sp {25}}} - \\ \\ \displaystyle -{{{218708802908737} \over {231257546520}} \ {{ \%B{42}} \sp {19}}} - -{{{91476663003591} \over {77085848840}} \ {{ \%B{42}} \sp {13}}} - +{{\frac{218708802908737}{231257546520}} \ {{ \%B{42}} \sp {19}}} - +{{\frac{91476663003591}{77085848840}} \ {{ \%B{42}} \sp {13}}} - \\ \\ \displaystyle -{{{145152550961823} \over {154171697680}} \ {{ \%B{42}} \sp 7}} - -{{{1564893370717} \over {462515093040}} \ { \%B{42}}}, +{{\frac{145152550961823}{154171697680}} \ {{ \%B{42}} \sp 7}} - +{{\frac{1564893370717}{462515093040}} \ { \%B{42}}}, \\ \\ \displaystyle --{ \%B{49}} -{{{4321823003} \over {1387545279120}} \ {{ \%B{42}} \sp {31}}}+ -{{{180949546069} \over {22746643920}} \ {{ \%B{42}} \sp {25}}}+ +-{ \%B{49}} -{{\frac{4321823003}{1387545279120}} \ {{ \%B{42}} \sp {31}}}+ +{{\frac{180949546069}{22746643920}} \ {{ \%B{42}} \sp {25}}}+ \\ \\ \displaystyle -{{{863753195062493} \over {693772639560}} \ {{ \%B{42}} \sp {19}}}+ -{{{1088094456732317} \over {693772639560}} \ {{ \%B{42}} \sp {13}}}+ +{{\frac{863753195062493}{693772639560}} \ {{ \%B{42}} \sp {19}}}+ +{{\frac{1088094456732317}{693772639560}} \ {{ \%B{42}} \sp {13}}}+ \\ \\ \displaystyle \left. -{{{1732620732685741} \over {1387545279120}} \ {{ \%B{42}} \sp 7}}+ -{{{13506088516033} \over {1387545279120}} \ { \%B{42}}} +{{\frac{1732620732685741}{1387545279120}} \ {{ \%B{42}} \sp 7}}+ +{{\frac{13506088516033}{1387545279120}} \ { \%B{42}}} \right],\hbox{\hskip 3.5cm} \end{array} $$ @@ -36746,64 +36411,64 @@ $$ \\ \\ \displaystyle -{{{7865521} \over {6006689520}} \ {{ \%B{42}} \sp {31}}} - -{{{6696179241} \over {2002229840}} \ {{ \%B{42}} \sp {25}}} - +{{\frac{7865521}{6006689520}} \ {{ \%B{42}} \sp {31}}} - +{{\frac{6696179241}{2002229840}} \ {{ \%B{42}} \sp {25}}} - \\ \\ \displaystyle -{{{25769893181} \over {49235160}} \ {{ \%B{42}} \sp {19}}} - -{{{1975912990729} \over {3003344760}} \ {{ \%B{42}} \sp {13}}} - +{{\frac{25769893181}{49235160}} \ {{ \%B{42}} \sp {19}}} - +{{\frac{1975912990729}{3003344760}} \ {{ \%B{42}} \sp {13}}} - \\ \\ \displaystyle -{{{1048460696489} \over {2002229840}} \ {{ \%B{42}} \sp 7}} - -{{{21252634831} \over {6006689520}} \ { \%B{42}}}, +{{\frac{1048460696489}{2002229840}} \ {{ \%B{42}} \sp 7}} - +{{\frac{21252634831}{6006689520}} \ { \%B{42}}}, \\ \\ \displaystyle --{{{778171189} \over {1387545279120}} \ {{ \%B{42}} \sp {31}}}+ -{{{1987468196267} \over {1387545279120}} \ {{ \%B{42}} \sp {25}}}+ +-{{\frac{778171189}{1387545279120}} \ {{ \%B{42}} \sp {31}}}+ +{{\frac{1987468196267}{1387545279120}} \ {{ \%B{42}} \sp {25}}}+ \\ \\ \displaystyle -{{{155496778477189} \over {693772639560}} \ {{ \%B{42}} \sp {19}}}+ -{{{191631411158401} \over {693772639560}} \ {{ \%B{42}} \sp {13}}}+ +{{\frac{155496778477189}{693772639560}} \ {{ \%B{42}} \sp {19}}}+ +{{\frac{191631411158401}{693772639560}} \ {{ \%B{42}} \sp {13}}}+ \\ \\ \displaystyle -{{{300335488637543} \over {1387545279120}} \ {{ \%B{42}} \sp 7}} - -{{{755656433863} \over {198220754160}} \ { \%B{42}}}, +{{\frac{300335488637543}{1387545279120}} \ {{ \%B{42}} \sp 7}} - +{{\frac{755656433863}{198220754160}} \ { \%B{42}}}, \\ \\ \displaystyle -{{{1094352947} \over {462515093040}} \ {{ \%B{42}} \sp {31}}} - -{{{2794979430821} \over {462515093040}} \ {{ \%B{42}} \sp {25}}} - +{{\frac{1094352947}{462515093040}} \ {{ \%B{42}} \sp {31}}} - +{{\frac{2794979430821}{462515093040}} \ {{ \%B{42}} \sp {25}}} - \\ \\ \displaystyle -{{{218708802908737} \over {231257546520}} \ {{ \%B{42}} \sp {19}}} - -{{{91476663003591} \over {77085848840}} \ {{ \%B{42}} \sp {13}}} - +{{\frac{218708802908737}{231257546520}} \ {{ \%B{42}} \sp {19}}} - +{{\frac{91476663003591}{77085848840}} \ {{ \%B{42}} \sp {13}}} - \\ \\ \displaystyle -{{{145152550961823} \over {154171697680}} \ {{ \%B{42}} \sp 7}} - -{{{1564893370717} \over {462515093040}} \ { \%B{42}}}, +{{\frac{145152550961823}{154171697680}} \ {{ \%B{42}} \sp 7}} - +{{\frac{1564893370717}{462515093040}} \ { \%B{42}}}, \\ \\ \displaystyle --{ \%B{50}} -{{{4321823003} \over {1387545279120}} \ {{ \%B{42}} \sp {31}}}+ -{{{180949546069} \over {22746643920}} \ {{ \%B{42}} \sp {25}}}+ +-{ \%B{50}} -{{\frac{4321823003}{1387545279120}} \ {{ \%B{42}} \sp {31}}}+ +{{\frac{180949546069}{22746643920}} \ {{ \%B{42}} \sp {25}}}+ \\ \\ \displaystyle -{{{863753195062493} \over {693772639560}} \ {{ \%B{42}} \sp {19}}}+ -{{{1088094456732317} \over {693772639560}} \ {{ \%B{42}} \sp {13}}}+ +{{\frac{863753195062493}{693772639560}} \ {{ \%B{42}} \sp {19}}}+ +{{\frac{1088094456732317}{693772639560}} \ {{ \%B{42}} \sp {13}}}+ \\ \\ \displaystyle \left. -{{{1732620732685741} \over {1387545279120}} \ {{ \%B{42}} \sp 7}}+ -{{{13506088516033} \over {1387545279120}} \ { \%B{42}}} +{{\frac{1732620732685741}{1387545279120}} \ {{ \%B{42}} \sp 7}}+ +{{\frac{13506088516033}{1387545279120}} \ { \%B{42}}} \right],\hbox{\hskip 3.5cm} \end{array} $$ @@ -36815,64 +36480,64 @@ $$ \\ \\ \displaystyle -{{{7865521} \over {6006689520}} \ {{ \%B{43}} \sp {31}}} - -{{{6696179241} \over {2002229840}} \ {{ \%B{43}} \sp {25}}} - +{{\frac{7865521}{6006689520}} \ {{ \%B{43}} \sp {31}}} - +{{\frac{6696179241}{2002229840}} \ {{ \%B{43}} \sp {25}}} - \\ \\ \displaystyle -{{{25769893181} \over {49235160}} \ {{ \%B{43}} \sp {19}}} - -{{{1975912990729} \over {3003344760}} \ {{ \%B{43}} \sp {13}}} - +{{\frac{25769893181}{49235160}} \ {{ \%B{43}} \sp {19}}} - +{{\frac{1975912990729}{3003344760}} \ {{ \%B{43}} \sp {13}}} - \\ \\ \displaystyle -{{{1048460696489} \over {2002229840}} \ {{ \%B{43}} \sp 7}} - -{{{21252634831} \over {6006689520}} \ { \%B{43}}}, +{{\frac{1048460696489}{2002229840}} \ {{ \%B{43}} \sp 7}} - +{{\frac{21252634831}{6006689520}} \ { \%B{43}}}, \\ \\ \displaystyle --{{{778171189} \over {1387545279120}} \ {{ \%B{43}} \sp {31}}}+ -{{{1987468196267} \over {1387545279120}} \ {{ \%B{43}} \sp {25}}}+ +-{{\frac{778171189}{1387545279120}} \ {{ \%B{43}} \sp {31}}}+ +{{\frac{1987468196267}{1387545279120}} \ {{ \%B{43}} \sp {25}}}+ \\ \\ \displaystyle -{{{155496778477189} \over {693772639560}} \ {{ \%B{43}} \sp {19}}}+ -{{{191631411158401} \over {693772639560}} \ {{ \%B{43}} \sp {13}}}+ +{{\frac{155496778477189}{693772639560}} \ {{ \%B{43}} \sp {19}}}+ +{{\frac{191631411158401}{693772639560}} \ {{ \%B{43}} \sp {13}}}+ \\ \\ \displaystyle -{{{300335488637543} \over {1387545279120}} \ {{ \%B{43}} \sp 7}} - -{{{755656433863} \over {198220754160}} \ { \%B{43}}}, +{{\frac{300335488637543}{1387545279120}} \ {{ \%B{43}} \sp 7}} - +{{\frac{755656433863}{198220754160}} \ { \%B{43}}}, \\ \\ \displaystyle -{{{1094352947} \over {462515093040}} \ {{ \%B{43}} \sp {31}}} - -{{{2794979430821} \over {462515093040}} \ {{ \%B{43}} \sp {25}}} - +{{\frac{1094352947}{462515093040}} \ {{ \%B{43}} \sp {31}}} - +{{\frac{2794979430821}{462515093040}} \ {{ \%B{43}} \sp {25}}} - \\ \\ \displaystyle -{{{218708802908737} \over {231257546520}} \ {{ \%B{43}} \sp {19}}} - -{{{91476663003591} \over {77085848840}} \ {{ \%B{43}} \sp {13}}} - +{{\frac{218708802908737}{231257546520}} \ {{ \%B{43}} \sp {19}}} - +{{\frac{91476663003591}{77085848840}} \ {{ \%B{43}} \sp {13}}} - \\ \\ \displaystyle -{{{145152550961823} \over {154171697680}} \ {{ \%B{43}} \sp 7}} - -{{{1564893370717} \over {462515093040}} \ { \%B{43}}}, +{{\frac{145152550961823}{154171697680}} \ {{ \%B{43}} \sp 7}} - +{{\frac{1564893370717}{462515093040}} \ { \%B{43}}}, \\ \\ \displaystyle --{ \%B{47}} -{{{4321823003} \over {1387545279120}} \ {{ \%B{43}} \sp {31}}}+ -{{{180949546069} \over {22746643920}} \ {{ \%B{43}} \sp {25}}}+ +-{ \%B{47}} -{{\frac{4321823003}{1387545279120}} \ {{ \%B{43}} \sp {31}}}+ +{{\frac{180949546069}{22746643920}} \ {{ \%B{43}} \sp {25}}}+ \\ \\ \displaystyle -{{{863753195062493} \over {693772639560}} \ {{ \%B{43}} \sp {19}}}+ -{{{1088094456732317} \over {693772639560}} \ {{ \%B{43}} \sp {13}}}+ +{{\frac{863753195062493}{693772639560}} \ {{ \%B{43}} \sp {19}}}+ +{{\frac{1088094456732317}{693772639560}} \ {{ \%B{43}} \sp {13}}}+ \\ \\ \displaystyle \left. -{{{1732620732685741} \over {1387545279120}} \ {{ \%B{43}} \sp 7}}+ -{{{13506088516033} \over {1387545279120}} \ { \%B{43}}} +{{\frac{1732620732685741}{1387545279120}} \ {{ \%B{43}} \sp 7}}+ +{{\frac{13506088516033}{1387545279120}} \ { \%B{43}}} \right],\hbox{\hskip 3.5cm} \end{array} $$ @@ -36884,64 +36549,64 @@ $$ \\ \\ \displaystyle -{{{7865521} \over {6006689520}} \ {{ \%B{43}} \sp {31}}} - -{{{6696179241} \over {2002229840}} \ {{ \%B{43}} \sp {25}}} - +{{\frac{7865521}{6006689520}} \ {{ \%B{43}} \sp {31}}} - +{{\frac{6696179241}{2002229840}} \ {{ \%B{43}} \sp {25}}} - \\ \\ \displaystyle -{{{25769893181} \over {49235160}} \ {{ \%B{43}} \sp {19}}} - -{{{1975912990729} \over {3003344760}} \ {{ \%B{43}} \sp {13}}} - +{{\frac{25769893181}{49235160}} \ {{ \%B{43}} \sp {19}}} - +{{\frac{1975912990729}{3003344760}} \ {{ \%B{43}} \sp {13}}} - \\ \\ \displaystyle -{{{1048460696489} \over {2002229840}} \ {{ \%B{43}} \sp 7}} - -{{{21252634831} \over {6006689520}} \ { \%B{43}}}, +{{\frac{1048460696489}{2002229840}} \ {{ \%B{43}} \sp 7}} - +{{\frac{21252634831}{6006689520}} \ { \%B{43}}}, \\ \\ \displaystyle --{{{778171189} \over {1387545279120}} \ {{ \%B{43}} \sp {31}}}+ -{{{1987468196267} \over {1387545279120}} \ {{ \%B{43}} \sp {25}}}+ +-{{\frac{778171189}{1387545279120}} \ {{ \%B{43}} \sp {31}}}+ +{{\frac{1987468196267}{1387545279120}} \ {{ \%B{43}} \sp {25}}}+ \\ \\ \displaystyle -{{{155496778477189} \over {693772639560}} \ {{ \%B{43}} \sp {19}}}+ -{{{191631411158401} \over {693772639560}} \ {{ \%B{43}} \sp {13}}}+ +{{\frac{155496778477189}{693772639560}} \ {{ \%B{43}} \sp {19}}}+ +{{\frac{191631411158401}{693772639560}} \ {{ \%B{43}} \sp {13}}}+ \\ \\ \displaystyle -{{{300335488637543} \over {1387545279120}} \ {{ \%B{43}} \sp 7}} - -{{{755656433863} \over {198220754160}} \ { \%B{43}}}, +{{\frac{300335488637543}{1387545279120}} \ {{ \%B{43}} \sp 7}} - +{{\frac{755656433863}{198220754160}} \ { \%B{43}}}, \\ \\ \displaystyle -{{{1094352947} \over {462515093040}} \ {{ \%B{43}} \sp {31}}} - -{{{2794979430821} \over {462515093040}} \ {{ \%B{43}} \sp {25}}} - +{{\frac{1094352947}{462515093040}} \ {{ \%B{43}} \sp {31}}} - +{{\frac{2794979430821}{462515093040}} \ {{ \%B{43}} \sp {25}}} - \\ \\ \displaystyle -{{{218708802908737} \over {231257546520}} \ {{ \%B{43}} \sp {19}}} - -{{{91476663003591} \over {77085848840}} \ {{ \%B{43}} \sp {13}}} - +{{\frac{218708802908737}{231257546520}} \ {{ \%B{43}} \sp {19}}} - +{{\frac{91476663003591}{77085848840}} \ {{ \%B{43}} \sp {13}}} - \\ \\ \displaystyle -{{{145152550961823} \over {154171697680}} \ {{ \%B{43}} \sp 7}} - -{{{1564893370717} \over {462515093040}} \ { \%B{43}}}, +{{\frac{145152550961823}{154171697680}} \ {{ \%B{43}} \sp 7}} - +{{\frac{1564893370717}{462515093040}} \ { \%B{43}}}, \\ \\ \displaystyle --{ \%B{48}} -{{{4321823003} \over {1387545279120}} \ {{ \%B{43}} \sp {31}}}+ -{{{180949546069} \over {22746643920}} \ {{ \%B{43}} \sp {25}}}+ +-{ \%B{48}} -{{\frac{4321823003}{1387545279120}} \ {{ \%B{43}} \sp {31}}}+ +{{\frac{180949546069}{22746643920}} \ {{ \%B{43}} \sp {25}}}+ \\ \\ \displaystyle -{{{863753195062493} \over {693772639560}} \ {{ \%B{43}} \sp {19}}}+ -{{{1088094456732317} \over {693772639560}} \ {{ \%B{43}} \sp {13}}}+ +{{\frac{863753195062493}{693772639560}} \ {{ \%B{43}} \sp {19}}}+ +{{\frac{1088094456732317}{693772639560}} \ {{ \%B{43}} \sp {13}}}+ \\ \\ \displaystyle \left. -{{{1732620732685741} \over {1387545279120}} \ {{ \%B{43}} \sp 7}}+ -{{{13506088516033} \over {1387545279120}} \ { \%B{43}}} +{{\frac{1732620732685741}{1387545279120}} \ {{ \%B{43}} \sp 7}}+ +{{\frac{13506088516033}{1387545279120}} \ { \%B{43}}} \right],\hbox{\hskip 3.5cm} \end{array} $$ @@ -36953,64 +36618,64 @@ $$ \\ \\ \displaystyle -{{{7865521} \over {6006689520}} \ {{ \%B{44}} \sp {31}}} - -{{{6696179241} \over {2002229840}} \ {{ \%B{44}} \sp {25}}} - +{{\frac{7865521}{6006689520}} \ {{ \%B{44}} \sp {31}}} - +{{\frac{6696179241}{2002229840}} \ {{ \%B{44}} \sp {25}}} - \\ \\ \displaystyle -{{{25769893181} \over {49235160}} \ {{ \%B{44}} \sp {19}}} - -{{{1975912990729} \over {3003344760}} \ {{ \%B{44}} \sp {13}}} - +{{\frac{25769893181}{49235160}} \ {{ \%B{44}} \sp {19}}} - +{{\frac{1975912990729}{3003344760}} \ {{ \%B{44}} \sp {13}}} - \\ \\ \displaystyle -{{{1048460696489} \over {2002229840}} \ {{ \%B{44}} \sp 7}} - -{{{21252634831} \over {6006689520}} \ { \%B{44}}}, +{{\frac{1048460696489}{2002229840}} \ {{ \%B{44}} \sp 7}} - +{{\frac{21252634831}{6006689520}} \ { \%B{44}}}, \\ \\ \displaystyle --{{{778171189} \over {1387545279120}} \ {{ \%B{44}} \sp {31}}}+ -{{{1987468196267} \over {1387545279120}} \ {{ \%B{44}} \sp {25}}}+ +-{{\frac{778171189}{1387545279120}} \ {{ \%B{44}} \sp {31}}}+ +{{\frac{1987468196267}{1387545279120}} \ {{ \%B{44}} \sp {25}}}+ \\ \\ \displaystyle -{{{155496778477189} \over {693772639560}} \ {{ \%B{44}} \sp {19}}}+ -{{{191631411158401} \over {693772639560}} \ {{ \%B{44}} \sp {13}}}+ +{{\frac{155496778477189}{693772639560}} \ {{ \%B{44}} \sp {19}}}+ +{{\frac{191631411158401}{693772639560}} \ {{ \%B{44}} \sp {13}}}+ \\ \\ \displaystyle -{{{300335488637543} \over {1387545279120}} \ {{ \%B{44}} \sp 7}} - -{{{755656433863} \over {198220754160}} \ { \%B{44}}}, +{{\frac{300335488637543}{1387545279120}} \ {{ \%B{44}} \sp 7}} - +{{\frac{755656433863}{198220754160}} \ { \%B{44}}}, \\ \\ \displaystyle -{{{1094352947} \over {462515093040}} \ {{ \%B{44}} \sp {31}}} - -{{{2794979430821} \over {462515093040}} \ {{ \%B{44}} \sp {25}}} - +{{\frac{1094352947}{462515093040}} \ {{ \%B{44}} \sp {31}}} - +{{\frac{2794979430821}{462515093040}} \ {{ \%B{44}} \sp {25}}} - \\ \\ \displaystyle -{{{218708802908737} \over {231257546520}} \ {{ \%B{44}} \sp {19}}} - -{{{91476663003591} \over {77085848840}} \ {{ \%B{44}} \sp {13}}} - +{{\frac{218708802908737}{231257546520}} \ {{ \%B{44}} \sp {19}}} - +{{\frac{91476663003591}{77085848840}} \ {{ \%B{44}} \sp {13}}} - \\ \\ \displaystyle -{{{145152550961823} \over {154171697680}} \ {{ \%B{44}} \sp 7}} - -{{{1564893370717} \over {462515093040}} \ { \%B{44}}}, +{{\frac{145152550961823}{154171697680}} \ {{ \%B{44}} \sp 7}} - +{{\frac{1564893370717}{462515093040}} \ { \%B{44}}}, \\ \\ \displaystyle --{ \%B{45}} -{{{4321823003} \over {1387545279120}} \ {{ \%B{44}} \sp {31}}}+ -{{{180949546069} \over {22746643920}} \ {{ \%B{44}} \sp {25}}}+ +-{ \%B{45}} -{{\frac{4321823003}{1387545279120}} \ {{ \%B{44}} \sp {31}}}+ +{{\frac{180949546069}{22746643920}} \ {{ \%B{44}} \sp {25}}}+ \\ \\ \displaystyle -{{{863753195062493} \over {693772639560}} \ {{ \%B{44}} \sp {19}}}+ -{{{1088094456732317} \over {693772639560}} \ {{ \%B{44}} \sp {13}}}+ +{{\frac{863753195062493}{693772639560}} \ {{ \%B{44}} \sp {19}}}+ +{{\frac{1088094456732317}{693772639560}} \ {{ \%B{44}} \sp {13}}}+ \\ \\ \displaystyle \left. -{{{1732620732685741} \over {1387545279120}} \ {{ \%B{44}} \sp 7}}+ -{{{13506088516033} \over {1387545279120}} \ { \%B{44}}} +{{\frac{1732620732685741}{1387545279120}} \ {{ \%B{44}} \sp 7}}+ +{{\frac{13506088516033}{1387545279120}} \ { \%B{44}}} \right],\hbox{\hskip 3.5cm} \end{array} $$ @@ -37022,65 +36687,65 @@ $$ \\ \\ \displaystyle -{{{7865521} \over {6006689520}} \ {{ \%B{44}} \sp {31}}} - -{{{6696179241} \over {2002229840}} \ {{ \%B{44}} \sp {25}}} - +{{\frac{7865521}{6006689520}} \ {{ \%B{44}} \sp {31}}} - +{{\frac{6696179241}{2002229840}} \ {{ \%B{44}} \sp {25}}} - \\ \\ \displaystyle -{{{25769893181} \over {49235160}} \ {{ \%B{44}} \sp {19}}} - -{{{1975912990729} \over {3003344760}} \ {{ \%B{44}} \sp {13}}} - +{{\frac{25769893181}{49235160}} \ {{ \%B{44}} \sp {19}}} - +{{\frac{1975912990729}{3003344760}} \ {{ \%B{44}} \sp {13}}} - \\ \\ \displaystyle -{{{1048460696489} \over {2002229840}} \ {{ \%B{44}} \sp 7}} - -{{{21252634831} \over {6006689520}} \ { \%B{44}}}, +{{\frac{1048460696489}{2002229840}} \ {{ \%B{44}} \sp 7}} - +{{\frac{21252634831}{6006689520}} \ { \%B{44}}}, \\ \\ \displaystyle --{{{778171189} \over {1387545279120}} \ {{ \%B{44}} \sp {31}}}+ -{{{1987468196267} \over {1387545279120}} \ {{ \%B{44}} \sp {25}}}+ +-{{\frac{778171189}{1387545279120}} \ {{ \%B{44}} \sp {31}}}+ +{{\frac{1987468196267}{1387545279120}} \ {{ \%B{44}} \sp {25}}}+ \\ \\ \displaystyle -{{{155496778477189} \over {693772639560}} \ {{ \%B{44}} \sp {19}}}+ -{{{191631411158401} \over {693772639560}} \ {{ \%B{44}} \sp {13}}}+ +{{\frac{155496778477189}{693772639560}} \ {{ \%B{44}} \sp {19}}}+ +{{\frac{191631411158401}{693772639560}} \ {{ \%B{44}} \sp {13}}}+ \\ \\ \displaystyle -{{{300335488637543} \over {1387545279120}} \ {{ \%B{44}} \sp 7}} - -{{{755656433863} \over {198220754160}} \ { \%B{44}}}, +{{\frac{300335488637543}{1387545279120}} \ {{ \%B{44}} \sp 7}} - +{{\frac{755656433863}{198220754160}} \ { \%B{44}}}, \\ \\ \displaystyle -{{{1094352947} \over {462515093040}} \ {{ \%B{44}} \sp {31}}} - -{{{2794979430821} \over {462515093040}} \ {{ \%B{44}} \sp {25}}} - +{{\frac{1094352947}{462515093040}} \ {{ \%B{44}} \sp {31}}} - +{{\frac{2794979430821}{462515093040}} \ {{ \%B{44}} \sp {25}}} - \\ \\ \displaystyle -{{{218708802908737} \over {231257546520}} \ {{ \%B{44}} \sp {19}}} - -{{{91476663003591} \over {77085848840}} \ {{ \%B{44}} \sp {13}}} - +{{\frac{218708802908737}{231257546520}} \ {{ \%B{44}} \sp {19}}} - +{{\frac{91476663003591}{77085848840}} \ {{ \%B{44}} \sp {13}}} - \\ \\ \displaystyle -{{{145152550961823} \over {154171697680}} \ {{ \%B{44}} \sp 7}} - -{{{1564893370717} \over {462515093040}} \ { \%B{44}}}, +{{\frac{145152550961823}{154171697680}} \ {{ \%B{44}} \sp 7}} - +{{\frac{1564893370717}{462515093040}} \ { \%B{44}}}, \\ \\ \displaystyle -{ \%B{46}} - -{{{4321823003} \over {1387545279120}} \ {{ \%B{44}} \sp {31}}}+ -{{{180949546069} \over {22746643920}} \ {{ \%B{44}} \sp {25}}}+ +{{\frac{4321823003}{1387545279120}} \ {{ \%B{44}} \sp {31}}}+ +{{\frac{180949546069}{22746643920}} \ {{ \%B{44}} \sp {25}}}+ \\ \\ \displaystyle -{{{863753195062493} \over {693772639560}} \ {{ \%B{44}} \sp {19}}}+ -{{{1088094456732317} \over {693772639560}} \ {{ \%B{44}} \sp {13}}}+ +{{\frac{863753195062493}{693772639560}} \ {{ \%B{44}} \sp {19}}}+ +{{\frac{1088094456732317}{693772639560}} \ {{ \%B{44}} \sp {13}}}+ \\ \\ \displaystyle \left. -{{{1732620732685741} \over {1387545279120}} \ {{ \%B{44}} \sp 7}}+ -{{{13506088516033} \over {1387545279120}} \ { \%B{44}}} +{{\frac{1732620732685741}{1387545279120}} \ {{ \%B{44}} \sp 7}}+ +{{\frac{13506088516033}{1387545279120}} \ { \%B{44}}} \right],\hbox{\hskip 3.5cm} \end{array} $$ @@ -38530,12 +38195,12 @@ $$ $$ {e \sp {\left[ b \right]}} -\ {e \sp {\left( {1 \over 2} \ {\left[ a \ {b \sp 2} +\ {e \sp {\left( {\frac{1}{2}} \ {\left[ a \ {b \sp 2} \right]} \right)}} \ {e \sp {\left[ a \ b \right]}} -\ {e \sp {\left( {1 \over 2} \ {\left[ {a \sp 2} \ b +\ {e \sp {\left( {\frac{1}{2}} \ {\left[ {a \sp 2} \ b \right]} \right)}} \ {e \sp {\left[ a @@ -38549,21 +38214,24 @@ $$ 1+ {\left[ a \right]}+ {\left[b \right]}+ -{{1\over 2} \ {\left[ a \right]}\ {\left[ a \right]}}+ +{{\frac{1}{2}} \ {\left[ a \right]}\ {\left[ a \right]}}+ {\left[a \ b \right]}+ {{\left[b \right]}\ {\left[ a \right]}}+ -{{1\over 2} \ {\left[ b \right]}\ {\left[ b \right]}}+ -{{1\over 6} \ {\left[ a \right]}\ {\left[ a \right]}\ {\left[ a \right]}}+ -{{1\over 2} \ {\left[ {a \sp 2} \ b \right]}}+ +{{\frac{1}{2}} \ {\left[ b \right]}\ {\left[ b \right]}}+ +{{\frac{1}{6}} \ {\left[ a \right]}\ {\left[ a \right]}\ +{\left[ a \right]}}+ +{{\frac{1}{2}} \ {\left[ {a \sp 2} \ b \right]}}+ \\ \\ \displaystyle {{\left[a \ b \right]}\ {\left[ a \right]}}+ -{{1\over 2} \ {\left[ a \ {b \sp 2} \right]}}+ -{{1\over 2} \ {\left[ b \right]}\ {\left[ a \right]}\ {\left[ a \right]}}+ +{{\frac{1}{2}} \ {\left[ a \ {b \sp 2} \right]}}+ +{{\frac{1}{2}} \ {\left[ b \right]}\ {\left[ a \right]}\ +{\left[ a \right]}}+ {{\left[b \right]}\ {\left[ a \ b \right]}}+ -{{1\over 2} \ {\left[ b \right]}\ {\left[ b \right]}\ {\left[ a \right]}}+ -{{1\over 6} \ {\left[ b \right]}\ {\left[ b \right]}\ {\left[ b \right]}} +{{\frac{1}{2}} \ {\left[ b \right]}\ {\left[ b \right]}\ +{\left[ a \right]}}+ +{{\frac{1}{6}} \ {\left[ b \right]}\ {\left[ b \right]}\ {\left[ b \right]}} \end{array} $$ \returnType{Type: XPBWPolynomial(Symbol,Fraction Integer)} @@ -38573,12 +38241,9 @@ $$ {\left[ a \right]}+{\left[ b -\right]}+{{1 -\over 2} \ {\left[ a \ b -\right]}}+{{1 -\over {12}} \ {\left[ {a \sp 2} \ b -\right]}}+{{1 -\over {12}} \ {\left[ a \ {b \sp 2} +\right]}+{{\frac{1}{2}} \ {\left[ a \ b +\right]}}+{{\frac{1}{12}} \ {\left[ {a \sp 2} \ b +\right]}}+{{\frac{1}{12}} \ {\left[ a \ {b \sp 2} \right]}} $$ \returnType{Type: LiePolynomial(Symbol,Fraction Integer)} @@ -38880,7 +38545,7 @@ Now define the differential operator {\tt Dop}. \spadcommand{Dop:= Dx**3 + G/x**2*Dx + H/x**3 - 1 } $$ -{D \sp 3}+{{G \over {x \sp 2}} \ D}+{{-{x \sp 3}+H} \over {x \sp 3}} +{D \sp 3}+{{\frac{G}{x \sp 2}} \ D}+{\frac{-{x \sp 3}+H}{x \sp 3}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator(Expression Integer,theMap NIL)} @@ -38936,11 +38601,11 @@ $$ \begin{array}{@{}l} \left[ \left[ -{{s \sb {1}}={{{s \sb {0}} \ G} \over 3}}, +{{s \sb {1}}={\frac{{s \sb {0}} \ G}{3}}}, {{s \sb {2}}= -{{{3 \ {s \sb {0}} \ H}+ +{\frac{{3 \ {s \sb {0}} \ H}+ {{s \sb {0}} \ {G \sp 2}}+ -{6 \ {s \sb {0}} \ G}} \over {18}}}, +{6 \ {s \sb {0}} \ G}}{18}}}, \right. \right. \\ @@ -38949,11 +38614,11 @@ $$ \left. \left. {{s \sb {3}}= -{{{{\left( {9 \ {s \sb {0}} \ G}+ +{\frac{{{\left( {9 \ {s \sb {0}} \ G}+ {{54} \ {s \sb {0}}} \right)}\ H}+ {{s \sb {0}} \ {G \sp 3}}+ {{18} \ {s \sb {0}} \ {G \sp 2}}+ -{{72} \ {s \sb {0}} \ G}} \over {162}}} +{{72} \ {s \sb {0}} \ G}}{162}}} \right] \right] \end{array} @@ -38965,10 +38630,10 @@ $$ \begin{array}{@{}l} \left[ \left[ -{{s \sb {1}}={{{s \sb {0}} \ G} \over 3}}, +{{s \sb {1}}={\frac{{s \sb {0}} \ G}{3}}}, {{s \sb {2}}= -{{{3 \ {s \sb {0}} \ H}+ -{{s \sb {0}} \ {G \sp 2}}+{6 \ {s \sb {0}} \ G}} \over {18}}}, +{\frac{{3 \ {s \sb {0}} \ H}+ +{{s \sb {0}} \ {G \sp 2}}+{6 \ {s \sb {0}} \ G}}{18}}}, \right. \right. \\ @@ -38977,11 +38642,11 @@ $$ \left. \left. {{s \sb {3}}= -{{{{\left( {9 \ {s \sb {0}} \ G}+ +{\frac{{{\left( {9 \ {s \sb {0}} \ G}+ {{54} \ {s \sb {0}}} \right)}\ H}+ {{s \sb {0}} \ {G \sp 3}}+ {{18} \ {s \sb {0}} \ {G \sp 2}}+ -{{72} \ {s \sb {0}} \ G}} \over {162}}} +{{72} \ {s \sb {0}} \ G}}{162}}} \right] \right] \end{array} @@ -39039,7 +38704,7 @@ Compiling body of rule leq to compute value of type List List $$ \left[ \left[ -{{s \sb {1}}={{{s \sb {0}} \ G} \over 3}}, +{{s \sb {1}}={\frac{{s \sb {0}} \ G}{3}}}, \right. \right.\hbox{\hskip 10.0cm} $$ @@ -39047,7 +38712,7 @@ $$ {s \sb {2}}= {{3 \ {s \sb {0}} \ H}+ {{s \sb {0}} \ {G \sp 2}}+ -{6 \ {s \sb {0}} \ G} \over {18}}, \hbox{\hskip 8.0cm} +\frac{6 \ {s \sb {0}} \ G}{18}}, \hbox{\hskip 8.0cm} $$ $$ {s \sb {3}}= @@ -39057,11 +38722,11 @@ $$ \right)\ H+ {{s \sb {0}} \ {G \sp 3}}+ {{18} \ {s \sb {0}} \ {G \sp 2}}+ -{{72} \ {s \sb {0}} \ G} \over {162}}, \hbox{\hskip 6.0cm} +\frac{{72} \ {s \sb {0}} \ G}{162}}, \hbox{\hskip 6.0cm} $$ $$ {s \sb {4}}= -{\left( +{\frac{\left( \begin{array}{@{}l} {{27} \ {s \sb {0}} \ {H \sp 2}}+ \left( @@ -39077,12 +38742,12 @@ $$ {{396} \ {s \sb {0}} \ {G \sp 2}}+ {{1296} \ {s \sb {0}} \ G} \end{array} -\right) -\over {1944}}, \hbox{\hskip 4.0cm} +\right)} +{1944}}, \hbox{\hskip 4.0cm} $$ $$ {s \sb {5}}= -{\left( +{\frac{\left( \begin{array}{@{}l} \left( {{135} \ {s \sb {0}} \ G}+ @@ -39106,12 +38771,12 @@ $$ {{9504} \ {s \sb {0}} \ {G \sp 2}}+ {{25920} \ {s \sb {0}} \ G} \end{array} -\right) -\over {29160}}, \hbox{\hskip 2.0cm} +\right)} +{29160}}, \hbox{\hskip 2.0cm} $$ $$ {s \sb {6}}= -{\left( +{\frac{\left( \begin{array}{@{}l} {{405} \ {s \sb {0}} \ {H \sp 3}}+ \\ @@ -39143,14 +38808,14 @@ $$ {{27864} \ {s \sb {0}} \ {G \sp 3}}+ {{90720} \ {s \sb {0}} \ {G \sp 2}} \end{array} -\right) -\over {524880}}, \hbox{\hskip 1.0cm} +\right)} +{524880}}, \hbox{\hskip 1.0cm} $$ $$ \left. \left. {s \sb {7}}= -{\left( +{\frac{\left( \begin{array}{@{}l} \left( {{2835} \ {s \sb {0}} \ G}+ @@ -39192,8 +38857,8 @@ $$ {{26827200} \ {s \sb {0}} \ {G \sp 2}} - {{97977600} \ {s \sb {0}} \ G} \end{array} -\right) -\over {11022480}} +\right)} +{11022480}} \right] \right] $$ @@ -39239,7 +38904,7 @@ Operators are created using the usual arithmetic operations. \spadcommand{b : LODO1 RFZ := 3*x**2*Dx**2 + 2*Dx + 1/x } $$ -{3 \ {x \sp 2} \ {D \sp 2}}+{2 \ D}+{1 \over x} +{3 \ {x \sp 2} \ {D \sp 2}}+{2 \ D}+{\frac{1}{x}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} @@ -39248,7 +38913,7 @@ LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} $$ {{15} \ {x \sp 3} \ {D \sp 3}}+{{\left( {{51} \ {x \sp 2}}+{{10} \ x} \right)} -\ {D \sp 2}}+{{29} \ D}+{7 \over x} +\ {D \sp 2}}+{{29} \ D}+{\frac{7}{x}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} @@ -39257,7 +38922,7 @@ Operator multiplication corresponds to functional composition. \spadcommand{p := x**2 + 1/x**2 } $$ -{{x \sp 4}+1} \over {x \sp 2} +\frac{{x \sp 4}+1}{x \sp 2} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Integer)} @@ -39266,7 +38931,7 @@ not commutative. \spadcommand{(a*b - b*a) p } $$ -{-{{75} \ {x \sp 4}}+{{540} \ x} -{75}} \over {x \sp 4} +\frac{-{{75} \ {x \sp 4}}+{{540} \ x} -{75}}{x \sp 4} $$ \returnType{Type: Fraction UnivariatePolynomial(x,Integer)} @@ -39309,7 +38974,7 @@ $$ \right)} \ {D \sp 2}}+ {{29} \ D}+ -{7 \over x}}= +{\frac{7}{x}}}= \\ \\ \displaystyle @@ -39318,7 +38983,7 @@ $$ {{10} \ x} \right)} \ {D \sp 2}}+ -{{29} \ D}+{7 \over x}} +{{29} \ D}+{\frac{7}{x}}} \end{array} $$ \returnType{Type: @@ -39332,7 +38997,7 @@ are so-called because the quotient is obtained by dividing \spadcommand{rd := rightDivide(a,b) } $$ \left[ -{quotient={{5 \ x \ D}+7}}, {remainder={{{10} \ D}+{5 \over x}}} +{quotient={{5 \ x \ D}+7}}, {remainder={{{10} \ D}+{\frac{5}{x}}}} \right] $$ \returnType{Type: @@ -39351,7 +39016,7 @@ $$ \right)} \ {D \sp 2}}+ {{29} \ D}+ -{7 \over x}}= +{\frac{7}{x}}}= \\ \\ \displaystyle @@ -39361,7 +39026,7 @@ $$ \right)} \ {D \sp 2}}+ {{29} \ D}+ -{7 \over x}} +{\frac{7}{x}}} \end{array} $$ \returnType{Type: Equation @@ -39388,7 +39053,7 @@ are also available. \spadcommand{rightRemainder(a,b) } $$ -{{10} \ D}+{5 \over x} +{{10} \ D}+{\frac{5}{x}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} @@ -39416,7 +39081,7 @@ multiples (\spadfunFrom{rightLcm}{LinearOrdinaryDifferentialOperator1} and \spadcommand{e := leftGcd(a,b) } $$ -{3 \ {x \sp 2} \ {D \sp 2}}+{2 \ D}+{1 \over x} +{3 \ {x \sp 2} \ {D \sp 2}}+{2 \ D}+{\frac{1}{x}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} @@ -39434,7 +39099,7 @@ LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} \spadcommand{rightRemainder(a, e) } $$ -{{10} \ D}+{5 \over x} +{{10} \ D}+{\frac{5}{x}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} @@ -39451,7 +39116,7 @@ $$ {{10} \ x} \right)} \ {D \sp 2}}+ -{{29} \ D}+{7 \over x} +{{29} \ D}+{\frac{7}{x}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} @@ -39459,7 +39124,7 @@ LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} % NOTE: the book has a different answer \spadcommand{rightRemainder(f, b) } $$ -{{10} \ D}+{5 \over x} +{{10} \ D}+{\frac{5}{x}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator1 Fraction UnivariatePolynomial(x,Integer)} @@ -39535,7 +39200,7 @@ UnivariatePolynomial(x,Fraction Integer))} \spadcommand{b := a + 1/2*Dx**2 - 1/2 } $$ -{{1 \over 2} \ {D \sp 2}}+D+{1 \over 2} +{{\frac{1}{2}} \ {D \sp 2}}+D+{\frac{1}{2}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator2( @@ -39547,13 +39212,13 @@ call syntax is used. \spadcommand{p := 4*x**2 + 2/3 } $$ -{4 \ {x \sp 2}}+{2 \over 3} +{4 \ {x \sp 2}}+{\frac{2}{3}} $$ \returnType{Type: UnivariatePolynomial(x,Fraction Integer)} \spadcommand{a p } $$ -{4 \ {x \sp 2}}+{8 \ x}+{2 \over 3} +{4 \ {x \sp 2}}+{8 \ x}+{\frac{2}{3}} $$ \returnType{Type: UnivariatePolynomial(x,Fraction Integer)} @@ -39561,8 +39226,8 @@ Operator multiplication is defined by the identity {\tt (a*b) p = a(b(p))} \spadcommand{(a * b) p = a b p } $$ -{{2 \ {x \sp 2}}+{{12} \ x}+{{37} \over 3}}={{2 \ {x \sp 2}}+{{12} \ -x}+{{37} \over 3}} +{{2 \ {x \sp 2}}+{{12} \ x}+{\frac{37}{3}}}={{2 \ {x \sp 2}}+{{12} \ +x}+{\frac{37}{3}}} $$ \returnType{Type: Equation UnivariatePolynomial(x,Fraction Integer)} @@ -39570,9 +39235,13 @@ Exponentiation follows from multiplication. \spadcommand{c := (1/9)*b*(a + b)**2 } $$ -{{1 \over {72}} \ {D \sp 6}}+{{5 \over {36}} \ {D \sp 5}}+{{{13} \over -{24}} \ {D \sp 4}}+{{{19} \over {18}} \ {D \sp 3}}+{{{79} \over {72}} \ {D -\sp 2}}+{{7 \over {12}} \ D}+{1 \over 8} +{{\frac{1}{72}} \ {D \sp 6}} ++{{\frac{5}{36}} \ {D \sp 5}} ++{{\frac{13}{24}} \ {D \sp 4}} ++{{\frac{19}{18}} \ {D \sp 3}} ++{{\frac{79}{72}} \ {D \sp 2}} ++{{\frac{7}{12}} \ D} ++{\frac{1}{8}} $$ \returnType{Type: LinearOrdinaryDifferentialOperator2( @@ -39583,7 +39252,7 @@ Finally, note that operator expressions may be applied directly. \spadcommand{(a**2 - 3/4*b + c) (p + 1) } $$ -{3 \ {x \sp 2}}+{{{44} \over 3} \ x}+{{541} \over {36}} +{3 \ {x \sp 2}}+{{\frac{44}{3}} \ x}+{\frac{541}{36}} $$ \returnType{Type: UnivariatePolynomial(x,Fraction Integer)} @@ -41003,7 +40672,7 @@ Likewise, {\tt constantLeft(f)} is the function {\tt g} such that \spadcommand{squirrel(1/2, 1/3) } $$ -1 \over 4 +\frac{1}{4} $$ \returnType{Type: Fraction Integer} @@ -41438,8 +41107,8 @@ new matrices. $$ \left[ \begin{array}{ccc} -{1 \over 2} & {1 \over 3} & {1 \over 4} \\ -{1 \over 5} & {1 \over 6} & {1 \over 7} +{\frac{1}{2}} & {\frac{1}{3}} & {\frac{1}{4}} \\ +{\frac{1}{5}} & {\frac{1}{6}} & {\frac{1}{7}} \end{array} \right] $$ @@ -41449,8 +41118,8 @@ $$ $$ \left[ \begin{array}{ccc} -{3 \over 5} & {3 \over 7} & {3 \over {11}} \\ -{3 \over {13}} & {3 \over {17}} & {3 \over {19}} +{\frac{3}{5}} & {\frac{3}{7}} & {\frac{3}{11}} \\ +{\frac{3}{13}} & {\frac{3}{17}} & {\frac{3}{19}} \end{array} \right] $$ @@ -41463,10 +41132,10 @@ The two matrices must have the same number of rows. $$ \left[ \begin{array}{cccccc} -{1 \over 2} & {1 \over 3} & {1 \over 4} & {3 \over 5} & {3 \over 7} & {3 -\over {11}} \\ -{1 \over 5} & {1 \over 6} & {1 \over 7} & {3 \over {13}} & {3 \over {17}} & -{3 \over {19}} +{\frac{1}{2}} & {\frac{1}{3}} & {\frac{1}{4}} & {\frac{3}{5}} & +{\frac{3}{7}} & {\frac{3}{11}} \\ +{\frac{1}{5}} & {\frac{1}{6}} & {\frac{1}{7}} & {\frac{3}{13}} & +{\frac{3}{17}} & {\frac{3}{19}} \end{array} \right] $$ @@ -41479,10 +41148,10 @@ The two matrices must have the same number of columns. $$ \left[ \begin{array}{ccc} -{1 \over 2} & {1 \over 3} & {1 \over 4} \\ -{1 \over 5} & {1 \over 6} & {1 \over 7} \\ -{3 \over 5} & {3 \over 7} & {3 \over {11}} \\ -{3 \over {13}} & {3 \over {17}} & {3 \over {19}} +{\frac{1}{2}} & {\frac{1}{3}} & {\frac{1}{4}} \\ +{\frac{1}{5}} & {\frac{1}{6}} & {\frac{1}{7}} \\ +{\frac{3}{5}} & {\frac{3}{7}} & {\frac{3}{11}} \\ +{\frac{3}{13}} & {\frac{3}{17}} & {\frac{3}{19}} \end{array} \right] $$ @@ -41495,9 +41164,9 @@ matrix by reflection across the main diagonal. $$ \left[ \begin{array}{cccc} -{1 \over 2} & {1 \over 5} & {3 \over 5} & {3 \over {13}} \\ -{1 \over 3} & {1 \over 6} & {3 \over 7} & {3 \over {17}} \\ -{1 \over 4} & {1 \over 7} & {3 \over {11}} & {3 \over {19}} +{\frac{1}{2}} & {\frac{1}{5}} & {\frac{3}{5}} & {\frac{3}{13}} \\ +{\frac{1}{3}} & {\frac{1}{6}} & {\frac{3}{7}} & {\frac{3}{17}} \\ +{\frac{1}{4}} & {\frac{1}{7}} & {\frac{3}{11}} & {\frac{3}{19}} \end{array} \right] $$ @@ -41604,9 +41273,9 @@ This Hilbert matrix is invertible. $$ \left[ \begin{array}{ccc} -{1 \over 2} & {1 \over 3} & {1 \over 4} \\ -{1 \over 3} & {1 \over 4} & {1 \over 5} \\ -{1 \over 4} & {1 \over 5} & {1 \over 6} +{\frac{1}{2}} & {\frac{1}{3}} & {\frac{1}{4}} \\ +{\frac{1}{3}} & {\frac{1}{4}} & {\frac{1}{5}} \\ +{\frac{1}{4}} & {\frac{1}{5}} & {\frac{1}{6}} \end{array} \right] $$ @@ -41975,13 +41644,9 @@ polynomials in {\tt y} and {\tt z}. \spadcommand{q := (x**2 - x*(z+1)/y +2)**2 } $$ -{x \sp 4}+ -{{{-{2 \ z} -2} \over y} \ {x \sp 3}}+ -{{{{4 \ {y \sp 2}}+{z \sp 2}+{2 \ z}+ -1} \over {y \sp 2}} \ {x \sp 2}}+ -{{{-{4 \ z} -4} \over y} \ -x}+ -4 +{x \sp 4}+{{\frac{-{2 \ z} -2}{y}} \ {x \sp 3}}+ +{{\frac{{4 \ {y \sp 2}}+{z \sp 2}+{2 \ z}+1}{y \sp 2}} \ {x \sp 2}}+ +{{\frac{-{4 \ z} -4}{y}} \ x}+4 $$ \returnType{Type: UnivariatePolynomial(x,Fraction MultivariatePolynomial([y,z],Integer))} @@ -41991,16 +41656,12 @@ appear in a denominator and so it can be made the main variable. \spadcommand{q :: UP(z, FRAC MPOLY([x,y],INT)) } $$ -{{{x \sp 2} \over {y \sp 2}} \ {z \sp 2}}+ -{{{-{2 \ y \ {x \sp 3}}+{2 \ {x \sp 2}} - -{4 \ y \ x}} \over {y \sp 2}} \ z}+ -{{{{y \sp 2} \ {x \sp 4}} - -{2 \ y \ {x \sp 3}}+ -{{\left( {4 \ {y \sp 2}}+ -1 -\right)}\ {x \sp 2}} - -{4 \ y \ x}+ -{4 \ {y \sp 2}}} \over {y \sp 2}} +{{\frac{x \sp 2}{y \sp 2}} \ {z \sp 2}}+ +{{\frac{-{2 \ y \ {x \sp 3}}+{2 \ {x \sp 2}} - +{4 \ y \ x}}{y \sp 2}} \ z}+ +{\frac{{{y \sp 2} \ {x \sp 4}} - +{2 \ y \ {x \sp 3}}+{{\left( {4 \ {y \sp 2}}+1 +\right)}\ {x \sp 2}} -{4 \ y \ x}+{4 \ {y \sp 2}}}{y \sp 2}} $$ \returnType{Type: UnivariatePolynomial(z,Fraction MultivariatePolynomial([x,y],Integer))} @@ -42011,28 +41672,16 @@ whose coefficients are fractions in polynomials in {\tt y}. \spadcommand{q :: MPOLY([x,z], FRAC UP(y,INT)) } $$ \begin{array}{@{}l} -{x \sp 4}+ -{{\left( - -{{2 \over y} \ z} - -{2 \over y} -\right)} -\ {x \sp 3}}+ -{{\left( -{{1 \over {y \sp 2}} \ {z \sp 2}}+ -{{2 \over {y \sp 2}} \ z}+ -{{{4 \ {y \sp 2}}+ -1} \over {y \sp 2}} -\right)} -\ {x \sp 2}}+ +{x \sp 4}+{{\left( -{{\frac{2}{y}} \ z} -{\frac{2}{y}} \right)} +\ {x \sp 3}}+{{\left( +{{\frac{1}{y \sp 2}} \ {z \sp 2}}+ +{{\frac{2}{y \sp 2}} \ z}+ +{\frac{{4 \ {y \sp 2}}+1}{y \sp 2}} +\right)}\ {x \sp 2}}+ \\ \\ \displaystyle -{{\left( --{{4 \over y} \ z} - -{4 \over y} -\right)} -\ x}+ -4 +{{\left( -{{\frac{4}{y}} \ z} -{\frac{4}{y}} \right)}\ x}+4 \end{array} $$ \returnType{Type: @@ -42549,7 +42198,7 @@ L n == \end{verbatim} \returnType{Void} -Create the differential operator $d \over {dx}$ on polynomials in {\tt x} +Create the differential operator $\frac{d}{dx}$ on polynomials in {\tt x} over the rational numbers. \spadcommand{dx := operator("D") :: OP(POLY FRAC INT) } @@ -42577,17 +42226,17 @@ Now we verify this for {\tt n = 15}. Here is the polynomial. \spadcommand{L 15 } $$ \begin{array}{@{}l} -{{{9694845} \over {2048}} \ {x \sp {15}}} - -{{{35102025} \over {2048}} \ {x \sp {13}}}+ -{{{50702925} \over {2048}} \ {x \sp {11}}} - -{{{37182145} \over {2048}} \ {x \sp 9}}+ -{{{14549535} \over {2048}} \ {x \sp 7}} - +{{\frac{9694845}{2048}} \ {x \sp {15}}} - +{{\frac{35102025}{2048}} \ {x \sp {13}}}+ +{{\frac{50702925}{2048}} \ {x \sp {11}}} - +{{\frac{37182145}{2048}} \ {x \sp 9}}+ +{{\frac{14549535}{2048}} \ {x \sp 7}} - \\ \\ \displaystyle -{{{2909907} \over {2048}} \ {x \sp 5}}+ -{{{255255} \over {2048}} \ {x \sp 3}} - -{{{6435} \over {2048}} \ x} +{{\frac{2909907}{2048}} \ {x \sp 5}}+ +{{\frac{255255}{2048}} \ {x \sp 3}} - +{{\frac{6435}{2048}} \ x} \end{array} $$ \returnType{Type: Polynomial Fraction Integer} @@ -43109,8 +42758,8 @@ quotient and the second argument is the factored denominator. \spadcommand{partialFraction(1,factorial 10) } $$ -{{159} \over {2 \sp 8}} -{{23} \over {3 \sp 4}} -{{12} \over {5 \sp 2}}+{1 -\over 7} +{\frac{159}{2 \sp 8}} -{\frac{23}{3 \sp 4}} -{\frac{12}{5 \sp 2}} ++{\frac{1}{7}} $$ \returnType{Type: PartialFraction Integer} @@ -43120,9 +42769,10 @@ operation \spadfunFrom{padicFraction}{PartialFraction} to do this. \spadcommand{f := padicFraction(\%) } $$ -{1 \over 2}+{1 \over {2 \sp 4}}+{1 \over {2 \sp 5}}+{1 \over {2 \sp 6}}+{1 -\over {2 \sp 7}}+{1 \over {2 \sp 8}} -{2 \over {3 \sp 2}} -{1 \over {3 \sp -3}} -{2 \over {3 \sp 4}} -{2 \over 5} -{2 \over {5 \sp 2}}+{1 \over 7} +{\frac{1}{2}}+{\frac{1}{2 \sp 4}}+{\frac{1}{2 \sp 5}}+{\frac{1}{2 \sp 6}} ++{\frac{1}{2 \sp 7}}+{\frac{1}{2 \sp 8}} -{\frac{2}{3 \sp 2}} +-{\frac{1}{3 \sp 3}} -{\frac{2}{3 \sp 4}} -{\frac{2}{5}} +-{\frac{2}{5 \sp 2}}+{\frac{1}{7}} $$ \returnType{Type: PartialFraction Integer} @@ -43132,8 +42782,8 @@ used internally for computational efficiency. \spadcommand{compactFraction(f) } $$ -{{159} \over {2 \sp 8}} -{{23} \over {3 \sp 4}} -{{12} \over {5 \sp 2}}+{1 -\over 7} +{\frac{159}{2 \sp 8}} -{\frac{23}{3 \sp 4}} -{\frac{12}{5 \sp 2}} ++{\frac{1}{7}} $$ \returnType{Type: PartialFraction Integer} @@ -43160,7 +42810,7 @@ denominator of the first term of the fraction. \spadcommand{nthFractionalTerm(f,3) } $$ -1 \over {2 \sp 5} +\frac{1}{2 \sp 5} $$ \returnType{Type: PartialFraction Integer} @@ -43170,7 +42820,7 @@ decompose their quotient into a partial fraction. \spadcommand{partialFraction(1,- 13 + 14 * \%i) } $$ --{1 \over {1+{2 \ i}}}+{4 \over {3+{8 \ i}}} +-{\frac{1}{1+{2 \ i}}}+{\frac{4}{3+{8 \ i}}} $$ \returnType{Type: PartialFraction Complex Integer} @@ -43178,7 +42828,7 @@ To convert back to a quotient, simply use a conversion. \spadcommand{\% :: Fraction Complex Integer } $$ --{i \over {{14}+{{13} \ i}}} +-{\frac{i}{{14}+{{13} \ i}}} $$ \returnType{Type: Fraction Complex Integer} @@ -43211,38 +42861,41 @@ These are the compact and expanded partial fractions for the quotient. \spadcommand{partialFraction(1,u) } $$ \begin{array}{@{}l} -{{1 \over {648}} \over {x+1}}+ -{{{{1 \over 4} \ x}+{7 \over {16}}} \over {{\left( x+2 \right)}\sp 2}}+ -{{-{{{17} \over 8} \ {x \sp 2}} -{{12} \ x} -{{139} \over 8}} -\over {{\left( x+3 \right)}\sp 3}}+ +\displaystyle +{\frac{\frac{1}{648}}{x+1}}+ +{\frac{{{\frac{1}{4}} \ x}+ +{\frac{7}{16}}}{{\left( x+2 \right)}\sp 2}}+ +{\frac{-{{\frac{17}{8}} \ {x \sp 2}} -{{12} \ x} - +{\frac{139}{8}}}{{\left( x+3 \right)}\sp 3}}+ \\ \\ \displaystyle -{{{{{607} \over {324}} \ {x \sp 3}}+ -{{{10115} \over {432}} \ {x \sp 2}}+ -{{{391} \over 4} \ x}+ -{{44179} \over {324}}} -\over {{\left( x+4 \right)}\sp 4}} +{\frac{{{\frac{607}{324}} \ {x \sp 3}}+ +{{\frac{10115}{432}} \ {x \sp 2}}+ +{{\frac{391}{4}} \ x}+ +{\frac{44179}{324}}} +{{\left( x+4 \right)}\sp 4}} \end{array} $$ \returnType{Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)} \spadcommand{padicFraction \% } $$ +\displaystyle \begin{array}{@{}l} -{{1 \over {648}} \over {x+1}}+ -{{1 \over 4} \over {x+2}} - -{{1 \over {16}} \over {{\left( x+2 \right)}\sp 2}} - -{{{17} \over 8} \over {x+3}}+ -{{3 \over 4} \over {{\left( x+3 \right)}\sp 2}} - -{{1 \over 2} \over {{\left( x+3 \right)}\sp 3}}+ -{{{607} \over {324}} \over {x+4}}+ +{\frac{\frac{1}{648}}{x+1}}+ +{\frac{\frac{1}{4}}{x+2}} - +{\frac{\frac{1}{16}}{{\left( x+2 \right)}\sp 2}} - +{\frac{\frac{17}{8}}{x+3}}+ +{\frac{\frac{3}{4}}{{\left( x+3 \right)}\sp 2}} - +{\frac{\frac{1}{2}}{{\left( x+3 \right)}\sp 3}}+ +{\frac{\frac{607}{324}}{x+4}}+ \\ \\ \displaystyle -{{{403} \over {432}} \over {{\left( x+4 \right)}\sp 2}}+ -{{{13} \over {36}} \over {{\left( x+4 \right)}\sp 3}}+ -{{1 \over {12}} \over {{\left( x+4 \right)}\sp 4}} +{\frac{\frac{403}{432}}{{\left( x+4 \right)}\sp 2}}+ +{\frac{\frac{13}{36}}{{\left( x+4 \right)}\sp 3}}+ +{\frac{\frac{1}{12}}{{\left( x+4 \right)}\sp 4}} \end{array} $$ \returnType{Type: PartialFraction UnivariatePolynomial(x,Fraction Integer)} @@ -43342,7 +42995,7 @@ have type {\tt Fraction Integer}. \spadcommand{y**2 - z + 3/4} $$ --z+{y \sp 2}+{3 \over 4} +-z+{y \sp 2}+{\frac{3}{4}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -43745,7 +43398,7 @@ polynomials over the rational numbers before integrating them. \spadcommand{integrate(p,y) } $$ -{\left( {{1 \over 3} \ x \ {y \sp 3}} -{x \ {y \sp 2}}+{x \ y} +{\left( {{\frac{1}{3}} \ x \ {y \sp 3}} -{x \ {y \sp 2}}+{x \ y} \right)} \ z $$ @@ -43799,9 +43452,7 @@ of type {\tt Fraction Polynomial Integer}. \spadcommand{p/q } $$ -{{\left( y -1 -\right)} -\ z} \over {z+5} +\frac{{\left( y -1 \right)}\ z}{z+5} $$ \returnType{Type: Fraction Polynomial Integer} @@ -43810,7 +43461,7 @@ resulting object is of type {\tt Polynomial Fraction Integer}. \spadcommand{(2/3) * x**2 - y + 4/5 } $$ --y+{{2 \over 3} \ {x \sp 2}}+{4 \over 5} +-y+{{\frac{2}{3}} \ {x \sp 2}}+{\frac{4}{5}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -43819,13 +43470,13 @@ required. \spadcommand{\% :: FRAC POLY INT } $$ -{-{{15} \ y}+{{10} \ {x \sp 2}}+{12}} \over {15} +\frac{-{{15} \ y}+{{10} \ {x \sp 2}}+{12}}{15} $$ \returnType{Type: Fraction Polynomial Integer} \spadcommand{\% :: POLY FRAC INT } $$ --y+{{2 \over 3} \ {x \sp 2}}+{4 \over 5} +-y+{{\frac{2}{3}} \ {x \sp 2}}+{\frac{4}{5}} $$ \returnType{Type: Polynomial Fraction Integer} @@ -43866,7 +43517,7 @@ This is a quaternion over the rational numbers. \spadcommand{q := quatern(2/11,-8,3/4,1) } $$ -{2 \over {11}} -{8 \ i}+{{3 \over 4} \ j}+k +{\frac{2}{11}} -{8 \ i}+{{\frac{3}{4}} \ j}+k $$ \returnType{Type: Quaternion Fraction Integer} @@ -43876,7 +43527,7 @@ The four arguments are the real part, the {\tt i} imaginary part, the \spadcommand{[real q, imagI q, imagJ q, imagK q] } $$ \left[ -{2 \over {11}}, -8, {3 \over 4}, 1 +{\frac{2}{11}}, -8, {\frac{3}{4}}, 1 \right] $$ \returnType{Type: List Fraction Integer} @@ -43885,8 +43536,8 @@ Because {\tt q} is over the rationals (and nonzero), you can invert it. \spadcommand{inv q } $$ -{{352} \over {126993}}+{{{15488} \over {126993}} \ i} -{{{484} \over -{42331}} \ j} -{{{1936} \over {126993}} \ k} +{\frac{352}{126993}}+{{\frac{15488}{126993}} \ i} +-{{\frac{484}{42331}} \ j} -{{\frac{1936}{126993}} \ k} $$ \returnType{Type: Quaternion Fraction Integer} @@ -43894,20 +43545,17 @@ The usual arithmetic (ring) operations are available \spadcommand{q**6 } $$ --{{2029490709319345} \over {7256313856}} - -{{{48251690851} \over {1288408}} \ i}+ -{{{144755072553} \over {41229056}} \ j}+ -{{{48251690851} \over {10307264}} +-{\frac{2029490709319345}{7256313856}} - +{{\frac{48251690851}{1288408}} \ i}+ +{{\frac{144755072553}{41229056}} \ j}+ +{{\frac{48251690851}{10307264}} \ k} $$ \returnType{Type: Quaternion Fraction Integer} \spadcommand{r := quatern(-2,3,23/9,-89); q + r } $$ --{{20} \over {11}} - -{5 \ i}+ -{{{119} \over {36}} \ j} - -{{88} \ k} +-{\frac{20}{11}} -{5 \ i}+{{\frac{119}{36}} \ j} -{{88} \ k} $$ \returnType{Type: Quaternion Fraction Integer} @@ -43915,7 +43563,7 @@ In general, multiplication is not commutative. \spadcommand{q * r - r * q} $$ --{{{2495} \over {18}} \ i} -{{1418} \ j} -{{{817} \over {18}} \ k} +-{{\frac{2495}{18}} \ i} -{{1418} \ j} -{{\frac{817}{18}} \ k} $$ \returnType{Type: Quaternion Fraction Integer} @@ -43933,8 +43581,7 @@ These satisfy the normal identities. \spadcommand{[i*i, j*j, k*k, i*j, j*k, k*i, q*i] } $$ \left[ --1, -1, -1, k, i, j, {8+{{2 \over {11}} \ i}+j -{{3 \over -4} \ k}} +-1, -1, -1, k, i, j, {8+{{\frac{2}{11}} \ i}+j -{{\frac{3}{4}} \ k}} \right] $$ \returnType{Type: List Quaternion Fraction Integer} @@ -43943,19 +43590,19 @@ The norm is the quaternion times its conjugate. \spadcommand{norm q } $$ -{126993} \over {1936} +\frac{126993}{1936} $$ \returnType{Type: Fraction Integer} \spadcommand{conjugate q } $$ -{2 \over {11}}+{8 \ i} -{{3 \over 4} \ j} -k +{\frac{2}{11}}+{8 \ i} -{{\frac{3}{4}} \ j} -k $$ \returnType{Type: Quaternion Fraction Integer} \spadcommand{q * \% } $$ -{126993} \over {1936} +\frac{126993}{1936} $$ \returnType{Type: Quaternion Fraction Integer} @@ -44102,7 +43749,7 @@ Of course, it's possible to recover the fraction representation: \spadcommand{a :: Fraction(Integer) } $$ -{76543} \over {210} +\frac{76543}{210} $$ \returnType{Type: Fraction Integer} @@ -44704,10 +44351,7 @@ A quartic polynomial \spadcommand{pol : UP(x,Ran) := x**4+(7/3)*x**2+30*x-(100/3) } $$ -{x \sp 4}+ -{{7 \over 3} \ {x \sp 2}}+ -{{30} \ x} - -{{100} \over 3} +{x \sp 4}+{{\frac{7}{3}} \ {x \sp 2}}+{{30} \ x} -{\frac{100}{3}} $$ \returnType{Type: UnivariatePolynomial(x,RealClosure Fraction Integer)} @@ -44721,13 +44365,13 @@ $$ \spadcommand{alpha := sqrt(5*r1-436,3)/3 } $$ -{1 \over 3} \ {\root {3} \of {{{5 \ {\sqrt {{7633}}}} -{436}}}} +{\frac{1}{3}} \ {\root {3} \of {{{5 \ {\sqrt {{7633}}}} -{436}}}} $$ \returnType{Type: RealClosure Fraction Integer} \spadcommand{beta := -sqrt(5*r1+436,3)/3 } $$ --{{1 \over 3} \ {\root {3} \of {{{5 \ {\sqrt {{7633}}}}+{436}}}}} +-{{\frac{1}{3}} \ {\root {3} \of {{{5 \ {\sqrt {{7633}}}}+{436}}}}} $$ \returnType{Type: RealClosure Fraction Integer} @@ -44857,28 +44501,28 @@ $$ \spadcommand{f25:Ran:=sqrt(1/25,5) } $$ -\root {5} \of {{1 \over {25}}} +\root {5} \of {{\frac{1}{25}}} $$ \returnType{Type: RealClosure Fraction Integer} \spadcommand{f32:Ran:=sqrt(32/5,5) } $$ -\root {5} \of {{{32} \over 5}} +\root {5} \of {{\frac{32}{5}}} $$ \returnType{Type: RealClosure Fraction Integer} \spadcommand{f27:Ran:=sqrt(27/5,5) } $$ -\root {5} \of {{{27} \over 5}} +\root {5} \of {{\frac{27}{5}}} $$ \returnType{Type: RealClosure Fraction Integer} \spadcommand{dst5:=sqrt((f32-f27,3)) = f25*(1+f3-f3**2)} $$ -{\root {3} \of {{-{\root {5} \of {{{27} \over 5}}}+{\root {5} \of {{{32} -\over 5}}}}}}={{\left( -{{\root {5} \of {3}} \sp 2}+{\root {5} \of {3}}+1 -\right)} -\ {\root {5} \of {{1 \over {25}}}}} +{\root {3} \of {{-{\root {5} \of {{\frac{27}{5}}}}+{\root {5} \of +{{\frac{32}{5}}}}}}}= +{{\left( -{{\root {5} \of {3}} \sp 2}+{\root {5} \of {3}}+1 \right)} +\ {\root {5} \of {{\frac{1}{25}}}}} $$ \returnType{Type: Equation RealClosure Fraction Integer} @@ -46271,9 +45915,9 @@ denominators, as this matrix Hilberticus illustrates. $$ \left[ \begin{array}{ccc} -{I \over II} & {I \over III} & {I \over IV} \\ -{I \over III} & {I \over IV} & {I \over V} \\ -{I \over IV} & {I \over V} & {I \over VI} +{\frac{I}{II}} & {\frac{I}{III}} & {\frac{I}{IV}} \\ +{\frac{I}{III}} & {\frac{I}{IV}} & {\frac{I}{V}} \\ +{\frac{I}{IV}} & {\frac{I}{V}} & {\frac{I}{VI}} \end{array} \right] $$ @@ -46445,7 +46089,7 @@ operations. \spadcommand{sum(i**2, i = 0..n)} $$ -{{2 \ {n \sp 3}}+{3 \ {n \sp 2}}+n} \over 6 +\frac{{2 \ {n \sp 3}}+{3 \ {n \sp 2}}+n}{6} $$ \returnType{Type: Fraction Polynomial Integer} @@ -46456,10 +46100,7 @@ right-hand side can be a segment over any type. \spadcommand{sb := y = 1/2..3/2 } $$ -y={{\left( 1 \over 2 -\right)}..{\left( -3 \over 2 -\right)}} +y={{\left( \frac{1}{2} \right)}..{\left(\frac{3}{2} \right)}} $$ \returnType{Type: SegmentBinding Fraction Integer} @@ -46475,10 +46116,7 @@ $$ \spadcommand{segment(sb) } $$ -{\left( 1 \over 2 -\right)}..{\left( -3 \over 2 -\right)} +{\left( \frac{1}{2} \right)}..{\left(\frac{3}{2} \right)} $$ \returnType{Type: Segment Fraction Integer} @@ -48985,7 +48623,7 @@ possible to compute quotients and remainders. \spadcommand{r := a1**2 - 2/3 } $$ -{a1 \sp 2} -{2 \over 3} +{a1 \sp 2} -{\frac{2}{3}} $$ \returnType{Type: UnivariatePolynomial(a1,Fraction Integer)} @@ -49010,7 +48648,7 @@ remainder. \spadcommand{r rem s } $$ -{46} \over 3 +\frac{46}{3} $$ \returnType{Type: UnivariatePolynomial(a1,Fraction Integer)} @@ -49020,7 +48658,7 @@ return a record of both components. \spadcommand{d := divide(r, s) } $$ \left[ -{quotient={a1 -4}}, {remainder={{46} \over 3}} +{quotient={a1 -4}}, {remainder={\frac{46}{3}}} \right] $$ \returnType{Type: @@ -49041,13 +48679,13 @@ coefficients belong to a field. \spadcommand{integrate r } $$ -{{1 \over 3} \ {a1 \sp 3}} -{{2 \over 3} \ a1} +{{\frac{1}{3}} \ {a1 \sp 3}} -{{\frac{2}{3}} \ a1} $$ \returnType{Type: UnivariatePolynomial(a1,Fraction Integer)} \spadcommand{integrate s } $$ -{{1 \over 2} \ {a1 \sp 2}}+{4 \ a1} +{{\frac{1}{2}} \ {a1 \sp 2}}+{4 \ a1} $$ \returnType{Type: UnivariatePolynomial(a1,Fraction Integer)} @@ -49066,7 +48704,7 @@ We also use {\tt Fraction} because we want fractions. \spadcommand{t := a1**2 - a1/b2 + (b1**2-b1)/(b2+3) } $$ -{a1 \sp 2} -{{1 \over b2} \ a1}+{{{b1 \sp 2} -b1} \over {b2+3}} +{a1 \sp 2} -{{\frac{1}{b2}} \ a1}+{\frac{{b1 \sp 2} -b1}{b2+3}} $$ \returnType{Type: UnivariatePolynomial(a1,Fraction Polynomial Integer)} @@ -49074,9 +48712,8 @@ We push all the variables into a single quotient of polynomials. \spadcommand{u : FRAC POLY INT := t } $$ -{{{a1 \sp 2} \ {b2 \sp 2}}+{{\left( {b1 \sp 2} -b1+{3 \ {a1 \sp 2}} -a1 -\right)} -\ b2} -{3 \ a1}} \over {{b2 \sp 2}+{3 \ b2}} +\frac{{{a1 \sp 2} \ {b2 \sp 2}}+{{\left( {b1 \sp 2} -b1+{3 \ {a1 \sp 2}} -a1 +\right)}\ b2} -{3 \ a1}}{{b2 \sp 2}+{3 \ b2}} $$ \returnType{Type: Fraction Polynomial Integer} @@ -49087,8 +48724,8 @@ decide on the full type and how to do the transformation. \spadcommand{u :: UP(b1,?) } $$ -{{1 \over {b2+3}} \ {b1 \sp 2}} -{{1 \over {b2+3}} \ b1}+{{{{a1 \sp 2} \ -b2} -a1} \over b2} +{{\frac{1}{b2+3}} \ {b1 \sp 2}} -{{\frac{1}{b2+3}} \ b1} ++{\frac{{{a1 \sp 2} \ b2} -a1}{b2}} $$ \returnType{Type: UnivariatePolynomial(b1,Fraction Polynomial Integer)} @@ -49865,19 +49502,19 @@ $$ {\left[ a \ b \right]}+ {{\left[b \right]}\ {\left[ a \right]}}+ -{{1\over 2} \ {\left[ a \ b \right]}\ +{{\frac{1}{2}} \ {\left[ a \ b \right]}\ {\left[ a \ b \right]}}+ -{{1\over 2} \ {\left[ a \ {b \sp 2} \right]}\ +{{\frac{1}{2}} \ {\left[ a \ {b \sp 2} \right]}\ {\left[ a \right]}}+ -{{1\over 2} \ {\left[ b \right]}\ +{{\frac{1}{2}} \ {\left[ b \right]}\ {\left[ {a \sp 2} \ b \right]}}+ \\ \\ \displaystyle -{{3\over 2} \ {\left[ b \right]}\ +{{\frac{3}{2}} \ {\left[ b \right]}\ {\left[ a \ b \right]}\ {\left[ a \right]}}+ -{{1\over 2} \ {\left[ b \right]}\ +{{\frac{1}{2}} \ {\left[ b \right]}\ {\left[ b \right]}\ {\left[ a \right]}\ {\left[ a \right]}} @@ -50793,8 +50430,8 @@ a second one, $$ \left[ \begin{array}{cc} --{1 \over 4} & 2 \\ -4 & {{27} \over 4} +-{\frac{1}{4}} & 2 \\ +4 & {\frac{27}{4}} \end{array} \right] $$ @@ -50806,8 +50443,8 @@ and a third one. $$ \left[ \begin{array}{cc} -{{129} \over {16}} & {13} \\ -{26} & {{857} \over {16}} +{\frac{129}{16}} & {13} \\ +{26} & {\frac{857}{16}} \end{array} \right] $$ @@ -50819,8 +50456,8 @@ Define a polynomial, $$ {\left[ \begin{array}{cc} --{2 \over 3} & 0 \\ -0 & -{2 \over 3} +-{\frac{2}{3}} & 0 \\ +0 & -{\frac{2}{3}} \end{array} \right]}+{{\left[ \begin{array}{cc} @@ -50830,14 +50467,14 @@ $$ \right]} \ x}+{{\left[ \begin{array}{cc} --{1 \over 4} & 2 \\ -4 & {{27} \over 4} +-{\frac{1}{4}} & 2 \\ +4 & {\frac{27}{4}} \end{array} \right]} \ y}+{{\left[ \begin{array}{cc} -{{129} \over {16}} & {13} \\ -{26} & {{857} \over {16}} +{\frac{129}{16}} & {13} \\ +{26} & {\frac{857}{16}} \end{array} \right]} \ z} @@ -50853,19 +50490,19 @@ a second one, $$ {\left[ \begin{array}{cc} --{2 \over 3} & 0 \\ -0 & -{2 \over 3} +-{\frac{2}{3}} & 0 \\ +0 & -{\frac{2}{3}} \end{array} \right]}+{{\left[ \begin{array}{cc} --{1 \over 4} & 2 \\ -4 & {{27} \over 4} +-{\frac{1}{4}} & 2 \\ +4 & {\frac{27}{4}} \end{array} \right]} \ y}+{{\left[ \begin{array}{cc} -{{129} \over {16}} & {13} \\ -{26} & {{857} \over {16}} +{\frac{129}{16}} & {13} \\ +{26} & {\frac{857}{16}} \end{array} \right]} \ z} @@ -50882,20 +50519,20 @@ $$ \begin{array}{@{}l} {\left[ \begin{array}{cc} --{8 \over {27}} & 0 \\ -0 & -{8 \over {27}} +-{\frac{8}{27}} & 0 \\ +0 & -{\frac{8}{27}} \end{array} \right]}+ {{\left[ \begin{array}{cc} --{1 \over 3} & {8 \over 3} \\ -{{16} \over 3} & 9 +-{\frac{1}{3}} & {\frac{8}{3}} \\ +{\frac{16}{3}} & 9 \end{array} \right]}\ y}+ {{\left[ \begin{array}{cc} -{{43} \over 4} & {{52} \over 3} \\ -{{104} \over 3} & {{857} \over {12}} +{\frac{43}{4}} & {\frac{52}{3}} \\ +{\frac{104}{3}} & {\frac{857}{12}} \end{array} \right]}\ z}+ \\ @@ -50903,20 +50540,20 @@ $$ \displaystyle {{\left[ \begin{array}{cc} --{{129} \over 8} & -{26} \\ --{52} & -{{857} \over 8} +-{\frac{129}{8}} & -{26} \\ +-{52} & -{\frac{857}{8}} \end{array} \right]}\ {y \sp 2}}+ {{\left[ \begin{array}{cc} --{{3199} \over {32}} & -{{831} \over 4} \\ --{{831} \over 2} & -{{26467} \over {32}} +-{\frac{3199}{32}} & -{\frac{831}{4}} \\ +-{\frac{831}{2}} & -{\frac{26467}{32}} \end{array} \right]}\ y \ z}+ {{\left[ \begin{array}{cc} --{{3199} \over {32}} & -{{831} \over 4} \\ --{{831} \over 2} & -{{26467} \over {32}} +-{\frac{3199}{32}} & -{\frac{831}{4}} \\ +-{\frac{831}{2}} & -{\frac{26467}{32}} \end{array} \right]}\ z \ y}+ \\ @@ -50924,14 +50561,14 @@ $$ \displaystyle {{\left[ \begin{array}{cc} --{{103169} \over {128}} & -{{6409} \over 4} \\ --{{6409} \over 2} & -{{820977} \over {128}} +-{\frac{103169}{128}} & -{\frac{6409}{4}} \\ +-{\frac{6409}{2}} & -{\frac{820977}{128}} \end{array} \right]}\ {z \sp 2}}+ {{\left[ \begin{array}{cc} -{{3199} \over {64}} & {{831} \over 8} \\ -{{831} \over 4} & {{26467} \over {64}} +{\frac{3199}{64}} & {\frac{831}{8}} \\ +{\frac{831}{4}} & {\frac{26467}{64}} \end{array} \right]}\ {y \sp 3}}+ \\ @@ -50939,14 +50576,14 @@ $$ \displaystyle {{\left[ \begin{array}{cc} -{{103169} \over {256}} & {{6409} \over 8} \\ -{{6409} \over 4} & {{820977} \over {256}} +{\frac{103169}{256}} & {\frac{6409}{8}} \\ +{\frac{6409}{4}} & {\frac{820977}{256}} \end{array} \right]}\ {y \sp 2} \ z}+ {{\left[ \begin{array}{cc} -{{103169} \over {256}} & {{6409} \over 8} \\ -{{6409} \over 4} & {{820977} \over {256}} +{\frac{103169}{256}} & {\frac{6409}{8}} \\ +{\frac{6409}{4}} & {\frac{820977}{256}} \end{array} \right]}\ y \ z \ y}+ \\ @@ -50954,14 +50591,14 @@ $$ \displaystyle {{\left[ \begin{array}{cc} -{{3178239} \over {1024}} & {{795341} \over {128}} \\ -{{795341} \over {64}} & {{25447787} \over {1024}} +{\frac{3178239}{1024}} & {\frac{795341}{128}} \\ +{\frac{795341}{64}} & {\frac{25447787}{1024}} \end{array} \right]}\ y \ {z \sp 2}}+ {{\left[ \begin{array}{cc} -{{103169} \over {256}} & {{6409} \over 8} \\ -{{6409} \over 4} & {{820977} \over {256}} +{\frac{103169}{256}} & {\frac{6409}{8}} \\ +{\frac{6409}{4}} & {\frac{820977}{256}} \end{array} \right]}\ z \ {y \sp 2}}+ \\ @@ -50969,14 +50606,14 @@ $$ \displaystyle {{\left[ \begin{array}{cc} -{{3178239} \over {1024}} & {{795341} \over {128}} \\ -{{795341} \over {64}} & {{25447787} \over {1024}} +{\frac{3178239}{1024}} & {\frac{795341}{128}} \\ +{\frac{795341}{64}} & {\frac{25447787}{1024}} \end{array} \right]}\ z \ y \ z}+ {{\left[ \begin{array}{cc} -{{3178239} \over {1024}} & {{795341} \over {128}} \\ -{{795341} \over {64}} & {{25447787} \over {1024}} +{\frac{3178239}{1024}} & {\frac{795341}{128}} \\ +{\frac{795341}{64}} & {\frac{25447787}{1024}} \end{array} \right]}\ {z \sp 2} \ y}+ \\ @@ -50984,8 +50621,8 @@ $$ \displaystyle {{\left[ \begin{array}{cc} -{{98625409} \over {4096}} & {{12326223} \over {256}} \\ -{{12326223} \over {128}} & {{788893897} \over {4096}} +{\frac{98625409}{4096}} & {\frac{12326223}{256}} \\ +{\frac{12326223}{128}} & {\frac{788893897}{4096}} \end{array} \right]}\ {z \sp 3}} \end{array} @@ -51435,66 +51072,66 @@ $$ \\ \\ \displaystyle -{{{1184459} \over {1645371}} \ {{ \%B1} \sp {19}}} - -{{{2335702} \over {548457}} \ {{ \%B1} \sp {18}}} - -{{{5460230} \over {182819}} \ {{ \%B1} \sp {17}}}+ -{{{79900378} \over {1645371}} \ {{ \%B1} \sp {16}}}+ +{{\frac{1184459}{1645371}} \ {{ \%B1} \sp {19}}} - +{{\frac{2335702}{548457}} \ {{ \%B1} \sp {18}}} - +{{\frac{5460230}{182819}} \ {{ \%B1} \sp {17}}}+ +{{\frac{79900378}{1645371}} \ {{ \%B1} \sp {16}}}+ \\ \displaystyle -{{{43953929} \over {548457}} \ {{ \%B1} \sp {15}}}+ -{{{13420192} \over {182819}} \ {{ \%B1} \sp {14}}}+ -{{{553986} \over {3731}} \ {{ \%B1} \sp {13}}}+ -{{{193381378} \over {1645371}} \ {{ \%B1} \sp {12}}}+ +{{\frac{43953929}{548457}} \ {{ \%B1} \sp {15}}}+ +{{\frac{13420192}{182819}} \ {{ \%B1} \sp {14}}}+ +{{\frac{553986}{3731}} \ {{ \%B1} \sp {13}}}+ +{{\frac{193381378}{1645371}} \ {{ \%B1} \sp {12}}}+ \\ \displaystyle -{{{35978916} \over {182819}} \ {{ \%B1} \sp {11}}}+ -{{{358660781} \over {1645371}} \ {{ \%B1} \sp {10}}}+ -{{{271667666} \over {1645371}} \ {{ \%B1} \sp 9}}+ -{{{118784873} \over {548457}} \ {{ \%B1} \sp 8}}+ +{{\frac{35978916}{182819}} \ {{ \%B1} \sp {11}}}+ +{{\frac{358660781}{1645371}} \ {{ \%B1} \sp {10}}}+ +{{\frac{271667666}{1645371}} \ {{ \%B1} \sp 9}}+ +{{\frac{118784873}{548457}} \ {{ \%B1} \sp 8}}+ \\ \displaystyle -{{{337505020} \over {1645371}} \ {{ \%B1} \sp 7}}+ -{{{1389370} \over {11193}} \ {{ \%B1} \sp 6}}+ -{{{688291} \over {4459}} \ {{ \%B1} \sp 5}}+ -{{{3378002} \over {42189}} \ {{ \%B1} \sp 4}}+ +{{\frac{337505020}{1645371}} \ {{ \%B1} \sp 7}}+ +{{\frac{1389370}{11193}} \ {{ \%B1} \sp 6}}+ +{{\frac{688291}{4459}} \ {{ \%B1} \sp 5}}+ +{{\frac{3378002}{42189}} \ {{ \%B1} \sp 4}}+ \\ \displaystyle -{{{140671876} \over {1645371}} \ {{ \%B1} \sp 3}}+ -{{{32325724} \over {548457}} \ {{ \%B1} \sp 2}} - -{{{8270} \over {343}} \ { \%B1}} - -{{9741532} \over {1645371}}, +{{\frac{140671876}{1645371}} \ {{ \%B1} \sp 3}}+ +{{\frac{32325724}{548457}} \ {{ \%B1} \sp 2}} - +{{\frac{8270}{343}} \ { \%B1}} - +{\frac{9741532}{1645371}}, \\ \\ \displaystyle --{{{91729} \over {705159}} \ {{ \%B1} \sp {19}}}+ -{{{487915} \over {705159}} \ {{ \%B1} \sp {18}}}+ -{{{4114333} \over {705159}} \ {{ \%B1} \sp {17}}} - -{{{1276987} \over {235053}} \ {{ \%B1} \sp {16}}} - +-{{\frac{91729}{705159}} \ {{ \%B1} \sp {19}}}+ +{{\frac{487915}{705159}} \ {{ \%B1} \sp {18}}}+ +{{\frac{4114333}{705159}} \ {{ \%B1} \sp {17}}} - +{{\frac{1276987}{235053}} \ {{ \%B1} \sp {16}}} - \\ \displaystyle -{{{13243117} \over {705159}} \ {{ \%B1} \sp {15}}} - -{{{16292173} \over {705159}} \ {{ \%B1} \sp {14}}} - -{{{26536060} \over {705159}} \ {{ \%B1} \sp {13}}} - -{{{722714} \over {18081}} \ {{ \%B1} \sp {12}}} - +{{\frac{13243117}{705159}} \ {{ \%B1} \sp {15}}} - +{{\frac{16292173}{705159}} \ {{ \%B1} \sp {14}}} - +{{\frac{26536060}{705159}} \ {{ \%B1} \sp {13}}} - +{{\frac{722714}{18081}} \ {{ \%B1} \sp {12}}} - \\ \displaystyle -{{{5382578} \over {100737}} \ {{ \%B1} \sp {11}}} - -{{{15449995} \over {235053}} \ {{ \%B1} \sp {10}}} - -{{{14279770} \over {235053}} \ {{ \%B1} \sp 9}} - -{{{6603890} \over {100737}} \ {{ \%B1} \sp 8}} - +{{\frac{5382578}{100737}} \ {{ \%B1} \sp {11}}} - +{{\frac{15449995}{235053}} \ {{ \%B1} \sp {10}}} - +{{\frac{14279770}{235053}} \ {{ \%B1} \sp 9}} - +{{\frac{6603890}{100737}} \ {{ \%B1} \sp 8}} - \\ \displaystyle -{{{409930} \over {6027}} \ {{ \%B1} \sp 7}} - -{{{37340389} \over {705159}} \ {{ \%B1} \sp 6}} - -{{{34893715} \over {705159}} \ {{ \%B1} \sp 5}} - -{{{26686318} \over {705159}} \ {{ \%B1} \sp 4}} - +{{\frac{409930}{6027}} \ {{ \%B1} \sp 7}} - +{{\frac{37340389}{705159}} \ {{ \%B1} \sp 6}} - +{{\frac{34893715}{705159}} \ {{ \%B1} \sp 5}} - +{{\frac{26686318}{705159}} \ {{ \%B1} \sp 4}} - \\ \displaystyle \left. -{{{801511} \over {26117}} \ {{ \%B1} \sp 3}} - -{{{17206178} \over {705159}} \ {{ \%B1} \sp 2}} - -{{{4406102} \over {705159}} \ { \%B1}}+ -{{377534} \over {705159}} +{{\frac{801511}{26117}} \ {{ \%B1} \sp 3}} - +{{\frac{17206178}{705159}} \ {{ \%B1} \sp 2}} - +{{\frac{4406102}{705159}} \ { \%B1}}+ +{\frac{377534}{705159}} \right], \end{array} $$ @@ -51506,66 +51143,66 @@ $$ \\ \\ \displaystyle -{{{1184459} \over {1645371}} \ {{ \%B2} \sp {19}}} - -{{{2335702} \over {548457}} \ {{ \%B2} \sp {18}}} - -{{{5460230} \over {182819}} \ {{ \%B2} \sp {17}}}+ -{{{79900378} \over {1645371}} \ {{ \%B2} \sp {16}}}+ +{{\frac{1184459}{1645371}} \ {{ \%B2} \sp {19}}} - +{{\frac{2335702}{548457}} \ {{ \%B2} \sp {18}}} - +{{\frac{5460230}{182819}} \ {{ \%B2} \sp {17}}}+ +{{\frac{79900378}{1645371}} \ {{ \%B2} \sp {16}}}+ \\ \displaystyle -{{{43953929} \over {548457}} \ {{ \%B2} \sp {15}}}+ -{{{13420192} \over {182819}} \ {{ \%B2} \sp {14}}}+ -{{{553986} \over {3731}} \ {{ \%B2} \sp {13}}}+ -{{{193381378} \over {1645371}} \ {{ \%B2} \sp {12}}}+ +{{\frac{43953929}{548457}} \ {{ \%B2} \sp {15}}}+ +{{\frac{13420192}{182819}} \ {{ \%B2} \sp {14}}}+ +{{\frac{553986}{3731}} \ {{ \%B2} \sp {13}}}+ +{{\frac{193381378}{1645371}} \ {{ \%B2} \sp {12}}}+ \\ \displaystyle -{{{35978916} \over {182819}} \ {{ \%B2} \sp {11}}}+ -{{{358660781} \over {1645371}} \ {{ \%B2} \sp {10}}}+ -{{{271667666} \over {1645371}} \ {{ \%B2} \sp 9}}+ -{{{118784873} \over {548457}} \ {{ \%B2} \sp 8}}+ +{{\frac{35978916}{182819}} \ {{ \%B2} \sp {11}}}+ +{{\frac{358660781}{1645371}} \ {{ \%B2} \sp {10}}}+ +{{\frac{271667666}{1645371}} \ {{ \%B2} \sp 9}}+ +{{\frac{118784873}{548457}} \ {{ \%B2} \sp 8}}+ \\ \displaystyle -{{{337505020} \over {1645371}} \ {{ \%B2} \sp 7}}+ -{{{1389370} \over {11193}} \ {{ \%B2} \sp 6}}+ -{{{688291} \over {4459}} \ {{ \%B2} \sp 5}}+ -{{{3378002} \over {42189}} \ {{ \%B2} \sp 4}}+ +{{\frac{337505020}{1645371}} \ {{ \%B2} \sp 7}}+ +{{\frac{1389370}{11193}} \ {{ \%B2} \sp 6}}+ +{{\frac{688291}{4459}} \ {{ \%B2} \sp 5}}+ +{{\frac{3378002}{42189}} \ {{ \%B2} \sp 4}}+ \\ \displaystyle -{{{140671876} \over {1645371}} \ {{ \%B2} \sp 3}}+ -{{{32325724} \over {548457}} \ {{ \%B2} \sp 2}} - -{{{8270} \over {343}} \ { \%B2}} - -{{9741532} \over {1645371}}, +{{\frac{140671876}{1645371}} \ {{ \%B2} \sp 3}}+ +{{\frac{32325724}{548457}} \ {{ \%B2} \sp 2}} - +{{\frac{8270}{343}} \ { \%B2}} - +{\frac{9741532}{1645371}}, \\ \\ \displaystyle --{{{91729} \over {705159}} \ {{ \%B2} \sp {19}}}+ -{{{487915} \over {705159}} \ {{ \%B2} \sp {18}}}+ -{{{4114333} \over {705159}} \ {{ \%B2} \sp {17}}} - -{{{1276987} \over {235053}} \ {{ \%B2} \sp {16}}} - +-{{\frac{91729}{705159}} \ {{ \%B2} \sp {19}}}+ +{{\frac{487915}{705159}} \ {{ \%B2} \sp {18}}}+ +{{\frac{4114333}{705159}} \ {{ \%B2} \sp {17}}} - +{{\frac{1276987}{235053}} \ {{ \%B2} \sp {16}}} - \\ \displaystyle -{{{13243117} \over {705159}} \ {{ \%B2} \sp {15}}} - -{{{16292173} \over {705159}} \ {{ \%B2} \sp {14}}} - -{{{26536060} \over {705159}} \ {{ \%B2} \sp {13}}} - -{{{722714} \over {18081}} \ {{ \%B2} \sp {12}}} - +{{\frac{13243117}{705159}} \ {{ \%B2} \sp {15}}} - +{{\frac{16292173}{705159}} \ {{ \%B2} \sp {14}}} - +{{\frac{26536060}{705159}} \ {{ \%B2} \sp {13}}} - +{{\frac{722714}{18081}} \ {{ \%B2} \sp {12}}} - \\ \displaystyle -{{{5382578} \over {100737}} \ {{ \%B2} \sp {11}}} - -{{{15449995} \over {235053}} \ {{ \%B2} \sp {10}}} - -{{{14279770} \over {235053}} \ {{ \%B2} \sp 9}} - -{{{6603890} \over {100737}} \ {{ \%B2} \sp 8}} - +{{\frac{5382578}{100737}} \ {{ \%B2} \sp {11}}} - +{{\frac{15449995}{235053}} \ {{ \%B2} \sp {10}}} - +{{\frac{14279770}{235053}} \ {{ \%B2} \sp 9}} - +{{\frac{6603890}{100737}} \ {{ \%B2} \sp 8}} - \\ \displaystyle -{{{409930} \over {6027}} \ {{ \%B2} \sp 7}} - -{{{37340389} \over {705159}} \ {{ \%B2} \sp 6}} - -{{{34893715} \over {705159}} \ {{ \%B2} \sp 5}} - -{{{26686318} \over {705159}} \ {{ \%B2} \sp 4}} - +{{\frac{409930}{6027}} \ {{ \%B2} \sp 7}} - +{{\frac{37340389}{705159}} \ {{ \%B2} \sp 6}} - +{{\frac{34893715}{705159}} \ {{ \%B2} \sp 5}} - +{{\frac{26686318}{705159}} \ {{ \%B2} \sp 4}} - \\ \displaystyle \left. -{{{801511} \over {26117}} \ {{ \%B2} \sp 3}} - -{{{17206178} \over {705159}} \ {{ \%B2} \sp 2}} - -{{{4406102} \over {705159}} \ { \%B2}}+ -{{377534} \over {705159}} +{{\frac{801511}{26117}} \ {{ \%B2} \sp 3}} - +{{\frac{17206178}{705159}} \ {{ \%B2} \sp 2}} - +{{\frac{4406102}{705159}} \ { \%B2}}+ +{\frac{377534}{705159}} \right], \end{array} $$ @@ -51577,66 +51214,66 @@ $$ \\ \\ \displaystyle -{{{1184459} \over {1645371}} \ {{ \%B3} \sp {19}}} - -{{{2335702} \over {548457}} \ {{ \%B3} \sp {18}}} - -{{{5460230} \over {182819}} \ {{ \%B3} \sp {17}}}+ -{{{79900378} \over {1645371}} \ {{ \%B3} \sp {16}}}+ +{{\frac{1184459}{1645371}} \ {{ \%B3} \sp {19}}} - +{{\frac{2335702}{548457}} \ {{ \%B3} \sp {18}}} - +{{\frac{5460230}{182819}} \ {{ \%B3} \sp {17}}}+ +{{\frac{79900378}{1645371}} \ {{ \%B3} \sp {16}}}+ \\ \displaystyle -{{{43953929} \over {548457}} \ {{ \%B3} \sp {15}}}+ -{{{13420192} \over {182819}} \ {{ \%B3} \sp {14}}}+ -{{{553986} \over {3731}} \ {{ \%B3} \sp {13}}}+ -{{{193381378} \over {1645371}} \ {{ \%B3} \sp {12}}}+ +{{\frac{43953929}{548457}} \ {{ \%B3} \sp {15}}}+ +{{\frac{13420192}{182819}} \ {{ \%B3} \sp {14}}}+ +{{\frac{553986}{3731}} \ {{ \%B3} \sp {13}}}+ +{{\frac{193381378}{1645371}} \ {{ \%B3} \sp {12}}}+ \\ \displaystyle -{{{35978916} \over {182819}} \ {{ \%B3} \sp {11}}}+ -{{{358660781} \over {1645371}} \ {{ \%B3} \sp {10}}}+ -{{{271667666} \over {1645371}} \ {{ \%B3} \sp 9}}+ -{{{118784873} \over {548457}} \ {{ \%B3} \sp 8}}+ +{{\frac{35978916}{182819}} \ {{ \%B3} \sp {11}}}+ +{{\frac{358660781}{1645371}} \ {{ \%B3} \sp {10}}}+ +{{\frac{271667666}{1645371}} \ {{ \%B3} \sp 9}}+ +{{\frac{118784873}{548457}} \ {{ \%B3} \sp 8}}+ \\ \displaystyle -{{{337505020} \over {1645371}} \ {{ \%B3} \sp 7}}+ -{{{1389370} \over {11193}} \ {{ \%B3} \sp 6}}+ -{{{688291} \over {4459}} \ {{ \%B3} \sp 5}}+ -{{{3378002} \over {42189}} \ {{ \%B3} \sp 4}}+ +{{\frac{337505020}{1645371}} \ {{ \%B3} \sp 7}}+ +{{\frac{1389370}{11193}} \ {{ \%B3} \sp 6}}+ +{{\frac{688291}{4459}} \ {{ \%B3} \sp 5}}+ +{{\frac{3378002}{42189}} \ {{ \%B3} \sp 4}}+ \\ \displaystyle -{{{140671876} \over {1645371}} \ {{ \%B3} \sp 3}}+ -{{{32325724} \over {548457}} \ {{ \%B3} \sp 2}} - -{{{8270} \over {343}} \ { \%B3}} - -{{9741532} \over {1645371}}, +{{\frac{140671876}{1645371}} \ {{ \%B3} \sp 3}}+ +{{\frac{32325724}{548457}} \ {{ \%B3} \sp 2}} - +{{\frac{8270}{343}} \ { \%B3}} - +{\frac{9741532}{1645371}}, \\ \\ \displaystyle --{{{91729} \over {705159}} \ {{ \%B3} \sp {19}}}+ -{{{487915} \over {705159}} \ {{ \%B3} \sp {18}}}+ -{{{4114333} \over {705159}} \ {{ \%B3} \sp {17}}} - -{{{1276987} \over {235053}} \ {{ \%B3} \sp {16}}} - +-{{\frac{91729}{705159}} \ {{ \%B3} \sp {19}}}+ +{{\frac{487915}{705159}} \ {{ \%B3} \sp {18}}}+ +{{\frac{4114333}{705159}} \ {{ \%B3} \sp {17}}} - +{{\frac{1276987}{235053}} \ {{ \%B3} \sp {16}}} - \\ \displaystyle -{{{13243117} \over {705159}} \ {{ \%B3} \sp {15}}} - -{{{16292173} \over {705159}} \ {{ \%B3} \sp {14}}} - -{{{26536060} \over {705159}} \ {{ \%B3} \sp {13}}} - -{{{722714} \over {18081}} \ {{ \%B3} \sp {12}}} - +{{\frac{13243117}{705159}} \ {{ \%B3} \sp {15}}} - +{{\frac{16292173}{705159}} \ {{ \%B3} \sp {14}}} - +{{\frac{26536060}{705159}} \ {{ \%B3} \sp {13}}} - +{{\frac{722714}{18081}} \ {{ \%B3} \sp {12}}} - \\ \displaystyle -{{{5382578} \over {100737}} \ {{ \%B3} \sp {11}}} - -{{{15449995} \over {235053}} \ {{ \%B3} \sp {10}}} - -{{{14279770} \over {235053}} \ {{ \%B3} \sp 9}} - -{{{6603890} \over {100737}} \ {{ \%B3} \sp 8}} - +{{\frac{5382578}{100737}} \ {{ \%B3} \sp {11}}} - +{{\frac{15449995}{235053}} \ {{ \%B3} \sp {10}}} - +{{\frac{14279770}{235053}} \ {{ \%B3} \sp 9}} - +{{\frac{6603890}{100737}} \ {{ \%B3} \sp 8}} - \\ \displaystyle -{{{409930} \over {6027}} \ {{ \%B3} \sp 7}} - -{{{37340389} \over {705159}} \ {{ \%B3} \sp 6}} - -{{{34893715} \over {705159}} \ {{ \%B3} \sp 5}} - -{{{26686318} \over {705159}} \ {{ \%B3} \sp 4}} - +{{\frac{409930}{6027}} \ {{ \%B3} \sp 7}} - +{{\frac{37340389}{705159}} \ {{ \%B3} \sp 6}} - +{{\frac{34893715}{705159}} \ {{ \%B3} \sp 5}} - +{{\frac{26686318}{705159}} \ {{ \%B3} \sp 4}} - \\ \displaystyle \left. -{{{801511} \over {26117}} \ {{ \%B3} \sp 3}} - -{{{17206178} \over {705159}} \ {{ \%B3} \sp 2}} - -{{{4406102} \over {705159}} \ { \%B3}}+ -{{377534} \over {705159}} +{{\frac{801511}{26117}} \ {{ \%B3} \sp 3}} - +{{\frac{17206178}{705159}} \ {{ \%B3} \sp 2}} - +{{\frac{4406102}{705159}} \ { \%B3}}+ +{\frac{377534}{705159}} \right], \end{array} $$ @@ -51648,66 +51285,66 @@ $$ \\ \\ \displaystyle -{{{1184459} \over {1645371}} \ {{ \%B4} \sp {19}}} - -{{{2335702} \over {548457}} \ {{ \%B4} \sp {18}}} - -{{{5460230} \over {182819}} \ {{ \%B4} \sp {17}}}+ -{{{79900378} \over {1645371}} \ {{ \%B4} \sp {16}}}+ +{{\frac{1184459}{1645371}} \ {{ \%B4} \sp {19}}} - +{{\frac{2335702}{548457}} \ {{ \%B4} \sp {18}}} - +{{\frac{5460230}{182819}} \ {{ \%B4} \sp {17}}}+ +{{\frac{79900378}{1645371}} \ {{ \%B4} \sp {16}}}+ \\ \displaystyle -{{{43953929} \over {548457}} \ {{ \%B4} \sp {15}}}+ -{{{13420192} \over {182819}} \ {{ \%B4} \sp {14}}}+ -{{{553986} \over {3731}} \ {{ \%B4} \sp {13}}}+ -{{{193381378} \over {1645371}} \ {{ \%B4} \sp {12}}}+ +{{\frac{43953929}{548457}} \ {{ \%B4} \sp {15}}}+ +{{\frac{13420192}{182819}} \ {{ \%B4} \sp {14}}}+ +{{\frac{553986}{3731}} \ {{ \%B4} \sp {13}}}+ +{{\frac{193381378}{1645371}} \ {{ \%B4} \sp {12}}}+ \\ \displaystyle -{{{35978916} \over {182819}} \ {{ \%B4} \sp {11}}}+ -{{{358660781} \over {1645371}} \ {{ \%B4} \sp {10}}}+ -{{{271667666} \over {1645371}} \ {{ \%B4} \sp 9}}+ -{{{118784873} \over {548457}} \ {{ \%B4} \sp 8}}+ +{{\frac{35978916}{182819}} \ {{ \%B4} \sp {11}}}+ +{{\frac{358660781}{1645371}} \ {{ \%B4} \sp {10}}}+ +{{\frac{271667666}{1645371}} \ {{ \%B4} \sp 9}}+ +{{\frac{118784873}{548457}} \ {{ \%B4} \sp 8}}+ \\ \displaystyle -{{{337505020} \over {1645371}} \ {{ \%B4} \sp 7}}+ -{{{1389370} \over {11193}} \ {{ \%B4} \sp 6}}+ -{{{688291} \over {4459}} \ {{ \%B4} \sp 5}}+ -{{{3378002} \over {42189}} \ {{ \%B4} \sp 4}}+ +{{\frac{337505020}{1645371}} \ {{ \%B4} \sp 7}}+ +{{\frac{1389370}{11193}} \ {{ \%B4} \sp 6}}+ +{{\frac{688291}{4459}} \ {{ \%B4} \sp 5}}+ +{{\frac{3378002}{42189}} \ {{ \%B4} \sp 4}}+ \\ \displaystyle -{{{140671876} \over {1645371}} \ {{ \%B4} \sp 3}}+ -{{{32325724} \over {548457}} \ {{ \%B4} \sp 2}} - -{{{8270} \over {343}} \ { \%B4}} - -{{9741532} \over {1645371}}, +{{\frac{140671876}{1645371}} \ {{ \%B4} \sp 3}}+ +{{\frac{32325724}{548457}} \ {{ \%B4} \sp 2}} - +{{\frac{8270}{343}} \ { \%B4}} - +{\frac{9741532}{1645371}}, \\ \\ \displaystyle --{{{91729} \over {705159}} \ {{ \%B4} \sp {19}}}+ -{{{487915} \over {705159}} \ {{ \%B4} \sp {18}}}+ -{{{4114333} \over {705159}} \ {{ \%B4} \sp {17}}} - -{{{1276987} \over {235053}} \ {{ \%B4} \sp {16}}} - +-{{\frac{91729}{705159}} \ {{ \%B4} \sp {19}}}+ +{{\frac{487915}{705159}} \ {{ \%B4} \sp {18}}}+ +{{\frac{4114333}{705159}} \ {{ \%B4} \sp {17}}} - +{{\frac{1276987}{235053}} \ {{ \%B4} \sp {16}}} - \\ \displaystyle -{{{13243117} \over {705159}} \ {{ \%B4} \sp {15}}} - -{{{16292173} \over {705159}} \ {{ \%B4} \sp {14}}} - -{{{26536060} \over {705159}} \ {{ \%B4} \sp {13}}} - -{{{722714} \over {18081}} \ {{ \%B4} \sp {12}}} - +{{\frac{13243117}{705159}} \ {{ \%B4} \sp {15}}} - +{{\frac{16292173}{705159}} \ {{ \%B4} \sp {14}}} - +{{\frac{26536060}{705159}} \ {{ \%B4} \sp {13}}} - +{{\frac{722714}{18081}} \ {{ \%B4} \sp {12}}} - \\ \displaystyle -{{{5382578} \over {100737}} \ {{ \%B4} \sp {11}}} - -{{{15449995} \over {235053}} \ {{ \%B4} \sp {10}}} - -{{{14279770} \over {235053}} \ {{ \%B4} \sp 9}} - -{{{6603890} \over {100737}} \ {{ \%B4} \sp 8}} - +{{\frac{5382578}{100737}} \ {{ \%B4} \sp {11}}} - +{{\frac{15449995}{235053}} \ {{ \%B4} \sp {10}}} - +{{\frac{14279770}{235053}} \ {{ \%B4} \sp 9}} - +{{\frac{6603890}{100737}} \ {{ \%B4} \sp 8}} - \\ \displaystyle -{{{409930} \over {6027}} \ {{ \%B4} \sp 7}} - -{{{37340389} \over {705159}} \ {{ \%B4} \sp 6}} - -{{{34893715} \over {705159}} \ {{ \%B4} \sp 5}} - -{{{26686318} \over {705159}} \ {{ \%B4} \sp 4}} - +{{\frac{409930}{6027}} \ {{ \%B4} \sp 7}} - +{{\frac{37340389}{705159}} \ {{ \%B4} \sp 6}} - +{{\frac{34893715}{705159}} \ {{ \%B4} \sp 5}} - +{{\frac{26686318}{705159}} \ {{ \%B4} \sp 4}} - \\ \displaystyle \left. -{{{801511} \over {26117}} \ {{ \%B4} \sp 3}} - -{{{17206178} \over {705159}} \ {{ \%B4} \sp 2}} - -{{{4406102} \over {705159}} \ { \%B4}}+ -{{377534} \over {705159}} +{{\frac{801511}{26117}} \ {{ \%B4} \sp 3}} - +{{\frac{17206178}{705159}} \ {{ \%B4} \sp 2}} - +{{\frac{4406102}{705159}} \ { \%B4}}+ +{\frac{377534}{705159}} \right], \end{array} $$ @@ -51719,66 +51356,66 @@ $$ \\ \\ \displaystyle -{{{1184459} \over {1645371}} \ {{ \%B5} \sp {19}}} - -{{{2335702} \over {548457}} \ {{ \%B5} \sp {18}}} - -{{{5460230} \over {182819}} \ {{ \%B5} \sp {17}}}+ -{{{79900378} \over {1645371}} \ {{ \%B5} \sp {16}}}+ +{{\frac{1184459}{1645371}} \ {{ \%B5} \sp {19}}} - +{{\frac{2335702}{548457}} \ {{ \%B5} \sp {18}}} - +{{\frac{5460230}{182819}} \ {{ \%B5} \sp {17}}}+ +{{\frac{79900378}{1645371}} \ {{ \%B5} \sp {16}}}+ \\ \displaystyle -{{{43953929} \over {548457}} \ {{ \%B5} \sp {15}}}+ -{{{13420192} \over {182819}} \ {{ \%B5} \sp {14}}}+ -{{{553986} \over {3731}} \ {{ \%B5} \sp {13}}}+ -{{{193381378} \over {1645371}} \ {{ \%B5} \sp {12}}}+ +{{\frac{43953929}{548457}} \ {{ \%B5} \sp {15}}}+ +{{\frac{13420192}{182819}} \ {{ \%B5} \sp {14}}}+ +{{\frac{553986}{3731}} \ {{ \%B5} \sp {13}}}+ +{{\frac{193381378}{1645371}} \ {{ \%B5} \sp {12}}}+ \\ \displaystyle -{{{35978916} \over {182819}} \ {{ \%B5} \sp {11}}}+ -{{{358660781} \over {1645371}} \ {{ \%B5} \sp {10}}}+ -{{{271667666} \over {1645371}} \ {{ \%B5} \sp 9}}+ -{{{118784873} \over {548457}} \ {{ \%B5} \sp 8}}+ +{{\frac{35978916}{182819}} \ {{ \%B5} \sp {11}}}+ +{{\frac{358660781}{1645371}} \ {{ \%B5} \sp {10}}}+ +{{\frac{271667666}{1645371}} \ {{ \%B5} \sp 9}}+ +{{\frac{118784873}{548457}} \ {{ \%B5} \sp 8}}+ \\ \displaystyle -{{{337505020} \over {1645371}} \ {{ \%B5} \sp 7}}+ -{{{1389370} \over {11193}} \ {{ \%B5} \sp 6}}+ -{{{688291} \over {4459}} \ {{ \%B5} \sp 5}}+ -{{{3378002} \over {42189}} \ {{ \%B5} \sp 4}}+ +{{\frac{337505020}{1645371}} \ {{ \%B5} \sp 7}}+ +{{\frac{1389370}{11193}} \ {{ \%B5} \sp 6}}+ +{{\frac{688291}{4459}} \ {{ \%B5} \sp 5}}+ +{{\frac{3378002}{42189}} \ {{ \%B5} \sp 4}}+ \\ \displaystyle -{{{140671876} \over {1645371}} \ {{ \%B5} \sp 3}}+ -{{{32325724} \over {548457}} \ {{ \%B5} \sp 2}} - -{{{8270} \over {343}} \ { \%B5}} - -{{9741532} \over {1645371}}, +{{\frac{140671876}{1645371}} \ {{ \%B5} \sp 3}}+ +{{\frac{32325724}{548457}} \ {{ \%B5} \sp 2}} - +{{\frac{8270}{343}} \ { \%B5}} - +{\frac{9741532}{1645371}}, \\ \\ \displaystyle --{{{91729} \over {705159}} \ {{ \%B5} \sp {19}}}+ -{{{487915} \over {705159}} \ {{ \%B5} \sp {18}}}+ -{{{4114333} \over {705159}} \ {{ \%B5} \sp {17}}} - -{{{1276987} \over {235053}} \ {{ \%B5} \sp {16}}} - +-{{\frac{91729}{705159}} \ {{ \%B5} \sp {19}}}+ +{{\frac{487915}{705159}} \ {{ \%B5} \sp {18}}}+ +{{\frac{4114333}{705159}} \ {{ \%B5} \sp {17}}} - +{{\frac{1276987}{235053}} \ {{ \%B5} \sp {16}}} - \\ \displaystyle -{{{13243117} \over {705159}} \ {{ \%B5} \sp {15}}} - -{{{16292173} \over {705159}} \ {{ \%B5} \sp {14}}} - -{{{26536060} \over {705159}} \ {{ \%B5} \sp {13}}} - -{{{722714} \over {18081}} \ {{ \%B5} \sp {12}}} - +{{\frac{13243117}{705159}} \ {{ \%B5} \sp {15}}} - +{{\frac{16292173}{705159}} \ {{ \%B5} \sp {14}}} - +{{\frac{26536060}{705159}} \ {{ \%B5} \sp {13}}} - +{{\frac{722714}{18081}} \ {{ \%B5} \sp {12}}} - \\ \displaystyle -{{{5382578} \over {100737}} \ {{ \%B5} \sp {11}}} - -{{{15449995} \over {235053}} \ {{ \%B5} \sp {10}}} - -{{{14279770} \over {235053}} \ {{ \%B5} \sp 9}} - -{{{6603890} \over {100737}} \ {{ \%B5} \sp 8}} - +{{\frac{5382578}{100737}} \ {{ \%B5} \sp {11}}} - +{{\frac{15449995}{235053}} \ {{ \%B5} \sp {10}}} - +{{\frac{14279770}{235053}} \ {{ \%B5} \sp 9}} - +{{\frac{6603890}{100737}} \ {{ \%B5} \sp 8}} - \\ \displaystyle -{{{409930} \over {6027}} \ {{ \%B5} \sp 7}} - -{{{37340389} \over {705159}} \ {{ \%B5} \sp 6}} - -{{{34893715} \over {705159}} \ {{ \%B5} \sp 5}} - -{{{26686318} \over {705159}} \ {{ \%B5} \sp 4}} - +{{\frac{409930}{6027}} \ {{ \%B5} \sp 7}} - +{{\frac{37340389}{705159}} \ {{ \%B5} \sp 6}} - +{{\frac{34893715}{705159}} \ {{ \%B5} \sp 5}} - +{{\frac{26686318}{705159}} \ {{ \%B5} \sp 4}} - \\ \displaystyle \left. -{{{801511} \over {26117}} \ {{ \%B5} \sp 3}} - -{{{17206178} \over {705159}} \ {{ \%B5} \sp 2}} - -{{{4406102} \over {705159}} \ { \%B5}}+ -{{377534} \over {705159}} +{{\frac{801511}{26117}} \ {{ \%B5} \sp 3}} - +{{\frac{17206178}{705159}} \ {{ \%B5} \sp 2}} - +{{\frac{4406102}{705159}} \ { \%B5}}+ +{\frac{377534}{705159}} \right], \end{array} $$ @@ -51790,66 +51427,66 @@ $$ \\ \\ \displaystyle -{{{1184459} \over {1645371}} \ {{ \%B6} \sp {19}}} - -{{{2335702} \over {548457}} \ {{ \%B6} \sp {18}}} - -{{{5460230} \over {182819}} \ {{ \%B6} \sp {17}}}+ -{{{79900378} \over {1645371}} \ {{ \%B6} \sp {16}}}+ +{{\frac{1184459}{1645371}} \ {{ \%B6} \sp {19}}} - +{{\frac{2335702}{548457}} \ {{ \%B6} \sp {18}}} - +{{\frac{5460230}{182819}} \ {{ \%B6} \sp {17}}}+ +{{\frac{79900378}{1645371}} \ {{ \%B6} \sp {16}}}+ \\ \displaystyle -{{{43953929} \over {548457}} \ {{ \%B6} \sp {15}}}+ -{{{13420192} \over {182819}} \ {{ \%B6} \sp {14}}}+ -{{{553986} \over {3731}} \ {{ \%B6} \sp {13}}}+ -{{{193381378} \over {1645371}} \ {{ \%B6} \sp {12}}}+ +{{\frac{43953929}{548457}} \ {{ \%B6} \sp {15}}}+ +{{\frac{13420192}{182819}} \ {{ \%B6} \sp {14}}}+ +{{\frac{553986}{3731}} \ {{ \%B6} \sp {13}}}+ +{{\frac{193381378}{1645371}} \ {{ \%B6} \sp {12}}}+ \\ \displaystyle -{{{35978916} \over {182819}} \ {{ \%B6} \sp {11}}}+ -{{{358660781} \over {1645371}} \ {{ \%B6} \sp {10}}}+ -{{{271667666} \over {1645371}} \ {{ \%B6} \sp 9}}+ -{{{118784873} \over {548457}} \ {{ \%B6} \sp 8}}+ +{{\frac{35978916}{182819}} \ {{ \%B6} \sp {11}}}+ +{{\frac{358660781}{1645371}} \ {{ \%B6} \sp {10}}}+ +{{\frac{271667666}{1645371}} \ {{ \%B6} \sp 9}}+ +{{\frac{118784873}{548457}} \ {{ \%B6} \sp 8}}+ \\ \displaystyle -{{{337505020} \over {1645371}} \ {{ \%B6} \sp 7}}+ -{{{1389370} \over {11193}} \ {{ \%B6} \sp 6}}+ -{{{688291} \over {4459}} \ {{ \%B6} \sp 5}}+ -{{{3378002} \over {42189}} \ {{ \%B6} \sp 4}}+ +{{\frac{337505020}{1645371}} \ {{ \%B6} \sp 7}}+ +{{\frac{1389370}{11193}} \ {{ \%B6} \sp 6}}+ +{{\frac{688291}{4459}} \ {{ \%B6} \sp 5}}+ +{{\frac{3378002}{42189}} \ {{ \%B6} \sp 4}}+ \\ \displaystyle -{{{140671876} \over {1645371}} \ {{ \%B6} \sp 3}}+ -{{{32325724} \over {548457}} \ {{ \%B6} \sp 2}} - -{{{8270} \over {343}} \ { \%B6}} - -{{9741532} \over {1645371}}, +{{\frac{140671876}{1645371}} \ {{ \%B6} \sp 3}}+ +{{\frac{32325724}{548457}} \ {{ \%B6} \sp 2}} - +{{\frac{8270}{343}} \ { \%B6}} - +{\frac{9741532}{1645371}}, \\ \\ \displaystyle --{{{91729} \over {705159}} \ {{ \%B6} \sp {19}}}+ -{{{487915} \over {705159}} \ {{ \%B6} \sp {18}}}+ -{{{4114333} \over {705159}} \ {{ \%B6} \sp {17}}} - -{{{1276987} \over {235053}} \ {{ \%B6} \sp {16}}} - +-{{\frac{91729}{705159}} \ {{ \%B6} \sp {19}}}+ +{{\frac{487915}{705159}} \ {{ \%B6} \sp {18}}}+ +{{\frac{4114333}{705159}} \ {{ \%B6} \sp {17}}} - +{{\frac{1276987}{235053}} \ {{ \%B6} \sp {16}}} - \\ \displaystyle -{{{13243117} \over {705159}} \ {{ \%B6} \sp {15}}} - -{{{16292173} \over {705159}} \ {{ \%B6} \sp {14}}} - -{{{26536060} \over {705159}} \ {{ \%B6} \sp {13}}} - -{{{722714} \over {18081}} \ {{ \%B6} \sp {12}}} - +{{\frac{13243117}{705159}} \ {{ \%B6} \sp {15}}} - +{{\frac{16292173}{705159}} \ {{ \%B6} \sp {14}}} - +{{\frac{26536060}{705159}} \ {{ \%B6} \sp {13}}} - +{{\frac{722714}{18081}} \ {{ \%B6} \sp {12}}} - \\ \displaystyle -{{{5382578} \over {100737}} \ {{ \%B6} \sp {11}}} - -{{{15449995} \over {235053}} \ {{ \%B6} \sp {10}}} - -{{{14279770} \over {235053}} \ {{ \%B6} \sp 9}} - -{{{6603890} \over {100737}} \ {{ \%B6} \sp 8}} - +{{\frac{5382578}{100737}} \ {{ \%B6} \sp {11}}} - +{{\frac{15449995}{235053}} \ {{ \%B6} \sp {10}}} - +{{\frac{14279770}{235053}} \ {{ \%B6} \sp 9}} - +{{\frac{6603890}{100737}} \ {{ \%B6} \sp 8}} - \\ \displaystyle -{{{409930} \over {6027}} \ {{ \%B6} \sp 7}} - -{{{37340389} \over {705159}} \ {{ \%B6} \sp 6}} - -{{{34893715} \over {705159}} \ {{ \%B6} \sp 5}} - -{{{26686318} \over {705159}} \ {{ \%B6} \sp 4}} - +{{\frac{409930}{6027}} \ {{ \%B6} \sp 7}} - +{{\frac{37340389}{705159}} \ {{ \%B6} \sp 6}} - +{{\frac{34893715}{705159}} \ {{ \%B6} \sp 5}} - +{{\frac{26686318}{705159}} \ {{ \%B6} \sp 4}} - \\ \displaystyle \left. -{{{801511} \over {26117}} \ {{ \%B6} \sp 3}} - -{{{17206178} \over {705159}} \ {{ \%B6} \sp 2}} - -{{{4406102} \over {705159}} \ { \%B6}}+ -{{377534} \over {705159}} +{{\frac{801511}{26117}} \ {{ \%B6} \sp 3}} - +{{\frac{17206178}{705159}} \ {{ \%B6} \sp 2}} - +{{\frac{4406102}{705159}} \ { \%B6}}+ +{\frac{377534}{705159}} \right], \end{array} $$ @@ -51861,66 +51498,66 @@ $$ \\ \\ \displaystyle -{{{1184459} \over {1645371}} \ {{ \%B7} \sp {19}}} - -{{{2335702} \over {548457}} \ {{ \%B7} \sp {18}}} - -{{{5460230} \over {182819}} \ {{ \%B7} \sp {17}}}+ -{{{79900378} \over {1645371}} \ {{ \%B7} \sp {16}}}+ +{{\frac{1184459}{1645371}} \ {{ \%B7} \sp {19}}} - +{{\frac{2335702}{548457}} \ {{ \%B7} \sp {18}}} - +{{\frac{5460230}{182819}} \ {{ \%B7} \sp {17}}}+ +{{\frac{79900378}{1645371}} \ {{ \%B7} \sp {16}}}+ \\ \displaystyle -{{{43953929} \over {548457}} \ {{ \%B7} \sp {15}}}+ -{{{13420192} \over {182819}} \ {{ \%B7} \sp {14}}}+ -{{{553986} \over {3731}} \ {{ \%B7} \sp {13}}}+ -{{{193381378} \over {1645371}} \ {{ \%B7} \sp {12}}}+ +{{\frac{43953929}{548457}} \ {{ \%B7} \sp {15}}}+ +{{\frac{13420192}{182819}} \ {{ \%B7} \sp {14}}}+ +{{\frac{553986}{3731}} \ {{ \%B7} \sp {13}}}+ +{{\frac{193381378}{1645371}} \ {{ \%B7} \sp {12}}}+ \\ \displaystyle -{{{35978916} \over {182819}} \ {{ \%B7} \sp {11}}}+ -{{{358660781} \over {1645371}} \ {{ \%B7} \sp {10}}}+ -{{{271667666} \over {1645371}} \ {{ \%B7} \sp 9}}+ -{{{118784873} \over {548457}} \ {{ \%B7} \sp 8}}+ +{{\frac{35978916}{182819}} \ {{ \%B7} \sp {11}}}+ +{{\frac{358660781}{1645371}} \ {{ \%B7} \sp {10}}}+ +{{\frac{271667666}{1645371}} \ {{ \%B7} \sp 9}}+ +{{\frac{118784873}{548457}} \ {{ \%B7} \sp 8}}+ \\ \displaystyle -{{{337505020} \over {1645371}} \ {{ \%B7} \sp 7}}+ -{{{1389370} \over {11193}} \ {{ \%B7} \sp 6}}+ -{{{688291} \over {4459}} \ {{ \%B7} \sp 5}}+ -{{{3378002} \over {42189}} \ {{ \%B7} \sp 4}}+ +{{\frac{337505020}{1645371}} \ {{ \%B7} \sp 7}}+ +{{\frac{1389370}{11193}} \ {{ \%B7} \sp 6}}+ +{{\frac{688291}{4459}} \ {{ \%B7} \sp 5}}+ +{{\frac{3378002}{42189}} \ {{ \%B7} \sp 4}}+ \\ \displaystyle -{{{140671876} \over {1645371}} \ {{ \%B7} \sp 3}}+ -{{{32325724} \over {548457}} \ {{ \%B7} \sp 2}} - -{{{8270} \over {343}} \ { \%B7}} - -{{9741532} \over {1645371}}, +{{\frac{140671876}{1645371}} \ {{ \%B7} \sp 3}}+ +{{\frac{32325724}{548457}} \ {{ \%B7} \sp 2}} - +{{\frac{8270}{343}} \ { \%B7}} - +{\frac{9741532}{1645371}}, \\ \\ \displaystyle --{{{91729} \over {705159}} \ {{ \%B7} \sp {19}}}+ -{{{487915} \over {705159}} \ {{ \%B7} \sp {18}}}+ -{{{4114333} \over {705159}} \ {{ \%B7} \sp {17}}} - -{{{1276987} \over {235053}} \ {{ \%B7} \sp {16}}} - +-{{\frac{91729}{705159}} \ {{ \%B7} \sp {19}}}+ +{{\frac{487915}{705159}} \ {{ \%B7} \sp {18}}}+ +{{\frac{4114333}{705159}} \ {{ \%B7} \sp {17}}} - +{{\frac{1276987}{235053}} \ {{ \%B7} \sp {16}}} - \\ \displaystyle -{{{13243117} \over {705159}} \ {{ \%B7} \sp {15}}} - -{{{16292173} \over {705159}} \ {{ \%B7} \sp {14}}} - -{{{26536060} \over {705159}} \ {{ \%B7} \sp {13}}} - -{{{722714} \over {18081}} \ {{ \%B7} \sp {12}}} - +{{\frac{13243117}{705159}} \ {{ \%B7} \sp {15}}} - +{{\frac{16292173}{705159}} \ {{ \%B7} \sp {14}}} - +{{\frac{26536060}{705159}} \ {{ \%B7} \sp {13}}} - +{{\frac{722714}{18081}} \ {{ \%B7} \sp {12}}} - \\ \displaystyle -{{{5382578} \over {100737}} \ {{ \%B7} \sp {11}}} - -{{{15449995} \over {235053}} \ {{ \%B7} \sp {10}}} - -{{{14279770} \over {235053}} \ {{ \%B7} \sp 9}} - -{{{6603890} \over {100737}} \ {{ \%B7} \sp 8}} - +{{\frac{5382578}{100737}} \ {{ \%B7} \sp {11}}} - +{{\frac{15449995}{235053}} \ {{ \%B7} \sp {10}}} - +{{\frac{14279770}{235053}} \ {{ \%B7} \sp 9}} - +{{\frac{6603890}{100737}} \ {{ \%B7} \sp 8}} - \\ \displaystyle -{{{409930} \over {6027}} \ {{ \%B7} \sp 7}} - -{{{37340389} \over {705159}} \ {{ \%B7} \sp 6}} - -{{{34893715} \over {705159}} \ {{ \%B7} \sp 5}} - -{{{26686318} \over {705159}} \ {{ \%B7} \sp 4}} - +{{\frac{409930}{6027}} \ {{ \%B7} \sp 7}} - +{{\frac{37340389}{705159}} \ {{ \%B7} \sp 6}} - +{{\frac{34893715}{705159}} \ {{ \%B7} \sp 5}} - +{{\frac{26686318}{705159}} \ {{ \%B7} \sp 4}} - \\ \displaystyle \left. -{{{801511} \over {26117}} \ {{ \%B7} \sp 3}} - -{{{17206178} \over {705159}} \ {{ \%B7} \sp 2}} - -{{{4406102} \over {705159}} \ { \%B7}}+ -{{377534} \over {705159}} +{{\frac{801511}{26117}} \ {{ \%B7} \sp 3}} - +{{\frac{17206178}{705159}} \ {{ \%B7} \sp 2}} - +{{\frac{4406102}{705159}} \ { \%B7}}+ +{\frac{377534}{705159}} \right], \end{array} $$ @@ -51932,67 +51569,67 @@ $$ \\ \\ \displaystyle -{{{1184459} \over {1645371}} \ {{ \%B8} \sp {19}}} - -{{{2335702} \over {548457}} \ {{ \%B8} \sp {18}}} - -{{{5460230} \over {182819}} \ {{ \%B8} \sp {17}}}+ -{{{79900378} \over {1645371}} \ {{ \%B8} \sp {16}}}+ +{{\frac{1184459}{1645371}} \ {{ \%B8} \sp {19}}} - +{{\frac{2335702}{548457}} \ {{ \%B8} \sp {18}}} - +{{\frac{5460230}{182819}} \ {{ \%B8} \sp {17}}}+ +{{\frac{79900378}{1645371}} \ {{ \%B8} \sp {16}}}+ \\ \displaystyle -{{{43953929} \over {548457}} \ {{ \%B8} \sp {15}}}+ -{{{13420192} \over {182819}} \ {{ \%B8} \sp {14}}}+ -{{{553986} \over {3731}} \ {{ \%B8} \sp {13}}}+ -{{{193381378} \over {1645371}} \ {{ \%B8} \sp {12}}}+ +{{\frac{43953929}{548457}} \ {{ \%B8} \sp {15}}}+ +{{\frac{13420192}{182819}} \ {{ \%B8} \sp {14}}}+ +{{\frac{553986}{3731}} \ {{ \%B8} \sp {13}}}+ +{{\frac{193381378}{1645371}} \ {{ \%B8} \sp {12}}}+ \\ \displaystyle -{{{35978916} \over {182819}} \ {{ \%B8} \sp {11}}}+ -{{{358660781} \over {1645371}} \ {{ \%B8} \sp {10}}}+ -{{{271667666} \over {1645371}} \ {{ \%B8} \sp 9}}+ -{{{118784873} \over {548457}} \ {{ \%B8} \sp 8}}+ +{{\frac{35978916}{182819}} \ {{ \%B8} \sp {11}}}+ +{{\frac{358660781}{1645371}} \ {{ \%B8} \sp {10}}}+ +{{\frac{271667666}{1645371}} \ {{ \%B8} \sp 9}}+ +{{\frac{118784873}{548457}} \ {{ \%B8} \sp 8}}+ \\ \displaystyle -{{{337505020} \over {1645371}} \ {{ \%B8} \sp 7}}+ -{{{1389370} \over {11193}} \ {{ \%B8} \sp 6}}+ -{{{688291} \over {4459}} \ {{ \%B8} \sp 5}}+ -{{{3378002} \over {42189}} \ {{ \%B8} \sp 4}}+ +{{\frac{337505020}{1645371}} \ {{ \%B8} \sp 7}}+ +{{\frac{1389370}{11193}} \ {{ \%B8} \sp 6}}+ +{{\frac{688291}{4459}} \ {{ \%B8} \sp 5}}+ +{{\frac{3378002}{42189}} \ {{ \%B8} \sp 4}}+ \\ \displaystyle -{{{140671876} \over {1645371}} \ {{ \%B8} \sp 3}}+ -{{{32325724} \over {548457}} \ {{ \%B8} \sp 2}} - -{{{8270} \over {343}} \ { \%B8}} - -{{9741532} \over {1645371}}, +{{\frac{140671876}{1645371}} \ {{ \%B8} \sp 3}}+ +{{\frac{32325724}{548457}} \ {{ \%B8} \sp 2}} - +{{\frac{8270}{343}} \ { \%B8}} - +{\frac{9741532}{1645371}}, \\ \\ \displaystyle --{{{91729} \over {705159}} \ {{ \%B8} \sp {19}}}+ -{{{487915} \over {705159}} \ {{ \%B8} \sp {18}}}+ -{{{4114333} \over {705159}} \ {{ \%B8} \sp {17}}} - -{{{1276987} \over {235053}} \ {{ \%B8} \sp {16}}} - +-{{\frac{91729}{705159}} \ {{ \%B8} \sp {19}}}+ +{{\frac{487915}{705159}} \ {{ \%B8} \sp {18}}}+ +{{\frac{4114333}{705159}} \ {{ \%B8} \sp {17}}} - +{{\frac{1276987}{235053}} \ {{ \%B8} \sp {16}}} - \\ \displaystyle -{{{13243117} \over {705159}} \ {{ \%B8} \sp {15}}} - -{{{16292173} \over {705159}} \ {{ \%B8} \sp {14}}} - -{{{26536060} \over {705159}} \ {{ \%B8} \sp {13}}} - -{{{722714} \over {18081}} \ {{ \%B8} \sp {12}}} - +{{\frac{13243117}{705159}} \ {{ \%B8} \sp {15}}} - +{{\frac{16292173}{705159}} \ {{ \%B8} \sp {14}}} - +{{\frac{26536060}{705159}} \ {{ \%B8} \sp {13}}} - +{{\frac{722714}{18081}} \ {{ \%B8} \sp {12}}} - \\ \displaystyle -{{{5382578} \over {100737}} \ {{ \%B8} \sp {11}}} - -{{{15449995} \over {235053}} \ {{ \%B8} \sp {10}}} - -{{{14279770} \over {235053}} \ {{ \%B8} \sp 9}} - -{{{6603890} \over {100737}} \ {{ \%B8} \sp 8}} - +{{\frac{5382578}{100737}} \ {{ \%B8} \sp {11}}} - +{{\frac{15449995}{235053}} \ {{ \%B8} \sp {10}}} - +{{\frac{14279770}{235053}} \ {{ \%B8} \sp 9}} - +{{\frac{6603890}{100737}} \ {{ \%B8} \sp 8}} - \\ \displaystyle -{{{409930} \over {6027}} \ {{ \%B8} \sp 7}} - -{{{37340389} \over {705159}} \ {{ \%B8} \sp 6}} - -{{{34893715} \over {705159}} \ {{ \%B8} \sp 5}} - -{{{26686318} \over {705159}} \ {{ \%B8} \sp 4}} - +{{\frac{409930}{6027}} \ {{ \%B8} \sp 7}} - +{{\frac{37340389}{705159}} \ {{ \%B8} \sp 6}} - +{{\frac{34893715}{705159}} \ {{ \%B8} \sp 5}} - +{{\frac{26686318}{705159}} \ {{ \%B8} \sp 4}} - \\ \displaystyle \left. \left. -{{{801511} \over {26117}} \ {{ \%B8} \sp 3}} - -{{{17206178} \over {705159}} \ {{ \%B8} \sp 2}} - -{{{4406102} \over {705159}} \ { \%B8}}+ -{{377534} \over {705159}} +{{\frac{801511}{26117}} \ {{ \%B8} \sp 3}} - +{{\frac{17206178}{705159}} \ {{ \%B8} \sp 2}} - +{{\frac{4406102}{705159}} \ { \%B8}}+ +{\frac{377534}{705159}} \right] \right] \end{array} @@ -52024,13 +51661,13 @@ $$ \begin{array}{@{}l} \left[ \left[ --{{10048059} \over {2097152}}, +-{\frac{10048059}{2097152}}, \right. \right. \\ \\ \displaystyle -\left( +\frac{\left( \begin{array}{@{}l} 450305731698538794352439791383896641459673197621176821933588120838 \\ @@ -52049,9 +51686,8 @@ $$ \displaystyle 0045253024786561923163288214175 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 450305728302524548851651180698582663508310069375732046528055470686 \\ @@ -52070,13 +51706,13 @@ $$ \displaystyle 4817381189277066143312396681216, \end{array} -\right) +\right)} \end{array} $$ $$ \begin{array}{@{}l} \left. -\left( +\frac{\left( \begin{array}{@{}l} 210626076882347507389479868048601659624960714869068553876368371502 \\ @@ -52095,9 +51731,8 @@ $$ \displaystyle 15887037891389881895 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 210626060949846419247211380481647417534196295329643410241390314236 \\ @@ -52116,19 +51751,19 @@ $$ \displaystyle 83837629939232800768 \end{array} -\right) +\right)} \right], \end{array} $$ $$ \begin{array}{@{}l} \left[ --{{2563013} \over {2097152}}, +-{\frac{2563013}{2097152}}, \right. \\ \\ \displaystyle -\left( +\frac{\left( \begin{array}{@{}l} -261134617679192778969861769323775771923825996306354178192275233 \\ @@ -52138,9 +51773,8 @@ $$ \displaystyle 9294837523030237337236806668167446173001727271353311571242897 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 11652254005052225305839819160045891437572266102768589900087901348 \\ @@ -52150,13 +51784,13 @@ $$ \displaystyle 63963417619308395977544797140231469234269034921938055593984, \end{array} -\right) +\right)} \end{array} $$ $$ \begin{array}{@{}l} \left. -\left( +\frac{\left( \begin{array}{@{}l} 3572594550275917221096588729615788272998517054675603239578198141 \\ @@ -52166,9 +51800,8 @@ $$ \displaystyle 7574500619789892286110976997087250466235373 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 10395482693455989368770712448340260558008145511201705922005223665 \\ @@ -52178,19 +51811,19 @@ $$ \displaystyle 051315812439017247289173865014702966308864 \end{array} -\right) +\right)} \right], \end{array} $$ $$ \begin{array}{@{}l} \left[ --{{1715967} \over {2097152}}, +-{\frac{1715967}{2097152}}, \right. \\ \\ \displaystyle -\left( +\frac{\left( \begin{array}{@{}l} -421309353378430352108483951797708239037726150396958622482899843 \\ @@ -52200,9 +51833,8 @@ $$ \displaystyle 146518222580524697287410022543952491 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 94418141441853744586496920343492240524365974709662536639306419607 \\ @@ -52212,13 +51844,13 @@ $$ \displaystyle 4019307857605820364195856822304768, \end{array} -\right) +\right)} \end{array} $$ $$ \begin{array}{@{}l} \left. -\left( +\frac{\left( \begin{array}{@{}l} 7635833347112644222515625424410831225347475669008589338834162172 \\ @@ -52228,9 +51860,8 @@ $$ \displaystyle 3890725914035 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 26241887640860971997842976104780666339342304678958516022785809785 \\ @@ -52240,19 +51871,19 @@ $$ \displaystyle 4128491675648 \end{array} -\right) +\right)} \right], \end{array} $$ $$ \begin{array}{@{}l} \left[ --{{437701} \over {2097152}}, +-{\frac{437701}{2097152}}, \right. \\ \\ \displaystyle -\left( +\frac{\left( \begin{array}{@{}l} 1683106908638349588322172332654225913562986313181951031452750161 \\ @@ -52262,9 +51893,8 @@ $$ \displaystyle 48453365491383623741304759 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 16831068680952133890017099827059136389630776687312261111677851880 \\ @@ -52274,41 +51904,40 @@ $$ \displaystyle 9999845423381649008099328, \end{array} -\right) +\right)} \end{array} $$ $$ \begin{array}{@{}l} \left. -\left( +\frac{\left( \begin{array}{@{}l} 4961550109835010186422681013422108735958714801003760639707968096 \\ \displaystyle 64691282670847283444311723917219104249213450966312411133 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 49615498727577383155091920782102090298528971186110971262363840408 \\ \displaystyle 2937659261914313170254867464792718363492160482442215424 \end{array} -\right) +\right)} \right], \end{array} $$ $$ \begin{array}{@{}l} \left[ -{{222801} \over {2097152}}, +{\frac{222801}{2097152}}, \right. \\ \\ \displaystyle -\left( +\frac{\left( \begin{array}{@{}l} -899488488040242826510759512197069142713604569254197827557300186 \\ @@ -52318,9 +51947,8 @@ $$ \displaystyle 7672383477 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 11678899986650263721777651006918885827089699602299347696908357524 \\ @@ -52330,13 +51958,13 @@ $$ \displaystyle 56372224, \end{array} -\right) +\right)} \end{array} $$ $$ \begin{array}{@{}l} \left. -\left( +\frac{\left( \begin{array}{@{}l} -238970488813315687832080154437380839561277150920849101984745299 \\ @@ -52346,9 +51974,8 @@ $$ \displaystyle 1291458703265 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 53554872736450963260904032866899319059882254446854114332215938336 \\ @@ -52358,19 +51985,19 @@ $$ \displaystyle 45479421952 \end{array} -\right) +\right)} \right], \end{array} $$ $$ \begin{array}{@{}l} \left[ -{{765693} \over {2097152}}, +{\frac{765693}{2097152}}, \right. \\ \\ \displaystyle -\left( +\frac{\left( \begin{array}{@{}l} 8558969219816716267873244761178198088724698958616670140213765754 \\ @@ -52380,9 +52007,8 @@ $$ \displaystyle 772512899000391009630373148561 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 29414424455330107909764284113763934998155802159458569179064525354 \\ @@ -52392,13 +52018,13 @@ $$ \displaystyle 567119652444639331719460159488, \end{array} -\right) +\right)} \end{array} $$ $$ \begin{array}{@{}l} \left. -\left( +\frac{\left( \begin{array}{@{}l} -205761823058257210124765032486024256111130258154358880884392366 \\ @@ -52408,9 +52034,8 @@ $$ \displaystyle 27622246433251878894899015 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 26715982033257355380979523535014502205763137598908350970917225206 \\ @@ -52420,19 +52045,19 @@ $$ \displaystyle 77775324180661095366656 \end{array} -\right) +\right)} \right], \end{array} $$ $$ \begin{array}{@{}l} \left[ -{{5743879} \over {2097152}}, +{\frac{5743879}{2097152}}, \right. \\ \\ \displaystyle -\left( +\frac{\left( \begin{array}{@{}l} 1076288816968906847955546394773570208171456724942618614023663123 \\ @@ -52448,9 +52073,8 @@ $$ \displaystyle 36666945350176624841488732463225 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 31317689570803179466484619400235520441903766134585849862285496319 \\ @@ -52466,13 +52090,13 @@ $$ \displaystyle 234867030420681530440845099008, \end{array} -\right) +\right)} \end{array} $$ $$ \begin{array}{@{}l} \left. -\left( +\frac{\left( \begin{array}{@{}l} -211328669918575091836412047556545843787017248986548599438982813 \\ @@ -52488,9 +52112,8 @@ $$ \displaystyle 8706752831632503615 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 16276155849379875802429066243471045808891444661684597180431538394 \\ @@ -52506,19 +52129,19 @@ $$ \displaystyle 051706396253618176 \end{array} -\right) +\right)} \right], \end{array} $$ $$ \begin{array}{@{}l} \left[ -{{19739877} \over {2097152}}, +{\frac{19739877}{2097152}}, \right. \\ \\ \displaystyle -\left( +\frac{\left( \begin{array}{@{}l} -299724993683270330379901580486152094921504038750070717770128576 \\ @@ -52540,9 +52163,8 @@ $$ \displaystyle 18607185928457030277807397796525813862762239286996106809728023675 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 23084332748522785907289100811918110239065041413214326461239367948 \\ @@ -52564,14 +52186,14 @@ $$ \displaystyle 9552929920110858560812556635485429471554031675979542656381353984, \end{array} -\right) +\right)} \end{array} $$ $$ \begin{array}{@{}l} \left. \left. -\left( +\frac{\left( \begin{array}{@{}l} -512818926354822848909627639786894008060093841066308045940796633 \\ @@ -52593,9 +52215,8 @@ $$ \displaystyle 376287516256195847052412587282839139194642913955 \end{array} -\right) -\over -\left( +\right)} +{\left( \begin{array}{@{}l} 22882819397784393305312087931812904711836310924553689903863908242 \\ @@ -52617,7 +52238,7 @@ $$ \displaystyle 4465749979827872616963053217673201717237252096 \end{array} -\right) +\right)} \right] \right] \end{array} @@ -53653,82 +53274,82 @@ $$ \begin{array}{@{}l} \left[ { \%B{32}}, -{{1 \over {27}} \ {{ \%B{32}} \sp {15}}}+ -{{2 \over {27}} \ {{ \%B{32}} \sp {14}}}+ -{{1 \over {27}} \ {{ \%B{32}} \sp {13}}} - -{{4 \over {27}} \ {{ \%B{32}} \sp {12}}} - -{{{11} \over {27}} \ {{ \%B{32}} \sp {11}}} - +{{\frac{1}{27}} \ {{ \%B{32}} \sp {15}}}+ +{{\frac{2}{27}} \ {{ \%B{32}} \sp {14}}}+ +{{\frac{1}{27}} \ {{ \%B{32}} \sp {13}}} - +{{\frac{4}{27}} \ {{ \%B{32}} \sp {12}}} - +{{\frac{11}{27}} \ {{ \%B{32}} \sp {11}}} - \right. \\ \\ \displaystyle -{{4 \over {27}} \ {{ \%B{32}} \sp {10}}}+ -{{1 \over {27}} \ {{ \%B{32}} \sp 9}}+ -{{{14} \over {27}} \ {{ \%B{32}} \sp 8}}+ -{{1 \over {27}} \ {{ \%B{32}} \sp 7}}+ -{{2 \over 9} \ {{ \%B{32}} \sp 6}}+ +{{\frac{4}{27}} \ {{ \%B{32}} \sp {10}}}+ +{{\frac{1}{27}} \ {{ \%B{32}} \sp 9}}+ +{{\frac{14}{27}} \ {{ \%B{32}} \sp 8}}+ +{{\frac{1}{27}} \ {{ \%B{32}} \sp 7}}+ +{{\frac{2}{9}} \ {{ \%B{32}} \sp 6}}+ \\ \\ \displaystyle -{{1 \over 3} \ {{ \%B{32}} \sp 5}}+ -{{2 \over 9} \ {{ \%B{32}} \sp 4}}+ +{{\frac{1}{3}} \ {{ \%B{32}} \sp 5}}+ +{{\frac{2}{9}} \ {{ \%B{32}} \sp 4}}+ {{ \%B{32}} \sp 3}+ -{{4 \over 3} \ {{ \%B{32}} \sp 2}} - +{{\frac{4}{3}} \ {{ \%B{32}} \sp 2}} - { \%B{32}} -2, \end{array} $$ $$ \begin{array}{@{}l} --{{1 \over {54}} \ {{ \%B{32}} \sp {15}}} -\hbox{\hskip 1.0cm} -{{1 \over {27}} \ {{ \%B{32}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{32}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{32}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{32}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{32}} \sp {15}}} -\hbox{\hskip 1.0cm} +{{\frac{1}{27}} \ {{ \%B{32}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{32}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{32}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{32}} \sp {11}}}+ \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{32}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{32}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{32}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{32}} \sp 7}} - -{{1 \over 9} \ {{ \%B{32}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{32}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{32}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{32}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{32}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{32}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{32}} \sp 5}} - -{{1 \over 9} \ {{ \%B{32}} \sp 4}} - -{{ \%B{32}} \sp 3} -{{2 \over 3} \ +{{\frac{1}{6}} \ {{ \%B{32}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{32}} \sp 4}} - +{{ \%B{32}} \sp 3} -{{\frac{2}{3}} \ {{ \%B{32}} \sp 2}}+ -{{1 \over 2} \ { \%B{32}}}+ -{3 \over 2}, +{{\frac{1}{2}} \ { \%B{32}}}+ +{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} --{{1 \over {54}} \ {{ \%B{32}} \sp {15}}} -\hbox{\hskip 1.0cm} -{{1 \over {27}} \ {{ \%B{32}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{32}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{32}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{32}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{32}} \sp {15}}} -\hbox{\hskip 1.0cm} +{{\frac{1}{27}} \ {{ \%B{32}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{32}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{32}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{32}} \sp {11}}}+ \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{32}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{32}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{32}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{32}} \sp 7}} - -{{1 \over 9} \ {{ \%B{32}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{32}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{32}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{32}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{32}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{32}} \sp 6}} - \\ \\ \displaystyle \left. -{{1 \over 6} \ {{ \%B{32}} \sp 5}} - -{{1 \over 9} \ {{ \%B{32}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{32}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{32}} \sp 4}} - {{ \%B{32}} \sp 3} - -{{2 \over 3} \ {{ \%B{32}} \sp 2}}+ -{{1 \over 2} \ { \%B{32}}}+ -{3 \over 2} +{{\frac{2}{3}} \ {{ \%B{32}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{32}}}+ +{\frac{3}{2}} \right], \end{array} $$ @@ -53736,80 +53357,80 @@ $$ \begin{array}{@{}l} \left[ { \%B{33}}, -{{1 \over {27}} \ {{ \%B{33}} \sp {15}}}+ -{{2 \over {27}} \ {{ \%B{33}} \sp {14}}}+ -{{1 \over {27}} \ {{ \%B{33}} \sp {13}}} - -{{4 \over {27}} \ {{ \%B{33}} \sp {12}}} - -{{{11} \over {27}} \ {{ \%B{33}} \sp {11}}} - +{{\frac{1}{27}} \ {{ \%B{33}} \sp {15}}}+ +{{\frac{2}{27}} \ {{ \%B{33}} \sp {14}}}+ +{{\frac{1}{27}} \ {{ \%B{33}} \sp {13}}} - +{{\frac{4}{27}} \ {{ \%B{33}} \sp {12}}} - +{{\frac{11}{27}} \ {{ \%B{33}} \sp {11}}} - \right. \\ \\ \displaystyle -{{4 \over {27}} \ {{ \%B{33}} \sp {10}}}+ -{{1 \over {27}} \ {{ \%B{33}} \sp 9}}+ -{{{14} \over {27}} \ {{ \%B{33}} \sp 8}}+ -{{1 \over {27}} \ {{ \%B{33}} \sp 7}}+ -{{2 \over 9} \ {{ \%B{33}} \sp 6}}+ +{{\frac{4}{27}} \ {{ \%B{33}} \sp {10}}}+ +{{\frac{1}{27}} \ {{ \%B{33}} \sp 9}}+ +{{\frac{14}{27}} \ {{ \%B{33}} \sp 8}}+ +{{\frac{1}{27}} \ {{ \%B{33}} \sp 7}}+ +{{\frac{2}{9}} \ {{ \%B{33}} \sp 6}}+ \\ \\ \displaystyle -{{1\over 3} \ {{ \%B{33}} \sp 5}}+ -{{2 \over 9} \ {{ \%B{33}} \sp 4}}+ +{{\frac{1}{3}} \ {{ \%B{33}} \sp 5}}+ +{{\frac{2}{9}} \ {{ \%B{33}} \sp 4}}+ {{ \%B{33}} \sp 3}+ -{{4 \over 3} \ {{ \%B{33}} \sp 2}} - +{{\frac{4}{3}} \ {{ \%B{33}} \sp 2}} - { \%B{33}} -2, \end{array} $$ $$ \begin{array}{@{}l} --{{1 \over {54}} \ {{ \%B{33}} \sp {15}}} -\hbox{\hskip 1.0cm} -{{1 \over {27}} \ {{ \%B{33}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{33}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{33}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{33}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{33}} \sp {15}}} -\hbox{\hskip 1.0cm} +{{\frac{1}{27}} \ {{ \%B{33}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{33}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{33}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{33}} \sp {11}}}+ \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{33}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{33}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{33}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{33}} \sp 7}} - -{{1 \over 9} \ {{ \%B{33}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{33}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{33}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{33}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{33}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{33}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{33}} \sp 5}} - -{{1 \over 9} \ {{ \%B{33}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{33}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{33}} \sp 4}} - {{ \%B{33}} \sp 3} - -{{2 \over 3} \ {{ \%B{33}} \sp 2}}+ -{{1 \over 2} \ { \%B{33}}}+{3 \over 2}, +{{\frac{2}{3}} \ {{ \%B{33}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{33}}}+{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} --{{1 \over {54}} \ {{ \%B{33}} \sp {15}}} -\hbox{\hskip 1.0cm} -{{1 \over {27}} \ {{ \%B{33}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{33}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{33}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{33}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{33}} \sp {15}}} -\hbox{\hskip 1.0cm} +{{\frac{1}{27}} \ {{ \%B{33}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{33}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{33}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{33}} \sp {11}}}+ \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{33}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{33}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{33}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{33}} \sp 7}} - -{{1 \over 9} \ {{ \%B{33}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{33}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{33}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{33}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{33}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{33}} \sp 6}} - \\ \\ \displaystyle \left. -{{1 \over 6} \ {{ \%B{33}} \sp 5}} - -{{1 \over 9} \ {{ \%B{33}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{33}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{33}} \sp 4}} - {{ \%B{33}} \sp 3} - -{{2 \over 3} \ {{ \%B{33}} \sp 2}}+ -{{1 \over 2} \ { \%B{33}}}+ -{3 \over 2} +{{\frac{2}{3}} \ {{ \%B{33}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{33}}}+ +{\frac{3}{2}} \right], \end{array} $$ @@ -53817,81 +53438,81 @@ $$ \begin{array}{@{}l} \left[ { \%B{34}}, -{{1 \over {27}} \ {{ \%B{34}} \sp {15}}}+ -{{2 \over {27}} \ {{ \%B{34}} \sp {14}}}+ -{{1 \over {27}} \ {{ \%B{34}} \sp {13}}} - -{{4 \over {27}} \ {{ \%B{34}} \sp {12}}} - -{{{11} \over {27}} \ {{ \%B{34}} \sp {11}}} - +{{\frac{1}{27}} \ {{ \%B{34}} \sp {15}}}+ +{{\frac{2}{27}} \ {{ \%B{34}} \sp {14}}}+ +{{\frac{1}{27}} \ {{ \%B{34}} \sp {13}}} - +{{\frac{4}{27}} \ {{ \%B{34}} \sp {12}}} - +{{\frac{11}{27}} \ {{ \%B{34}} \sp {11}}} - \right. \\ \\ \displaystyle -{{4 \over {27}} \ {{ \%B{34}} \sp {10}}}+ -{{1 \over {27}} \ {{ \%B{34}} \sp 9}}+ -{{{14} \over {27}} \ {{ \%B{34}} \sp 8}}+ -{{1 \over {27}} \ {{ \%B{34}} \sp 7}}+ -{{2 \over 9} \ {{ \%B{34}} \sp 6}}+ +{{\frac{4}{27}} \ {{ \%B{34}} \sp {10}}}+ +{{\frac{1}{27}} \ {{ \%B{34}} \sp 9}}+ +{{\frac{14}{27}} \ {{ \%B{34}} \sp 8}}+ +{{\frac{1}{27}} \ {{ \%B{34}} \sp 7}}+ +{{\frac{2}{9}} \ {{ \%B{34}} \sp 6}}+ \\ \\ \displaystyle -{{1 \over 3} \ {{ \%B{34}} \sp 5}}+ -{{2 \over 9} \ {{ \%B{34}} \sp 4}}+ +{{\frac{1}{3}} \ {{ \%B{34}} \sp 5}}+ +{{\frac{2}{9}} \ {{ \%B{34}} \sp 4}}+ {{ \%B{34}} \sp 3}+ -{{4 \over 3} \ {{ \%B{34}} \sp 2}} - +{{\frac{4}{3}} \ {{ \%B{34}} \sp 2}} - { \%B{34}} -2, \end{array} $$ $$ \begin{array}{@{}l} --{{1 \over {54}} \ {{ \%B{34}} \sp {15}}} -\hbox{\hskip 1.0cm} -{{1 \over {27}} \ {{ \%B{34}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{34}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{34}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{34}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{34}} \sp {15}}} -\hbox{\hskip 1.0cm} +{{\frac{1}{27}} \ {{ \%B{34}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{34}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{34}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{34}} \sp {11}}}+ \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{34}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{34}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{34}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{34}} \sp 7}} - -{{1 \over 9} \ {{ \%B{34}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{34}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{34}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{34}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{34}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{34}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{34}} \sp 5}} - -{{1 \over 9} \ {{ \%B{34}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{34}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{34}} \sp 4}} - {{ \%B{34}} \sp 3} - -{{2 \over 3} \ {{ \%B{34}} \sp 2}}+ -{{1 \over 2} \ { \%B{34}}}+ -{3 \over 2}, +{{\frac{2}{3}} \ {{ \%B{34}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{34}}}+ +{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} --{{1 \over {54}} \ {{ \%B{34}} \sp {15}}} -\hbox{\hskip 1.0cm} -{{1 \over {27}} \ {{ \%B{34}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{34}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{34}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{34}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{34}} \sp {15}}} -\hbox{\hskip 1.0cm} +{{\frac{1}{27}} \ {{ \%B{34}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{34}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{34}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{34}} \sp {11}}}+ \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{34}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{34}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{34}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{34}} \sp 7}} - -{{1 \over 9} \ {{ \%B{34}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{34}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{34}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{34}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{34}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{34}} \sp 6}} - \\ \\ \displaystyle \left. -{{1 \over 6} \ {{ \%B{34}} \sp 5}} - -{{1 \over 9} \ {{ \%B{34}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{34}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{34}} \sp 4}} - {{ \%B{34}} \sp 3} - -{{2 \over 3} \ {{ \%B{34}} \sp 2}}+ -{{1 \over 2} \ { \%B{34}}}+ -{3 \over 2} +{{\frac{2}{3}} \ {{ \%B{34}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{34}}}+ +{\frac{3}{2}} \right], \end{array} $$ @@ -53904,57 +53525,57 @@ $$ \displaystyle \left[ { \%B{23}}, --{{1 \over {54}} \ {{ \%B{23}} \sp {15}}} - -{{1 \over {27}} \ {{ \%B{23}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{23}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{23}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{23}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{23}} \sp {15}}} - +{{\frac{1}{27}} \ {{ \%B{23}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{23}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{23}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{23}} \sp {11}}}+ \right. \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{23}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{23}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{23}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{23}} \sp 7}} - -{{1 \over 9} \ {{ \%B{23}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{23}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{23}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{23}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{23}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{23}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{23}} \sp 5}} - -{{1 \over 9} \ {{ \%B{23}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{23}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{23}} \sp 4}} - {{ \%B{23}} \sp 3} - -{{2 \over 3} \ {{ \%B{23}} \sp 2}}+ -{{1 \over 2} \ { \%B{23}}}+ -{3 \over 2}, +{{\frac{2}{3}} \ {{ \%B{23}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{23}}}+ +{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} { \%B{30}}, -{ \%B{30}}+ -{{1 \over {54}} \ {{ \%B{23}} \sp {15}}}+\hbox{\hskip 1.0cm} -{{1 \over {27}} \ {{ \%B{23}} \sp {14}}}+ -{{1 \over {54}} \ {{ \%B{23}} \sp {13}}} - -{{2 \over {27}} \ {{ \%B{23}} \sp {12}}} - -{{{11} \over {54}} \ {{ \%B{23}} \sp {11}}} - +{{\frac{1}{54}} \ {{ \%B{23}} \sp {15}}}+\hbox{\hskip 1.0cm} +{{\frac{1}{27}} \ {{ \%B{23}} \sp {14}}}+ +{{\frac{1}{54}} \ {{ \%B{23}} \sp {13}}} - +{{\frac{2}{27}} \ {{ \%B{23}} \sp {12}}} - +{{\frac{11}{54}} \ {{ \%B{23}} \sp {11}}} - \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{23}} \sp {10}}}+ -{{1 \over {54}} \ {{ \%B{23}} \sp 9}}+ -{{7 \over {27}} \ {{ \%B{23}} \sp 8}}+ -{{1 \over {54}} \ {{ \%B{23}} \sp 7}}+ -{{1 \over 9} \ {{ \%B{23}} \sp 6}}+ +{{\frac{2}{27}} \ {{ \%B{23}} \sp {10}}}+ +{{\frac{1}{54}} \ {{ \%B{23}} \sp 9}}+ +{{\frac{7}{27}} \ {{ \%B{23}} \sp 8}}+ +{{\frac{1}{54}} \ {{ \%B{23}} \sp 7}}+ +{{\frac{1}{9}} \ {{ \%B{23}} \sp 6}}+ \\ \\ \displaystyle \left. -{{1 \over 6} \ {{ \%B{23}} \sp 5}}+ -{{1 \over 9} \ {{ \%B{23}} \sp 4}}+ -{{2 \over 3} \ {{ \%B{23}} \sp 2}} - -{{1 \over 2} \ { \%B{23}}} - -{1 \over 2} +{{\frac{1}{6}} \ {{ \%B{23}} \sp 5}}+ +{{\frac{1}{9}} \ {{ \%B{23}} \sp 4}}+ +{{\frac{2}{3}} \ {{ \%B{23}} \sp 2}} - +{{\frac{1}{2}} \ { \%B{23}}} - +{\frac{1}{2}} \right], \end{array} $$ @@ -53962,56 +53583,56 @@ $$ \begin{array}{@{}l} \left[ { \%B{23}}, --{{1 \over {54}} \ {{ \%B{23}} \sp {15}}} - -{{1 \over {27}} \ {{ \%B{23}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{23}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{23}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{23}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{23}} \sp {15}}} - +{{\frac{1}{27}} \ {{ \%B{23}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{23}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{23}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{23}} \sp {11}}}+ \right. \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{23}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{23}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{23}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{23}} \sp 7}} - -{{1 \over 9} \ {{ \%B{23}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{23}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{23}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{23}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{23}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{23}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{23}} \sp 5}} - -{{1 \over 9} \ {{ \%B{23}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{23}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{23}} \sp 4}} - {{ \%B{23}} \sp 3} - -{{2 \over 3} \ {{ \%B{23}} \sp 2}}+ -{{1 \over 2} \ { \%B{23}}}+ -{3 \over 2}, +{{\frac{2}{3}} \ {{ \%B{23}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{23}}}+ +{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} { \%B{31}}, --{ \%B{31}}+{{1 \over {54}} \ {{ \%B{23}} \sp {15}}}+ -{{1 \over {27}} \ {{ \%B{23}} \sp {14}}}+ -{{1 \over {54}} \ {{ \%B{23}} \sp {13}}} - -{{2 \over {27}} \ {{ \%B{23}} \sp {12}}} - +-{ \%B{31}}+{{\frac{1}{54}} \ {{ \%B{23}} \sp {15}}}+ +{{\frac{1}{27}} \ {{ \%B{23}} \sp {14}}}+ +{{\frac{1}{54}} \ {{ \%B{23}} \sp {13}}} - +{{\frac{2}{27}} \ {{ \%B{23}} \sp {12}}} - \\ \\ \displaystyle -{{{11} \over {54}} \ {{ \%B{23}} \sp {11}}} - -{{2 \over {27}} \ {{ \%B{23}} \sp {10}}}+ -{{1 \over {54}} \ {{ \%B{23}} \sp 9}}+ -{{7 \over {27}} \ {{ \%B{23}} \sp 8}}+ -{{1 \over {54}} \ {{ \%B{23}} \sp 7}}+ +{{\frac{11}{54}} \ {{ \%B{23}} \sp {11}}} - +{{\frac{2}{27}} \ {{ \%B{23}} \sp {10}}}+ +{{\frac{1}{54}} \ {{ \%B{23}} \sp 9}}+ +{{\frac{7}{27}} \ {{ \%B{23}} \sp 8}}+ +{{\frac{1}{54}} \ {{ \%B{23}} \sp 7}}+ \\ \\ \displaystyle \left. -{{1 \over 9} \ {{ \%B{23}} \sp 6}}+ -{{1 \over 6} \ {{ \%B{23}} \sp 5}}+ -{{1 \over 9} \ {{ \%B{23}} \sp 4}}+ -{{2 \over 3} \ {{ \%B{23}} \sp 2}} - -{{1 \over 2} \ { \%B{23}}} - -{1 \over 2} +{{\frac{1}{9}} \ {{ \%B{23}} \sp 6}}+ +{{\frac{1}{6}} \ {{ \%B{23}} \sp 5}}+ +{{\frac{1}{9}} \ {{ \%B{23}} \sp 4}}+ +{{\frac{2}{3}} \ {{ \%B{23}} \sp 2}} - +{{\frac{1}{2}} \ { \%B{23}}} - +{\frac{1}{2}} \right], \end{array} $$ @@ -54019,56 +53640,56 @@ $$ \begin{array}{@{}l} \left[ { \%B{24}}, --{{1 \over {54}} \ {{ \%B{24}} \sp {15}}} - -{{1 \over {27}} \ {{ \%B{24}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{24}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{24}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{24}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{24}} \sp {15}}} - +{{\frac{1}{27}} \ {{ \%B{24}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{24}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{24}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{24}} \sp {11}}}+ \right. \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{24}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{24}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{24}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{24}} \sp 7}} - -{{1 \over 9} \ {{ \%B{24}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{24}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{24}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{24}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{24}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{24}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{24}} \sp 5}} - -{{1 \over 9} \ {{ \%B{24}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{24}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{24}} \sp 4}} - {{ \%B{24}} \sp 3} - -{{2 \over 3} \ {{ \%B{24}} \sp 2}}+ -{{1 \over 2} \ { \%B{24}}}+ -{3 \over 2}, +{{\frac{2}{3}} \ {{ \%B{24}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{24}}}+ +{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} { \%B{28}}, --{ \%B{28}}+{{1 \over {54}} \ {{ \%B{24}} \sp {15}}}+ -{{1 \over {27}} \ {{ \%B{24}} \sp {14}}}+ -{{1 \over {54}} \ {{ \%B{24}} \sp {13}}} - -{{2 \over {27}} \ {{ \%B{24}} \sp {12}}} - -{{{11} \over {54}} \ {{ \%B{24}} \sp {11}}} - +-{ \%B{28}}+{{\frac{1}{54}} \ {{ \%B{24}} \sp {15}}}+ +{{\frac{1}{27}} \ {{ \%B{24}} \sp {14}}}+ +{{\frac{1}{54}} \ {{ \%B{24}} \sp {13}}} - +{{\frac{2}{27}} \ {{ \%B{24}} \sp {12}}} - +{{\frac{11}{54}} \ {{ \%B{24}} \sp {11}}} - \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{24}} \sp {10}}}+ -{{1 \over {54}} \ {{ \%B{24}} \sp 9}}+ -{{7 \over {27}} \ {{ \%B{24}} \sp 8}}+ -{{1 \over {54}} \ {{ \%B{24}} \sp 7}}+ -{{1 \over 9} \ {{ \%B{24}} \sp 6}}+ +{{\frac{2}{27}} \ {{ \%B{24}} \sp {10}}}+ +{{\frac{1}{54}} \ {{ \%B{24}} \sp 9}}+ +{{\frac{7}{27}} \ {{ \%B{24}} \sp 8}}+ +{{\frac{1}{54}} \ {{ \%B{24}} \sp 7}}+ +{{\frac{1}{9}} \ {{ \%B{24}} \sp 6}}+ \\ \\ \displaystyle \left. -{{1 \over 6} \ {{ \%B{24}} \sp 5}}+ -{{1 \over 9} \ {{ \%B{24}} \sp 4}}+ -{{2 \over 3} \ {{ \%B{24}} \sp 2}} - -{{1 \over 2} \ { \%B{24}}} - -{1 \over 2} +{{\frac{1}{6}} \ {{ \%B{24}} \sp 5}}+ +{{\frac{1}{9}} \ {{ \%B{24}} \sp 4}}+ +{{\frac{2}{3}} \ {{ \%B{24}} \sp 2}} - +{{\frac{1}{2}} \ { \%B{24}}} - +{\frac{1}{2}} \right], \end{array} $$ @@ -54076,57 +53697,57 @@ $$ \begin{array}{@{}l} \left[ { \%B{24}}, --{{1 \over {54}} \ {{ \%B{24}} \sp {15}}} - -{{1 \over {27}} \ {{ \%B{24}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{24}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{24}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{24}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{24}} \sp {15}}} - +{{\frac{1}{27}} \ {{ \%B{24}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{24}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{24}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{24}} \sp {11}}}+ \right. \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{24}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{24}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{24}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{24}} \sp 7}} - -{{1 \over 9} \ {{ \%B{24}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{24}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{24}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{24}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{24}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{24}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{24}} \sp 5}} - -{{1 \over 9} \ {{ \%B{24}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{24}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{24}} \sp 4}} - {{ \%B{24}} \sp 3} - -{{2 \over 3} \ {{ \%B{24}} \sp 2}}+ -{{1 \over 2} \ { \%B{24}}}+ -{3 \over 2}, +{{\frac{2}{3}} \ {{ \%B{24}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{24}}}+ +{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} { \%B{29}}, -{ \%B{29}}+ -{{1 \over {54}} \ {{ \%B{24}} \sp {15}}}+ -{{1 \over {27}} \ {{ \%B{24}} \sp {14}}}+ -{{1 \over {54}} \ {{ \%B{24}} \sp {13}}} - -{{2 \over {27}} \ {{ \%B{24}} \sp {12}}} - -{{{11} \over {54}} \ {{ \%B{24}} \sp {11}}} - +{{\frac{1}{54}} \ {{ \%B{24}} \sp {15}}}+ +{{\frac{1}{27}} \ {{ \%B{24}} \sp {14}}}+ +{{\frac{1}{54}} \ {{ \%B{24}} \sp {13}}} - +{{\frac{2}{27}} \ {{ \%B{24}} \sp {12}}} - +{{\frac{11}{54}} \ {{ \%B{24}} \sp {11}}} - \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{24}} \sp {10}}}+ -{{1 \over {54}} \ {{ \%B{24}} \sp 9}}+ -{{7 \over {27}} \ {{ \%B{24}} \sp 8}}+ -{{1 \over {54}} \ {{ \%B{24}} \sp 7}}+ -{{1 \over 9} \ {{ \%B{24}} \sp 6}}+ +{{\frac{2}{27}} \ {{ \%B{24}} \sp {10}}}+ +{{\frac{1}{54}} \ {{ \%B{24}} \sp 9}}+ +{{\frac{7}{27}} \ {{ \%B{24}} \sp 8}}+ +{{\frac{1}{54}} \ {{ \%B{24}} \sp 7}}+ +{{\frac{1}{9}} \ {{ \%B{24}} \sp 6}}+ \\ \\ \displaystyle \left. -{{1 \over 6} \ {{ \%B{24}} \sp 5}}+ -{{1 \over 9} \ {{ \%B{24}} \sp 4}}+ -{{2 \over 3} \ {{ \%B{24}} \sp 2}} - -{{1 \over 2} \ { \%B{24}}} - -{1 \over 2} +{{\frac{1}{6}} \ {{ \%B{24}} \sp 5}}+ +{{\frac{1}{9}} \ {{ \%B{24}} \sp 4}}+ +{{\frac{2}{3}} \ {{ \%B{24}} \sp 2}} - +{{\frac{1}{2}} \ { \%B{24}}} - +{\frac{1}{2}} \right], \end{array} $$ @@ -54134,57 +53755,57 @@ $$ \begin{array}{@{}l} \left[ { \%B{25}}, --{{1 \over {54}} \ {{ \%B{25}} \sp {15}}} - -{{1 \over {27}} \ {{ \%B{25}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{25}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{25}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{25}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{25}} \sp {15}}} - +{{\frac{1}{27}} \ {{ \%B{25}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{25}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{25}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{25}} \sp {11}}}+ \right. \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{25}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{25}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{25}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{25}} \sp 7}} - -{{1 \over 9} \ {{ \%B{25}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{25}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{25}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{25}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{25}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{25}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{25}} \sp 5}} - -{{1 \over 9} \ {{ \%B{25}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{25}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{25}} \sp 4}} - {{ \%B{25}} \sp 3} - -{{2 \over 3} \ {{ \%B{25}} \sp 2}}+ -{{1 \over 2} \ { \%B{25}}}+ -{3 \over 2}, +{{\frac{2}{3}} \ {{ \%B{25}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{25}}}+ +{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} { \%B{26}}, -{ \%B{26}}+ -{{1 \over {54}} \ {{ \%B{25}} \sp {15}}}+ -{{1 \over {27}} \ {{ \%B{25}} \sp {14}}}+ -{{1 \over {54}} \ {{ \%B{25}} \sp {13}}} - -{{2 \over {27}} \ {{ \%B{25}} \sp {12}}} - -{{{11} \over {54}} \ {{ \%B{25}} \sp {11}}} - +{{\frac{1}{54}} \ {{ \%B{25}} \sp {15}}}+ +{{\frac{1}{27}} \ {{ \%B{25}} \sp {14}}}+ +{{\frac{1}{54}} \ {{ \%B{25}} \sp {13}}} - +{{\frac{2}{27}} \ {{ \%B{25}} \sp {12}}} - +{{\frac{11}{54}} \ {{ \%B{25}} \sp {11}}} - \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{25}} \sp {10}}}+ -{{1 \over {54}} \ {{ \%B{25}} \sp 9}}+ -{{7 \over {27}} \ {{ \%B{25}} \sp 8}}+ -{{1 \over {54}} \ {{ \%B{25}} \sp 7}}+ -{{1 \over 9} \ {{ \%B{25}} \sp 6}}+ +{{\frac{2}{27}} \ {{ \%B{25}} \sp {10}}}+ +{{\frac{1}{54}} \ {{ \%B{25}} \sp 9}}+ +{{\frac{7}{27}} \ {{ \%B{25}} \sp 8}}+ +{{\frac{1}{54}} \ {{ \%B{25}} \sp 7}}+ +{{\frac{1}{9}} \ {{ \%B{25}} \sp 6}}+ \\ \\ \displaystyle \left. -{{1 \over 6} \ {{ \%B{25}} \sp 5}}+ -{{1 \over 9} \ {{ \%B{25}} \sp 4}}+ -{{2 \over 3} \ {{ \%B{25}} \sp 2}} - -{{1 \over 2} \ { \%B{25}}} - -{1 \over 2} +{{\frac{1}{6}} \ {{ \%B{25}} \sp 5}}+ +{{\frac{1}{9}} \ {{ \%B{25}} \sp 4}}+ +{{\frac{2}{3}} \ {{ \%B{25}} \sp 2}} - +{{\frac{1}{2}} \ { \%B{25}}} - +{\frac{1}{2}} \right], \end{array} $$ @@ -54192,57 +53813,57 @@ $$ \begin{array}{@{}l} \left[ { \%B{25}}, --{{1 \over {54}} \ {{ \%B{25}} \sp {15}}} - -{{1 \over {27}} \ {{ \%B{25}} \sp {14}}} - -{{1 \over {54}} \ {{ \%B{25}} \sp {13}}}+ -{{2 \over {27}} \ {{ \%B{25}} \sp {12}}}+ -{{{11} \over {54}} \ {{ \%B{25}} \sp {11}}}+ +-{{\frac{1}{54}} \ {{ \%B{25}} \sp {15}}} - +{{\frac{1}{27}} \ {{ \%B{25}} \sp {14}}} - +{{\frac{1}{54}} \ {{ \%B{25}} \sp {13}}}+ +{{\frac{2}{27}} \ {{ \%B{25}} \sp {12}}}+ +{{\frac{11}{54}} \ {{ \%B{25}} \sp {11}}}+ \right. \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{25}} \sp {10}}} - -{{1 \over {54}} \ {{ \%B{25}} \sp 9}} - -{{7 \over {27}} \ {{ \%B{25}} \sp 8}} - -{{1 \over {54}} \ {{ \%B{25}} \sp 7}} - -{{1 \over 9} \ {{ \%B{25}} \sp 6}} - +{{\frac{2}{27}} \ {{ \%B{25}} \sp {10}}} - +{{\frac{1}{54}} \ {{ \%B{25}} \sp 9}} - +{{\frac{7}{27}} \ {{ \%B{25}} \sp 8}} - +{{\frac{1}{54}} \ {{ \%B{25}} \sp 7}} - +{{\frac{1}{9}} \ {{ \%B{25}} \sp 6}} - \\ \\ \displaystyle -{{1 \over 6} \ {{ \%B{25}} \sp 5}} - -{{1 \over 9} \ {{ \%B{25}} \sp 4}} - +{{\frac{1}{6}} \ {{ \%B{25}} \sp 5}} - +{{\frac{1}{9}} \ {{ \%B{25}} \sp 4}} - {{ \%B{25}} \sp 3} - -{{2 \over 3} \ {{ \%B{25}} \sp 2}}+ -{{1 \over 2} \ { \%B{25}}}+ -{3 \over 2}, +{{\frac{2}{3}} \ {{ \%B{25}} \sp 2}}+ +{{\frac{1}{2}} \ { \%B{25}}}+ +{\frac{3}{2}}, \end{array} $$ $$ \begin{array}{@{}l} { \%B{27}}, -{ \%B{27}}+ -{{1 \over {54}} \ {{ \%B{25}} \sp {15}}}+ -{{1 \over {27}} \ {{ \%B{25}} \sp {14}}}+ -{{1 \over {54}} \ {{ \%B{25}} \sp {13}}} - -{{2 \over {27}} \ {{ \%B{25}} \sp {12}}} - -{{{11} \over {54}} \ {{ \%B{25}} \sp {11}}} - +{{\frac{1}{54}} \ {{ \%B{25}} \sp {15}}}+ +{{\frac{1}{27}} \ {{ \%B{25}} \sp {14}}}+ +{{\frac{1}{54}} \ {{ \%B{25}} \sp {13}}} - +{{\frac{2}{27}} \ {{ \%B{25}} \sp {12}}} - +{{\frac{11}{54}} \ {{ \%B{25}} \sp {11}}} - \\ \\ \displaystyle -{{2 \over {27}} \ {{ \%B{25}} \sp {10}}}+ -{{1 \over {54}} \ {{ \%B{25}} \sp 9}}+ -{{7 \over {27}} \ {{ \%B{25}} \sp 8}}+ -{{1 \over {54}} \ {{ \%B{25}} \sp 7}}+ -{{1 \over 9} \ {{ \%B{25}} \sp 6}}+ +{{\frac{2}{27}} \ {{ \%B{25}} \sp {10}}}+ +{{\frac{1}{54}} \ {{ \%B{25}} \sp 9}}+ +{{\frac{7}{27}} \ {{ \%B{25}} \sp 8}}+ +{{\frac{1}{54}} \ {{ \%B{25}} \sp 7}}+ +{{\frac{1}{9}} \ {{ \%B{25}} \sp 6}}+ \\ \\ \displaystyle \left. -{{1 \over 6} \ {{ \%B{25}} \sp 5}}+ -{{1 \over 9} \ {{ \%B{25}} \sp 4}}+ -{{2 \over 3} \ {{ \%B{25}} \sp 2}} - -{{1 \over 2} \ { \%B{25}}} - -{1 \over 2} +{{\frac{1}{6}} \ {{ \%B{25}} \sp 5}}+ +{{\frac{1}{9}} \ {{ \%B{25}} \sp 4}}+ +{{\frac{2}{3}} \ {{ \%B{25}} \sp 2}} - +{{\frac{1}{2}} \ { \%B{25}}} - +{\frac{1}{2}} \right], \end{array} $$ @@ -54257,12 +53878,9 @@ $$ \displaystyle \left[ { \%B{17}}, --{{1 \over 3} \ {{ \%B{17}} \sp 3}}+ -{1 \over 3}, --{{1 \over 3} \ {{ \%B{17}} \sp 3}}+ -{1 \over 3}, --{{1 \over 3} \ {{ \%B{17}} \sp 3}}+ -{1 \over 3} +-{{\frac{1}{3}} \ {{ \%B{17}} \sp 3}}+{\frac{1}{3}}, +-{{\frac{1}{3}} \ {{ \%B{17}} \sp 3}}+{\frac{1}{3}}, +-{{\frac{1}{3}} \ {{ \%B{17}} \sp 3}}+{\frac{1}{3}} \right], \\ \\ @@ -54270,9 +53888,9 @@ $$ \left. \left[ { \%B{18}}, -{-{{1 \over 3} \ {{ \%B{18}} \sp 3}}+{1 \over 3}}, -{-{{1 \over 3} \ {{ \%B{18}} \sp 3}}+{1 \over 3}}, -{-{{1 \over 3} \ {{ \%B{18}} \sp 3}}+{1 \over 3}} +{-{{\frac{1}{3}} \ {{ \%B{18}} \sp 3}}+{\frac{1}{3}}}, +{-{{\frac{1}{3}} \ {{ \%B{18}} \sp 3}}+{\frac{1}{3}}}, +{-{{\frac{1}{3}} \ {{ \%B{18}} \sp 3}}+{\frac{1}{3}}} \right] \right] \end{array} @@ -54296,9 +53914,9 @@ coordinates: \spadcommand{lpr2 := positiveSolve(lf)\$pack } $$ \left[ -{\left[ { \%B{40}}, {-{{1 \over 3} \ {{ \%B{40}} \sp 3}}+{1 \over 3}}, -{-{{1 \over 3} \ {{ \%B{40}} \sp 3}}+{1 \over 3}}, {-{{1 \over 3} \ {{ - \%B{40}} \sp 3}}+{1 \over 3}} +{\left[ { \%B{40}}, {-{{\frac{1}{3}} \ {{ \%B{40}} \sp 3}}+{\frac{1}{3}}}, +{-{{\frac{1}{3}} \ {{ \%B{40}} \sp 3}}+{\frac{1}{3}}}, {-{{\frac{1}{3}} \ {{ + \%B{40}} \sp 3}}+{\frac{1}{3}}} \right]} \right] $$ @@ -55126,7 +54744,7 @@ $z$ such that $f(z) = 0$. The first step is to produce a Newton iteration formula for a given $f$: -$x_{n+1} = x_n - {{f(x_n)}\over{f'(x_n)}}.$ +$x_{n+1} = x_n - {\frac{f(x_n)}{f'(x_n)}}.$ We represent this formula by a function $g$ that performs the computation on the right-hand side, that is, $x_{n+1} = {g}(x_n)$. diff --git a/changelog b/changelog index 67e1cd4..a72a157 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,4 @@ +20080909 tpd books/bookvol0 change \over to \frac 20080908 tpd books/bookvol10 latex cleanup 20080906 tpd src/algebra/aggcat.spad removed, merged into bookvol10 20080906 tpd src/algebra/Makefile merge aggcat.spad