diff --git a/src/axiom-website/CATS/index.html b/src/axiom-website/CATS/index.html index b74f1c8..ce023c8 100644 --- a/src/axiom-website/CATS/index.html +++ b/src/axiom-website/CATS/index.html @@ -124,5 +124,39 @@ and reduced to a constant (usually 0). Schaums 14.646-14.677  source pdf
+ +
+This portion of the CATS suite involves Ordinary Differential Equations. +This is the Kamke test suite as published by + +E. S. Cheb-Terrab. They have been rewritten using Axiom syntax. +Where possible we show that the particular solution actually +satisfies the original ordinary differential equation.

+ + Kamke0 + source + pdf
+ Kamke1 + source + pdf
+ Kamke2 + source + pdf
+ Kamke3 + source + pdf
+ Kamke4 + source + pdf
+ Kamke5 + source + pdf
+ Kamke6 + source + pdf
+ Kamke7 + source + pdf
+ \ No newline at end of file diff --git a/src/axiom-website/CATS/kamke0.input.pamphlet b/src/axiom-website/CATS/kamke0.input.pamphlet new file mode 100644 index 0000000..d1a9d8b --- /dev/null +++ b/src/axiom-website/CATS/kamke0.input.pamphlet @@ -0,0 +1,1904 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input kamke0.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +This is the first 50 of the Kamke test suite as published by +E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom +syntax. Where possible we show that the particular solution actually +satisfies the original ordinary differential equation. +\end{abstract} +\eject +\tableofcontents +\eject +<<*>>= +)spool kamke0.output +)set break resume +)set mes auto off +)clear all + +--S 1 of 134 +y:=operator 'y +--R +--R +--R (1) y +--R Type: BasicOperator +--E 1 + +--S 2 of 134 +f := operator 'f +--R +--R (2) f +--R Type: BasicOperator +--E 2 + +--S 3 of 134 +g := operator 'g +--R +--R (3) g +--R Type: BasicOperator +--E 3 + +--S 4 of 134 +ode1 := D(y(x),x) - (a4*x**4+a3*x**3+a2*x**2+a1*x+a0)**(-1/2) +--R +--R +--R +---------------------------------+ +--R | 4 3 2 , +--R \|a4 x + a3 x + a2 x + a1 x + a0 y (x) - 1 +--R +--R (4) --------------------------------------------- +--R +---------------------------------+ +--R | 4 3 2 +--R \|a4 x + a3 x + a2 x + a1 x + a0 +--R Type: Expression Integer +--E 4 + +--S 5 of 134 +ode1a:=solve(ode1,y,x) +--R +--R +--R (5) +--R x +--R ++ 1 +--I [particular= | ------------------------------------- d%N ,basis= [1]] +--R ++ +----------------------------------+ +--R | 4 3 2 +--I \|%N a4 + %N a3 + %N a2 + %N a1 + a0 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 5 + +--S 6 of 134 +ode2 := D(y(x),x) + a*y(x) - c*exp(b*x) +--R +--R +--R , b x +--R (6) y (x) - c %e + a y(x) +--R +--R Type: Expression Integer +--E 6 + +--S 7 of 134 +ode2a:=solve(ode2,y,x) +--R +--R +--R b x +--R c %e - a x +--R (7) [particular= -------,basis= [%e ]] +--R b + a +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 7 + +--S 8 of 134 +yx:=ode2a.particular +--R +--R b x +--R c %e +--R (8) ------- +--R b + a +--R Type: Expression Integer +--E 8 + +--S 9 of 134 +ode2expr:=D(yx,x) + a*yx -c*exp(b*x) +--R +--R (9) 0 +--R Type: Expression Integer +--E 9 + +--S 10 of 134 +ode3 := D(y(x),x) + a*y(x) - b*sin(c*x) +--R +--R , +--R (10) y (x) - b sin(c x) + a y(x) +--R +--R Type: Expression Integer +--E 10 + +--S 11 of 134 +ode3a:=solve(ode3,y,x) +--R +--R a b sin(c x) - b c cos(c x) - a x +--R (11) [particular= ---------------------------,basis= [%e ]] +--R 2 2 +--R c + a +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 11 + +--S 12 of 134 +yx:=ode3a.particular +--R +--R a b sin(c x) - b c cos(c x) +--R (12) --------------------------- +--R 2 2 +--R c + a +--R Type: Expression Integer +--E 12 + +--S 13 of 134 +ode3expr:=D(yx,x) + a*yx - b*sin(c*x) +--R +--R (13) 0 +--R Type: Expression Integer +--E 13 + +--S 14 of 134 +ode4 := D(y(x),x) + 2*x*y(x) - x*exp(-x**2) +--R +--R 2 +--R , - x +--R (14) y (x) - x %e + 2x y(x) +--R +--R Type: Expression Integer +--E 14 + +--S 15 of 134 +ode4a:=solve(ode4,y,x) +--R +--R 2 +--R 2 - x 2 +--R x %e - x +--R (15) [particular= --------,basis= [%e ]] +--R 2 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 15 + +--S 16 of 134 +yx:=ode4a.particular +--R +--R 2 +--R 2 - x +--R x %e +--R (16) -------- +--R 2 +--R Type: Expression Integer +--E 16 + +--S 17 of 134 +ode4expr:=D(yx,x) + 2*x*yx - x*exp(-x**2) +--R +--R (17) 0 +--R Type: Expression Integer +--E 17 + +--S 18 of 134 +ode5 := D(y(x),x) + y(x)*cos(x) - exp(2*x) +--R +--R , 2x +--R (18) y (x) - %e + y(x)cos(x) +--R +--R Type: Expression Integer +--E 18 + +--S 19 of 134 +ode5a:=solve(ode5,y,x) +--R +--I x 2%H +--R - sin(x) ++ %e - sin(x) +--I (19) [particular= %e | ----------- d%H ,basis= [%e ]] +--I ++ - sin(%H) +--R %e +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 19 + +--S 20 of 134 +ode6 := D(y(x),x) + y(x)*cos(x) - sin(2*x)/2 +--R +--R , +--R 2y (x) - sin(2x) + 2y(x)cos(x) +--R +--R (20) ------------------------------ +--R 2 +--R Type: Expression Integer +--E 20 + +--S 21 of 134 +ode6a:=solve(ode6,y,x) +--R +--R - sin(x) +--R (21) [particular= sin(x) - 1,basis= [%e ]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 21 + +--S 22 of 134 +yx:=ode6a.particular +--R +--R (22) sin(x) - 1 +--R Type: Expression Integer +--E 22 + +--S 23 of 134 +ode6expr:=D(yx,x) + yx*cos(x) - sin(2*x)/2 +--R +--R - sin(2x) + 2cos(x)sin(x) +--R (23) ------------------------- +--R 2 +--R Type: Expression Integer +--E 23 + +--S 24 of 134 +sin2rule := rule 2*cos(x)*sin(x) == sin(2*x) +--R +--I (24) 2%Y cos(x)sin(x) == %Y sin(2x) +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E 24 + +--S 25 of 134 +sin2rule ode6expr +--R +--R (25) 0 +--R Type: Expression Integer +--E 25 + +--S 26 of 134 +ode7 := D(y(x),x) + y(x)*cos(x) - exp(-sin(x)) +--R +--R , - sin(x) +--R (26) y (x) - %e + y(x)cos(x) +--R +--R Type: Expression Integer +--E 26 + +--S 27 of 134 +ode7a:=solve(ode7,y,x) +--R +--R - sin(x) - sin(x) +--R (27) [particular= x %e ,basis= [%e ]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 27 + +--S 28 of 134 +yx:=ode7a.particular +--R +--R - sin(x) +--R (28) x %e +--R Type: Expression Integer +--E 28 + +--S 29 of 134 +ode7expr := D(yx,x) + yx*cos(x) - exp(-sin(x)) +--R +--R (29) 0 +--R Type: Expression Integer +--E 29 + +--S 30 of 134 +ode8 := D(y(x),x) + y(x)*tan(x) - sin(2*x) +--R +--R , +--R (30) y (x) + y(x)tan(x) - sin(2x) +--R +--R Type: Expression Integer +--E 30 + +--S 31 of 134 +ode8a:=solve(ode8,y,x) +--R +--R (31) +--R +-------+ +--R 2 | 1 +--R (- 2cos(x) + 2cos(x)) |------- +--R 4| 4 +--R \|cos(x) 1 +--R [particular= --------------------------------,basis= [--------------]] +--R +-----------+ +-----------+ +--R | 2 | 2 +--R \|tan(x) + 1 \|tan(x) + 1 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 31 + +--S 32 of 134 +yx:=ode8a.particular +--R +--R +-------+ +--R 2 | 1 +--R (- 2cos(x) + 2cos(x)) |------- +--R 4| 4 +--R \|cos(x) +--R (32) -------------------------------- +--R +-----------+ +--R | 2 +--R \|tan(x) + 1 +--R Type: Expression Integer +--E 32 + +--S 33 of 134 +ode8expr:=D(yx,x) + yx*tan(x) - sin(2*x) +--R +--R +-------+3 +-----------+ +--R 3 | 1 | 2 +--R - cos(x) sin(2x) |------- \|tan(x) + 1 + 2sin(x) +--R 4| 4 +--R \|cos(x) +--R (33) --------------------------------------------------- +--R +-------+3 +-----------+ +--R 3 | 1 | 2 +--R cos(x) |------- \|tan(x) + 1 +--R 4| 4 +--R \|cos(x) +--R Type: Expression Integer +--E 33 + +--S 34 of 134 +ode9 := D(y(x),x) - (sin(log(x)) + cos(log(x)) +a)*y(x) +--R +--R , +--R (34) y (x) - y(x)sin(log(x)) - y(x)cos(log(x)) - a y(x) +--R +--R Type: Expression Integer +--E 34 + +--S 35 of 134 +ode9a:=solve(ode9,y,x) +--R +--R x sin(log(x)) + a x +--R (35) [particular= 0,basis= [%e ]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 35 + +--S 36 of 134 +yx:=ode9a.particular +--R +--R (36) 0 +--R Type: Expression Integer +--E 36 + +--S 37 of 134 +ode9expr:=D(yx,x) - (sin(log(x)) + cos(log(x)) +a)*yx +--R +--R (37) 0 +--R Type: Expression Integer +--E 37 + +--S 38 of 134 +ode10 := D(y(x),x) + D(f(x),x)*y(x) - f(x)*D(f(x),x) +--R +--R , , +--R (38) y (x) + (y(x) - f(x))f (x) +--R +--R Type: Expression Integer +--E 38 + +--S 39 of 134 +ode10a:=solve(ode10,y,x) +--R +--R +--R >> Error detected within library code: +--R Function not supported by Risch d.e. +--R +--R Continuing to read the file... +--R +--E 39 + +--S 40 of 134 +ode11 := D(y(x),x) + f(x)*y(x) - g(x) +--R +--R , +--R (39) y (x) + f(x)y(x) - g(x) +--R +--R Type: Expression Integer +--E 40 + +--S 41 of 134 +ode11a:=solve(ode11,y,x) +--R +--R +--R >> Error detected within library code: +--R Function not supported by Risch d.e. +--R +--R Continuing to read the file... +--R +--E 41 + +--S 42 of 134 +ode12 := D(y(x),x) + y(x)**2 - 1 +--R +--R , 2 +--R (40) y (x) + y(x) - 1 +--R +--R Type: Expression Integer +--E 42 + +--S 43 of 134 +yx:=solve(ode12,y,x) +--R +--R - log(y(x) + 1) + log(y(x) - 1) + 2x +--R (41) ------------------------------------ +--R 2 +--R Type: Union(Expression Integer,...) +--E 43 + +--S 44 of 134 +ode12expr:=D(yx,x) + yx**2 - 1 +--R +--R (42) +--R , 2 2 +--R 4y (x) + (y(x) - 1)log(y(x) + 1) +--R +--R + +--R 2 2 +--R ((- 2y(x) + 2)log(y(x) - 1) - 4x y(x) + 4x)log(y(x) + 1) +--R + +--R 2 2 2 2 2 2 +--R (y(x) - 1)log(y(x) - 1) + (4x y(x) - 4x)log(y(x) - 1) + 4x y(x) - 4x +--R / +--R 2 +--R 4y(x) - 4 +--R Type: Expression Integer +--E 44 + +--S 45 of 134 +ode13 := D(y(x),x) + y(x)**2 - a*x - b +--R +--R , 2 +--R (43) y (x) + y(x) - a x - b +--R +--R Type: Expression Integer +--E 45 + +--S 46 of 134 +ode13a:=solve(ode13,y,x) +--R +--R (44) "failed" +--R Type: Union("failed",...) +--E 46 + +--S 47 of 134 +ode14 := D(y(x),x) + y(x)**2 + a*x**m +--R +--R +--R , m 2 +--R (45) y (x) + a x + y(x) +--R +--R Type: Expression Integer +--E 47 + +--S 48 of 134 +ode14a:=solve(ode14,y,x) +--R +--R (46) "failed" +--R Type: Union("failed",...) +--E 48 + +--S 49 of 134 +ode15 := D(y(x),x) + y(x)**2 - 2*x**2*y(x) + x**4 -2*x-1 +--R +--R +--R , 2 2 4 +--R (47) y (x) + y(x) - 2x y(x) + x - 2x - 1 +--R +--R Type: Expression Integer +--E 49 + +--S 50 of 134 +yx:=solve(ode15,y,x) +--R +--R 2 +--R y(x) - x + 1 +--R (48) --------------------- +--R 2 2x +--R (2y(x) - 2x - 2)%e +--R Type: Union(Expression Integer,...) +--E 50 + +--S 51 of 134 +ode15expr:=D(yx,x) + yx**2 - 2*x**2*yx + x**4 -2*x-1 +--R +--R (49) +--R 2x , +--R - 4%e y (x) +--R +--R + +--R 4 2 6 4 3 2 8 +--R (4x - 8x - 4)y(x) + (- 8x - 8x + 16x + 8x + 16x + 8)y(x) + 4x +--R + +--R 6 5 3 2 +--R 8x - 8x - 16x - 8x - 8x - 4 +--R * +--R 2x 2 +--R (%e ) +--R + +--R 2 2 4 2 6 4 2 2x +--R ((- 4x - 4)y(x) + (8x + 8x )y(x) - 4x - 4x + 4x + 8x + 4)%e +--R + +--R 2 2 4 2 +--R y(x) + (- 2x + 2)y(x) + x - 2x + 1 +--R / +--R 2 2 4 2 2x 2 +--R (4y(x) + (- 8x - 8)y(x) + 4x + 8x + 4)(%e ) +--R Type: Expression Integer +--E 51 + +--S 52 of 134 +ode16 := D(y(x),x) + y(x)**2 +(x*y(x)-1)*f(x) +--R +--R , 2 +--R (50) y (x) + y(x) + x f(x)y(x) - f(x) +--R +--R Type: Expression Integer +--E 52 + +--S 53 of 134 +ode16a:=solve(ode16,y,x) +--R +--R (51) "failed" +--R Type: Union("failed",...) +--E 53 + +--S 54 of 134 +ode17 := D(y(x),x) - y(x)**2 -3*y(x) + 4 +--R +--R +--R , 2 +--R (52) y (x) - y(x) - 3y(x) + 4 +--R +--R Type: Expression Integer +--E 54 + +--S 55 of 134 +yx:=solve(ode17,y,x) +--R +--R +--R - log(y(x) + 4) + log(y(x) - 1) - 5x +--R (53) ------------------------------------ +--R 5 +--R Type: Union(Expression Integer,...) +--E 55 + +--S 56 of 134 +ode17expr:=D(yx,x) - yx**2 -3*yx + 4 +--R +--R (54) +--R , 2 2 +--R 25y (x) + (- y(x) - 3y(x) + 4)log(y(x) + 4) +--R +--R + +--R 2 2 +--R (2y(x) + 6y(x) - 8)log(y(x) - 1) + (- 10x + 15)y(x) +--R + +--R (- 30x + 45)y(x) + 40x - 60 +--R * +--R log(y(x) + 4) +--R + +--R 2 2 +--R (- y(x) - 3y(x) + 4)log(y(x) - 1) +--R + +--R 2 +--R ((10x - 15)y(x) + (30x - 45)y(x) - 40x + 60)log(y(x) - 1) +--R + +--R 2 2 2 2 +--R (- 25x + 75x + 75)y(x) + (- 75x + 225x + 225)y(x) + 100x - 300x - 300 +--R / +--R 2 +--R 25y(x) + 75y(x) - 100 +--R Type: Expression Integer +--E 56 + +--S 57 of 134 +ode18 := D(y(x),x) - y(x)**2 - x*y(x) - x + 1 +--R +--R +--R , 2 +--R (55) y (x) - y(x) - x y(x) - x + 1 +--R +--R Type: Expression Integer +--E 57 + +--S 58 of 134 +yx:=solve(ode18,y,x) +--R +--R +--R 2 +--R - x + 4x +--R --------- x +--R 2 ++ 1 +--I (- y(x) - 1)%e | - ------------- d%N + 1 +--R ++ 2 +--I - %N + 4%N +--R ----------- +--R 2 +--R %e +--R (56) ---------------------------------------------------- +--R 2 +--R - x + 4x +--R --------- +--R 2 +--R (y(x) + 1)%e +--R Type: Union(Expression Integer,...) +--E 58 + +--S 59 of 134 +ode18expr:=D(yx,x) - yx**2 - x*yx - x + 1 +--R (57) +--R 2 2 +--R - x + 4x +--R --------- x 2 +--R 2 2 ++ 1 +--I (- y(x) - 2y(x) - 1)(%e ) | - ------------- d%H +--R ++ 2 +--I - %H + 4%H +--R ----------- +--R 2 +--R %e +--R + +--R 2 2 2 +--R - x + 4x - x + 4x +--R --------- --------- +--R 2 2 2 +--R ((x y(x) + 2x y(x) + x)(%e ) + (2y(x) + 2)%e ) +--R * +--R x +--R ++ 1 +--I | - ------------- d%H +--R ++ 2 +--I - %H + 4%H +--R ----------- +--R 2 +--R %e +--R + +--R 2 +--R - x + 4x +--R --------- +--R 2 , +--R - %e y (x) +--R +--R + +--R 2 2 +--R - x + 4x +--R --------- +--R 2 2 +--R ((- x + 1)y(x) + (- 2x + 2)y(x) - x + 1)(%e ) +--R + +--R 2 +--R - x + 4x +--R --------- +--R 2 2 +--R (y(x) - 1)%e - 1 +--R / +--R 2 2 +--R - x + 4x +--R --------- +--R 2 2 +--R (y(x) + 2y(x) + 1)(%e ) +--R Type: Expression Integer +--E 59 + +--S 60 of 134 +ode19 := D(y(x),x) - (y(x) + x)**2 +--R +--R +--R , 2 2 +--R (58) y (x) - y(x) - 2x y(x) - x +--R +--R Type: Expression Integer +--E 60 + +--S 61 of 134 +yx:=solve(ode19,y,x) +--R +--R +--R +---+ +--R - y(x) + \|- 1 - x +--R (59) -------------------------------------- +--R +---+ +--R +---+ +---+ 2x\|- 1 +--R (2\|- 1 y(x) + 2x\|- 1 - 2)%e +--R Type: Union(Expression Integer,...) +--E 61 + +--S 62 of 134 +ode19expr := D(yx,x) - (yx + x)**2 +--R +--R (60) +--R +---+ +--R 2x\|- 1 , +--R - 4%e y (x) +--R +--R + +--R 2 2 2 +---+ 3 3 +---+ 4 2 +--R (- 4x y(x) + (- 8x \|- 1 - 8x )y(x) - 8x \|- 1 - 4x + 4x ) +--R * +--R +---+ 2 +--R 2x\|- 1 +--R (%e ) +--R + +--R +---+ 2 2 +---+ 3 +---+ +--R (- 4x\|- 1 + 4)y(x) + (- 8x \|- 1 + 8x)y(x) + (- 4x - 4x)\|- 1 +--R + +--R 2 +--R 4x +--R * +--R +---+ +--R 2x\|- 1 +--R %e +--R + +--R 2 +---+ +---+ 2 +--R y(x) + (- 2\|- 1 + 2x)y(x) - 2x\|- 1 + x - 1 +--R / +--R +---+ 2 +--R 2 +---+ +---+ 2 2x\|- 1 +--R (4y(x) + (8\|- 1 + 8x)y(x) + 8x\|- 1 + 4x - 4)(%e ) +--R Type: Expression Integer +--E 62 + +--S 63 of 134 +ode20 := D(y(x),x) - y(x)**2 +(x**2 + 1)*y(x) - 2*x +--R +--R +--R , 2 2 +--R (61) y (x) - y(x) + (x + 1)y(x) - 2x +--R +--R Type: Expression Integer +--E 63 + +--S 64 of 134 +yx:=solve(ode20,y,x) +--R +--R 3 +--R - x - 3x +--R --------- x +--R 2 3 ++ 1 +--I (- y(x) + x + 1)%e | - ------------- d%H + 1 +--R ++ 3 +--I - %H - 3%H +--R ----------- +--R 3 +--R %e +--R (62) --------------------------------------------------------- +--R 3 +--R - x - 3x +--R --------- +--R 2 3 +--R (y(x) - x - 1)%e +--R Type: Union(Expression Integer,...) +--E 64 + +--S 65 of 134 +ode20expr:=D(yx,x) - yx**2 +(x**2 + 1)*yx - 2*x +--R +--R (63) +--R 3 2 +--R - x - 3x +--R --------- +--R 2 2 4 2 3 +--R (- y(x) + (2x + 2)y(x) - x - 2x - 1)(%e ) +--R * +--R x 2 +--R ++ 1 +--I | - ------------- d%H +--R ++ 3 +--I - %H - 3%H +--R ----------- +--R 3 +--R %e +--R + +--R 2 2 4 2 6 4 2 +--R ((- x - 1)y(x) + (2x + 4x + 2)y(x) - x - 3x - 3x - 1) +--R * +--R 3 2 +--R - x - 3x +--R --------- +--R 3 +--R (%e ) +--R + +--R 3 +--R - x - 3x +--R --------- +--R 2 3 +--R (2y(x) - 2x - 2)%e +--R * +--R x +--R ++ 1 +--I | - ------------- d%H +--R ++ 3 +--I - %H - 3%H +--R ----------- +--R 3 +--R %e +--R + +--R 3 +--R - x - 3x +--R --------- +--R 3 , +--R - %e y (x) +--R +--R + +--R 3 2 +--R - x - 3x +--R --------- +--R 2 3 5 3 3 +--R (- 2x y(x) + (4x + 4x)y(x) - 2x - 4x - 2x)(%e ) +--R + +--R 3 +--R - x - 3x +--R --------- +--R 2 4 2 3 +--R (y(x) - x - 2x + 2x - 1)%e - 1 +--R / +--R 3 2 +--R - x - 3x +--R --------- +--R 2 2 4 2 3 +--R (y(x) + (- 2x - 2)y(x) + x + 2x + 1)(%e ) +--R Type: Expression Integer +--E 65 + +--S 66 of 134 +ode21 := D(y(x),x) - y(x)**2 +y(x)*sin(x) - cos(x) +--R +--R +--R , 2 +--R (64) y (x) + y(x)sin(x) - cos(x) - y(x) +--R +--R Type: Expression Integer +--E 66 + +--S 67 of 134 +ode21a:=solve(ode21,y,x) +--R +--R +--R (65) "failed" +--R Type: Union("failed",...) +--E 67 + +--S 68 of 134 +ode22 := D(y(x),x) - y(x)**2 -y(x)*sin(2*x) - cos(2*x) +--R +--R +--R , 2 +--R (66) y (x) - y(x)sin(2x) - cos(2x) - y(x) +--R +--R Type: Expression Integer +--E 68 + +--S 69 of 134 +ode22a:=solve(ode22,y,x) +--R +--R +--R (67) "failed" +--R Type: Union("failed",...) +--E 69 + +--S 70 of 134 +ode23 := D(y(x),x) + a*y(x)**2 - b +--R +--R +--R , 2 +--R (68) y (x) + a y(x) - b +--R +--R Type: Expression Integer +--E 70 + +--S 71 of 134 +yx:=solve(ode23,y,x) +--R +--R +--R 2 +---+ +--R (a y(x) + b)\|a b - 2a b y(x) +---+ +--R log(-------------------------------) + 2x\|a b +--R 2 +--R a y(x) - b +--R (69) ----------------------------------------------- +--R +---+ +--R 2\|a b +--R Type: Union(Expression Integer,...) +--E 71 + +--S 72 of 134 +ode23expr := D(yx,x) + a*yx**2 - b +--R +--R (70) +--R 2 +---+ 2 +--R , 2 (a y(x) + b)\|a b - 2a b y(x) +--R 4by (x) + (a y(x) - b)log(-------------------------------) +--R 2 +--R a y(x) - b +--R + +--R 2 +---+ +--R 2 +---+ (a y(x) + b)\|a b - 2a b y(x) +--R (4a x y(x) - 4b x)\|a b log(-------------------------------) +--R 2 +--R a y(x) - b +--R + +--R 2 2 2 2 2 2 3 2 +--R (4a b x - 4a b + 4a b)y(x) - 4a b x + 4b - 4b +--R / +--R 2 2 +--R 4a b y(x) - 4b +--R Type: Expression Integer +--E 72 + +--S 73 of 134 +ode24 := D(y(x),x) + a*y(x)**2 - b*x**nu +--R +--R +--R , nu 2 +--R (71) y (x) - b x + a y(x) +--R +--R Type: Expression Integer +--E 73 + +--S 74 of 134 +ode24a:=solve(ode24,y,x) +--R +--R +--R (72) "failed" +--R Type: Union("failed",...) +--E 74 + +--S 75 of 134 +ode25 := D(y(x),x) + a*y(x)**2 - b*x**(2*nu) - c*x**(nu-1) +--R +--R +--R , 2nu nu - 1 2 +--R (73) y (x) - b x - c x + a y(x) +--R +--R Type: Expression Integer +--E 75 + +--S 76 of 134 +ode25expr:=solve(ode25,y,x) +--R +--R +--R (74) "failed" +--R Type: Union("failed",...) +--E 76 + +--S 77 of 134 +ode26 := D(y(x),x) - (A*y(x) - a)*(B*y(x) - b) +--R +--R +--R , 2 +--R (75) y (x) - A B y(x) + (A b + B a)y(x) - a b +--R +--R Type: Expression Integer +--E 77 + +--S 78 of 134 +yx:=solve(ode26,y,x) +--R +--R +--R log(B y(x) - b) - log(A y(x) - a) + (- A b + B a)x +--R (76) -------------------------------------------------- +--R A b - B a +--R Type: Union(Expression Integer,...) +--E 78 + +--S 79 of 134 +ode26expr := D(yx,x) - (A*yx - a)*(B*yx - b) +--R +--R (77) +--R 2 2 2 2 , +--R (A b - 2A B a b + B a )y (x) +--R +--R + +--R 2 2 2 2 2 2 +--R (- A B y(x) + (A B b + A B a)y(x) - A B a b)log(B y(x) - b) +--R + +--R 2 2 2 2 2 +--R (2A B y(x) + (- 2A B b - 2A B a)y(x) + 2A B a b)log(A y(x) - a) +--R + +--R 3 2 2 3 3 2 3 2 2 +--R ((2A B b - 2A B a)x + A B b - A B a )y(x) +--R + +--R 3 2 3 2 3 3 2 2 2 2 3 3 +--R ((- 2A B b + 2A B a )x - A b - A B a b + A B a b + B a )y(x) +--R + +--R 2 2 2 2 2 3 2 3 +--R (2A B a b - 2A B a b)x + A a b - B a b +--R * +--R log(B y(x) - b) +--R + +--R 2 2 2 2 2 2 +--R (- A B y(x) + (A B b + A B a)y(x) - A B a b)log(A y(x) - a) +--R + +--R 3 2 2 3 3 2 3 2 2 +--R ((- 2A B b + 2A B a)x - A B b + A B a )y(x) +--R + +--R 3 2 3 2 3 3 2 2 2 2 3 3 +--R ((2A B b - 2A B a )x + A b + A B a b - A B a b - B a )y(x) +--R + +--R 2 2 2 2 2 3 2 3 +--R (- 2A B a b + 2A B a b)x - A a b + B a b +--R * +--R log(A y(x) - a) +--R + +--R 4 2 2 3 3 2 4 2 2 +--R (- A B b + 2A B a b - A B a )x +--R + +--R 4 3 3 2 2 2 3 2 4 3 3 3 +--R (- A B b + A B a b + A B a b - A B a )x - A B a b +--R + +--R 2 2 2 3 2 3 3 2 2 3 2 +--R (2A B a - A B)b + (- A B a + 2A B a)b - A B a +--R * +--R 2 +--R y(x) +--R + +--R 4 3 3 2 2 2 3 2 4 3 2 4 4 2 2 2 2 4 4 +--R (A B b - A B a b - A B a b + A B a )x + (A b - 2A B a b + B a )x +--R + +--R 3 4 2 2 3 3 2 3 2 2 3 4 2 2 +--R A a b + (- A B a + A )b + (- A B a - A B a)b + (B a - A B a )b +--R + +--R 3 3 +--R B a +--R * +--R y(x) +--R + +--R 3 3 2 2 2 2 3 3 2 +--R (- A B a b + 2A B a b - A B a b)x +--R + +--R 3 4 2 2 3 2 3 2 3 4 2 2 4 3 2 3 +--R (- A a b + A B a b + A B a b - B a b)x - A a b + (2A B a - A a)b +--R + +--R 2 4 2 2 2 3 +--R (- B a + 2A B a )b - B a b +--R / +--R 3 2 2 2 3 2 2 +--R (A B b - 2A B a b + A B a )y(x) +--R + +--R 3 3 2 2 2 2 3 3 2 3 2 2 2 3 +--R (- A b + A B a b + A B a b - B a )y(x) + A a b - 2A B a b + B a b +--R Type: Expression Integer +--E 79 + +--S 80 of 134 +ode27 := D(y(x),x) + a*y(x)*(y(x)-x) - 1 +--R +--R +--R , 2 +--R (78) y (x) + a y(x) - a x y(x) - 1 +--R +--R Type: Expression Integer +--E 80 + +--S 81 of 134 +ode27a:=solve(ode27,y,x) +--R +--R +--R 2 +--R a x +--R ---- x +--R 2 ++ a +--I (- y(x) + x)%e | ------ d%N + 1 +--R ++ 2 +--I %N a +--R ---- +--R 2 +--R %e +--R (79) -------------------------------------- +--R 2 +--R a x +--R ---- +--R 2 +--R (y(x) - x)%e +--R Type: Union(Expression Integer,...) +--E 81 + +--S 82 of 134 +ode28 := D(y(x),x) + x*y(x)**2 -x**3*y(x) - 2*x +--R +--R +--R , 2 3 +--R (80) y (x) + x y(x) - x y(x) - 2x +--R +--R Type: Expression Integer +--E 82 + +--S 83 of 134 +ode28a:=solve(ode28,y,x) +--R +--R +--R 4 +--R x +--R -- x +--I 2 4 ++ %N +--I (- y(x) + x )%e | ----- d%N + 1 +--R ++ 4 +--I %N +--R --- +--R 4 +--R %e +--R (81) ------------------------------------ +--R 4 +--R x +--R -- +--R 2 4 +--R (y(x) - x )%e +--R Type: Union(Expression Integer,...) +--E 83 + +--S 84 of 134 +ode29 := D(y(x),x) - x*y(x)**2 - 3*x*y(x) +--R +--R +--R , 2 +--R (82) y (x) - x y(x) - 3x y(x) +--R +--R Type: Expression Integer +--E 84 + +--S 85 of 134 +yx:=solve(ode29,y,x) +--R +--R +--R 2 +--R - 2log(y(x) + 3) + 2log(y(x)) - 3x +--R (83) ----------------------------------- +--R 6 +--R Type: Union(Expression Integer,...) +--E 85 + +--S 86 of 134 +ode29expr := D(yx,x) - x*yx**2 - 3*x*yx +--R +--R (84) +--R , 2 2 +--R 36y (x) + (- 4x y(x) - 12x y(x))log(y(x) + 3) +--R +--R + +--R 2 3 2 +--R (8x y(x) + 24x y(x))log(y(x)) + (- 12x + 36x)y(x) +--R + +--R 3 +--R (- 36x + 108x)y(x) +--R * +--R log(y(x) + 3) +--R + +--R 2 2 +--R (- 4x y(x) - 12x y(x))log(y(x)) +--R + +--R 3 2 3 +--R ((12x - 36x)y(x) + (36x - 108x)y(x))log(y(x)) +--R + +--R 5 3 2 5 3 +--R (- 9x + 54x - 36x)y(x) + (- 27x + 162x - 108x)y(x) +--R / +--R 2 +--R 36y(x) + 108y(x) +--R Type: Expression Integer +--E 86 + +--S 87 of 134 +ode30 := D(y(x),x) + x**(-a-1)*y(x)**2 - x**a +--R +--R +--R , a 2 - a - 1 +--R (85) y (x) - x + y(x) x +--R +--R Type: Expression Integer +--E 87 + +--S 88 of 134 +ode30a:=solve(ode30,y,x) +--R +--R +--R (86) "failed" +--R Type: Union("failed",...) +--E 88 + +--S 89 of 134 +ode31 := D(y(x),x) - a*x**n*(y(x)**2+1) +--R +--R +--R , 2 n +--R (87) y (x) + (- a y(x) - a)x +--R +--R Type: Expression Integer +--E 89 + +--S 90 of 134 +yx:=solve(ode31,y,x) +--R +--R +--R n log(x) +--R - a x %e + (n + 1)atan(y(x)) +--R (88) ------------------------------------ +--R n + 1 +--R Type: Union(Expression Integer,...) +--E 90 + +--S 91 of 134 +ode31expr := D(yx,x) - a*x**n*(yx**2+1) +--R +--R (89) +--R 2 , 3 2 2 3 2 n n log(x) 2 +--R (n + 2n + 1)y (x) + (- a x y(x) - a x )x (%e ) +--R +--R + +--R 2 2 2 2 2 n +--R ((2a n + 2a )x y(x) + (2a n + 2a )x)x atan(y(x)) +--R + +--R 2 2 2 +--R (- a n - 2a n - a)y(x) - a n - 2a n - a +--R * +--R n log(x) +--R %e +--R + +--R 2 2 2 n 2 +--R ((- a n - 2a n - a)y(x) - a n - 2a n - a)x atan(y(x)) +--R + +--R 2 2 2 n +--R ((- a n - 2a n - a)y(x) - a n - 2a n - a)x +--R / +--R 2 2 2 +--R (n + 2n + 1)y(x) + n + 2n + 1 +--R Type: Expression Integer +--E 91 + +--S 92 of 134 +ode32 := D(y(x),x) + y(x)**2*sin(x) - 2*sin(x)/cos(x)**2 +--R +--R +--R 2 , 2 2 +--R cos(x) y (x) + (y(x) cos(x) - 2)sin(x) +--R +--R (90) --------------------------------------- +--R 2 +--R cos(x) +--R Type: Expression Integer +--E 92 + +--S 93 of 134 +yx:=solve(ode32,y,x) +--R +--R +--R (91) "failed" +--R Type: Union("failed",...) +--E 93 + +--S 94 of 134 +ode33 := D(y(x),x) - y(x)**2*D(f(x),x)/g(x) + D(g(x),x)/f(x) +--R +--R , , 2 , +--R f(x)g(x)y (x) + g(x)g (x) - f(x)y(x) f (x) +--R +--R (92) ------------------------------------------ +--R f(x)g(x) +--R Type: Expression Integer +--E 94 + +--S 95 of 134 +ode33a:=solve(ode33,y,x) +--R +--R (93) "failed" +--R Type: Union("failed",...) +--E 95 + +--S 96 of 134 +ode34 := D(y(x),x) + f(x)*y(x)**2 + g(x)*y(x) +--R +--R , 2 +--R (94) y (x) + f(x)y(x) + g(x)y(x) +--R +--R Type: Expression Integer +--E 96 + +--S 97 of 134 +ode34a:=solve(ode34,y,x) +--R +--R +--R >> Error detected within library code: +--R Function not supported by Risch d.e. +--R +--R Continuing to read the file... +--R +--E 97 + +--S 98 of 134 +ode35 := D(y(x),x) + f(x)*(y(x)**2 + 2*a*y(x) +b) +--R +--R , 2 +--R (95) y (x) + f(x)y(x) + 2a f(x)y(x) + b f(x) +--R +--R Type: Expression Integer +--E 98 + +--S 99 of 134 +yx:=solve(ode35,y,x) +--R +--R (96) +--R +--------+ x +--R | 2 ++ +--I 2\|- b + a | f(%H)d%H +--R ++ +--R + +--R +--------+ +--R 2 2 | 2 2 3 +--R (y(x) + 2a y(x) - b + 2a )\|- b + a + (2b - 2a )y(x) + 2a b - 2a +--R log(--------------------------------------------------------------------) +--R 2 +--R y(x) + 2a y(x) + b +--R / +--R +--------+ +--R | 2 +--R 2\|- b + a +--R Type: Union(Expression Integer,...) +--E 99 + +--S 100 of 134 +ode35expr := D(yx,x) + f(x)*(yx**2 + 2*a*yx +b) +--R +--R (97) +--R 2 2 3 2 2 +--R ((4b - 4a )f(x)y(x) + (8a b - 8a )f(x)y(x) + (4b - 4a b)f(x)) +--R * +--R +--------+ x 2 +--R | 2 ++ +--I \|- b + a | f(%H)d%H +--R ++ +--R + +--R 2 2 3 2 2 +--R ((4b - 4a )f(x)y(x) + (8a b - 8a )f(x)y(x) + (4b - 4a b)f(x)) +--R * +--R log +--R +--------+ +--R 2 2 | 2 2 +--R (y(x) + 2a y(x) - b + 2a )\|- b + a + (2b - 2a )y(x) +--R + +--R 3 +--R 2a b - 2a +--R / +--R 2 +--R y(x) + 2a y(x) + b +--R + +--R 3 2 2 4 +--R (8a b - 8a )f(x)y(x) + (16a b - 16a )f(x)y(x) +--R + +--R 2 3 +--R (8a b - 8a b)f(x) +--R * +--R +--------+ +--R | 2 +--R \|- b + a +--R * +--R x +--R ++ +--I | f(%H)d%H +--R ++ +--R + +--R +--------+ +--R 2 | 2 , +--R (4b - 4a )\|- b + a y (x) +--R +--R + +--R +--------+ +--R 2 | 2 +--R (- f(x)y(x) - 2a f(x)y(x) - b f(x))\|- b + a +--R * +--R log +--R +--------+ +--R 2 2 | 2 2 +--R (y(x) + 2a y(x) - b + 2a )\|- b + a + (2b - 2a )y(x) + 2a b +--R + +--R 3 +--R - 2a +--R / +--R 2 +--R y(x) + 2a y(x) + b +--R ** +--R 2 +--R + +--R 3 2 2 4 2 3 +--R ((4a b - 4a )f(x)y(x) + (8a b - 8a )f(x)y(x) + (4a b - 4a b)f(x)) +--R * +--R +--------+ +--R 2 2 | 2 2 3 +--R (y(x) + 2a y(x) - b + 2a )\|- b + a + (2b - 2a )y(x) + 2a b - 2a +--R log(--------------------------------------------------------------------) +--R 2 +--R y(x) + 2a y(x) + b +--R + +--R 2 2 2 2 +--R (4b + (- 4a + 4)b - 4a )f(x)y(x) +--R + +--R 2 3 3 +--R (8a b + (- 8a + 8a)b - 8a )f(x)y(x) +--R + +--R 3 2 2 2 +--R (4b + (- 4a + 4)b - 4a b)f(x) +--R * +--R +--------+ +--R | 2 +--R \|- b + a +--R / +--R +--------+ +--R 2 2 3 2 2 | 2 +--R ((4b - 4a )y(x) + (8a b - 8a )y(x) + 4b - 4a b)\|- b + a +--R Type: Expression Integer +--E 100 + +--S 101 of 134 +ode36 := D(y(x),x) + y(x)**3 + a*x*y(x)**2 +--R +--R +--R , 3 2 +--R (98) y (x) + y(x) + a x y(x) +--R +--R Type: Expression Integer +--E 101 + +--S 102 of 134 +ode36a:=solve(ode36,y,x) +--R +--R +--R (99) "failed" +--R Type: Union("failed",...) +--E 102 + +--S 103 of 134 +ode37 := D(y(x),x) - y(x)**3 - a*exp(x)*y(x)**2 +--R +--R , 2 x 3 +--R (100) y (x) - a y(x) %e - y(x) +--R +--R Type: Expression Integer +--E 103 + +--S 104 of 134 +ode37a:=solve(ode37,y,x) +--R +--R (101) "failed" +--R Type: Union("failed",...) +--E 104 + +--S 105 of 134 +ode38 := D(y(x),x) - a*y(x)**3 - b*x**(3/2) +--R +--R , +-+ 3 +--R (102) y (x) - b x\|x - a y(x) +--R +--R Type: Expression Integer +--E 105 + +--S 106 of 134 +ode38a:=solve(ode38,y,x) +--R +--R (103) "failed" +--R Type: Union("failed",...) +--E 106 + +--S 107 of 134 +ode39 := D(y(x),x) - a3*y(x)**3 - a2*y(x)**2 - a1*y(x) - a0 +--R +--R , 3 2 +--R (104) y (x) - a3 y(x) - a2 y(x) - a1 y(x) - a0 +--R +--R Type: Expression Integer +--E 107 + +--S 108 of 134 +yx:=solve(ode39,y,x) +--R +--R +--R (105) +--R ROOT +--R 2 2 3 3 2 2 +--R (- 81a0 a3 + (54a0 a1 a2 - 12a1 )a3 - 12a0 a2 + 3a1 a2 ) +--R * +--R 2 +--I %%CK0 +--R + +--R 2 +--R 12a1 a3 - 4a2 +--R / +--R 2 2 3 3 2 2 +--R 27a0 a3 + (- 18a0 a1 a2 + 4a1 )a3 + 4a0 a2 - a1 a2 +--R + +--I - %%CK0 +--R * +--R log +--R 2 3 2 2 2 4 2 +--R 162a0 a1 a3 + (- 54a0 a2 - 108a0 a1 a2 + 24a1 )a3 +--R + +--R 3 3 2 5 2 4 +--R (60a0 a1 a2 - 14a1 a2 )a3 - 8a0 a2 + 2a1 a2 +--R * +--I %%CK0 +--R + +--R 2 3 3 2 3 2 2 +--R 81a0 a3 + (- 54a0 a1 a2 + 12a1 )a3 + (12a0 a2 - 3a1 a2 )a3 +--R * +--R ROOT +--R 2 2 3 3 +--R - 81a0 a3 + (54a0 a1 a2 - 12a1 )a3 - 12a0 a2 +--R + +--R 2 2 +--R 3a1 a2 +--R * +--R 2 +--I %%CK0 +--R + +--R 2 +--R 12a1 a3 - 4a2 +--R / +--R 2 2 3 3 2 2 +--R 27a0 a3 + (- 18a0 a1 a2 + 4a1 )a3 + 4a0 a2 - a1 a2 +--R + +--R 2 3 2 2 2 4 2 +--R 162a0 a1 a3 + (- 54a0 a2 - 108a0 a1 a2 + 24a1 )a3 +--R + +--R 3 3 2 5 2 4 +--R (60a0 a1 a2 - 14a1 a2 )a3 - 8a0 a2 + 2a1 a2 +--R * +--R 2 +--I %%CK0 +--R + +--R 2 3 3 2 +--R - 81a0 a3 + (54a0 a1 a2 - 12a1 )a3 +--R + +--R 3 2 2 +--R (- 12a0 a2 + 3a1 a2 )a3 +--R * +--I %%CK0 +--R + +--R 3 2 3 2 2 +--R (54a0 a3 - 18a1 a2 a3 + 4a2 a3)y(x) + (18a0 a2 - 12a1 )a3 +--R + +--R 2 +--R 2a1 a2 a3 +--R + +--R - +--R ROOT +--R 2 2 3 3 +--R - 81a0 a3 + (54a0 a1 a2 - 12a1 )a3 - 12a0 a2 +--R + +--R 2 2 +--R 3a1 a2 +--R * +--R 2 +--I %%CK0 +--R + +--R 2 +--R 12a1 a3 - 4a2 +--R / +--R 2 2 3 3 2 2 +--R 27a0 a3 + (- 18a0 a1 a2 + 4a1 )a3 + 4a0 a2 - a1 a2 +--R + +--I - %%CK0 +--R * +--R log +--R 2 3 2 2 2 4 2 +--R - 162a0 a1 a3 + (54a0 a2 + 108a0 a1 a2 - 24a1 )a3 +--R + +--R 3 3 2 5 2 4 +--R (- 60a0 a1 a2 + 14a1 a2 )a3 + 8a0 a2 - 2a1 a2 +--R * +--I %%CK0 +--R + +--R 2 3 3 2 3 2 2 +--R - 81a0 a3 + (54a0 a1 a2 - 12a1 )a3 + (- 12a0 a2 + 3a1 a2 )a3 +--R * +--R ROOT +--R 2 2 3 3 +--R - 81a0 a3 + (54a0 a1 a2 - 12a1 )a3 - 12a0 a2 +--R + +--R 2 2 +--R 3a1 a2 +--R * +--R 2 +--I %%CK0 +--R + +--R 2 +--R 12a1 a3 - 4a2 +--R / +--R 2 2 3 3 2 2 +--R 27a0 a3 + (- 18a0 a1 a2 + 4a1 )a3 + 4a0 a2 - a1 a2 +--R + +--R 2 3 2 2 2 4 2 +--R 162a0 a1 a3 + (- 54a0 a2 - 108a0 a1 a2 + 24a1 )a3 +--R + +--R 3 3 2 5 2 4 +--R (60a0 a1 a2 - 14a1 a2 )a3 - 8a0 a2 + 2a1 a2 +--R * +--R 2 +--I %%CK0 +--R + +--R 2 3 3 2 +--R - 81a0 a3 + (54a0 a1 a2 - 12a1 )a3 +--R + +--R 3 2 2 +--R (- 12a0 a2 + 3a1 a2 )a3 +--R * +--I %%CK0 +--R + +--R 3 2 3 2 2 +--R (54a0 a3 - 18a1 a2 a3 + 4a2 a3)y(x) + (18a0 a2 - 12a1 )a3 +--R + +--R 2 +--R 2a1 a2 a3 +--R + +--I 2%%CK0 +--R * +--R log +--R 2 3 2 2 2 4 2 +--R - 162a0 a1 a3 + (54a0 a2 + 108a0 a1 a2 - 24a1 )a3 +--R + +--R 3 3 2 5 2 4 +--R (- 60a0 a1 a2 + 14a1 a2 )a3 + 8a0 a2 - 2a1 a2 +--R * +--R 2 +--I %%CK0 +--R + +--R 2 3 3 2 3 2 2 +--R (81a0 a3 + (- 54a0 a1 a2 + 12a1 )a3 + (12a0 a2 - 3a1 a2 )a3) +--R * +--I %%CK0 +--R + +--R 3 2 3 2 2 +--R (27a0 a3 - 9a1 a2 a3 + 2a2 a3)y(x) + (9a0 a2 + 12a1 )a3 +--R + +--R 2 4 +--R - 11a1 a2 a3 + 2a2 +--R + +--R - 2x +--R / +--R 2 +--R Type: Union(Expression Integer,...) +--E 108 + +--S 109 of 134 +ode40 := D(y(x),x) + 3*a*y(x)**3 + 6*a*x*y(x)**2 +--R +--R , 3 2 +--R (106) y (x) + 3a y(x) + 6a x y(x) +--R +--R Type: Expression Integer +--E 109 + +--S 110 of 134 +ode40a:=solve(ode40,y,x) +--R +--R (107) "failed" +--R Type: Union("failed",...) +--E 110 + +--S 111 of 134 +ode41 := D(y(x),x) + a*x*y(x)**3 + b*y(x)**2 +--R +--R , 3 2 +--R (108) y (x) + a x y(x) + b y(x) +--R +--R Type: Expression Integer +--E 111 + +--S 112 of 134 +ode41a:=solve(ode41,y,x) +--R +--R (109) "failed" +--R Type: Union("failed",...) +--E 112 + +--S 113 of 134 +ode42 := D(y(x),x) - x*(x+2)*y(x)**3 - (x+3)*y(x)**2 +--R +--R , 2 3 2 +--R (110) y (x) + (- x - 2x)y(x) + (- x - 3)y(x) +--R +--R Type: Expression Integer +--E 113 + +--S 114 of 134 +ode42a:=solve(ode42,y,x) +--R +--R (111) "failed" +--R Type: Union("failed",...) +--E 114 + +--S 115 of 134 +ode43 := D(y(x),x) + (3*a*x**2 + 4*a**2*x + b)*y(x)**3 + 3*x*y(x)**2 +--R +--R , 2 2 3 2 +--R (112) y (x) + (3a x + 4a x + b)y(x) + 3x y(x) +--R +--R Type: Expression Integer +--E 115 + +--S 116 of 134 +ode43a:=solve(ode43,y,x) +--R +--R (113) "failed" +--R Type: Union("failed",...) +--E 116 + +--S 117 of 134 +ode44 := D(y(x),x) + 2*a*x**3*y(x)**3 + 2*x*y(x) +--R +--R , 3 3 +--R (114) y (x) + 2a x y(x) + 2x y(x) +--R +--R Type: Expression Integer +--E 117 + +--S 118 of 134 +yx:=solve(ode44,y,x) +--R +--R 2 2 +--R (2a x + a)y(x) + 2 +--R (115) -------------------- +--R 2 +--R 2 2x +--R 2y(x) %e +--R Type: Union(Expression Integer,...) +--E 118 + +--S 119 of 134 +ode44expr := D(yx,x) + 2*a*x**3*yx**3 + 2*x*yx +--R +--R (116) +--R 2 2 2 2 +--R 3 2x , 3 6 4 2x +--R - 8y(x) (%e ) y (x) + ((- 8a x + 4a x)y(x) - 8x y(x) )(%e ) +--R +--R + +--R 4 9 4 7 4 5 4 3 6 3 7 3 5 3 3 4 +--R (8a x + 12a x + 6a x + a x )y(x) + (24a x + 24a x + 6a x )y(x) +--R + +--R 2 5 2 3 2 3 +--R (24a x + 12a x )y(x) + 8a x +--R / +--R 2 3 +--R 6 2x +--R 4y(x) (%e ) +--R Type: Expression Integer +--E 119 + +--S 120 of 134 +ode45 := D(y(x),x) + 2*(a**2*x**3 - b**2*x)*y(x)**3 + 3*b*y(x)**2 +--R +--R , 2 3 2 3 2 +--R (117) y (x) + (2a x - 2b x)y(x) + 3b y(x) +--R +--R Type: Expression Integer +--E 120 + +--S 121 of 134 +ode45a:=solve(ode45,y,x) +--R +--R (118) "failed" +--R Type: Union("failed",...) +--E 121 + +--S 122 of 134 +ode46 := D(y(x),x) - x**a*y(x)**3 + 3*y(x)**2 - x**(-a)*y(x) _ + -x**(-2*a) + a*x**(-a-1) +--R +--R , 3 a - a - a - 1 - 2a 2 +--R (119) y (x) - y(x) x - y(x)x + a x - x + 3y(x) +--R +--R Type: Expression Integer +--E 122 + +--S 123 of 134 +ode46a:=solve(ode46,y,x) +--R +--R (120) "failed" +--R Type: Union("failed",...) +--E 123 + +--S 124 of 134 +ode47 := D(y(x),x) - a*(x**n - x)*y(x)**3 - y(x)**2 +--R +--R , 3 n 3 2 +--R (121) y (x) - a y(x) x + a x y(x) - y(x) +--R +--R Type: Expression Integer +--E 124 + +--S 125 of 134 +ode47a:=solve(ode47,y,x) +--R +--R (122) "failed" +--R Type: Union("failed",...) +--E 125 + +--S 126 of 134 +ode48 := D(y(x),x) - (a*x**n + b*x)*y(x)**3 - c*y(x)**2 +--R +--R , 3 n 3 2 +--R (123) y (x) - a y(x) x - b x y(x) - c y(x) +--R +--R Type: Expression Integer +--E 126 + +--S 127 of 134 +ode48a:=solve(ode48,y,x) +--R +--R (124) "failed" +--R Type: Union("failed",...) +--E 127 + +--S 128 of 134 +ode49 := D(y(x),x) + a*diff(phi(x),x)*y(x)**3 + 6*a*phi(x)*y(x)**2 + _ + (2*a+1)*y(x)*diff(phi(x),x,x)/diff(phi(x),x) +2*(a+1) +--R +--R There are no library operations named phi +--R Use HyperDoc Browse or issue +--R )what op phi +--R to learn if there is any operation containing " phi " in its +--R name. +--R +--R Cannot find a definition or applicable library operation named phi +--R with argument type(s) +--R Variable x +--R +--R Perhaps you should use "@" to indicate the required return type, +--R or "$" to specify which version of the function you need. +--E 128 + +--S 129 of 134 +f1 := operator 'f1 +--R +--R (125) f1 +--R Type: BasicOperator +--E 129 + +--S 130 of 134 +f2 := operator 'f2 +--R +--R (126) f2 +--R Type: BasicOperator +--E 130 + +--S 131 of 134 +f3 := operator 'f3 +--R +--R (127) f3 +--R Type: BasicOperator +--E 131 + +--S 132 of 134 +f0 := operator 'f0 +--R +--R (128) f0 +--R Type: BasicOperator +--E 132 + +--S 133 of 134 +ode50 := D(y(x),x) - f3(x)*y(x)**3 - f2(x)*y(x)**2 - f1(x)*y(x) - f0(x) +--R +--R , 3 2 +--R (129) y (x) - f3(x)y(x) - f2(x)y(x) - f1(x)y(x) - f0(x) +--R +--R Type: Expression Integer +--E 133 + +--S 134 of 134 +ode50a:=solve(ode50,y,x) +--R +--R (130) "failed" +--R Type: Union("failed",...) +--E 134 + +)spool +)lisp (bye) + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html} +\end{thebibliography} +\end{document} diff --git a/src/axiom-website/CATS/kamke0.input.pdf b/src/axiom-website/CATS/kamke0.input.pdf new file mode 100644 index 0000000..fab2930 Binary files /dev/null and b/src/axiom-website/CATS/kamke0.input.pdf differ diff --git a/src/axiom-website/CATS/kamke1.input.pamphlet b/src/axiom-website/CATS/kamke1.input.pamphlet new file mode 100644 index 0000000..c60b4e0 --- /dev/null +++ b/src/axiom-website/CATS/kamke1.input.pamphlet @@ -0,0 +1,2060 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input kamke1.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +This is the next 50 of the Kamke test suite as published by +E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom +syntax. Where possible we show that the particular solution actually +satisfies the original ordinary differential equation. +\end{abstract} +\eject +\tableofcontents +\eject +<<*>>= +)spool kamke1.output +)set break resume +)set mes auto off +)clear all + +--S 1 of 120 +y:=operator 'y +--R +--R +--R (1) y +--R Type: BasicOperator +--E 1 + +--S 2 of 120 +f := operator 'f +--R +--R (2) f +--R Type: BasicOperator +--E 2 + +--S 3 of 120 +g := operator 'g +--R +--R (3) g +--R Type: BasicOperator +--E 3 + +--S 4 of 120 +h := operator 'h +--R +--R (4) h +--R Type: BasicOperator +--E 4 + +--S 5 of 120 +ode51 := D(y(x),x) - (y(x)-f(x))*(y(x)-g(x))*(y(x)-(a*f(x)+b*g(x))/(a+b))*h(x)_ + - D(f(x),x)*(y(x)-g(x))/(f(x)-g(x)) _ + - D(g(x),x)*(y(x)-f(x))/(g(x)-f(x)) +--R +--R (5) +--R , , +--R ((b + a)g(x) + (- b - a)f(x))y (x) + ((- b - a)y(x) + (b + a)f(x))g (x) +--R +--R + +--R , +--R ((b + a)y(x) + (- b - a)g(x))f (x) +--R +--R + +--R 3 +--R ((- b - a)g(x) + (b + a)f(x))h(x)y(x) +--R + +--R 2 2 2 +--R ((2b + a)g(x) + (- b + a)f(x)g(x) + (- b - 2a)f(x) )h(x)y(x) +--R + +--R 3 2 2 3 +--R (- b g(x) + (- b - 2a)f(x)g(x) + (2b + a)f(x) g(x) + a f(x) )h(x)y(x) +--R + +--R 3 2 2 3 +--R (b f(x)g(x) + (- b + a)f(x) g(x) - a f(x) g(x))h(x) +--R / +--R (b + a)g(x) + (- b - a)f(x) +--R Type: Expression Integer +--E 5 + +--S 6 of 120 +ode51a:=solve(ode51,y,x) +--R +--R (6) "failed" +--R Type: Union("failed",...) +--E 6 + +--S 7 of 120 +ode52 := D(y(x),x) - a*y(x)**n - b*x**(n/(1-n)) +--R +--R n +--R - ----- +--R , n n - 1 +--R (7) y (x) - a y(x) - b x +--R +--R Type: Expression Integer +--E 7 + +--S 8 of 120 +ode52a:=solve(ode52,y,x) +--R +--R (8) "failed" +--R Type: Union("failed",...) +--E 8 + +--S 9 of 120 +ode53 := D(y(x),x) - f(x)**(1-n)*D(g(x),x)*y(x)**n/(a*g(x)+b)**n _ + - D(f(x),x)*y(x)/f(x) - f(x)*D(g(x),x) +--R +--R (9) +--R n , +--R f(x)(a g(x) + b) y (x) +--R +--R + +--R - n + 1 n 2 n , n , +--R (- f(x)f(x) y(x) - f(x) (a g(x) + b) )g (x) - y(x)(a g(x) + b) f (x) +--R +--R / +--R n +--R f(x)(a g(x) + b) +--R Type: Expression Integer +--E 9 + +--S 10 of 120 +ode53a:=solve(ode53,y,x) +--R +--R (10) "failed" +--R Type: Union("failed",...) +--E 10 + +--S 11 of 120 +ode54 := D(y(x),x) - a**n*f(x)**(1-n)*D(g(x),x)*y(x)**n - _ + D(f(x),x)*y(x)/f(x) - f(x)*D(g(x),x) +--R +--R , n - n + 1 n 2 , , +--R f(x)y (x) + (- f(x)a f(x) y(x) - f(x) )g (x) - y(x)f (x) +--R +--R (11) --------------------------------------------------------------- +--R f(x) +--R Type: Expression Integer +--E 11 + +--S 12 of 120 +ode54a:=solve(ode54,y,x) +--R +--R (12) "failed" +--R Type: Union("failed",...) +--E 12 + +--S 13 of 120 +ode55 := D(y(x),x) - f(x)*y(x)**n - g(x)*y(x) - h(x) +--R +--R , n +--R (13) y (x) - f(x)y(x) - g(x)y(x) - h(x) +--R +--R Type: Expression Integer +--E 13 + +--S 14 of 120 +ode55a:=solve(ode55,y,x) +--R +--R (14) "failed" +--R Type: Union("failed",...) +--E 14 + +--S 15 of 120 +ode56 := D(y(x),x) - f(x)*y(x)**a - g(x)*y(x)**b +--R +--R , b a +--R (15) y (x) - g(x)y(x) - f(x)y(x) +--R +--R Type: Expression Integer +--E 15 + +--S 16 of 120 +ode5a:=solve(ode56,y,x) +--R +--R (16) "failed" +--R Type: Union("failed",...) +--E 16 + +--S 17 of 120 +ode57 := D(y(x),x) - sqrt(abs(y(x))) +--R +--R +---------+ , +--R (17) - \|abs(y(x)) + y (x) +--R +--R Type: Expression Integer +--E 17 + +--S 18 of 120 +yx:=solve(ode57,y,x) +--R +--R +---------+ +--R - x\|abs(y(x)) + 2y(x) +--R (18) ----------------------- +--R +----+ +--R \|y(x) +--R Type: Union(Expression Integer,...) +--E 18 + +--S 19 of 120 +ode57expr := D(yx,x) - sqrt(abs(yx)) +--R +--R (19) +--R +--------------------------+ +--R | +---------+ +--R +----+ +---------+ | x\|abs(y(x)) - 2y(x) , +---------+ +--R - \|y(x) \|abs(y(x)) |abs(---------------------) + y (x)\|abs(y(x)) +--R | +----+ +--R \| \|y(x) +--R + +--R - abs(y(x)) +--R / +--R +----+ +---------+ +--R \|y(x) \|abs(y(x)) +--R Type: Expression Integer +--E 19 + +--S 20 of 120 +ode58 := D(y(x),x) - a*sqrt(y(x)) - b*x +--R +--R , +----+ +--R (20) y (x) - a\|y(x) - b x +--R +--R Type: Expression Integer +--E 20 + +--S 21 of 120 +ode58a:=solve(ode58,y,x) +--R +--R (21) "failed" +--R Type: Union("failed",...) +--E 21 + +-- this never finishes +-- ode59 := D(y(x),x) - a*sqrt(y(x)**2+1) - b +-- + +--S 22 of 120 +ode60 := D(y(x),x) - sqrt(y(x)**2-1)/sqrt(x**2-1) +--R +--R +------+ +---------+ +--R | 2 , | 2 +--R \|x - 1 y (x) - \|y(x) - 1 +--R +--R (22) ----------------------------- +--R +------+ +--R | 2 +--R \|x - 1 +--R Type: Expression Integer +--E 22 + +--S 23 of 120 +ode60a:=solve(ode60,y,x) +--R +--R (23) "failed" +--R Type: Union("failed",...) +--E 23 + +--S 24 of 120 +ode61 := D(y(x),x) - sqrt(x**2-1)/sqrt(y(x)**2-1) +--R +--R +---------+ +------+ +--R | 2 , | 2 +--R \|y(x) - 1 y (x) - \|x - 1 +--R +--R (24) ----------------------------- +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R Type: Expression Integer +--E 24 + +--S 25 of 120 +yx:=solve(ode61,y,x) +--R +--R (25) +--R +------+ +---------+ +--R | 2 2 | 2 +--R (4x y(x)\|x - 1 + (- 4x + 2)y(x))\|y(x) - 1 +--R + +--R +------+ +--R 2 | 2 2 2 2 +--R (- 4x y(x) + 2x)\|x - 1 + (4x - 2)y(x) - 2x + 1 +--R * +--R +---------+ +--R | 2 +--R log(\|y(x) - 1 - y(x)) +--R + +--R +------+ +------+ +--R | 2 2 | 2 +--R (- 4x y(x)\|x - 1 + (4x - 2)y(x))log(\|x - 1 - x) +--R + +--R +------+ +--R 3 3 | 2 2 3 +--R (- 4x y(x) + 4x y(x))\|x - 1 + (4x - 2)y(x) +--R + +--R 4 2 +--R (- 4x + 2x + 1)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R +------+ +------+ +--R 2 | 2 2 2 2 | 2 +--R ((4x y(x) - 2x)\|x - 1 + (- 4x + 2)y(x) + 2x - 1)log(\|x - 1 - x) +--R + +--R +------+ +--R 4 3 2 3 | 2 2 4 +--R (4x y(x) + (- 4x - 2x)y(x) + 2x - x)\|x - 1 + (- 4x + 2)y(x) +--R + +--R 4 2 4 2 +--R (4x - 2)y(x) - 2x + 2x +--R / +--R +------+ +---------+ +--R | 2 2 | 2 +--R (8x y(x)\|x - 1 + (- 8x + 4)y(x))\|y(x) - 1 +--R + +--R +------+ +--R 2 | 2 2 2 2 +--R (- 8x y(x) + 4x)\|x - 1 + (8x - 4)y(x) - 4x + 2 +--R Type: Union(Expression Integer,...) +--E 25 + +--S 26 of 120 +ode61expr := D(yx,x) - sqrt(x**2-1)/sqrt(yx**2-1) +--R +--R (26) +--R 4 2 5 4 2 3 +--R (- 64x + 64x - 8)y(x) + (96x - 96x + 12)y(x) +--R + +--R 4 2 +--R (- 32x + 32x - 4)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 5 3 5 5 3 3 +--R (64x - 96x + 32x)y(x) + (- 96x + 144x - 48x)y(x) +--R + +--R 5 3 +--R (32x - 48x + 16x)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 4 2 6 4 2 4 +--R (64x - 64x + 8)y(x) + (- 128x + 128x - 16)y(x) +--R + +--R 4 2 2 4 2 +--R (72x - 72x + 9)y(x) - 8x + 8x - 1 +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 5 3 6 5 3 4 +--R (- 64x + 96x - 32x)y(x) + (128x - 192x + 64x)y(x) +--R + +--R 5 3 2 5 3 +--R (- 72x + 108x - 36x)y(x) + 8x - 12x + 4x +--R * +--R , +--R y (x) +--R +--R + +--R 5 3 4 5 3 2 5 +--R (64x - 96x + 32x)y(x) + (- 64x + 96x - 32x)y(x) + 8x +--R + +--R 3 +--R - 12x + 4x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 6 4 2 4 6 4 2 2 +--R (- 64x + 128x - 72x + 8)y(x) + (64x - 128x + 72x - 8)y(x) +--R + +--R 6 4 2 +--R - 8x + 16x - 9x + 1 +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 5 3 5 5 3 3 +--R (- 64x + 96x - 32x)y(x) + (96x - 144x + 48x)y(x) +--R + +--R 5 3 +--R (- 32x + 48x - 16x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 6 4 2 5 6 4 2 3 +--R (64x - 128x + 72x - 8)y(x) + (- 96x + 192x - 108x + 12)y(x) +--R + +--R 6 4 2 +--R (32x - 64x + 36x - 4)y(x) +--R * +--R ROOT +--R +------+ +--R 3 3 3 | 2 +--R ((64x - 32x)y(x) + (- 32x + 16x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 64x + 64x - 8)y(x) + (32x - 32x + 4)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R ((- 64x + 32x)y(x) + (64x - 32x)y(x) - 8x + 4x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 4 +--R (64x - 64x + 8)y(x) + (- 64x + 64x - 8)y(x) + 8x +--R + +--R 2 +--R - 8x + 1 +--R * +--R +---------+ 2 +--R | 2 +--R log(\|y(x) - 1 - y(x)) +--R + +--R +------+ +--R 3 3 3 | 2 +--R ((- 128x + 64x)y(x) + (64x - 32x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (128x - 128x + 16)y(x) + (- 64x + 64x - 8)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 5 5 3 +--R (- 128x + 64x)y(x) + (128x - 48x)y(x) +--R + +--R 5 3 +--R (- 64x + 48x )y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 5 +--R (128x - 128x + 16)y(x) +--R + +--R 6 4 2 3 +--R (- 128x + 64x + 64x - 16)y(x) +--R + +--R 6 4 2 +--R (64x - 80x + 16x + 2)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R (128x - 64x)y(x) + (- 128x + 64x)y(x) + 16x +--R + +--R - 8x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 +--R (- 128x + 128x - 16)y(x) + (128x - 128x + 16)y(x) +--R + +--R 4 2 +--R - 16x + 16x - 2 +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 6 5 3 4 +--R (128x - 64x)y(x) + (- 128x - 64x + 80x)y(x) +--R + +--R 5 3 2 5 3 +--R (128x - 64x - 16x)y(x) - 16x + 16x - 2x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 6 6 2 4 +--R (- 128x + 128x - 16)y(x) + (128x - 128x + 24)y(x) +--R + +--R 6 4 2 6 4 2 +--R (- 128x + 128x - 8)y(x) + 16x - 24x + 8x +--R * +--R +---------+ +--R | 2 +--R log(\|y(x) - 1 - y(x)) +--R + +--R +------+ +--R 3 3 3 | 2 +--R ((64x - 32x)y(x) + (- 32x + 16x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 64x + 64x - 8)y(x) + (32x - 32x + 4)y(x) +--R * +--R +------+ 2 +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 5 5 3 +--R (128x - 64x)y(x) + (- 128x + 48x)y(x) +--R + +--R 5 3 +--R (64x - 48x )y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 5 +--R (- 128x + 128x - 16)y(x) +--R + +--R 6 4 2 3 +--R (128x - 64x - 64x + 16)y(x) +--R + +--R 6 4 2 +--R (- 64x + 80x - 16x - 2)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 7 5 3 5 +--R (64x - 32x)y(x) + (- 128x + 32x + 32x)y(x) +--R + +--R 7 5 3 3 +--R (64x + 32x - 320x + 128x)y(x) +--R + +--R 7 5 3 +--R (- 32x + 32x + 128x - 66x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 7 6 4 2 5 +--R (- 64x + 64x - 8)y(x) + (128x - 96x - 32x + 12)y(x) +--R + +--R 8 4 2 3 +--R (- 64x + 344x - 280x + 28)y(x) +--R + +--R 8 6 4 2 +--R (32x - 48x - 116x + 132x - 16)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R ((- 64x + 32x)y(x) + (64x - 32x)y(x) - 8x + 4x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 4 +--R (64x - 64x + 8)y(x) + (- 64x + 64x - 8)y(x) + 8x +--R + +--R 2 +--R - 8x + 1 +--R * +--R +------+ 2 +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 6 5 3 4 +--R (- 128x + 64x)y(x) + (128x + 64x - 80x)y(x) +--R + +--R 5 3 2 5 3 +--R (- 128x + 64x + 16x)y(x) + 16x - 16x + 2x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 6 6 2 4 +--R (128x - 128x + 16)y(x) + (- 128x + 128x - 24)y(x) +--R + +--R 6 4 2 6 4 2 +--R (128x - 128x + 8)y(x) - 16x + 24x - 8x +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 8 5 6 +--R (- 64x + 32x)y(x) + (128x - 48x)y(x) +--R + +--R 7 5 3 4 +--R (- 64x - 96x + 344x - 116x)y(x) +--R + +--R 7 5 3 2 7 5 3 +--R (64x - 32x - 280x + 132x)y(x) - 8x + 12x + 28x - 16x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 8 6 4 2 6 +--R (64x - 64x + 8)y(x) + (- 128x + 64x + 64x - 16)y(x) +--R + +--R 8 6 4 2 4 +--R (64x + 64x - 400x + 272x - 23)y(x) +--R + +--R 8 6 4 2 2 8 6 4 +--R (- 64x + 64x + 272x - 272x + 31)y(x) + 8x - 16x - 23x +--R + +--R 2 +--R 31x - 4 +--R / +--R +------+ +--R 3 3 3 | 2 +--R ((256x - 128x)y(x) + (- 128x + 64x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 256x + 256x - 32)y(x) + (128x - 128x + 16)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R ((- 256x + 128x)y(x) + (256x - 128x)y(x) - 32x + 16x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 4 +--R (256x - 256x + 32)y(x) + (- 256x + 256x - 32)y(x) + 32x +--R + +--R 2 +--R - 32x + 4 +--R + +--R 5 3 4 5 3 2 5 +--R (64x - 96x + 32x)y(x) + (- 64x + 96x - 32x)y(x) + 8x +--R + +--R 3 +--R - 12x + 4x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 6 4 2 4 6 4 2 2 +--R (- 64x + 128x - 72x + 8)y(x) + (64x - 128x + 72x - 8)y(x) +--R + +--R 6 4 2 +--R - 8x + 16x - 9x + 1 +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 5 3 5 5 3 3 +--R (- 64x + 96x - 32x)y(x) + (96x - 144x + 48x)y(x) +--R + +--R 5 3 +--R (- 32x + 48x - 16x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 6 4 2 5 6 4 2 3 +--R (64x - 128x + 72x - 8)y(x) + (- 96x + 192x - 108x + 12)y(x) +--R + +--R 6 4 2 +--R (32x - 64x + 36x - 4)y(x) +--R / +--R 4 2 4 4 2 2 4 2 +--R (64x - 64x + 8)y(x) + (- 64x + 64x - 8)y(x) + 8x - 8x +--R + +--R 1 +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 5 3 4 5 3 2 5 3 +--R (- 64x + 96x - 32x)y(x) + (64x - 96x + 32x)y(x) - 8x + 12x +--R + +--R - 4x +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 4 2 5 4 2 3 +--R (- 64x + 64x - 8)y(x) + (96x - 96x + 12)y(x) +--R + +--R 4 2 +--R (- 32x + 32x - 4)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 5 3 5 5 3 3 +--R (64x - 96x + 32x)y(x) + (- 96x + 144x - 48x)y(x) +--R + +--R 5 3 +--R (32x - 48x + 16x)y(x) +--R * +--R ROOT +--R +------+ +--R 3 3 3 | 2 +--R ((64x - 32x)y(x) + (- 32x + 16x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 64x + 64x - 8)y(x) + (32x - 32x + 4)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R +------+ +--R 3 4 3 2 3 | 2 +--R ((- 64x + 32x)y(x) + (64x - 32x)y(x) - 8x + 4x)\|x - 1 +--R + +--R 4 2 4 4 2 2 4 2 +--R (64x - 64x + 8)y(x) + (- 64x + 64x - 8)y(x) + 8x - 8x +--R + +--R 1 +--R * +--R +---------+ 2 +--R | 2 +--R log(\|y(x) - 1 - y(x)) +--R + +--R +------+ +--R 3 3 3 | 2 +--R ((- 128x + 64x)y(x) + (64x - 32x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (128x - 128x + 16)y(x) + (- 64x + 64x - 8)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 5 5 3 +--R (- 128x + 64x)y(x) + (128x - 48x)y(x) +--R + +--R 5 3 +--R (- 64x + 48x )y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 5 +--R (128x - 128x + 16)y(x) +--R + +--R 6 4 2 3 +--R (- 128x + 64x + 64x - 16)y(x) +--R + +--R 6 4 2 +--R (64x - 80x + 16x + 2)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R ((128x - 64x)y(x) + (- 128x + 64x)y(x) + 16x - 8x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 +--R (- 128x + 128x - 16)y(x) + (128x - 128x + 16)y(x) +--R + +--R 4 2 +--R - 16x + 16x - 2 +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 6 5 3 4 +--R (128x - 64x)y(x) + (- 128x - 64x + 80x)y(x) +--R + +--R 5 3 2 5 3 +--R (128x - 64x - 16x)y(x) - 16x + 16x - 2x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 6 6 2 4 +--R (- 128x + 128x - 16)y(x) + (128x - 128x + 24)y(x) +--R + +--R 6 4 2 6 4 2 +--R (- 128x + 128x - 8)y(x) + 16x - 24x + 8x +--R * +--R +---------+ +--R | 2 +--R log(\|y(x) - 1 - y(x)) +--R + +--R +------+ +--R 3 3 3 | 2 +--R ((64x - 32x)y(x) + (- 32x + 16x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 64x + 64x - 8)y(x) + (32x - 32x + 4)y(x) +--R * +--R +------+ 2 +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 5 5 3 +--R (128x - 64x)y(x) + (- 128x + 48x)y(x) +--R + +--R 5 3 +--R (64x - 48x )y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 5 +--R (- 128x + 128x - 16)y(x) +--R + +--R 6 4 2 3 +--R (128x - 64x - 64x + 16)y(x) +--R + +--R 6 4 2 +--R (- 64x + 80x - 16x - 2)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 7 5 3 5 +--R (64x - 32x)y(x) + (- 128x + 32x + 32x)y(x) +--R + +--R 7 5 3 3 +--R (64x + 32x - 320x + 128x)y(x) +--R + +--R 7 5 3 +--R (- 32x + 32x + 128x - 66x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 7 6 4 2 5 +--R (- 64x + 64x - 8)y(x) + (128x - 96x - 32x + 12)y(x) +--R + +--R 8 4 2 3 +--R (- 64x + 344x - 280x + 28)y(x) +--R + +--R 8 6 4 2 +--R (32x - 48x - 116x + 132x - 16)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R +------+ +--R 3 4 3 2 3 | 2 +--R ((- 64x + 32x)y(x) + (64x - 32x)y(x) - 8x + 4x)\|x - 1 +--R + +--R 4 2 4 4 2 2 4 2 +--R (64x - 64x + 8)y(x) + (- 64x + 64x - 8)y(x) + 8x - 8x +--R + +--R 1 +--R * +--R +------+ 2 +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 6 5 3 4 +--R (- 128x + 64x)y(x) + (128x + 64x - 80x)y(x) +--R + +--R 5 3 2 5 3 +--R (- 128x + 64x + 16x)y(x) + 16x - 16x + 2x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 6 6 2 4 +--R (128x - 128x + 16)y(x) + (- 128x + 128x - 24)y(x) +--R + +--R 6 4 2 6 4 2 +--R (128x - 128x + 8)y(x) - 16x + 24x - 8x +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 8 5 6 +--R (- 64x + 32x)y(x) + (128x - 48x)y(x) +--R + +--R 7 5 3 4 +--R (- 64x - 96x + 344x - 116x)y(x) +--R + +--R 7 5 3 2 7 5 3 +--R (64x - 32x - 280x + 132x)y(x) - 8x + 12x + 28x - 16x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 8 6 4 2 6 +--R (64x - 64x + 8)y(x) + (- 128x + 64x + 64x - 16)y(x) +--R + +--R 8 6 4 2 4 +--R (64x + 64x - 400x + 272x - 23)y(x) +--R + +--R 8 6 4 2 2 8 6 4 +--R (- 64x + 64x + 272x - 272x + 31)y(x) + 8x - 16x - 23x +--R + +--R 2 +--R 31x - 4 +--R / +--R +------+ +--R 3 3 3 | 2 +--R ((256x - 128x)y(x) + (- 128x + 64x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 256x + 256x - 32)y(x) + (128x - 128x + 16)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R ((- 256x + 128x)y(x) + (256x - 128x)y(x) - 32x + 16x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 4 +--R (256x - 256x + 32)y(x) + (- 256x + 256x - 32)y(x) + 32x +--R + +--R 2 +--R - 32x + 4 +--R Type: Expression Integer +--E 26 + +--S 27 of 120 +ode62 := D(y(x),x) - (y(x)-x**2*sqrt(x**2-y(x)**2))/_ + (x*y(x)*sqrt(x**2-y(x)**2)+x) +--R +--R +------------+ +------------+ +--R | 2 2 , 2 | 2 2 +--R (x y(x)\|- y(x) + x + x)y (x) + x \|- y(x) + x - y(x) +--R +--R (27) ----------------------------------------------------------- +--R +------------+ +--R | 2 2 +--R x y(x)\|- y(x) + x + x +--R Type: Expression Integer +--E 27 + +--S 28 of 120 +ode62a:=solve(ode62,y,x) +--R +--R (28) "failed" +--R Type: Union("failed",...) +--E 28 + +--S 29 of 120 +ode63 := D(y(x),x) - (1+ y(x)**2)/(abs(y(x)+sqrt(1+y(x)))*sqrt(1+x)**3) +--R +--R +-----+ , +--------+ 2 +--R (x + 1)\|x + 1 y (x)abs(\|y(x) + 1 + y(x)) - y(x) - 1 +--R +--R (29) ------------------------------------------------------- +--R +-----+ +--------+ +--R (x + 1)\|x + 1 abs(\|y(x) + 1 + y(x)) +--R Type: Expression Integer +--E 29 + +--S 30 of 120 +ode63a:=solve(ode63,y,x) +--R +--R (30) "failed" +--R Type: Union("failed",...) +--E 30 + +--S 31 of 120 +ode64 := D(y(x),x) - sqrt((a*y(x)**2+b*y(x)+c)/(a*x**2+b*x+c)) +--R +--R +--------------------+ +--R | 2 +--R , |a y(x) + b y(x) + c +--R (31) y (x) - |-------------------- +--R | 2 +--R \| a x + b x + c +--R Type: Expression Integer +--E 31 + +--S 32 of 120 +yx:=solve(ode64,y,x) +--R +--R (32) +--R log +--R +--------------------+ +--R | 2 +--R 2 2 +-+ |a y(x) + b y(x) + c +--R (2a x + 2a b x + 2a c)\|a |-------------------- +--R | 2 +--R \| a x + b x + c +--R * +--R +--------------------+ +--R | 2 +--R \|a y(x) + b y(x) + c +--R + +--R 3 3 2 2 2 2 +--R (- 2a x - 2a b x - 2a c x)y(x) +--R + +--R 2 3 2 2 2 3 2 +--R (- 2a b x - 2a b x - 2a b c x)y(x) - 2a c x - 2a b c x +--R + +--R 2 +--R - 2a c x +--R * +--R +-------------------------+ +--R | 2 2 +--R \|a c y(x) + b c y(x) + c +--R + +--R 3 4 2 3 2 2 2 3 2 +--R (- a x - a b x - 2a c x - a b c x - a c - a )y(x) +--R + +--R 2 4 2 3 2 2 2 2 +--R (- a b x - a b x - 2a b c x - b c x - b c - a b)y(x) +--R + +--R 2 4 3 2 2 2 3 2 +--R - a c x - a b c x - 2a c x - b c x - c - a c +--R * +--R +--------------------+ +--R +-+ | 2 +--R \|a \|a y(x) + b y(x) + c +--R + +--R 4 3 3 2 3 2 +--R (2a x + 2a b x + 2a c x)y(x) +--R + +--R 3 3 2 2 2 2 3 3 2 2 +--R (2a b x + 2a b x + 2a b c x)y(x) + 2a c x + 2a b c x +--R + +--R 2 2 +--R 2a c x +--R * +--R +--------------------+ +--R | 2 +--R |a y(x) + b y(x) + c +--R |-------------------- +--R | 2 +--R \| a x + b x + c +--R / +--R +--------------------+ +--R | 2 +--R 2 2 |a y(x) + b y(x) + c +--R (2a x + 2a b x + 2a c) |-------------------- +--R | 2 +--R \| a x + b x + c +--R * +--R +-------------------------+ +--R | 2 2 +--R \|a c y(x) + b c y(x) + c +--R + +--R 3 4 2 3 2 3 2 +--R (a x + a b x - a b c x - a c - a )y(x) +--R + +--R 2 4 2 3 2 2 2 2 4 3 +--R (a b x + a b x - b c x - b c - a b)y(x) + a c x + a b c x +--R + +--R 2 3 2 +--R - b c x - c - a c +--R + +--R log +--R +--------------------+ +--R +-+ +-+ | 2 +-+ +--R (2\|a \|c - 2a y(x))\|a y(x) + b y(x) + c + 2a y(x)\|c +--R + +--R 2 +-+ +--R (- 2a y(x) - b y(x) - 2c)\|a +--R / +--R +--------------------+ +--R +-+ | 2 +--R 2\|c \|a y(x) + b y(x) + c - b y(x) - 2c +--R / +--R +-+ +--R \|a +--R Type: Union(Expression Integer,...) +--E 32 + +@ +The results of this substitution are too long to include. +It should be zero but Axiom cannot simplify it. +<<*>>= +--S 33 of 120 +ode64expr := D(yx,x) - sqrt((a*yx**2+b*yx+c)/(a*x**2+b*x+c)); +--E 33 + +--S 34 of 120 +ode65 := D(y(x),x) - sqrt((y(x)**3+1)/(x**3+1)) +--R +--R +---------+ +--R | 3 +--R , |y(x) + 1 +--R (34) y (x) - |--------- +--R | 3 +--R \| x + 1 +--R Type: Expression Integer +--E 34 + +--S 35 of 120 +ode65a:=solve(ode65,y,x) +--R +--R +---------+ +--R | 3 +--R |y(x) + 1 +--R |--------- +--R x | 3 y(x) +--I ++ \| %P + 1 ++ 1 +--I (35) | - ------------ d%P + | ---------- d%P +--R ++ +---------+ ++ +-------+ +--R | 3 | 3 +--I \|y(x) + 1 \|%P + 1 +--R Type: Union(Expression Integer,...) +--E 35 + +--S 36 of 120 +ode66 := D(y(x),x) - sqrt(abs(y(x)*(1-y(x))*(1-a*y(x))))/_ + sqrt(abs(x*(1-x)*(1-a*x))) +--R +--R (36) +--R +------------------------------------+ +--R | 3 2 +--R - \|abs(a y(x) + (- a - 1)y(x) + y(x)) +--R + +--R +---------------------------+ +--R | 3 2 , +--R \|abs(a x + (- a - 1)x + x) y (x) +--R +--R / +--R +---------------------------+ +--R | 3 2 +--R \|abs(a x + (- a - 1)x + x) +--R Type: Expression Integer +--E 36 + +--S 37 of 120 +ode66a:=solve(ode66,y,x) +--R +--R (37) "failed" +--R Type: Union("failed",...) +--E 37 + +--S 38 of 120 +ode67 := D(y(x),x) - sqrt(1-y(x)**4)/sqrt(1-x**4) +--R +--R +--------+ +-----------+ +--R | 4 , | 4 +--R \|- x + 1 y (x) - \|- y(x) + 1 +--R +--R (38) --------------------------------- +--R +--------+ +--R | 4 +--R \|- x + 1 +--R Type: Expression Integer +--E 38 + +--S 39 of 120 +ode67a:=solve(ode67,y,x) +--R +--R (39) "failed" +--R Type: Union("failed",...) +--E 39 + +--S 40 of 120 +ode68 := D(y(x),x) - sqrt((a*y(x)**4+b*y(x)**2+1)/(a*x**4+b*x**2+1)) +--R +--R +---------------------+ +--R | 4 2 +--R , |a y(x) + b y(x) + 1 +--R (40) y (x) - |--------------------- +--R | 4 2 +--R \| a x + b x + 1 +--R Type: Expression Integer +--E 40 + +--S 41 of 120 +ode68a:=solve(ode68,y,x) +--R +--R +--R (41) +--R +---------------------+ +--R | 4 2 +--R |a y(x) + b y(x) + 1 +--R |--------------------- +--R x | 2 4 y(x) +--I ++ \| %N b + %N a + 1 ++ 1 +--I | - ------------------------ d%N + | ------------------ d%N +--R ++ +---------------------+ ++ +---------------+ +--R | 4 2 | 2 4 +--I \|a y(x) + b y(x) + 1 \|%N b + %N a + 1 +--R Type: Union(Expression Integer,...) +--E 41 + +--S 42 of 120 +ode69 := D(y(x),x) - sqrt((b4*y(x)**4+b3*y(x)**3+b2*y(x)**2+b1*y(x)+b0)*_ + (a4*x**4+a3*x**3+a2*x**2+a1*x+a0)) +--R +--R +--R (42) +--R , +--R y (x) +--R +--R + +--R - +--R ROOT +--R 4 3 2 4 +--R (a4 b4 x + a3 b4 x + a2 b4 x + a1 b4 x + a0 b4)y(x) +--R + +--R 4 3 2 3 +--R (a4 b3 x + a3 b3 x + a2 b3 x + a1 b3 x + a0 b3)y(x) +--R + +--R 4 3 2 2 +--R (a4 b2 x + a3 b2 x + a2 b2 x + a1 b2 x + a0 b2)y(x) +--R + +--R 4 3 2 4 +--R (a4 b1 x + a3 b1 x + a2 b1 x + a1 b1 x + a0 b1)y(x) + a4 b0 x +--R + +--R 3 2 +--R a3 b0 x + a2 b0 x + a1 b0 x + a0 b0 +--R Type: Expression Integer +--E 42 + +--S 43 of 120 +ode69a:=solve(ode69,y,x) +--R +--R +--R >> Error detected within library code: +--R PFO::possibleOrder: more than 1 algebraic constant +--R +--R Continuing to read the file... +--R +--E 43 + +--S 44 of 120 +ode70 := D(y(x),x) - sqrt((a4*x**4+a3*x**3+a2*x**2+a1*x+a0)/_ + (b4*y(x)**4+b3*y(x)**3+b2*y(x)**2+b1*y(x)+b0)) +--R +--R +---------------------------------------------+ +--R | 4 3 2 +--R , | a4 x + a3 x + a2 x + a1 x + a0 +--R (43) y (x) - |--------------------------------------------- +--R | 4 3 2 +--R \|b4 y(x) + b3 y(x) + b2 y(x) + b1 y(x) + b0 +--R Type: Expression Integer +--E 44 + +--S 45 of 120 +ode70a:=solve(ode70,y,x) +--R +--R +--R >> Error detected within library code: +--R PFO::possibleOrder: more than 1 algebraic constant +--R +--R Continuing to read the file... +--R +--E 45 + +--S 46 of 120 +ode71 := D(y(x),x) - sqrt((b4*y(x)**4+b3*y(x)**3+b2*y(x)**2+b1*y(x)+b0)/_ + (a4*x**4+a3*x**3+a2*x**2+a1*x+a0)) +--R +--R +---------------------------------------------+ +--R | 4 3 2 +--R , |b4 y(x) + b3 y(x) + b2 y(x) + b1 y(x) + b0 +--R (44) y (x) - |--------------------------------------------- +--R | 4 3 2 +--R \| a4 x + a3 x + a2 x + a1 x + a0 +--R Type: Expression Integer +--E 46 + +--S 47 of 120 +ode71a:=solve(ode71,y,x) +--R +--R +--R (45) +--R +---------------------------------------------+ +--R | 4 3 2 +--R |b4 y(x) + b3 y(x) + b2 y(x) + b1 y(x) + b0 +--R |--------------------------------------------- +--R x | 4 3 2 +--I ++ \| %N a4 + %N a3 + %N a2 + %N a1 + a0 +--I | - ------------------------------------------------ d%N +--R ++ +---------------------------------------------+ +--R | 4 3 2 +--R \|b4 y(x) + b3 y(x) + b2 y(x) + b1 y(x) + b0 +--R + +--R y(x) +--R ++ 1 +--I | ------------------------------------- d%N +--R ++ +----------------------------------+ +--R | 4 3 2 +--I \|%N b4 + %N b3 + %N b2 + %N b1 + b0 +--R Type: Union(Expression Integer,...) +--E 47 + +--S 48 of 120 +R1:=operator 'R1 +--R +--R (46) R1 +--R Type: BasicOperator +--E 48 + +--S 49 of 120 +R2:=operator 'R2 +--R +--R (47) R2 +--R Type: BasicOperator +--E 49 + +--S 50 of 120 +ode72 := D(y(x),x) - R1(x,sqrt(a4*x**4+a3*x**3+a2*x**2+a1*x+a0))*_ + R2(y(x),sqrt(b4*y(x)**4+b3*y(x)**3+b2*y(x)**2+b1*y(x)+b0)) +--R +--R (48) +--R - +--R +---------------------------------+ +--R | 4 3 2 +--R R1(x,\|a4 x + a3 x + a2 x + a1 x + a0 ) +--R * +--R +---------------------------------------------+ +--R | 4 3 2 +--R R2(y(x),\|b4 y(x) + b3 y(x) + b2 y(x) + b1 y(x) + b0 ) +--R + +--R , +--R y (x) +--R +--R Type: Expression Integer +--E 50 + +--S 51 of 120 +ode72a:=solve(ode72,y,x) +--R +--R >> Error detected within library code: +--R Function not supported by Risch d.e. +--R +--R Continuing to read the file... +--R +--E 51 + +--S 52 of 120 +ode73 := D(y(x),x) - ((a3*x**3+a2*x**2+a1*x+a0)/_ + (a3*y(x)**3+a2*y(x)**2+a1*y(x)+a0))**(2/3) +--R +--R +----------------------------------+2 +--R | 3 2 +--R , | a3 x + a2 x + a1 x + a0 +--R (49) y (x) - |---------------------------------- +--R 3| 3 2 +--R \|a3 y(x) + a2 y(x) + a1 y(x) + a0 +--R Type: Expression Integer +--E 52 + +@ +Attempting to solve this problem fails with the error: +\begin{verbatim} +ode73a:=solve(ode73,y,x) + >> Error detected within library code: + Table construction failed in MLIFT +\end{verbatim} +<<*>>= + +--S 53 of 120 +ode74 := D(y(x),x) - f(x)*(y(x)-g(x))*sqrt((y(x)-a)*(y(x)-b)) +--R +--R +---------------------------+ +--R , | 2 +--R (50) y (x) + (- f(x)y(x) + f(x)g(x))\|y(x) + (- b - a)y(x) + a b +--R +--R Type: Expression Integer +--E 53 + +--S 54 of 120 +ode74a:=solve(ode74,y,x) +--R +--R (51) "failed" +--R Type: Union("failed",...) +--E 54 + +--S 55 of 120 +ode75 := D(y(x),x) - exp(x-y(x)) + exp(x) +--R +--R , - y(x) + x x +--R (52) y (x) - %e + %e +--R +--R Type: Expression Integer +--E 55 + +--S 56 of 120 +ode75a:=solve(ode75,y,x) +--R +--R (53) "failed" +--R Type: Union("failed",...) +--E 56 + +--S 57 of 120 +ode76 := D(y(x),x) - a*cos(y(x)) + b +--R +--R , +--R (54) y (x) - a cos(y(x)) + b +--R +--R Type: Expression Integer +--E 57 + +--S 58 of 120 +yx:=solve(ode76,y,x) +--R +--R (55) +--R +---------+ +---------+ +--R 2 2 | 2 2 | 2 2 +--R (- b + a )sin(y(x)) + b\|- b + a cos(y(x)) - a\|- b + a +--R log(-------------------------------------------------------------) +--R a cos(y(x)) - b +--R + +--R +---------+ +--R | 2 2 +--R x\|- b + a +--R / +--R +---------+ +--R | 2 2 +--R \|- b + a +--R Type: Union(Expression Integer,...) +--E 58 + +--S 59 of 120 +ode76expr := D(yx,x) - a*cos(yx) + b +--R +--R (56) +--R 2 2 4 3 3 +--R ((- a b + a )cos(y(x)) + a b - a b)sin(y(x)) +--R + +--R +---------+ +---------+ +--R 2 | 2 2 2 2 3 | 2 2 +--R a b\|- b + a cos(y(x)) + (- a b - a )\|- b + a cos(y(x)) +--R + +--R +---------+ +--R 2 | 2 2 +--R a b\|- b + a +--R * +--R cos +--R log +--R +---------+ +---------+ +--R 2 2 | 2 2 | 2 2 +--R (- b + a )sin(y(x)) + b\|- b + a cos(y(x)) - a\|- b + a +--R ------------------------------------------------------------- +--R a cos(y(x)) - b +--R + +--R +---------+ +--R | 2 2 +--R x\|- b + a +--R / +--R +---------+ +--R | 2 2 +--R \|- b + a +--R + +--R +---------+ +--R | 2 2 2 2 2 +--R - a\|- b + a sin(y(x)) + (- b + a )sin(y(x)) +--R + +--R +---------+ +---------+ +--R | 2 2 2 | 2 2 +--R - a\|- b + a cos(y(x)) + b\|- b + a cos(y(x)) +--R * +--R , +--R y (x) +--R +--R + +--R 3 2 3 3 4 3 2 2 2 +--R ((a b + a b - a b - a )cos(y(x)) - b - b + a b + a b)sin(y(x)) +--R + +--R +---------+ +--R 2 | 2 2 2 +--R (- a b - a b)\|- b + a cos(y(x)) +--R + +--R +---------+ +---------+ +--R 3 2 2 2 | 2 2 2 | 2 2 +--R (b + b + a b + a )\|- b + a cos(y(x)) + (- a b - a b)\|- b + a +--R / +--R +---------+ +--R 2 3 3 2 | 2 2 2 +--R ((a b - a )cos(y(x)) - b + a b)sin(y(x)) - a b\|- b + a cos(y(x)) +--R + +--R +---------+ +---------+ +--R 2 2 | 2 2 | 2 2 +--R (b + a )\|- b + a cos(y(x)) - a b\|- b + a +--R Type: Expression Integer +--E 59 + +--S 60 of 120 +ode77 := D(y(x),x) - cos(a*y(x)+b*x) +--R +--R , +--R (57) y (x) - cos(a y(x) + b x) +--R +--R Type: Expression Integer +--E 60 + +--S 61 of 120 +ode77a:=solve(ode77,y,x) +--R +--R (58) "failed" +--R Type: Union("failed",...) +--E 61 + +--S 62 of 120 +ode78 := D(y(x),x) + a*sin(alpha*y(x)+beta*x) + b +--R +--R , +--R (59) y (x) + a sin(alpha y(x) + beta x) + b +--R +--R Type: Expression Integer +--E 62 + +--S 63 of 120 +ode78a:=solve(ode78,y,x) +--R +--R (60) "failed" +--R Type: Union("failed",...) +--E 63 + +--S 64 of 120 +ode79 := D(y(x),x) + f(x)*cos(a*y(x)) + g(x)*sin(a*y(x)) + h(x) +--R +--R , +--R (61) y (x) + g(x)sin(a y(x)) + f(x)cos(a y(x)) + h(x) +--R +--R Type: Expression Integer +--E 64 + +--S 65 of 120 +ode79a:=solve(ode79,y,x) +--R +--R (62) "failed" +--R Type: Union("failed",...) +--E 65 + +--S 66 of 120 +ode80 := D(y(x),x) + f(x)*sin(y(x)) + (1-D(f(x),x))*cos(y(x)) - D(f(x),x) - 1 +--R +--R , , +--R (63) y (x) + (- cos(y(x)) - 1)f (x) + f(x)sin(y(x)) + cos(y(x)) - 1 +--R +--R Type: Expression Integer +--E 66 + +--S 67 of 120 +ode80a:=solve(ode80,y,x) +--R +--R (64) "failed" +--R Type: Union("failed",...) +--E 67 + +--S 68 of 120 +ode81 := D(y(x),x) + 2*tan(y(x))*tan(x) - 1 +--R +--R , +--R (65) y (x) + 2tan(x)tan(y(x)) - 1 +--R +--R Type: Expression Integer +--E 68 + +--S 69 of 120 +ode81a:=solve(ode81,y,x) +--R +--R (66) "failed" +--R Type: Union("failed",...) +--E 69 + +--S 70 of 120 +ode82 := D(y(x),x) - a*(1+tan(y(x))**2) + tan(y(x))*tan(x) +--R +--R , 2 +--R (67) y (x) - a tan(y(x)) + tan(x)tan(y(x)) - a +--R +--R Type: Expression Integer +--E 70 + +--S 71 of 120 +ode82a:=solve(ode82,y,x) +--R +--R (68) "failed" +--R Type: Union("failed",...) +--E 71 + +--S 72 of 120 +ode83 := D(y(x),x) - tan(x*y(x)) +--R +--R , +--R (69) y (x) - tan(x y(x)) +--R +--R Type: Expression Integer +--E 72 + +--S 73 of 120 +ode83a:=solve(ode83,y,x) +--R +--R (70) "failed" +--R Type: Union("failed",...) +--E 73 + +--S 74 of 120 +ode84 := D(y(x),x) - f(a*x + b*y(x)) +--R +--R , +--R (71) y (x) - f(b y(x) + a x) +--R +--R Type: Expression Integer +--E 74 + +--S 75 of 120 +ode84a:=solve(ode84,y,x) +--R +--R (72) "failed" +--R Type: Union("failed",...) +--E 75 + +--S 76 of 120 +ode85 := D(y(x),x) - x**(a-1)*y(x)**(1-b)*f(x**a/a + y(x)**b/b) +--R +--R b a +--R a - 1 - b + 1 a y(x) + b x , +--R (73) - x y(x) f(--------------) + y (x) +--R a b +--R Type: Expression Integer +--E 76 + +--S 77 of 120 +ode85a:=solve(ode85,y,x) +--R +--R (74) "failed" +--R Type: Union("failed",...) +--E 77 + +--S 78 of 120 +ode86 := D(y(x),x) - (y(x)-x*f(x**2+a*y(x)**2))/(x+a*y(x)*f(x**2+a*y(x)**2)) +--R +--R 2 2 , 2 2 +--R (a y(x)f(a y(x) + x ) + x)y (x) + x f(a y(x) + x ) - y(x) +--R +--R (75) ----------------------------------------------------------- +--R 2 2 +--R a y(x)f(a y(x) + x ) + x +--R Type: Expression Integer +--E 78 + +--S 79 of 120 +ode86a:=solve(ode86,y,x) +--R +--R (76) "failed" +--R Type: Union("failed",...) +--E 79 + +--S 80 of 120 +ode87 := D(y(x),x) - (y(x)*a*f(x**c*y(x))+c*x**a*y(x)**b)/_ + (x*b*f(x**c*y(x))-x**a*y(x)**b) +--R +--R a b c , a b c +--R (x y(x) - b x f(y(x)x ))y (x) + c x y(x) + a y(x)f(y(x)x ) +--R +--R (77) ------------------------------------------------------------ +--R a b c +--R x y(x) - b x f(y(x)x ) +--R Type: Expression Integer +--E 80 + +--S 81 of 120 +ode87a:=solve(ode87,y,x) +--R +--R (78) "failed" +--R Type: Union("failed",...) +--E 81 + +--S 82 of 120 +ode88 := 2*D(y(x),x) - 3*y(x)**2 - 4*a*y(x) - b - c*exp(-2*a*x) +--R +--R , - 2a x 2 +--R (79) 2y (x) - c %e - 3y(x) - 4a y(x) - b +--R +--R Type: Expression Integer +--E 82 + +--S 83 of 120 +ode88a:=solve(ode88,y,x) +--R +--R (80) "failed" +--R Type: Union("failed",...) +--E 83 + +--S 84 of 120 +ode89 := x*D(y(x),x) - sqrt(a**2 - x**2) +--R +--R +---------+ +--R , | 2 2 +--R (81) xy (x) - \|- x + a +--R +--R Type: Expression Integer +--E 84 + +--S 85 of 120 +ode89a:=solve(ode89,y,x) +--R +--R (82) +--R +---------+ +--R +---------+ | 2 2 +--R | 2 2 2 \|- x + a - a 2 +--R (a\|- x + a - a )log(----------------) - x +--R x +--R [particular= ----------------------------------------------,basis= [1]] +--R +---------+ +--R | 2 2 +--R \|- x + a - a +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 85 + +--S 86 of 120 +yx:=ode89a.particular +--R +--R +---------+ +--R +---------+ | 2 2 +--R | 2 2 2 \|- x + a - a 2 +--R (a\|- x + a - a )log(----------------) - x +--R x +--R (83) ---------------------------------------------- +--R +---------+ +--R | 2 2 +--R \|- x + a - a +--R Type: Expression Integer +--E 86 + +--S 87 of 120 +ode89expr := x*D(yx,x) - sqrt(a**2 - x**2) +--R +--R (84) 0 +--R Type: Expression Integer +--E 87 + +--S 88 of 120 +ode90 := x*D(y(x),x) + y(x) - x*sin(x) +--R +--R , +--R (85) xy (x) - x sin(x) + y(x) +--R +--R Type: Expression Integer +--E 88 + +--S 89 of 120 +ode90a:=solve(ode90,y,x) +--R +--R sin(x) - x cos(x) 1 +--R (86) [particular= -----------------,basis= [-]] +--R x x +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 89 + +--S 90 of 120 +yx:=ode90a.particular +--R +--R sin(x) - x cos(x) +--R (87) ----------------- +--R x +--R Type: Expression Integer +--E 90 + +--S 91 of 120 +ode90expr := x*D(yx,x) + yx - x*sin(x) +--R +--R (88) 0 +--R Type: Expression Integer +--E 91 + +--S 92 of 120 +ode91 := x*D(y(x),x) - y(x) - x/log(x) +--R +--R , +--R x log(x)y (x) - y(x)log(x) - x +--R +--R (89) ------------------------------ +--R log(x) +--R Type: Expression Integer +--E 92 + +--S 93 of 120 +ode91a:=solve(ode91,y,x) +--R +--R (90) [particular= x log(log(x)),basis= [x]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 93 + +--S 94 of 120 +yx:=ode91a.particular +--R +--R (91) x log(log(x)) +--R Type: Expression Integer +--E 94 + +--S 95 of 120 +ode91expr := x*D(yx,x) - yx - x/log(x) +--R +--R (92) 0 +--R Type: Expression Integer +--E 95 + +--S 96 of 120 +ode92 := x*D(y(x),x) - y(x) - x**2*sin(x) +--R +--R , 2 +--R (93) xy (x) - x sin(x) - y(x) +--R +--R Type: Expression Integer +--E 96 + +--S 97 of 120 +ode92a:=solve(ode92,y,x) +--R +--R (94) [particular= - x cos(x),basis= [x]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 97 + +--S 98 of 120 +yx:=ode92a.particular +--R +--R (95) - x cos(x) +--R Type: Expression Integer +--E 98 + +--S 99 of 120 +ode92expr := x*D(yx,x) - yx - x**2*sin(x) +--R +--R (96) 0 +--R Type: Expression Integer +--E 99 + + +--S 100 of 120 +ode93 := x*D(y(x),x) - y(x) - x*cos(log(log(x)))/log(x) +--R +--R , +--R - x cos(log(log(x))) + x log(x)y (x) - y(x)log(x) +--R +--R (97) ------------------------------------------------- +--R log(x) +--R Type: Expression Integer +--E 100 + +--S 101 of 120 +ode93a:=solve(ode93,y,x) +--R +--R (98) [particular= x sin(log(log(x))),basis= [x]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 101 + +--S 102 of 120 +yx:=ode93a.particular +--R +--R (99) x sin(log(log(x))) +--R Type: Expression Integer +--E 102 + +--S 103 of 120 +ode93 := x*D(yx,x) - yx - x*cos(log(log(x)))/log(x) +--R +--R (100) 0 +--R Type: Expression Integer +--E 103 + +--S 104 of 120 +ode94 := x*D(y(x),x) +a*y(x) + b*x**n +--R +--R , n +--R (101) xy (x) + b x + a y(x) +--R +--R Type: Expression Integer +--E 104 + +--S 105 of 120 +ode94a:=solve(ode94,y,x) +--R +--R n log(x) +--R b %e - a log(x) +--R (102) [particular= - ------------,basis= [%e ]] +--R n + a +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 105 + +--S 106 of 120 +yx:=ode94a.particular +--R +--R n log(x) +--R b %e +--R (103) - ------------ +--R n + a +--R Type: Expression Integer +--E 106 + +--S 107 of 120 +ode94expr := x*D(yx,x) +a*yx + b*x**n +--R +--R n log(x) n +--R (104) - b %e + b x +--R Type: Expression Integer +--E 107 + +--S 108 of 120 +exprule := rule x^n == %e^(n*log(x)) +--R +--R n n log(x) +--R (105) x == %e +--R Type: RewriteRule(Integer,Integer,Expression Integer) +--E 108 + +--S 109 of 120 +exprule ode94expr +--R +--R (106) 0 +--R Type: Expression Integer +--E 109 + +--S 110 of 120 +ode95 := x*D(y(x),x) + y(x)**2 + x**2 +--R +--R , 2 2 +--R (107) xy (x) + y(x) + x +--R +--R Type: Expression Integer +--E 110 + +--S 111 of 120 +ode95a:=solve(ode95,y,x) +--R +--R +--R (108) "failed" +--R Type: Union("failed",...) +--E 111 + +--S 112 of 120 +ode96 := x*D(y(x),x) - y(x)**2 + 1 +--R +--R +--R , 2 +--R (109) xy (x) - y(x) + 1 +--R +--R Type: Expression Integer +--E 112 + +--S 113 of 120 +yx:=solve(ode96,y,x) +--R +--R - x y(x) - x +--R (110) ---------------------- +--R +--------+ +--------+ +--R \|y(x) - 1 \|y(x) + 1 +--R Type: Union(Expression Integer,...) +--E 113 + +--S 114 of 120 +ode96expr := x*D(yx,x) - yx**2 + 1 +--R +--R (111) +--R 2 , 2 2 +--------+ +--------+ 2 +--R x y (x) + ((- x + 1)y(x) - x - 1)\|y(x) - 1 \|y(x) + 1 - x y(x) + x +--R +--R ----------------------------------------------------------------------- +--R +--------+ +--------+ +--R (y(x) - 1)\|y(x) - 1 \|y(x) + 1 +--R Type: Expression Integer +--E 114 + +--S 115 of 120 +ode98 := x*D(y(x),x) + a*y(x)**2 - b*y(x) + c*x**(2*b) +--R +--R +--R , 2b 2 +--R (112) xy (x) + c x + a y(x) - b y(x) +--R +--R Type: Expression Integer +--E 115 + +--S 116 of 120 +ode98a:=solve(ode98,y,x) +--R +--R (113) "failed" +--R Type: Union("failed",...) +--E 116 + +--S 117 of 120 +ode99 := x*D(y(x),x) + a*y(x)**2 - b*y(x) - c*x**beta +--R +--R +--R , beta 2 +--R (114) xy (x) - c x + a y(x) - b y(x) +--R +--R Type: Expression Integer +--E 117 + +--S 118 of 120 +ode99a:=solve(ode99,y,x) +--R +--R +--R (115) "failed" +--R Type: Union("failed",...) +--E 118 + +--S 119 of 120 +ode100 := x*D(y(x),x) + x*y(x)**2 + a +--R +--R +--R , 2 +--R (116) xy (x) + x y(x) + a +--R +--R Type: Expression Integer +--E 119 + +--S 120 of 120 +ode100a:=solve(ode100,y,x) +--R +--R +--R (117) "failed" +--R Type: Union("failed",...) +--E 120 +)spool +)lisp (bye) + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html} +\end{thebibliography} +\end{document} diff --git a/src/axiom-website/CATS/kamke1.input.pdf b/src/axiom-website/CATS/kamke1.input.pdf new file mode 100644 index 0000000..1a1b835 Binary files /dev/null and b/src/axiom-website/CATS/kamke1.input.pdf differ diff --git a/src/axiom-website/CATS/kamke2.input.pamphlet b/src/axiom-website/CATS/kamke2.input.pamphlet new file mode 100644 index 0000000..b4c8b85 --- /dev/null +++ b/src/axiom-website/CATS/kamke2.input.pamphlet @@ -0,0 +1,2217 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input kamke2.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +This is the 50 ODEs of the Kamke test suite as published by +E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom +syntax. Where possible we show that the particular solution actually +satisfies the original ordinary differential equation. +\end{abstract} +\eject +\tableofcontents +\eject +<<*>>= +)spool kamke2.output +)set break resume +)set mes auto off +)clear all + +--S 1 of 126 +y:=operator 'y +--R +--R (1) y +--R Type: BasicOperator +--E 1 + +--S 2 of 126 +f:=operator 'f +--R +--R (2) f +--R Type: BasicOperator +--E 2 + +--S 3 of 126 +g:=operator 'g +--R +--R (3) g +--R Type: BasicOperator +--E 3 + +------------------------------------------------------------------- +--S 4 of 126 +ode101 := x*D(y(x),x) + x*y(x)**2 - y(x) +--R +--R , 2 +--R (4) xy (x) + x y(x) - y(x) +--R +--R Type: Expression Integer +--E 4 + +@ +Maxima gives $$\frac{2x}{x^2-2\%c}$$ +which can be substituted and simplifies to 0. + +Maple gives +$$\frac{2x}{x^2+2\_C1}$$ +which can be substituted and simplifies to 0. + +Mathematica gives +$$y(x)=\frac{2x}{x^2+2}$$ +which can be substituted and simplifies to 0. +<<*>>= +--S 5 of 126 +yx:=solve(ode101,y,x) +--R +--R 2 +--R x y(x) - 2x +--R (5) ----------- +--R 2y(x) +--R Type: Union(Expression Integer,...) +--E 5 + +--S 6 of 126 +ode101expr := x*D(yx,x) + x*yx**2 - yx +--R +--R 2 , 5 2 2 4 3 +--R 4x y (x) + (x + 2x )y(x) - 4x y(x) + 4x +--R +--R (6) ------------------------------------------ +--R 2 +--R 4y(x) +--R Type: Expression Integer +--E 6 + +------------------------------------------------------------------- +--S 7 of 126 +ode102 := x*D(y(x),x) + x*y(x)**2 - y(x) - a*x**3 +--R +--R , 2 3 +--R (7) xy (x) + x y(x) - y(x) - a x +--R +--R Type: Expression Integer +--E 7 + +@ +Maxima fails. + +Maple gives +$$\tanh(\left(\frac{x^2\sqrt{a}}{2}+\_C1\sqrt{a}\right)x\sqrt{a}$$ +which, upon substitution, simplifies to 0. + +Mathematica gives +$$\sqrt{a}~x~ +\tanh\left(\frac{1}{2}\left(\sqrt{a}~x^2+2\sqrt{a}~C[1]\right)\right)$$ +which, upon substitution, cannot be simplified to 0. +<<*>>= +--S 8 of 126 +yx:=solve(ode102,y,x) +--R +--R +-+ +--R (2y(x) + 3x)\|a + 3y(x) + 2a x +--R (8) --------------------------------------------- +--R 2 +-+ +--R +-+ x \|a +--R ((6y(x) - 4a x)\|a + 4a y(x) - 6a x)%e +--R Type: Union(Expression Integer,...) +--E 8 + +--S 9 of 126 +ode102expr := x*D(yx,x) + x*yx**2 - yx - a*x**3 +--R +--R (9) +--R 2 2 3 2 3 +-+ +--R ((- 144a - 108a)x y(x) + (32a + 216a )x )\|a +--R + +--R 3 2 2 3 2 3 +--R (- 32a - 216a )x y(x) + (144a + 108a )x +--R * +--R 2 +-+ +--R x \|a , +--R %e y (x) +--R +--R + +--R 3 2 3 3 4 3 4 2 +--R (- 144a - 108a )x y(x) + (96a + 648a )x y(x) +--R + +--R 4 3 5 5 4 6 +--R (- 432a - 324a )x y(x) + (32a + 216a )x +--R * +--R +-+ +--R \|a +--R + +--R 4 3 3 3 4 3 4 2 +--R (- 32a - 216a )x y(x) + (432a + 324a )x y(x) +--R + +--R 5 4 5 5 4 6 +--R (- 96a - 648a )x y(x) + (144a + 108a )x +--R * +--R 2 +-+ 2 +--R x \|a +--R (%e ) +--R + +--R 2 2 2 3 +--R ((- 144a - 108a)x - 16a - 108a)y(x) +--R + +--R 3 2 3 2 2 +--R ((32a + 216a )x + (216a + 162a)x)y(x) +--R + +--R 3 2 4 3 2 2 4 3 5 +--R ((144a + 108a )x + (- 16a - 108a )x )y(x) + (- 32a - 216a )x +--R + +--R 3 2 3 +--R (- 72a - 54a )x +--R * +--R +-+ +--R \|a +--R + +--R 3 2 2 2 3 +--R ((- 32a - 216a )x - 72a - 54a)y(x) +--R + +--R 3 2 3 3 2 2 +--R ((144a + 108a )x + (48a + 324a )x)y(x) +--R + +--R 4 3 4 3 2 2 4 3 5 +--R ((32a + 216a )x + (- 72a - 54a )x )y(x) + (- 144a - 108a )x +--R + +--R 4 3 3 +--R (- 16a - 108a )x +--R * +--R 2 +-+ +--R x \|a +--R %e +--R + +--R 3 2 2 2 2 3 +--R (36a + 27)x y(x) + (8a + 54a)x y(x) + (- 36a - 27a)x y(x) +--R + +--R 3 2 4 +--R (- 8a - 54a )x +--R * +--R +-+ +--R \|a +--R + +--R 2 3 2 2 2 3 2 3 +--R (8a + 54a)x y(x) + (36a + 27a)x y(x) + (- 8a - 54a )x y(x) +--R + +--R 3 2 4 +--R (- 36a - 27a )x +--R / +--R 2 3 3 2 2 +--R (144a + 108a)y(x) + (- 96a - 648a )x y(x) +--R + +--R 3 2 2 4 3 3 +--R (432a + 324a )x y(x) + (- 32a - 216a )x +--R * +--R +-+ +--R \|a +--R + +--R 3 2 3 3 2 2 4 3 2 +--R (32a + 216a )y(x) + (- 432a - 324a )x y(x) + (96a + 648a )x y(x) +--R + +--R 4 3 3 +--R (- 144a - 108a )x +--R * +--R 2 +-+ 2 +--R x \|a +--R (%e ) +--R Type: Expression Integer +--E 9 + +------------------------------------------------------------------- +--S 10 of 126 +ode103 := x*D(y(x),x) + x*y(x)**2 - (2*x**2+1)*y(x) - x**3 +--R +--R , 2 2 3 +--R (10) xy (x) + x y(x) + (- 2x - 1)y(x) - x +--R +--R Type: Expression Integer +--E 10 + +@ +Maxima fails. + +Maple gives +$$\frac{1}{2}x\left(\sqrt{2}+ +2\tanh\left(\frac{(x^2+x\_C1)\sqrt{2}}{2}\right)\right)\sqrt{2}$$ +which simplifies to 0 on substitution. + +Mathematica gives +$$\frac{\left(e^{\sqrt{x}~x^2}+\sqrt{2}~e^{\sqrt{2}~x^2}+ +e^{2\sqrt{2}~C[1]}-\sqrt{2}~e^{2\sqrt{2}~C[1]}\right)x} +{e^{\sqrt{2}~x^2}+e^{2*\sqrt{2}~C[1]}}$$ +which does not simplify to 0 on substitution. +<<*>>= +--S 11 of 126 +yx:=solve(ode103,y,x) +--R +--R +-+ +-+ +--R (2\|2 + 3)y(x) + x\|2 + x +--R (11) ----------------------------------------- +--R 2 +-+ +--R +-+ +-+ x \|2 +--R ((6\|2 + 8)y(x) - 14x\|2 - 20x)%e +--R Type: Union(Expression Integer,...) +--E 11 + +--S 12 of 126 +ode103expr := x*D(yx,x) + x*yx**2 - (2*x**2+1)*yx - x**3 +--R +--R (12) +--R 2 +-+ +--R 2 +-+ 2 3 +-+ 3 x \|2 , +--R ((- 792x \|2 - 1120x )y(x) + 1912x \|2 + 2704x )%e y (x) +--R +--R + +--R 3 +-+ 3 3 4 +-+ 4 2 +--R (- 792x \|2 - 1120x )y(x) + (5736x \|2 + 8112x )y(x) +--R + +--R 5 +-+ 5 6 +-+ 6 +--R (- 13848x \|2 - 19584x )y(x) + 11144x \|2 + 15760x +--R * +--R 2 +-+ 2 +--R x \|2 +--R (%e ) +--R + +--R 2 +-+ 2 3 +--R ((- 1352x - 280)\|2 - 1912x - 396)y(x) +--R + +--R 3 +-+ 3 2 +--R ((5968x + 2028x)\|2 + 8440x + 2868x)y(x) +--R + +--R 4 2 +-+ 4 2 +--R ((- 5176x - 2984x )\|2 - 7320x - 4220x )y(x) +--R + +--R 5 3 +-+ 5 3 +--R (- 3264x - 676x )\|2 - 4616x - 956x +--R * +--R 2 +-+ +--R x \|2 +--R %e +--R + +--R +-+ 3 2 +-+ 2 2 +--R (99x\|2 + 140x)y(x) + (- 157x \|2 - 222x )y(x) +--R + +--R 3 +-+ 3 4 +-+ 4 +--R (- 181x \|2 - 256x )y(x) - 41x \|2 - 58x +--R / +--R +-+ 3 +-+ 2 +--R (792\|2 + 1120)y(x) + (- 5736x\|2 - 8112x)y(x) +--R + +--R 2 +-+ 2 3 +-+ 3 +--R (13848x \|2 + 19584x )y(x) - 11144x \|2 - 15760x +--R * +--R 2 +-+ 2 +--R x \|2 +--R (%e ) +--R Type: Expression Integer +--E 12 + +------------------------------------------------------------------- +--S 13 of 126 +ode106 := x*D(y(x),x) + x**a*y(x)**2 + (a-b)*y(x)/2 + x**b +--R +--R , b 2 a +--R 2xy (x) + 2x + 2y(x) x + (- b + a)y(x) +--R +--R (13) ---------------------------------------- +--R 2 +--R Type: Expression Integer +--E 13 + +@ +Maxima fails. + +Maple gets +$$-\frac{\tan\left( +\frac{\displaystyle 2x^{\left(\displaystyle +\frac{a}{2}+\frac{b}{2}\right)}+\displaystyle\_C1~a+\_C1~b} +{\displaystyle a+b}\right)} +{x^{\left(\displaystyle{\frac{a}{2}-\displaystyle\frac{b}{2}}\right)}}$$ +which simplifies to 0 on substitution. + + +Mathematica gets +$$e^{-\frac{1}{2}a\log(x)+\frac{1}{2}b\log(x)} +\tan\left(\frac{2x^{\frac{a+b}{2}}}{a+b}-C[1]\right)$$ +which does not simplify to 0 on substitution. +<<*>>= +--S 14 of 126 +yx:=solve(ode106,y,x) +--R +--R (14) "failed" +--R Type: Union("failed",...) +--E 14 + +------------------------------------------------------------------- +--S 15 of 126 +ode107 := x*D(y(x),x) + a*x**alpha*y(x)**2 + b*y(x) - c*x**beta +--R +--R , beta 2 alpha +--R (15) xy (x) - c x + a y(x) x + b y(x) +--R +--R Type: Expression Integer +--E 15 + +@ +Maxima fails. +<<*>>= +--S 16 of 126 +yx:=solve(ode107,y,x) +--R +--R (16) "failed" +--R Type: Union("failed",...) +--E 16 + +------------------------------------------------------------------- +--S 17 of 126 +ode108 := x*D(y(x),x) - y(x)**2*log(x) + y(x) +--R +--R , 2 +--R (17) xy (x) - y(x) log(x) + y(x) +--R +--R Type: Expression Integer +--E 17 +@ +Maxima gets: +$$\frac{1}{x\left(\frac{\log(x)}{x}+\frac{1}{x}+\%c\right)}$$ +which does not simplify on substitution. + +Maple gets: +$$\frac{1}{1+\log(x)+x\_C1}$$ +which, on substitution, simplifies to 0. + +Mathematica gets: +$$\frac{1}{1+xC[1]+\log(x)}$$ +which, on substitution, simplifies to 0. +<<*>>= +--S 18 of 126 +yx:=solve(ode108,y,x) +--R +--R - y(x)log(x) - y(x) + 1 +--R (18) ----------------------- +--R x y(x) +--R Type: Union(Expression Integer,...) +--E 18 + +--S 19 of 126 +ode108expr := x*D(yx,x) - yx**2*log(x) + yx +--R +--R (19) +--R 2 , 2 3 2 2 +--R - x y (x) - y(x) log(x) + (- 2y(x) + 2y(x))log(x) +--R +--R + +--R 2 2 +--R (- y(x) + 2y(x) - 1)log(x) - x y(x) +--R / +--R 2 2 +--R x y(x) +--R Type: Expression Integer +--E 19 + +------------------------------------------------------------------- +--S 20 of 126 +ode109 := x*D(y(x),x) - y(x)*(2*y(x)*log(x)-1) +--R +--R , 2 +--R (20) xy (x) - 2y(x) log(x) + y(x) +--R +--R Type: Expression Integer +--E 20 + +@ +Maxima gets: +$$\frac{1}{x\left(\%c-2\left(-\frac{\log(x)}{x}-\frac{1}{x}\right)\right)}$$ +which does not simplify to 0 on substitution. + +Maple gets: +$$\frac{1}{2+2\log(x)+x~\_C1}$$ +which simplifies to 0 on substitition. + +Mathematica gets +$$\frac{1}{2+xC[1]+2\log(x)}$$ +which simplifies to 0 on substitution. +<<*>>= +--S 21 of 126 +yx:=solve(ode109,y,x) +--R +--R - 2y(x)log(x) - 2y(x) + 1 +--R (21) ------------------------- +--R x y(x) +--R Type: Union(Expression Integer,...) +--E 21 + +--S 22 of 126 +ode109expr := x*D(yx,x) - yx*(2*yx*log(x)-1) +--R +--R (22) +--R 2 , 2 3 2 2 +--R - x y (x) - 8y(x) log(x) + (- 16y(x) + 8y(x))log(x) +--R +--R + +--R 2 2 +--R (- 8y(x) + 8y(x) - 2)log(x) - 2x y(x) +--R / +--R 2 2 +--R x y(x) +--R Type: Expression Integer +--E 22 + +------------------------------------------------------------------- +--S 23 of 126 +ode110 := x*D(y(x),x) + f(x)*(y(x)**2-x**2) +--R +--R , 2 2 +--R (23) xy (x) + f(x)y(x) - x f(x) +--R +--R Type: Expression Integer +--E 23 + +@ +Maxima failed. +<<*>>= +--S 24 of 126 +yx:=solve(ode110,y,x) +--R +--R (24) "failed" +--R Type: Union("failed",...) +--E 24 + +------------------------------------------------------------------- +--S 25 of 126 +ode111 := x*D(y(x),x) + y(x)**3 + 3*x*y(x)**2 +--R +--R , 3 2 +--R (25) xy (x) + y(x) + 3x y(x) +--R +--R Type: Expression Integer +--E 25 + +@ +Maxima fails. + +Maple gets 0 which simplifies to 0 on substitution. +<<*>>= + +--S 26 of 126 +yx:=solve(ode111,y,x) +--R +--R (26) "failed" +--R Type: Union("failed",...) +--E 26 + +------------------------------------------------------------------- +--S 27 of 126 +ode112 := x*D(y(x),x) - sqrt(y(x)**2 + x**2) - y(x) +--R +--R +----------+ +--R , | 2 2 +--R (27) xy (x) - \|y(x) + x - y(x) +--R +--R Type: Expression Integer +--E 27 + +@ +Maxima gets +$$x=\%c \%e^{\displaystyle +\frac{x {\rm asinh}\left(\frac{y}{x}\right)}{\vert x\vert}}$$ +which does not simplify to 0 on substitution. + +Maple gets 0 but simplification gives the result $csgn(x)x$. +<<*>>= + +--S 28 of 126 +yx:=solve(ode112,y,x) +--R +--R (28) "failed" +--R Type: Union("failed",...) +--E 28 + +------------------------------------------------------------------- +--S 29 of 126 +ode113 := x*D(y(x),x) + a*sqrt(y(x)**2 + x**2) - y(x) +--R +--R +----------+ +--R , | 2 2 +--R (29) xy (x) + a\|y(x) + x - y(x) +--R +--R Type: Expression Integer +--E 29 + +@ +Maxima gets +$$x=\%c \%e^{\displaystyle +-\frac{x {\rm asinh}\left(\frac{y}{x}\right)}{a\vert x\vert}}$$ +which does not simplify to 0 on substitution. + +Maple gets 0 but on substitition this simplifies to $a~csgn(x)~x$ + +Mathematica gets +$$x*\sinh(C[1]+\log(x))$$ +If we choose $C[1]=0$ this simplifies to +$$\frac{1}{2}(-1+x^2)$$ +However, Mathematica cannot simplify either substition to 0. +<<*>>= +--S 30 of 126 +yx:=solve(ode113,y,x) +--R +--R (30) "failed" +--R Type: Union("failed",...) +--E 30 + +------------------------------------------------------------------- +--S 31 of 126 +ode114 := x*D(y(x),x) - x*sqrt(y(x)**2 + x**2) - y(x) +--R +--R +----------+ +--R , | 2 2 +--R (31) xy (x) - x\|y(x) + x - y(x) +--R +--R Type: Expression Integer +--E 31 + +@ +Maxima fails. + +Maple gets 0 but, on substitition, simplifies to $-x^2csqn(x)$. + +Mathematica gets +$$x\sinh(x+C[1])$$ +but cannot simplify the substituted expression to 0. +<<*>>= +--S 32 of 126 +yx:=solve(ode114,y,x) +--R +--R (32) "failed" +--R Type: Union("failed",...) +--E 32 + +------------------------------------------------------------------- +--S 33 of 126 +ode115 := x*D(y(x),x) - x*(y(x)-x)*sqrt(y(x)**2 + x**2) - y(x) +--R +--R +----------+ +--R , 2 | 2 2 +--R (33) xy (x) + (- x y(x) + x )\|y(x) + x - y(x) +--R +--R Type: Expression Integer +--E 33 + +@ +Maxima failed. + +Maple claims the result is 0 but simplifies it, on substitution, to +$x^3 csgn(x)$. + +Mathematica claims that the equations appear to involve the variables +to be solved for in an essentially non-algebraic way. +<<*>>= +--S 34 of 126 +yx:=solve(ode115,y,x) +--R +--R (34) "failed" +--R Type: Union("failed",...) +--E 34 + +------------------------------------------------------------------- +--S 35 of 126 +ode116 := x*D(y(x),x) - x*sqrt((y(x)**2 - x**2)*(y(x)**2-4*x**2)) - y(x) +--R +--R +----------------------+ +--R , | 4 2 2 4 +--R (35) xy (x) - x\|y(x) - 5x y(x) + 4x - y(x) +--R +--R Type: Expression Integer +--E 35 + +@ +Maxima failed. + +Maple claims the answer is 0 but simplifies, on substitution, to +$-2x^3 csgn(x^2)$. + +Mathematica says that a potential solution of ComplexInfinity was possibly +discarded by the verifier and should be checked by hand, possibly using +limits. And the equations appear to involve the variables to be solved +for in an essentially non-algebraic way. +<<*>>= +--S 36 of 126 +yx:=solve(ode116,y,x) +--R +--R (36) "failed" +--R Type: Union("failed",...) +--E 36 + +------------------------------------------------------------------- +--S 37 of 126 +ode117 := x*D(y(x),x) - x*exp(y(x)/x) - y(x) - x +--R +--R y(x) +--R ---- +--R , x +--R (37) xy (x) - x %e - y(x) - x +--R +--R Type: Expression Integer +--E 37 + +@ +Maxima gets: +$$\%c~x=\%e^{\displaystyle -\frac{x\log(\%e^{y/x}+1)-y}{x}}$$ +which does not simplify to 0 on substitution. + +Maple gets: +$$\left(\log\left(-\frac{x}{-1+x~e^{\_C1}}\right)+\_C1\right)x$$ +which simplifies to 0 on substitution. + +Mathematica says that inverse functions are being used by Solve, so some +solutions may not be found and to use Reduce for complete solution +information. It gets the answer: +$$-x\log\left(-1+\frac{e^{-C[1]}}{x}\right)$$ +which simplifies to 0. +<<*>>= +--S 38 of 126 +yx:=solve(ode117,y,x) +--R +--R (38) "failed" +--R Type: Union("failed",...) +--E 38 + +------------------------------------------------------------------- +--S 39 of 126 +ode118 := x*D(y(x),x) - y(x)*log(y(x)) +--R +--R , +--R (39) xy (x) - y(x)log(y(x)) +--R +--R Type: Expression Integer +--E 39 + +@ +Maxima gets +$$\%e^{\%e^{\%c}x}$$ +which, on substitution, simplifies to 0. + +Maple gets +$$e^{(x~\_C1)}$$ +which, on substitution, does not simplify to 0. + +Mathematics gets +$$e^{e^{C[1]}x}$$ +which, on substitution simplifies to +$$e^x(x-\log(e^x))$$ which, if $log(e^x)$ could simplify to $x$ +then the result would be 0. +<<*>>= +--S 40 of 126 +yx:=solve(ode118,y,x) +--R +--R x +--R (40) - --------- +--R log(y(x)) +--R Type: Union(Expression Integer,...) +--E 40 + +--S 41 of 126 +ode118expr := x*D(yx,x) - yx*log(yx) +--R +--R x 2 , +--R x y(x)log(y(x))log(- ---------) + x y (x) - x y(x)log(y(x)) +--R log(y(x)) +--R (41) ----------------------------------------------------------- +--R 2 +--R y(x)log(y(x)) +--R Type: Expression Integer +--E 41 + +------------------------------------------------------------------- +--S 42 of 126 +ode119 := x*D(y(x),x) - y(x)*(log(x*y(x))-1) +--R +--R , +--R (42) xy (x) - y(x)log(x y(x)) + y(x) +--R +--R Type: Expression Integer +--E 42 + +@ +$$\frac{1}{x}$$ simplifies to 0. + +Maxima gets +$$\frac{\%e^{x/\%c}}{x}$$ +which, on substitution, does not simplify to 0. + +Maple get +$$\frac{e^{\left(\frac{x}{\_C1}\right)}}{x}$$ +which, on substitution, does not simplify to 0. + +Mathematica gets +$$\frac{1}{x(C[1]-log(log(x)))}$$ +which does not simplify to 0 on substitution. +<<*>>= +--S 43 of 126 +yx:=solve(ode119,y,x) +--R +--R (43) "failed" +--R Type: Union("failed",...) +--E 43 + +------------------------------------------------------------------- +--S 44 of 126 +ode120 := x*D(y(x),x) - y(x)*(x*log(x**2/y(x))+2) +--R +--R 2 +--R , x +--R (44) xy (x) - x y(x)log(----) - 2y(x) +--R y(x) +--R Type: Expression Integer +--E 44 + +@ +Maxima fails. + +Maple gets +$$\frac{x^2}{e^{\left(\frac{\_C1}{e^x}\right)}}$$ +which, on substitution, does not simplify to 0. + +Mathematics get: +$$2e^{-e^{-x} C[1]+e^{-x}{\rm ExpIntegralEi}[x]}x$$ +which does not simplify to 0 on substitution. +<<*>>= +--S 45 of 126 +yx:=solve(ode120,y,x) +--R +--R (45) "failed" +--R Type: Union("failed",...) +--E 45 + +------------------------------------------------------------------- +--S 46 of 126 +ode121 := x*D(y(x),x) + sin(y(x)-x) +--R +--R , +--R (46) xy (x) + sin(y(x) - x) +--R +--R Type: Expression Integer +--E 46 + +@ +Maxima fails. + +Mathematics gets +$$\frac{\sin(x)}{1+\sin(x)}+x^{-sin(x)}C[1]$$ +which, on substitution, does not simplify to 0. +<<*>>= +--S 47 of 126 +yx:=solve(ode121,y,x) +--R +--R (47) "failed" +--R Type: Union("failed",...) +--E 47 + +------------------------------------------------------------------- +--S 48 of 126 +ode122 := x*D(y(x),x) + (sin(y(x))-3*x**2*cos(y(x)))*cos(y(x)) +--R +--R , 2 2 +--R (48) xy (x) + cos(y(x))sin(y(x)) - 3x cos(y(x)) +--R +--R Type: Expression Integer +--E 48 + +@ +Maxima fails. + +Maple gets: +$$\arctan\left(\frac{x^3+2~\_C1}{x}\right)$$ +which, on substitution, simplifies to 0. + +Mathematica gets: +$$\arctan\left(\frac{2x^3+C[1]}{2x}\right)$$ +which, on substitution, simplifies to 0. +<<*>>= +--S 49 of 126 +yx:=solve(ode122,y,x) +--R +--R (49) "failed" +--R Type: Union("failed",...) +--E 49 + +------------------------------------------------------------------- +--S 50 of 126 +ode123 := x*D(y(x),x) - x*sin(y(x)/x) - y(x) +--R +--R , y(x) +--R (50) xy (x) - x sin(----) - y(x) +--R x +--R Type: Expression Integer +--E 50 + +@ +Maxima gets: +$$\%c~x=\%e^{\displaystyle -\frac{ +\log\left(\cos\left(\frac{y}{x}\right)+1\right)- +\log\left(\cos\left(\frac{y}{x}\right)-1\right)}{2}}$$ +which, on substitution, does not simplify to 0. + +Maple gets: +$$\arctan\left(\frac{2x~\_C1}{1+x^2~\_C1^2}\quad,\quad +-\frac{-1+x^2~\_C1^2}{1+x^2~\_C1^2}\right)x$$ +which, on substitution, simplifies to 0. + +Mathematica get: +$$x^{1+sin(x)}C[1]$$ +which does not simplfy to 0 on substitution. +<<*>>= +--S 51 of 126 +yx:=solve(ode123,y,x) +--R +--R (51) "failed" +--R Type: Union("failed",...) +--E 51 + +------------------------------------------------------------------- +--S 52 of 126 +ode124 := x*D(y(x),x) + x*cos(y(x)/x) - y(x) + x +--R +--R , y(x) +--R (52) xy (x) + x cos(----) - y(x) + x +--R x +--R Type: Expression Integer +--E 52 + +@ +Maxima gets: +$$\%c~x=\%e^{\displaystyle -\frac{\sin\left(\frac{y}{x}\right)} +{\cos\left(\frac{y}{x}\right)+1}}$$ +which, on substitution, does not simplify to 0. + +Maple gets +$$-2\arctan(\log(x)+~\_C1)x$$ +which, on substitution, does not simplify to 0. + +Mathematics gets +$$2x\arctan(C[1]-\log(x))$$ +which does not simplify to 0 on substitution. +<<*>>= +--S 53 of 126 +yx:=solve(ode124,y,x) +--R +--R (53) "failed" +--R Type: Union("failed",...) +--E 53 + +------------------------------------------------------------------- +--S 54 of 126 +ode125 := x*D(y(x),x) + x*tan(y(x)/x) - y(x) +--R +--R , y(x) +--R (54) xy (x) + x tan(----) - y(x) +--R x +--R Type: Expression Integer +--E 54 + +@ +Maxima gets: +$$\arcsin\left(\frac{1}{\%c~x}\right)x$$ +which, on substitition, does simplifes to 0. + +Maple gets +$$\arcsin\left(\frac{1}{x~\_C1}\right)x$$ +which, on substitution, simplifies to 0. + +Mathematica gets +$$\arcsin\left(\frac{e^{C[1]}}{x}\right)$$ +which does not simplify to 0 on substitution. +<<*>>= +--S 55 of 126 +yx:=solve(ode125,y,x) +--R +--R (55) "failed" +--R Type: Union("failed",...) +--E 55 + +------------------------------------------------------------------- +--S 56 of 126 +ode126 := x*D(y(x),x) - y(x)*f(x*y(x)) +--R +--R , +--R (56) xy (x) - y(x)f(x y(x)) +--R +--R Type: Expression Integer +--E 56 + +@ +Maxima fails. + +Maple gets +$$\frac{{\rm RootOf}\left(-\log(x)+~\_C1+ +\displaystyle\int^{\_Z}{\frac{1}{\displaystyle\_a(1+g(\_a))}}~d\_a\right)}{x}$$ +which, on substitution, simplifies to 0. + +Mathematica gets +$$\frac{1}{-f(x)-C[1]}$$ +which does not simplify to 0 on substitution. +<<*>>= +--S 57 of 126 +yx:=solve(ode126,y,x) +--R +--R (57) "failed" +--R Type: Union("failed",...) +--E 57 + +------------------------------------------------------------------- +--S 58 of 126 +ode127 := x*D(y(x),x) - y(x)*f(x**a*y(x)**b) +--R +--R a b , +--R (58) - y(x)f(x y(x) ) + xy (x) +--R +--R Type: Expression Integer +--E 58 +@ +Maxima fails. + +Maple gives 0 which, on substitution simplifies to 0. + +Mathematica gives: +$$b\left(-\frac{f(x^a)}{a}-C[1]\right)^{-1/b}$$ +which, on substitution, does not simplify to 0. +<<*>>= +--S 59 of 126 +yx:=solve(ode127,y,x) +--R +--R (59) "failed" +--R Type: Union("failed",...) +--E 59 + +------------------------------------------------------------------- +--S 60 of 126 +ode128 := x*D(y(x),x) + a*y(x) - f(x)*g(x**a*y(x)) +--R +--R , a +--R (60) xy (x) - f(x)g(y(x)x ) + a y(x) +--R +--R Type: Expression Integer +--E 60 +@ +Maxima fails. + +Maple gives +$$\frac{{\rm RootOf}\left( +-\int{f(x)x^{(-1+a)}}~dx+\int^{\_Z}{\frac{1}{g(\_a)}~d\_a+\_C1}\right)}{x^a}$$ +which, on substitution, gives 0. + +Mathematica gives +$$e^{\frac{f(x)g(x^{1+a})}{1+a}-a\log(x)}C[1]$$ +which, on substitution, does not simplify to 0. +<<*>>= +--S 61 of 126 +yx:=solve(ode128,y,x) +--R +--R (61) "failed" +--R Type: Union("failed",...) +--E 61 + +------------------------------------------------------------------- +--S 62 of 126 +ode129 := (x+1)*D(y(x),x) + y(x)*(y(x)-x) +--R +--R , 2 +--R (62) (x + 1)y (x) + y(x) - x y(x) +--R +--R Type: Expression Integer +--E 62 +@ +Maxima gets: +$$\frac{\%e^x}{(x+1)\left(\int{\frac{\%e^x}{(x+1)^2}}~dx+\%c\right)}$$ +which, on substitution, does not simplify to 0. + +Maple gives +$$\frac{e^x} +{-e^x-e^{(-1)}{\rm Ei}(1,-x-1)x-e^{(-1)}{\rm Ei}(1,-x-1)+x~\_C1+~\_C1}$$ +which, on substitution, simplifies to 0. + +Mathematica gives +$$-\frac{e^{1+x}}{e^{1+x}-eC[1]-exC[1]-{\rm ExpIntegralEi}(1+x)- +x{\rm ExpIntegralEi}(1+x)}$$ +<<*>>= +--S 63 of 126 +yx:=solve(ode129,y,x) +--R +--R +--R x +--R - x ++ 1 +--I (- x - 1)y(x)%e | --------------------- d%U + 1 +--I ++ 2 - %U +--I (%U + 2%U + 1)%e +--R (63) ----------------------------------------------------- +--R - x +--R (x + 1)y(x)%e +--R Type: Union(Expression Integer,...) +--E 63 + +------------------------------------------------------------------- +--S 64 of 126 +ode130 := 2*x*D(y(x),x) - y(x) -2*x**3 +--R +--R , 3 +--R (64) 2xy (x) - y(x) - 2x +--R +--R Type: Expression Integer +--E 64 +@ +Maxima gets: +$$\%e^{\displaystyle\frac{\log(x)}{2}}\displaystyle +\left(\frac{2\%e^{\displaystyle\frac{5\log(x)}{2}}}{5}+\%c\right)$$ +which, on substitution, does not give 0. + +Maple gives +$$\frac{2x^3}{5}+\sqrt{x}~\_C1$$ +which, on substitution, simplifies to 0. + +Mathematica gives +$$\frac{2x^3}{5}+\sqrt{x}C[1]$$ +which simplifies to 0 on substitution. +<<*>>= +--S 65 of 126 +ode130a:=solve(ode130,y,x) +--R +--R 3 +--R 2x +-+ +--R (65) [particular= ---,basis= [\|x ]] +--R 5 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 65 + +--S 66 of 126 +yx:=ode130a.particular +--R +--R 3 +--R 2x +--R (66) --- +--R 5 +--R Type: Expression Integer +--E 66 + +--S 67 of 126 +ode130expr := 2*x*D(yx,x) - yx -2*x**3 +--R +--R (67) 0 +--R Type: Expression Integer +--E 67 + +------------------------------------------------------------------- +--S 68 of 126 +ode131 := (2*x+1)*D(y(x),x) - 4*exp(-y(x)) + 2 +--R +--R , - y(x) +--R (68) (2x + 1)y (x) - 4%e + 2 +--R +--R Type: Expression Integer +--E 68 +@ +Maxima gets: +$$\log\left(\frac{4\%e^{2\%c}x+2\%e^{2\%c}+1} +{2\%e^{2\%c}x+\%e^{2\%c}}\right)$$ +which simplifies to 0 when substituted. + +Maple gives +$$-\log\left(\frac{2x+1}{-1+4xe^{(2~\_C1)}+2e^{(2~\_C1)}}\right)-2~\_C1$$ +which simplifies to 0 when substituted. + +Mathematica gives +$$\log\left(2+\frac{1}{1+2x}\right)$$ +which simplifies to 0 when substituted. +<<*>>= +--S 69 of 126 +yx:=solve(ode131,y,x) +--R +--R - y(x) y(x) +--R (69) (- 4x %e + 2x + 1)%e +--R Type: Union(Expression Integer,...) +--E 69 + +--S 70 of 126 +ode131expr := (2*x+1)*D(yx,x) - 4*exp(-yx) + 2 +--R +--R (70) +--R - y(x) y(x) +--R (4x %e - 2x - 1)%e 2 y(x) , +--R - 4%e + (4x + 4x + 1)%e y (x) +--R +--R + +--R - y(x) y(x) +--R ((- 8x - 4)%e + 4x + 2)%e + 2 +--R Type: Expression Integer +--E 70 + +------------------------------------------------------------------- +--S 71 of 126 +ode132 := 3*x*D(y(x),x) - 3*x*log(x)*y(x)**4 - y(x) +--R +--R , 4 +--R (71) 3xy (x) - 3x y(x) log(x) - y(x) +--R +--R Type: Expression Integer +--E 71 +@ +Maxima gives 3 solutions. +$$-\frac{\left(\sqrt{3}~4^{1/3}\%i-4^{1/3}\right)x^{1/3}} +{2\left(6x^2\log(x)-3x^2+4\%c\right)^{1/3}}$$ +$$\frac{\left(\sqrt{3}~4^{1/3}\%i+4^{1/3}\right)x^{1/3}} +{2\left(6x^2\log(x)-3x^2+4\%c\right)^{1/3}}$$ +$$-\frac{4^{1/3}x^{1/3}}{\left(6x^2\log(x)-3x^2+4\%c\right)^{1/3}}$$ +which, on substitution, simplifies to 0. + + +Maple gives 3 solutions. +$$\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}} +{6x^2\log(x)-3*x^2-4~\_C1}$$ +$$-\frac{1}{2}\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}} +{6x^2\log(x)-3*x^2-4~\_C1} ++\frac{1}{2}I\sqrt{3} +\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}} +{6x^2\log(x)-3*x^2-4~\_C1}$$ +$$-\frac{1}{2}\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}} +{6x^2\log(x)-3*x^2-4~\_C1} +-\frac{1}{2}I\sqrt{3} +\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}} +{6x^2\log(x)-3*x^2-4~\_C1}$$ +which, on substitution, simplifies to 0. + + +Mathematica gives 3 solutions, +$$\frac{(-2)^{2/3}x^{1/3}}{(3x^2+4C[1]-6x^2\log(x))^{1/3}}$$ +$$\frac{( 2)^{2/3}x^{1/3}}{(3x^2+4C[1]-6x^2\log(x))^{1/3}}$$ +$$\frac{(-1)^{1/3}2^{2/3}x^{1/3}}{(3x^2+4C[1]-6x^2\log(x))^{1/3}}$$ +which do not simplify to 0 on substitution. +<<*>>= +--S 72 of 126 +yx:=solve(ode132,y,x) +--R +--R 2 3 2 3 +--R - 6x y(x) log(x) + 3x y(x) - 4x +--R (72) -------------------------------- +--R 3 +--R 4y(x) +--R Type: Union(Expression Integer,...) +--E 72 + +--S 73 of 126 +ode132expr := 3*x*D(yx,x) - 3*x*log(x)*yx**4 - yx +--R +--R (73) +--R 2 8 , 9 12 5 +--R 2304x y(x) y (x) - 3888x y(x) log(x) +--R +--R + +--R 9 12 8 9 4 +--R (7776x y(x) - 10368x y(x) )log(x) +--R + +--R 9 12 8 9 7 6 3 +--R (- 5832x y(x) + 15552x y(x) - 10368x y(x) )log(x) +--R + +--R 9 12 8 9 7 6 6 3 2 +--R (1944x y(x) - 7776x y(x) + 10368x y(x) - 4608x y(x) )log(x) +--R + +--R 9 2 12 8 9 7 6 6 3 +--R (- 243x - 1920x )y(x) + 1296x y(x) - 2592x y(x) + 2304x y(x) +--R + +--R 5 +--R - 768x +--R * +--R log(x) +--R + +--R 2 12 9 +--R - 192x y(x) - 512x y(x) +--R / +--R 12 +--R 256y(x) +--R Type: Expression Integer +--E 73 + +------------------------------------------------------------------- +--S 74 of 126 +ode133 := x**2*D(y(x),x) + y(x) - x +--R +--R 2 , +--R (74) x y (x) + y(x) - x +--R +--R Type: Expression Integer +--E 74 +@ +Maxima gets +$$\%e^{1/x} +\left(\int{\displaystyle\frac{\%e^{-\frac{1}{x}}}{x}}~dx+\%c\right)$$ +which, on substitution, simplifies to 0. + +Maple gives +$$\left({\rm Ei}\left(1,\frac{1}{x}\right)+~\_C1\right)e^{(\frac{1}{x})}$$ +which simplifies to 0 on substitution. + +Mathematica gets: +$$e^{1/x}C[1]-e^{1/x}{\rm ExpIntegralEi}\left(-\frac{1}{x}\right)$$ +which simplifies to 0 on substitution. +<<*>>= +--S 75 of 126 +yx:=solve(ode133,y,x) +--R +--R +--R 1 1 +--R - x - +--R x ++ 1 x +--I (75) [particular= %e | ------- d%U ,basis= [%e ]] +--R ++ 1 +--R -- +--I %U +--I %U %e +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 75 + +------------------------------------------------------------------- +--S 76 of 126 +ode134 := x**2*D(y(x),x) - y(x) + x**2*exp(x-1/x) +--R +--R 2 +--R x - 1 +--R ------ +--R 2 , 2 x +--R (76) x y (x) + x %e - y(x) +--R +--R Type: Expression Integer +--E 76 +@ +Maxima gets +$$\%e^{\displaystyle -\frac{1}{x}}\left(\%c-\%e^x\right)$$ +which simplifies to 0 on substitution. + +Maple gets +$$(-e^x+~\_C1)e^{\left(-\frac{1}{x}\right)}$$ +which simplifies to 0 on substitution. + +Mathematics get +$$-e^{-\frac{1}{x}+x}+e^{-1/x}C[1]$$ +which does not simplify to 0 on substitution. +This is curious because the basis element is the same one +computed by Axiom, which Axiom cannot simplify either. +However, Axiom can simplify the particular element to 0 +and Mathematica cannot. +<<*>>= +--S 77 of 126 +ode134a:=solve(ode134,y,x) +--R +--R 2 +--R x - 1 1 +--R ------ - - +--R x x +--R (77) [particular= - %e ,basis= [%e ]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 77 + +--S 78 of 126 +yx:=ode134a.particular +--R +--R 2 +--R x - 1 +--R ------ +--R x +--R (78) - %e +--R Type: Expression Integer +--E 78 + +--S 79 of 126 +ode134expr := x**2*D(yx,x) - yx + x**2*exp(x-1/x) +--R +--R (79) 0 +--R Type: Expression Integer +--E 79 + +------------------------------------------------------------------- +--S 80 of 126 +ode135 := x**2*D(y(x),x) - (x-1)*y(x) +--R +--R 2 , +--R (80) x y (x) + (- x + 1)y(x) +--R +--R Type: Expression Integer +--E 80 +@ +Maxima gets +$$\%c~x\%e^{1/x}$$ +which simplifies to 0 when substituted. + +Maple gets +$$\_C1xe^{\left(\frac{1}{x}\right)}$$ +which simplifies to 0 when substituted. + +Mathematica gets +$$e^{1/x}xC[1]$$ +which simplifies to 0 when substituted. +<<*>>= +--S 81 of 126 +ode135a:=solve(ode135,y,x) +--R +--R 1 +--R - +--R x +--R (81) [particular= 0,basis= [x %e ]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 81 + +--S 82 of 126 +yx:=ode135a.particular +--R +--R (82) 0 +--R Type: Expression Integer +--E 82 + +--S 83 of 126 +ode135expr := x**2*D(yx,x) - (x-1)*yx +--R +--R (83) 0 +--R Type: Expression Integer +--E 83 + +------------------------------------------------------------------- +--S 84 of 126 +ode136 := x**2*D(y(x),x) + y(x)**2 + x*y(x) + x**2 +--R +--R 2 , 2 2 +--R (84) x y (x) + y(x) + x y(x) + x +--R +--R Type: Expression Integer +--E 84 +@ +Maxima gets +$$-\frac{x\log(\%c~x)-x}{log(\%c~x)}$$ +which simplifies to 0 on substitution. + +Maple gets +$$-\frac{x(-1+\log(x)+~\_C1)}{\log(x)+~\_C1}$$ +which simplifies to 0 on substitution. + +Mathematica gets +$$\frac{-x-xC[1]+x\log(x)}{C[1]-\log(x)}$$ +which simplifies to 0 on substition. +<<*>>= +--S 85 of 126 +yx:=solve(ode136,y,x) +--R +--R (- y(x) - x)log(x) + x +--R (85) ---------------------- +--R y(x) + x +--R Type: Union(Expression Integer,...) +--E 85 + +--S 86 of 126 +ode136expr := x**2*D(yx,x) + yx**2 + x*yx + x**2 +--R +--R (86) +--R 3 , 2 2 2 +--R - x y (x) + (y(x) + 2x y(x) + x )log(x) +--R +--R + +--R 2 2 3 2 2 2 3 +--R (- x y(x) + (- 2x - 2x)y(x) - x - 2x )log(x) + (x - x)y(x) + 2x y(x) +--R + +--R 4 2 +--R x + x +--R / +--R 2 2 +--R y(x) + 2x y(x) + x +--R Type: Expression Integer +--E 86 + +------------------------------------------------------------------- +--S 87 of 126 +ode137 := x**2*D(y(x),x) - y(x)**2 - x*y(x) +--R +--R 2 , 2 +--R (87) x y (x) - y(x) - x y(x) +--R +--R Type: Expression Integer +--E 87 +@ +Maxima gets +$$\frac{x}{\log\left(\displaystyle \frac{1}{\%c~x}\right)}$$ +which simplifies to 0 on substitution. + +Maple gets: +$$\frac{x}{-\log(x)+~\_C1}$$ +which simplifies to 0 on substitution. + +Mathematica gets: +$$\frac{x}{C[1]-\log(x)}$$ +which simplifies to 0 on substitution. +<<*>>= +--S 88 of 126 +yx:=solve(ode137,y,x) +--R +--R y(x)log(x) + x +--R (88) -------------- +--R y(x) +--R Type: Union(Expression Integer,...) +--E 88 + +--S 89 of 126 +ode137expr := x**2*D(yx,x) - yx**2 - x*yx +--R +--R 3 , 2 2 2 2 2 +--R - x y (x) - y(x) log(x) + (- x y(x) - 2x y(x))log(x) + x y(x) - x +--R +--R (89) --------------------------------------------------------------------- +--R 2 +--R y(x) +--R Type: Expression Integer +--E 89 + +------------------------------------------------------------------- +--S 90 of 126 +ode138 := x**2*D(y(x),x) - y(x)**2 - x*y(x) - x**2 +--R +--R 2 , 2 2 +--R (90) x y (x) - y(x) - x y(x) - x +--R +--R Type: Expression Integer +--E 90 +@ +Maxima gets +$$\%c~x=\%e^{\arctan\left(\frac{y}{x}\right)}$$ +which does not simplify to 0 when substituted. + +Maple gets +$$\tan(\log(x)+~\_C1)x$$ +which simplifies to 0 on substitution. + +Mathematica get: +$$x\tan(C[2]+\log(x))$$ +which simplifies to 0 when substituted. +<<*>>= + +--S 91 of 126 +yx:=solve(ode138,y,x) +--R +--R +---+ +---+ +--R (- 7\|- 1 + 9)y(x) + 9x\|- 1 + 7x +--R (91) -------------------------------------------------------- +--R +---+ +--R +---+ +---+ - 2\|- 1 log(x) +--R ((18\|- 1 + 14)y(x) - 14x\|- 1 + 18x)%e +--R Type: Union(Expression Integer,...) +--E 91 + +--S 92 of 126 +ode138expr := x**2*D(yx,x) - yx**2 - x*yx - x**2 +--R +--R (92) +--R 3 +---+ 3 4 +---+ 4 +--R ((- 1188x \|- 1 + 2716x )y(x) - 2716x \|- 1 - 1188x ) +--R * +--R +---+ +--R - 2\|- 1 log(x) , +--R %e y (x) +--R +--R + +--R 2 +---+ 2 3 3 +---+ 3 2 +--R (- 1188x \|- 1 + 2716x )y(x) + (- 8148x \|- 1 - 3564x )y(x) +--R + +--R 4 +---+ 4 5 +---+ 5 +--R (3564x \|- 1 - 8148x )y(x) + 2716x \|- 1 + 1188x +--R * +--R +---+ 2 +--R - 2\|- 1 log(x) +--R (%e ) +--R + +--R +---+ 3 2 +---+ 2 2 +--R (- 170x\|- 1 - 3310x)y(x) + (4498x \|- 1 - 2886x )y(x) +--R + +--R 3 +---+ 3 4 +---+ 4 +--R (2546x \|- 1 - 2122x )y(x) + 3310x \|- 1 - 170x +--R * +--R +---+ +--R - 2\|- 1 log(x) +--R %e +--R + +--R +---+ 3 +---+ 2 +--R (297\|- 1 - 679)y(x) + (- 679x\|- 1 - 297x)y(x) +--R + +--R 2 +---+ 2 3 +---+ 3 +--R (297x \|- 1 - 679x )y(x) - 679x \|- 1 - 297x +--R / +--R +---+ 3 +---+ 2 +--R (1188\|- 1 - 2716)y(x) + (8148x\|- 1 + 3564x)y(x) +--R + +--R 2 +---+ 2 3 +---+ 3 +--R (- 3564x \|- 1 + 8148x )y(x) - 2716x \|- 1 - 1188x +--R * +--R +---+ 2 +--R - 2\|- 1 log(x) +--R (%e ) +--R Type: Expression Integer +--E 92 + +------------------------------------------------------------------- +--S 93 of 126 +ode139 := x**2*(D(y(x),x)+y(x)**2) + a*x**k - b*(b-1) +--R +--R 2 , k 2 2 2 +--R (93) x y (x) + a x + x y(x) - b + b +--R +--R Type: Expression Integer +--E 93 + +@ +Maxima gets 6 answers, one of which is: +$$\frac{-\left(3^{5/6}\%i\left(ax^k+\%ckx-\%cx+b^2k-bk-b^2+b\right)^{1/3}- +3^{1/3}\left(ax^k+\%ckx-\%cx+b^2k-bk-b^2+b\right)^{1/3}\right)} +{\left(2(k-1)^{1/3}x^{1/3}\right)}$$ +which simplifies to 0 on substitution. +<<*>>= + +--S 94 of 126 +yx:=solve(ode139,y,x) +--R +--R (94) "failed" +--R Type: Union("failed",...) +--E 94 + +------------------------------------------------------------------- +--S 95 of 126 +ode140 := x**2*(D(y(x),x)+y(x)**2) + 4*x*y(x) + 2 +--R +--R 2 , 2 2 +--R (95) x y (x) + x y(x) + 4x y(x) + 2 +--R +--R Type: Expression Integer +--E 95 +@ +Maxima gets +$$-\frac{x-2\%c}{x^2-\%c~x}$$ +which simplifies to 0 when substituted. + +Maple gets +$$-\frac{-2~\_C1+x}{x(-~\_C1+x)}$$ +which simplifies to 0 when substituted. + +Mathematica gets: +$$-\frac{2}{x}+\frac{1}{x+C[1]}$$ +which does not simplify. +<<*>>= +--S 96 of 126 +yx:=solve(ode140,y,x) +--R +--R x y(x) + 2 +--R (96) -------------------- +--R 2 +--R (x - x)y(x) + x - 2 +--R Type: Union(Expression Integer,...) +--E 96 + +--S 97 of 126 +ode140expr := x**2*(D(yx,x)+yx**2) + 4*x*yx + 2 +--R +--R (97) +--R 4 , 4 3 2 2 3 2 2 +--R - x y (x) + (6x - 8x + 2x )y(x) + (16x - 28x + 8x)y(x) + 12x - 24x + 8 +--R +--R ---------------------------------------------------------------------------- +--R 4 3 2 2 3 2 2 +--R (x - 2x + x )y(x) + (2x - 6x + 4x)y(x) + x - 4x + 4 +--R Type: Expression Integer +--E 97 + +------------------------------------------------------------------- +--S 98 of 126 +ode141 := x**2*(D(y(x),x)+y(x)**2) + a*x*y(x) + b +--R +--R 2 , 2 2 +--R (98) x y (x) + x y(x) + a x y(x) + b +--R +--R Type: Expression Integer +--E 98 + +@ +Maxima gets: +$$\%e^{\displaystyle -a\log(x)-2x} +\left(\%c-b \int{\displaystyle +\frac{\%e^{\displaystyle a\log(x)+2x}}{x^2}}~dx\right)$$ +which, when substituted, simplifies to 0. +<<*>>= + +--S 99 of 126 +yx:=solve(ode141,y,x) +--R 2 +--R WARNING (genufact): No known algorithm to factor ? + (a - 1)? + b +--R , trying square-free. +--R +--R (99) +--R +------------------+ +--R | 2 +--R \|- 4b + a - 2a + 1 - 2x y(x) - a + 1 +--R / +--R +------------------+ +--R | 2 2 +--R ((2x y(x) + a - 1)\|- 4b + a - 2a + 1 - 4b + a - 2a + 1) +--R * +--R +------------------+ +--R | 2 +--R - log(x)\|- 4b + a - 2a + 1 +--R %e +--R Type: Union(Expression Integer,...) +--E 99 + +--S 100 of 126 +ode141expr := x**2*(D(yx,x)+yx**2) + a*x*yx + b +--R +--R (100) +--R 2 4 3 2 3 +--R ((- 8b + 2a - 4a + 2)x y(x) + ((- 4a + 4)b + a - 3a + 3a - 1)x ) +--R * +--R +------------------+ +--R | 2 +--R \|- 4b + a - 2a + 1 +--R + +--R 2 2 4 3 2 3 +--R (16b + (- 8a + 16a - 8)b + a - 4a + 6a - 4a + 1)x +--R * +--R +------------------+ +--R | 2 +--R - log(x)\|- 4b + a - 2a + 1 , +--R %e y (x) +--R +--R + +--R 2 2 3 3 +--R (8b + (- 2a + 4a - 2)b)x y(x) +--R + +--R 2 3 2 2 2 +--R ((12a - 12)b + (- 3a + 9a - 9a + 3)b)x y(x) +--R + +--R 3 2 2 +--R - 24b + (18a - 36a + 18)b +--R + +--R 4 3 2 +--R (- 3a + 12a - 18a + 12a - 3)b +--R * +--R x y(x) +--R + +--R 3 3 2 2 +--R (- 12a + 12)b + (7a - 21a + 21a - 7)b +--R + +--R 5 4 3 2 +--R (- a + 5a - 10a + 10a - 5a + 1)b +--R * +--R +------------------+ +--R | 2 +--R \|- 4b + a - 2a + 1 +--R + +--R 3 2 2 4 3 2 2 +--R (- 48b + (24a - 48a + 24)b + (- 3a + 12a - 18a + 12a - 3)b)x +--R * +--R 2 +--R y(x) +--R + +--R 3 3 2 2 +--R (- 48a + 48)b + (24a - 72a + 72a - 24)b +--R + +--R 5 4 3 2 +--R (- 3a + 15a - 30a + 30a - 15a + 3)b +--R * +--R x y(x) +--R + +--R 4 2 3 4 3 2 2 +--R 16b + (- 24a + 48a - 24)b + (9a - 36a + 54a - 36a + 9)b +--R + +--R 6 5 4 3 2 +--R (- a + 6a - 15a + 20a - 15a + 6a - 1)b +--R * +--R +------------------+ 2 +--R | 2 +--R - log(x)\|- 4b + a - 2a + 1 +--R (%e ) +--R + +--R 2 4 3 +--R (- 8b + 2a - 4a + 2)x y(x) +--R + +--R 3 2 3 2 +--R ((- 16a + 4)b + 4a - 9a + 6a - 1)x y(x) +--R + +--R 2 2 4 3 2 2 +--R (- 8b + (- 6a + 4a + 2)b + 2a - 6a + 6a - 2a)x y(x) +--R + +--R 2 3 2 +--R ((- 8a + 4)b + (2a - 5a + 4a - 1)b)x +--R * +--R +------------------+ +--R | 2 +--R \|- 4b + a - 2a + 1 +--R + +--R 3 2 4 3 +--R (- 8a b + 2a - 4a + 2a)x y(x) +--R + +--R 2 2 4 3 2 3 2 +--R (16b + (- 20a + 28a - 8)b + 4a - 13a + 15a - 7a + 1)x y(x) +--R + +--R 2 3 2 5 4 3 2 2 +--R (8a b + (- 10a + 20a - 10a)b + 2a - 8a + 12a - 8a + 2a)x y(x) +--R + +--R 3 2 2 4 3 2 +--R (16b + (- 12a + 20a - 8)b + (2a - 7a + 9a - 5a + 1)b)x +--R * +--R +------------------+ +--R | 2 +--R - log(x)\|- 4b + a - 2a + 1 +--R %e +--R + +--R 5 3 4 2 2 3 +--R - 2x y(x) + (- 3a + 3)x y(x) + (- 2b - a + 2a - 1)x y(x) +--R + +--R 2 +--R (- a + 1)b x +--R * +--R +------------------+ +--R | 2 +--R \|- 4b + a - 2a + 1 +--R + +--R 2 4 2 3 2 3 +--R (- 4b + a - 2a + 1)x y(x) + ((- 4a + 4)b + a - 3a + 3a - 1)x y(x) +--R + +--R 2 2 2 +--R (- 4b + (a - 2a + 1)b)x +--R / +--R 2 3 3 +--R (8b - 2a + 4a - 2)x y(x) +--R + +--R 3 2 2 2 +--R ((12a - 12)b - 3a + 9a - 9a + 3)x y(x) +--R + +--R 2 2 4 3 2 +--R (- 24b + (18a - 36a + 18)b - 3a + 12a - 18a + 12a - 3)x y(x) +--R + +--R 2 3 2 5 4 3 2 +--R (- 12a + 12)b + (7a - 21a + 21a - 7)b - a + 5a - 10a + 10a +--R + +--R - 5a + 1 +--R * +--R +------------------+ +--R | 2 +--R \|- 4b + a - 2a + 1 +--R + +--R 2 2 4 3 2 2 2 +--R (- 48b + (24a - 48a + 24)b - 3a + 12a - 18a + 12a - 3)x y(x) +--R + +--R 2 3 2 5 4 3 +--R (- 48a + 48)b + (24a - 72a + 72a - 24)b - 3a + 15a - 30a +--R + +--R 2 +--R 30a - 15a + 3 +--R * +--R x y(x) +--R + +--R 3 2 2 4 3 2 6 +--R 16b + (- 24a + 48a - 24)b + (9a - 36a + 54a - 36a + 9)b - a +--R + +--R 5 4 3 2 +--R 6a - 15a + 20a - 15a + 6a - 1 +--R * +--R +------------------+ 2 +--R | 2 +--R - log(x)\|- 4b + a - 2a + 1 +--R (%e ) +--R Type: Expression Integer +--E 100 + +------------------------------------------------------------------- +--S 101 of 126 +ode142 := x**2*(D(y(x),x)-y(x)**2) - a*x**2*y(x) + a*x + 2 +--R +--R 2 , 2 2 2 +--R (101) x y (x) - x y(x) - a x y(x) + a x + 2 +--R +--R Type: Expression Integer +--E 101 + +@ +Maxima failed. +<<*>>= + +--S 102 of 126 +yx:=solve(ode142,y,x) +--R +--R 2 3 2 3 3 2 2 +--R (a x - 2a x + 2x)y(x) + a x - a x + 2a x - 2 +--R (102) ------------------------------------------------ +--R 3 3 - a x +--R (a x y(x) - a )%e +--R Type: Union(Expression Integer,...) +--E 102 + +--S 103 of 126 +ode142expr := x**2*(D(yx,x)-yx**2) - a*x**2*yx + a*x + 2 +--R +--R (103) +--R 6 6 - a x , +--R - a x %e y (x) +--R +--R + +--R 7 3 6 2 2 7 2 6 7 6 - a x 2 +--R ((a x + 2a x )y(x) + (- 2a x - 4a x)y(x) + a x + 2a )(%e ) +--R + +--R 5 5 4 4 2 6 5 5 4 4 3 6 4 5 3 +--R (2a x - 2a x )y(x) + (2a x - 4a x + 4a x )y(x) - 3a x + 2a x +--R + +--R 4 2 +--R - 2a x +--R * +--R - a x +--R %e +--R + +--R 4 8 3 7 2 6 5 4 2 +--R (- a x + 4a x - 8a x + 8a x - 4x )y(x) +--R + +--R 5 8 4 7 3 6 2 5 4 3 6 8 5 7 +--R (- 2a x + 6a x - 12a x + 16a x - 16a x + 8x )y(x) - a x + 2a x +--R + +--R 4 6 3 5 2 4 3 2 +--R - 5a x + 8a x - 8a x + 8a x - 4x +--R / +--R 6 2 2 6 6 - a x 2 +--R (a x y(x) - 2a x y(x) + a )(%e ) +--R Type: Expression Integer +--E 103 + +------------------------------------------------------------------- +--S 104 of 126 +ode143 := x**2*(D(y(x),x)+a*y(x)**2) - b +--R +--R 2 , 2 2 +--R (104) x y (x) + a x y(x) - b +--R +--R Type: Expression Integer +--E 104 + +@ +Maxima, if $4ab+1 >= 0$ gets: +$$x=\%c\%e^{ +-\frac{\displaystyle\log\left( +-\frac{\displaystyle -2axy+\sqrt{4ab+1}+1} +{\displaystyle 2axy+\sqrt{4ab+1}-1}\right)} +{\displaystyle\sqrt{4ab+1}}}$$ + +and if $4ab+1 < 0$ gets: +$$x=\%c\%e^{ +-\frac{\displaystyle 2\arctan\left( +\frac{\displaystyle 2axy-1}{\displaystyle\sqrt{-4ab-1}}\right)} +{\displaystyle\sqrt{-4ab-1}}}$$ + +neither of which simplify to 0 on substitution. +<<*>>= + +--S 105 of 126 +yx:=solve(ode143,y,x) +--R 2 +--R WARNING (genufact): No known algorithm to factor ? - ? - a b +--R , trying square-free. +--R +--R +--------+ 2 +--R a\|4a b + 1 - 2a x y(x) + a +--R (105) ------------------------------------------------------------ +--R +--------+ +--R +--------+ - log(x)\|4a b + 1 +--R ((2a x y(x) - 1)\|4a b + 1 + 4a b + 1)%e +--R Type: Union(Expression Integer,...) +--E 105 + +--S 106 of 126 +ode143expr := x**2*(D(yx,x)+a*yx**2) - b +--R +--R (106) +--R +--------+ +--R 3 2 3 - log(x)\|4a b + 1 , +--R (- 8a b - 2a )x %e y (x) +--R +--R + +--R 2 2 2 +--------+ +--R ((- 8a b - 2a b)x y(x) + 4a b + b)\|4a b + 1 +--R + +--R 3 2 2 2 2 2 2 2 3 2 +--R (- 8a b - 2a b)x y(x) + (8a b + 2a b)x y(x) - 8a b - 6a b - b +--R * +--R +--------+ 2 +--R - log(x)\|4a b + 1 +--R (%e ) +--R + +--R +--------+ +--R 4 3 3 2 3 2 2 - log(x)\|4a b + 1 +--R ((- 8a b - 2a )x y(x) + (8a b + 2a b)x)%e +--R + +--R 4 3 3 2 +--------+ 5 4 2 4 3 4 3 2 +--R (- 2a x y(x) + a x )\|4a b + 1 + 2a x y(x) - 2a x y(x) + (2a b + a )x +--R / +--R 2 +--------+ 3 2 2 2 +--R ((8a b + 2a)x y(x) - 4a b - 1)\|4a b + 1 + (8a b + 2a )x y(x) +--R + +--R 2 2 2 +--R (- 8a b - 2a)x y(x) + 8a b + 6a b + 1 +--R * +--R +--------+ 2 +--R - log(x)\|4a b + 1 +--R (%e ) +--R Type: Expression Integer +--E 106 + +------------------------------------------------------------------- +--S 107 of 126 +ode144 := x**2*(D(y(x),x)+a*y(x)**2) + b*x**alpha + c +--R +--R 2 , alpha 2 2 +--R (107) x y (x) + b x + a x y(x) + c +--R +--R Type: Expression Integer +--E 107 + +@ +Maxima failed. +<<*>>= +--S 108 of 126 +yx:=solve(ode144,y,x) +--R +--R (108) "failed" +--R Type: Union("failed",...) +--E 108 + +------------------------------------------------------------------- +--S 109 of 126 +ode145 := x**2*D(y(x),x) + a*y(x)**3 - a*x**2*y(x)**2 +--R +--R 2 , 3 2 2 +--R (109) x y (x) + a y(x) - a x y(x) +--R +--R Type: Expression Integer +--E 109 + +@ +Maxima failed. + +Maple claims the result is 0, which when substituted, simplifies to 0 +<<*>>= +--S 110 of 126 +yx:=solve(ode145,y,x) +--R +--R (110) "failed" +--R Type: Union("failed",...) +--E 110 + +------------------------------------------------------------------- +--S 111 of 126 +ode146 := x**2*D(y(x),x) + x*y(x)**3 + a*y(x)**2 +--R +--R 2 , 3 2 +--R (111) x y (x) + x y(x) + a y(x) +--R +--R Type: Expression Integer +--E 111 + +@ +Maxima failed. + +Maple gets 0 which, when substituted, simplifies to 0. +<<*>>= +--S 112 of 126 +yx:=solve(ode146,y,x) +--R +--R (112) "failed" +--R Type: Union("failed",...) +--E 112 + +------------------------------------------------------------------- +--S 113 of 126 +ode147 := x**2*D(y(x),x) + a*x**2*y(x)**3 + b*y(x)**2 +--R +--R 2 , 2 3 2 +--R (113) x y (x) + a x y(x) + b y(x) +--R +--R Type: Expression Integer +--E 113 +@ +Maxima failed. + +Maple gets 0 which, when substituted, results in 0. +<<*>>= +--S 114 of 126 +yx:=solve(ode147,y,x) +--R +--R (114) "failed" +--R Type: Union("failed",...) +--E 114 + +------------------------------------------------------------------- +--S 115 of 126 +ode148 := (x**2+1)*D(y(x),x) + x*y(x) - 1 +--R +--R 2 , +--R (115) (x + 1)y (x) + x y(x) - 1 +--R +--R Type: Expression Integer +--E 115 +@ +Maxima gets +$$({\rm asinh}(x)+\%c)\%e^{-\frac{\displaystyle\log(x^2+1)}{\displaystyle 2}}$$ +which when substituted, does not simplify to 0. + +Maple gets +$$\frac{{\rm arcsinh}(x)+~\_C1}{\sqrt{x^2+1}}$$ +which when substituted, simplifies to 0. + +Mathematica gets +$$\frac{{\rm arcsinh}(x)}{\sqrt{1+x^2}}+\frac{C[1]}{\sqrt{1+x^2}}$$ +gives 0 when substituted. +<<*>>= +--S 116 of 126 +ode148a:=solve(ode148,y,x) +--R +--R +------+ +--R | 2 +--R log(\|x + 1 - x) 1 +--R (116) [particular= - ------------------,basis= [---------]] +--R +------+ +------+ +--R | 2 | 2 +--R \|x + 1 \|x + 1 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 116 + +--S 117 of 126 +yx:=ode148a.particular +--R +--R +------+ +--R | 2 +--R log(\|x + 1 - x) +--R (117) - ------------------ +--R +------+ +--R | 2 +--R \|x + 1 +--R Type: Expression Integer +--E 117 + +--S 118 of 126 +ode148expr := (x**2+1)*D(yx,x) + x*yx - 1 +--R +--R (118) 0 +--R Type: Expression Integer +--E 118 + +------------------------------------------------------------------- +--S 119 of 126 +ode149 := (x**2+1)*D(y(x),x) + x*y(x) - x*(x**2+1) +--R +--R 2 , 3 +--R (119) (x + 1)y (x) + x y(x) - x - x +--R +--R Type: Expression Integer +--E 119 +@ +Maxima gets +$$\left(\displaystyle\frac{(x^2+1)^{3/2}}{3}+\%c\right) +\%e^{\displaystyle -\frac{log(x^2+1)}{2}}$$ +which simplifies to 0 when substituted. + +Maple gets +$$\frac{x^2}{3}+\frac{1}{3}+\frac{\_C1}{\sqrt{x^2+1}}$$ +which simplifies to 0 when substituted. + +Mathematica gets +$$\frac{1}{3}(1+x^2)+\frac{C[1]}{\sqrt{1+x^2}}$$ +which simplifes to 0 when substituted. +<<*>>= +--S 120 of 126 +ode149a:=solve(ode149,y,x) +--R +--R 2 +--R x + 1 1 +--R (120) [particular= ------,basis= [---------]] +--R 3 +------+ +--R | 2 +--R \|x + 1 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 120 + +--S 121 of 126 +yx:=ode149a.particular +--R +--R 2 +--R x + 1 +--R (121) ------ +--R 3 +--R Type: Expression Integer +--E 121 + +--S 122 of 126 +ode149expr := (x**2+1)*D(yx,x) + x*yx - x*(x**2+1) +--R +--R (122) 0 +--R Type: Expression Integer +--E 122 + +------------------------------------------------------------------- +--S 123 of 126 +ode150 := (x**2+1)*D(y(x),x) + 2*x*y(x) - 2*x**2 +--R +--R 2 , 2 +--R (123) (x + 1)y (x) + 2x y(x) - 2x +--R +--R Type: Expression Integer +--E 123 +@ +Maxima gets +$$\displaystyle\frac{\frac{2x^3}{3}+\%c}{x^2+1}$$ +which simplifies to 0 on substitution. + +Maple gets +$$\frac{\frac{2x^3}{3}+~\_C1}{x^2+1}$$ +which simplifies to 0 on substitution. + +Mathematica gets: +$$\frac{2x^3}{3(1+x^2)}+\frac{C[1]}{1+x^2}$$ +which simplifies to 0 on substitution. +<<*>>= + +--S 124 of 126 +ode150a:=solve(ode150,y,x) +--R +--R 3 +--R 2x + 3 1 +--R (124) [particular= -------,basis= [------]] +--R 2 2 +--R 3x + 3 x + 1 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 124 + +--S 125 of 126 +yx:=ode150a.particular +--R +--R 3 +--R 2x + 3 +--R (125) ------- +--R 2 +--R 3x + 3 +--R Type: Expression Integer +--E 125 + +--S 126 of 126 +ode150expr := (x**2+1)*D(yx,x) + 2*x*yx - 2*x**2 +--R +--R (126) 0 +--R Type: Expression Integer +--E 126 +)spool +)lisp (bye) + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html} +\bibitem{2} Mathematica 6.0.1.0 +\bibitem{3} Maple 11.01 Build ID 296069 +\bibitem{4} Maxima 5.13.0 +\end{thebibliography} +\end{document} diff --git a/src/axiom-website/CATS/kamke2.input.pdf b/src/axiom-website/CATS/kamke2.input.pdf new file mode 100644 index 0000000..040a890 Binary files /dev/null and b/src/axiom-website/CATS/kamke2.input.pdf differ diff --git a/src/axiom-website/CATS/kamke3.input.pamphlet b/src/axiom-website/CATS/kamke3.input.pamphlet new file mode 100644 index 0000000..fc280ab --- /dev/null +++ b/src/axiom-website/CATS/kamke3.input.pamphlet @@ -0,0 +1,2682 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input kamke3.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +This is the first 50 of the Kamke test suite as published by +E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom +syntax. Where possible we show that the particular solution actually +satisfies the original ordinary differential equation. +\end{abstract} +\eject +\tableofcontents +\eject +<<*>>= +)spool kamke3.output +)set break resume +)set mes auto off +)clear all + +--S 1 of 139 +y:=operator 'y +--R +--R +--R (1) y +--R Type: BasicOperator +--E 1 + +--S 2 of 139 +ode151 := (x**2+1)*D(y(x),x) + (y(x)**2+1)*(2*x*y(x) - 1) +--R +--R +--R 2 , 3 2 +--R (2) (x + 1)y (x) + 2x y(x) - y(x) + 2x y(x) - 1 +--R +--R Type: Expression Integer +--E 2 + +--S 3 of 139 +ode151a:=solve(ode151,y,x) +--R +--R +--R (3) "failed" +--R Type: Union("failed",...) +--E 3 + +--S 4 of 139 +ode152 := (x**2+1)*D(y(x),x) + x*sin(y(x))*cos(y(x)) - x*(x**2+1)*cos(y(x))**2 +--R +--R +--R 2 , 3 2 +--R (4) (x + 1)y (x) + x cos(y(x))sin(y(x)) + (- x - x)cos(y(x)) +--R +--R Type: Expression Integer +--E 4 + +--S 5 of 139 +ode152a:=solve(ode152,y,x) +--R +--R +--R (5) "failed" +--R Type: Union("failed",...) +--E 5 + +--S 6 of 139 +ode153 := (x**2-1)*D(y(x),x) - x*y(x) + a +--R +--R +--R 2 , +--R (6) (x - 1)y (x) - x y(x) + a +--R +--R Type: Expression Integer +--E 6 + +--S 7 of 139 +ode153a:=solve(ode153,y,x) +--R +--R +--R +------+ +--R | 2 +--R (7) [particular= a x,basis= [\|x - 1 ]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 7 + +--S 8 of 139 +yx:=ode153a.particular +--R +--R +--R (8) a x +--R Type: Expression Integer +--E 8 + +--S 9 of 139 +ode153expr := (x**2-1)*D(yx,x) - x*yx + a +--R +--R +--R (9) 0 +--R Type: Expression Integer +--E 9 + +--S 10 of 139 +ode154 := (x**2-1)*D(y(x),x) + 2*x*y(x) - cos(x) +--R +--R +--R 2 , +--R (10) (x - 1)y (x) - cos(x) + 2x y(x) +--R +--R Type: Expression Integer +--E 10 + +--S 11 of 139 +ode154a:=solve(ode154,y,x) +--R +--R +--R sin(x) 1 +--R (11) [particular= ------,basis= [------]] +--R 2 2 +--R x - 1 x - 1 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 11 + +--S 12 of 139 +yx:=ode154a.particular +--R +--R +--R sin(x) +--R (12) ------ +--R 2 +--R x - 1 +--R Type: Expression Integer +--E 12 + +--S 13 of 139 +ode154expr := (x**2-1)*D(yx,x) + 2*x*yx - cos(x) +--R +--R +--R (13) 0 +--R Type: Expression Integer +--E 13 + +--S 14 of 139 +ode155 := (x**2-1)*D(y(x),x) + y(x)**2 - 2*x*y(x) + 1 +--R +--R +--R 2 , 2 +--R (14) (x - 1)y (x) + y(x) - 2x y(x) + 1 +--R +--R Type: Expression Integer +--E 14 + +--S 15 of 139 +yx:=solve(ode155,y,x) +--R +--R +--R (y(x) - x)log(x + 1) + (- y(x) + x)log(x - 1) + 2 +--R (15) ------------------------------------------------- +--R 2y(x) - 2x +--R Type: Union(Expression Integer,...) +--E 15 + +--S 16 of 139 +ode155expr := (x**2-1)*D(yx,x) + yx**2 - 2*x*yx + 1 +--R +--R +--R (16) +--R 2 , 2 2 2 +--R (- 4x + 4)y (x) + (y(x) - 2x y(x) + x )log(x + 1) +--R +--R + +--R 2 2 2 2 3 +--R (- 2y(x) + 4x y(x) - 2x )log(x - 1) - 4x y(x) + (8x + 4)y(x) - 4x +--R + +--R - 4x +--R * +--R log(x + 1) +--R + +--R 2 2 2 +--R (y(x) - 2x y(x) + x )log(x - 1) +--R + +--R 2 2 3 2 +--R (4x y(x) + (- 8x - 4)y(x) + 4x + 4x)log(x - 1) - 8x y(x) + 12x +--R / +--R 2 2 +--R 4y(x) - 8x y(x) + 4x +--R Type: Expression Integer +--E 16 + +--S 17 of 139 +ode156 := (x**2-1)*D(y(x),x) - y(x)*(y(x)-x) +--R +--R +--R 2 , 2 +--R (17) (x - 1)y (x) - y(x) + x y(x) +--R +--R Type: Expression Integer +--E 17 + +--S 18 of 139 +yx:=solve(ode156,y,x) +--R +--R +--R - x y(x) + 1 +--R (18) ------------- +--R +------+ +--R | 2 +--R y(x)\|x - 1 +--R Type: Union(Expression Integer,...) +--E 18 + +--S 19 of 139 +ode156expr := (x**2-1)*D(yx,x) - yx*(yx-x) +--R +--R +--R (19) +--R +------+ +--R 4 2 , 2 2 | 2 +--R (- x + 2x - 1)y (x) + (- x y(x) + 2x y(x) - 1)\|x - 1 +--R +--R + +--R 4 2 2 +--R (- x + 2x - 1)y(x) +--R / +--R +------+ +--R 2 2 | 2 +--R (x - 1)y(x) \|x - 1 +--R Type: Expression Integer +--E 19 + +--S 20 of 139 +ode157 := (x**2-1)*D(y(x),x) + a*(y(x)**2-2*x*y(x)+1) +--R +--R +--R 2 , 2 +--R (20) (x - 1)y (x) + a y(x) - 2a x y(x) + a +--R +--R Type: Expression Integer +--E 20 + +--S 21 of 139 +ode157a:=solve(ode157,y,x) +--R +--R +--R (21) "failed" +--R Type: Union("failed",...) +--E 21 + +--S 22 of 139 +ode158 := (x**2-1)*D(y(x),x) + a*x*y(x)**2 + x*y(x) +--R +--R +--R 2 , 2 +--R (22) (x - 1)y (x) + a x y(x) + x y(x) +--R +--R Type: Expression Integer +--E 22 + +--S 23 of 139 +yx:=solve(ode158,y,x) +--R +--R +--R 2 2 2 +--R a x y(x) + 2a y(x) + 1 +--R (23) ------------------------ +--R 4 2 3 2 +--R 2a y(x) + 4a y(x) + 2a +--R Type: Union(Expression Integer,...) +--E 23 + +--S 24 of 139 +ode158expr := (x**2-1)*D(yx,x) + a*x*yx**2 + x*yx +--R +--R +--R (24) +--R 4 4 4 2 4 2 3 4 3 2 3 , +--R ((4a x - 8a x + 4a )y(x) + (4a x - 8a x + 4a )y(x))y (x) +--R +--R + +--R 4 5 5 3 5 4 4 3 3 4 3 +--R (a x + 6a x - 4a x)y(x) + ((12a + 4a )x - 4a x)y(x) +--R + +--R 3 2 3 3 2 2 2 +--R ((6a + 2a )x + (6a + 4a )x)y(x) + (8a + 4a)x y(x) + (2a + 1)x +--R / +--R 7 4 6 3 5 2 4 3 +--R 4a y(x) + 16a y(x) + 24a y(x) + 16a y(x) + 4a +--R Type: Expression Integer +--E 24 + +--S 25 of 139 +ode159 := (x**2-1)*D(y(x),x) - 2*x*y(x)*log(y(x)) +--R +--R +--R 2 , +--R (25) (x - 1)y (x) - 2x y(x)log(y(x)) +--R +--R Type: Expression Integer +--E 25 + +--S 26 of 139 +yx:=solve(ode159,y,x) +--R +--R +--R 2 +--R - x + 1 +--R (26) --------- +--R log(y(x)) +--R Type: Union(Expression Integer,...) +--E 26 + +--S 27 of 139 +ode159expr := (x**2-1)*D(yx,x) - 2*x*yx*log(yx) +--R +--R +--R (27) +--R 2 +--R 3 - x + 1 4 2 , +--R (2x - 2x)y(x)log(y(x))log(---------) + (x - 2x + 1)y (x) +--R log(y(x)) +--R + +--R 3 +--R (- 2x + 2x)y(x)log(y(x)) +--R / +--R 2 +--R y(x)log(y(x)) +--R Type: Expression Integer +--E 27 + +--S 28 of 139 +ode160 := (x**2-4)*D(y(x),x) + (x+2)*y(x)**2 - 4*y(x) +--R +--R +--R 2 , 2 +--R (28) (x - 4)y (x) + (x + 2)y(x) - 4y(x) +--R +--R Type: Expression Integer +--E 28 + +--S 29 of 139 +yx:=solve(ode160,y,x) +--R +--R +--R (- x - 2)y(x)log(x + 2) + x - 2 +--R (29) ------------------------------- +--R (x + 2)y(x) +--R Type: Union(Expression Integer,...) +--E 29 + +--S 30 of 139 +ode160expr := (x**2-4)*D(yx,x) + (x+2)*yx**2 - 4*yx +--R +--R +--R (30) +--R 3 2 , 2 2 2 +--R (- x + 2x + 4x - 8)y (x) + (x + 4x + 4)y(x) log(x + 2) +--R +--R + +--R 2 2 2 2 2 +--R ((4x + 8)y(x) + (- 2x + 8)y(x))log(x + 2) + (- x + 4)y(x) + x - 4x + 4 +--R / +--R 2 +--R (x + 2)y(x) +--R Type: Expression Integer +--E 30 + +--S 31 of 139 +ode161 := (x**2-5*x+6)*D(y(x),x) + 3*x*y(x) - 8*y(x) + x**2 +--R +--R +--R 2 , 2 +--R (31) (x - 5x + 6)y (x) + (3x - 8)y(x) + x +--R +--R Type: Expression Integer +--E 31 + +--S 32 of 139 +ode161a:=solve(ode161,y,x) +--R +--R +--R 4 3 +--R - 3x + 8x - 144 1 +--R (32) [particular= ------------------------,basis= [-------------------]] +--R 3 2 3 2 +--R 12x - 84x + 192x - 144 x - 7x + 16x - 12 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 32 + +--S 33 of 139 +yx:=ode161a.particular +--R +--R +--R 4 3 +--R - 3x + 8x - 144 +--R (33) ------------------------ +--R 3 2 +--R 12x - 84x + 192x - 144 +--R Type: Expression Integer +--E 33 + +--S 34 of 139 +ode161expr := (x**2-5*x+6)*D(yx,x) + 3*x*yx - 8*yx + x**2 +--R +--R +--R (34) 0 +--R Type: Expression Integer +--E 34 + +--S 35 of 139 +ode162 := (x-a)*(x-b)*D(y(x),x) + y(x)**2 + k*(y(x)+x-a)*(y(x)+x-b) +--R +--R +--R (35) +--R 2 , 2 +--R (x + (- b - a)x + a b)y (x) + (k + 1)y(x) + (2k x + (- b - a)k)y(x) +--R +--R + +--R 2 +--R k x + (- b - a)k x + a b k +--R Type: Expression Integer +--E 35 +@ +This loops infinitely +\begin{verbatim} +ode162a:=solve(ode162,y,x) + + WARNING (genufact): No known algorithm to factor + 3 2 2 2 + ? - 3? + (- k + 3)? + k - 1, trying square-free. + +\end{verbatim} +<<*>>= +--S 36 of 139 +ode163 := 2*x**2*D(y(x),x) - 2*y(x)**2 - x*y(x) + 2*a**2*x +--R +--R +--R 2 , 2 2 +--R (36) 2x y (x) - 2y(x) - x y(x) + 2a x +--R +--R Type: Expression Integer +--E 36 + +--S 37 of 139 +yx:=solve(ode163,y,x) +--R +--R +--R +-+ +--R a\|x - y(x) +--R (37) --------------------------- +--R 4a +--R - ---- +--R +-+ +--R 2 +-+ \|x +--R (2a \|x + 2a y(x))%e +--R Type: Union(Expression Integer,...) +--E 37 + +--S 38 of 139 +ode163expr := 2*x**2*D(yx,x) - 2*yx**2 - x*yx + 2*a**2*x +--R +--R +--R (38) +--R 4a +--R - ---- +--R +-+ +--R 3 3 2 5 4 +-+ 2 3 3 4 4 \|x , +--R ((- 12a x y(x) - 4a x )\|x - 4a x y(x) - 12a x y(x))%e y (x) +--R +--R + +--R 4 5 6 2 3 8 3 +-+ 5 2 4 +--R (4a x y(x) + 40a x y(x) + 20a x y(x))\|x + 20a x y(x) +--R + +--R 7 3 2 9 4 +--R 40a x y(x) + 4a x +--R * +--R 4a 2 +--R - ---- +--R +-+ +--R \|x +--R (%e ) +--R + +--R 5 3 4 3 2 3 5 2 2 5 3 +--R a x y(x) + 12a x y(x) + 8a x y(x) - 8a x y(x) - a x y(x) +--R + +--R 7 3 +--R - 4a x +--R * +--R +-+ +--R \|x +--R + +--R 2 5 2 2 4 4 2 3 4 3 2 6 3 6 4 +--R 4a x y(x) + 5a x y(x) + 8a x y(x) + 4a x y(x) - 12a x y(x) - a x +--R * +--R 4a +--R - ---- +--R +-+ +--R \|x +--R %e +--R + +--R 5 2 3 4 2 +-+ 4 3 2 2 5 3 +--R (- y(x) + 2a x y(x) - a x y(x))\|x - a x y(x) + 2a x y(x) - a x +--R / +--R 2 5 4 3 6 2 +-+ 3 4 5 2 2 +--R (2a y(x) + 20a x y(x) + 10a x y(x))\|x + 10a x y(x) + 20a x y(x) +--R + +--R 7 3 +--R 2a x +--R * +--R 4a 2 +--R - ---- +--R +-+ +--R \|x +--R (%e ) +--R Type: Expression Integer +--E 38 + +--S 39 of 139 +ode164 := 2*x**2*D(y(x),x) - 2*y(x)**2 - 3*x*y(x) + 2*a**2*x +--R +--R +--R 2 , 2 2 +--R (39) 2x y (x) - 2y(x) - 3x y(x) + 2a x +--R +--R Type: Expression Integer +--E 39 + +--S 40 of 139 +yx:=solve(ode164,y,x) +--R +--R +--R +-+ +--R (- 2y(x) - x)\|x + 2a x +--R (40) ------------------------------------- +--R 4a +--R - ---- +--R +-+ +--R +-+ 2 \|x +--R ((4a y(x) + 2a x)\|x + 4a x)%e +--R Type: Union(Expression Integer,...) +--E 40 + +--S 41 of 139 +ode164expr := 2*x**2*D(yx,x) - 2*yx**2 - 3*x*yx + 2*a**2*x +--R +--R +--R (41) +--R 2 2 3 2 3 2 2 4 4 3 2 5 +--R - 128a x y(x) - 192a x y(x) + (- 96a x - 384a x )y(x) - 16a x +--R + +--R 4 4 +--R - 192a x +--R * +--R +-+ +--R \|x +--R + +--R 3 3 2 3 4 3 5 5 4 +--R - 384a x y(x) - 384a x y(x) - 96a x - 128a x +--R * +--R 4a +--R - ---- +--R +-+ +--R \|x , +--R %e y (x) +--R +--R + +--R 5 4 5 2 3 5 3 7 2 2 +--R 640a x y(x) + 1280a x y(x) + (960a x + 1280a x )y(x) +--R + +--R 5 4 7 3 5 5 7 4 9 3 +--R (320a x + 1280a x )y(x) + 40a x + 320a x + 128a x +--R * +--R +-+ +--R \|x +--R + +--R 4 5 4 2 4 4 3 6 2 3 +--R 128a x y(x) + 320a x y(x) + (320a x + 1280a x )y(x) +--R + +--R 4 4 6 3 2 4 5 6 4 8 3 4 6 +--R (160a x + 1920a x )y(x) + (40a x + 960a x + 640a x )y(x) + 4a x +--R + +--R 6 5 8 4 +--R 160a x + 320a x +--R * +--R 4a 2 +--R - ---- +--R +-+ +--R \|x +--R (%e ) +--R + +--R 2 5 2 4 2 2 4 3 +--R 128a y(x) + 672a x y(x) + (960a x + 256a x)y(x) +--R + +--R 2 3 4 2 2 2 4 6 2 2 5 +--R (592a x + 384a x )y(x) + (168a x - 384a x )y(x) + 18a x +--R + +--R 4 4 6 3 +--R - 64a x - 288a x +--R * +--R +-+ +--R \|x +--R + +--R 5 2 3 4 3 3 2 3 +--R 96a x y(x) + (240a x + 384a x)y(x) + (240a x + 1152a x )y(x) +--R + +--R 4 3 3 5 2 2 5 3 4 5 3 +--R (120a x + 960a x - 256a x )y(x) + (30a x + 288a x - 480a x )y(x) +--R + +--R 6 3 5 5 4 7 3 +--R 3a x + 24a x - 240a x - 128a x +--R * +--R 4a +--R - ---- +--R +-+ +--R \|x +--R %e +--R + +--R 4 3 2 3 2 +--R - 32a y(x) - 64a x y(x) + (- 48a x + 64a x)y(x) +--R + +--R 3 3 2 4 3 3 5 2 +--R (- 16a x + 64a x )y(x) - 2a x + 16a x - 32a x +--R * +--R +-+ +--R \|x +--R + +--R 5 4 2 2 3 3 2 2 2 +--R - 32y(x) - 80x y(x) + (- 80x + 64a x)y(x) + (- 40x + 96a x )y(x) +--R + +--R 4 2 3 4 2 5 2 4 4 3 +--R (- 10x + 48a x - 32a x )y(x) - x + 8a x - 16a x +--R / +--R 3 4 3 3 3 2 5 2 +--R 320a y(x) + 640a x y(x) + (480a x + 640a x)y(x) +--R + +--R 3 3 5 2 3 4 5 3 7 2 +--R (160a x + 640a x )y(x) + 20a x + 160a x + 64a x +--R * +--R +-+ +--R \|x +--R + +--R 2 5 2 4 2 2 4 3 +--R 64a y(x) + 160a x y(x) + (160a x + 640a x)y(x) +--R + +--R 2 3 4 2 2 2 4 4 3 6 2 2 5 +--R (80a x + 960a x )y(x) + (20a x + 480a x + 320a x )y(x) + 2a x +--R + +--R 4 4 6 3 +--R 80a x + 160a x +--R * +--R 4a 2 +--R - ---- +--R +-+ +--R \|x +--R (%e ) +--R Type: Expression Integer +--E 41 + +--S 42 of 139 +ode165 := x*(2*x-1)*D(y(x),x) + y(x)**2 - (4*x+1)*y(x) + 4*x +--R +--R +--R 2 , 2 +--R (42) (2x - x)y (x) + y(x) + (- 4x - 1)y(x) + 4x +--R +--R Type: Expression Integer +--E 42 + +--S 43 of 139 +yx:=solve(ode165,y,x) +--R +--R +--R 2 +--R x y(x) - 2x +--R (43) ------------ +--R y(x) - 1 +--R Type: Union(Expression Integer,...) +--E 43 + +--S 44 of 139 +ode165expr := x*(2*x-1)*D(yx,x) + yx**2 - (4*x+1)*yx + 4*x +--R +--R +--R (44) +--R 4 3 2 , 2 2 3 2 4 +--R (4x - 4x + x )y (x) + (- x + 2x)y(x) + (- 4x + 8x - 6x)y(x) + 4x +--R +--R + +--R 2 +--R - 6x + 4x +--R / +--R 2 +--R y(x) - 2y(x) + 1 +--R Type: Expression Integer +--E 44 + +--S 45 of 139 +ode166 := 2*x*(x-1)*D(y(x),x) + (x-1)*y(x)**2 - x +--R +--R +--R 2 , 2 +--R (45) (2x - 2x)y (x) + (x - 1)y(x) - x +--R +--R Type: Expression Integer +--E 45 + +--S 46 of 139 +ode166a:=solve(ode166,y,x) +--R +--R +--R (46) "failed" +--R Type: Union("failed",...) +--E 46 + +--S 47 of 139 +ode167 := 3*x**2*D(y(x),x) - 7*y(x)**2 - 3*x*y(x) - x**2 +--R +--R +--R 2 , 2 2 +--R (47) 3x y (x) - 7y(x) - 3x y(x) - x +--R +--R Type: Expression Integer +--E 47 + +--S 48 of 139 +yx:=solve(ode167,y,x) +--R +--R +--R +---+ +---+ +--R (- 497\|- 7 + 1197)y(x) + 171x\|- 7 + 497x +--R (48) ------------------------------------------------------------ +--R +---+ +--R 2\|- 7 log(x) +--R - ------------- +--R +---+ +---+ 3 +--R ((342\|- 7 + 994)y(x) - 142x\|- 7 + 342x)%e +--R Type: Union(Expression Integer,...) +--E 48 + +--S 49 of 139 +ode167expr := 3*x**2*D(yx,x) - 7*yx**2 - 3*x*yx - x**2 +--R +--R +--R (49) +--R 3 +---+ 3 4 +---+ +--R (- 275142420x \|- 7 + 547274532x )y(x) - 78182076x \|- 7 +--R + +--R 4 +--R - 275142420x +--R * +--R +---+ +--R 2\|- 7 log(x) +--R - ------------- +--R 3 , +--R %e y (x) +--R +--R + +--R 2 +---+ 2 3 +--R (- 91714140x \|- 7 + 182424844x )y(x) +--R + +--R 3 +---+ 3 2 +--R (- 78182076x \|- 7 - 275142420x )y(x) +--R + +--R 4 +---+ 4 5 +---+ 5 +--R (39306060x \|- 7 - 78182076x )y(x) + 3722956x \|- 7 + 13102020x +--R * +--R +---+ 2 +--R 2\|- 7 log(x) +--R - ------------- +--R 3 +--R (%e ) +--R + +--R +---+ 3 +--R (368361714x\|- 7 - 2239972378x)y(x) +--R + +--R 2 +---+ 2 2 +--R (595138474x \|- 7 - 178912818x )y(x) +--R + +--R 3 +---+ 3 4 +---+ 4 +--R (130805178x \|- 7 - 44853634x )y(x) + 45713722x \|- 7 + 52623102x +--R * +--R +---+ +--R 2\|- 7 log(x) +--R - ------------- +--R 3 +--R %e +--R + +--R +---+ 3 +--R (1123498215\|- 7 - 2234704339)y(x) +--R + +--R +---+ 2 +--R (- 319243477x\|- 7 - 1123498215x)y(x) +--R + +--R 2 +---+ 2 3 +---+ 3 +--R (160499745x \|- 7 - 319243477x )y(x) - 45606211x \|- 7 - 160499745x +--R / +--R +---+ 3 +---+ 2 +--R (91714140\|- 7 - 182424844)y(x) + (78182076x\|- 7 + 275142420x)y(x) +--R + +--R 2 +---+ 2 3 +---+ 3 +--R (- 39306060x \|- 7 + 78182076x )y(x) - 3722956x \|- 7 - 13102020x +--R * +--R +---+ 2 +--R 2\|- 7 log(x) +--R - ------------- +--R 3 +--R (%e ) +--R Type: Expression Integer +--E 49 + +--S 50 of 139 +ode168 := 3*(x**2-4)*D(y(x),x) + y(x)**2 - x*y(x) - 3 +--R +--R +--R 2 , 2 +--R (50) (3x - 12)y (x) + y(x) - x y(x) - 3 +--R +--R Type: Expression Integer +--E 50 + +--S 51 of 139 +ode168a:=solve(ode168,y,x) +--R +--R +--R (51) "failed" +--R Type: Union("failed",...) +--E 51 + +--S 52 of 139 +ode169 := (a*x+b)**2*D(y(x),x) + (a*x+b)*y(x)**3 + c*y(x)**2 +--R +--R +--R 2 2 2 , 3 2 +--R (52) (a x + 2a b x + b )y (x) + (a x + b)y(x) + c y(x) +--R +--R Type: Expression Integer +--E 52 + +--S 53 of 139 +ode169a:=solve(ode169,y,x) +--R +--R +--R (53) "failed" +--R Type: Union("failed",...) +--E 53 + +--S 54 of 139 +ode170 := x**3*D(y(x),x) - y(x)**2 - x**4 +--R +--R +--R 3 , 2 4 +--R (54) x y (x) - y(x) - x +--R +--R Type: Expression Integer +--E 54 + +--S 55 of 139 +yx:=solve(ode170,y,x) +--R +--R +--R 2 2 +--R (y(x) - x )log(x) + x +--R (55) ---------------------- +--R 2 +--R y(x) - x +--R Type: Union(Expression Integer,...) +--E 55 + +--S 56 of 139 +ode170expr := x**3*D(yx,x) - yx**2 - x**4 +--R +--R +--R (56) +--R 5 , 2 2 4 2 2 4 +--R - x y (x) + (- y(x) + 2x y(x) - x )log(x) + (- 2x y(x) + 2x )log(x) +--R +--R + +--R 4 2 2 6 8 6 4 +--R (- x + x )y(x) + 2x y(x) - x + x - x +--R / +--R 2 2 4 +--R y(x) - 2x y(x) + x +--R Type: Expression Integer +--E 56 + +--S 57 of 139 +ode171 := x**3*D(y(x),x) - y(x)**2 - x**2*y(x) +--R +--R +--R 3 , 2 2 +--R (57) x y (x) - y(x) - x y(x) +--R +--R Type: Expression Integer +--E 57 + +--S 58 of 139 +yx:=solve(ode171,y,x) +--R +--R +--R 2 +--R - y(x) + x +--R (58) ----------- +--R x y(x) +--R Type: Union(Expression Integer,...) +--E 58 + +--S 59 of 139 +ode171expr := x**3*D(yx,x) - yx**2 - x**2*yx +--R +--R +--R 6 , 3 2 2 4 +--R - x y (x) + (2x - 1)y(x) + 2x y(x) - x +--R +--R (59) ----------------------------------------- +--R 2 2 +--R x y(x) +--R Type: Expression Integer +--E 59 + +--S 60 of 139 +ode172 := x**3*D(y(x),x) - x**4*y(x)**2 + x**2*y(x) + 20 +--R +--R +--R 3 , 4 2 2 +--R (60) x y (x) - x y(x) + x y(x) + 20 +--R +--R Type: Expression Integer +--E 60 + +--S 61 of 139 +yx:=solve(ode172,y,x) +--R +--R +--R 11 2 9 +--R (7x - 11x )y(x) + 35x + 44 +--R (61) -------------------------------- +--R 11 2 9 +--R (36x - 36x )y(x) + 180x + 144 +--R Type: Union(Expression Integer,...) +--E 61 + +--S 62 of 139 +ode172expr := x**3*D(yx,x) - x**4*yx**2 + x**2*yx + 20 +--R +--R +--R (62) +--R 14 , +--R - 1296x y (x) +--R +--R + +--R 26 24 22 17 15 13 8 +--R - 49x + 252x + 25920x + 154x + 648x - 51840x - 121x +--R + +--R 6 4 +--R 396x + 25920x +--R * +--R 2 +--R y(x) +--R + +--R 24 22 20 15 13 11 6 +--R - 490x + 2520x + 259200x + 154x - 1944x - 51840x + 968x +--R + +--R 4 2 +--R - 3168x - 207360x +--R * +--R y(x) +--R + +--R 22 20 18 13 11 9 4 +--R - 1225x + 6300x + 648000x - 3080x - 12960x + 1036800x - 1936x +--R + +--R 2 +--R 6336x + 414720 +--R / +--R 22 13 4 2 20 11 2 +--R (1296x - 2592x + 1296x )y(x) + (12960x - 2592x - 10368x )y(x) +--R + +--R 18 9 +--R 32400x + 51840x + 20736 +--R Type: Expression Integer +--E 62 + +--S 63 of 139 +ode173 := x**3*D(y(x),x) - x**6*y(x)**2 - (2*x-3)*x**2*y(x) + 3 +--R +--R +--R 3 , 6 2 3 2 +--R (63) x y (x) - x y(x) + (- 2x + 3x )y(x) + 3 +--R +--R Type: Expression Integer +--E 63 + +--S 64 of 139 +yx:=solve(ode173,y,x) +--R +--R +--R 3 +--R - x y(x) + 1 +--R (64) ------------------ +--R 3 4x +--R (4x y(x) + 12)%e +--R Type: Union(Expression Integer,...) +--E 64 + +--S 65 of 139 +ode173expr := x**3*D(yx,x) - x**6*yx**2 - (2*x-3)*x**2*yx + 3 +--R +--R +--R (65) +--R 6 4x , 6 2 3 4x 2 +--R - 16x %e y (x) + (48x y(x) + 288x y(x) + 432)(%e ) +--R +--R + +--R 9 8 2 6 5 3 2 4x 12 2 +--R ((24x - 12x )y(x) + (48x - 72x )y(x) - 72x + 36x )%e - x y(x) +--R + +--R 9 6 +--R 2x y(x) - x +--R / +--R 6 2 3 4x 2 +--R (16x y(x) + 96x y(x) + 144)(%e ) +--R Type: Expression Integer +--E 65 + +--S 66 of 139 +ode174 := x*(x**2+1)*D(y(x),x) + x**2*y(x) +--R +--R +--R 3 , 2 +--R (66) (x + x)y (x) + x y(x) +--R +--R Type: Expression Integer +--E 66 + +--S 67 of 139 +ode174a:=solve(ode174,y,x) +--R +--R +--R 1 +--R (67) [particular= 0,basis= [---------]] +--R +------+ +--R | 2 +--R \|x + 1 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 67 + +--S 68 of 139 +yx:=ode174a.particular +--R +--R +--R (68) 0 +--R Type: Expression Integer +--E 68 + +--S 69 of 139 +ode174expr := x*(x**2+1)*D(yx,x) + x**2*yx +--R +--R +--R (69) 0 +--R Type: Expression Integer +--E 69 + +--S 70 of 139 +ode175 := x*(x**2-1)*D(y(x),x) - (2*x**2-1)*y(x) + a*x**3 +--R +--R +--R 3 , 2 3 +--R (70) (x - x)y (x) + (- 2x + 1)y(x) + a x +--R +--R Type: Expression Integer +--E 70 + +--S 71 of 139 +ode175a:=solve(ode175,y,x) +--R +--R +--R +------+ +--R | 2 +--R (71) [particular= a x,basis= [x\|x - 1 ]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 71 + +--S 72 of 139 +yx:=ode175a.particular +--R +--R +--R (72) a x +--R Type: Expression Integer +--E 72 + +--S 73 of 139 +ode175expr := x*(x**2-1)*D(yx,x) - (2*x**2-1)*yx + a*x**3 +--R +--R +--R (73) 0 +--R Type: Expression Integer +--E 73 + +--S 74 of 139 +ode176 := x*(x**2-1)*D(y(x),x) + (x**2-1)*y(x)**2 - x**2 +--R +--R +--R 3 , 2 2 2 +--R (74) (x - x)y (x) + (x - 1)y(x) - x +--R +--R Type: Expression Integer +--E 74 + +--S 75 of 139 +ode176a:=solve(ode176,y,x) +--R +--R +--R (75) "failed" +--R Type: Union("failed",...) +--E 75 + +--S 76 of 139 +ode177 := x**2*(x-1)*D(y(x),x) - y(x)**2 - x*(x-2)*y(x) +--R +--R +--R 3 2 , 2 2 +--R (76) (x - x )y (x) - y(x) + (- x + 2x)y(x) +--R +--R Type: Expression Integer +--E 76 + +--S 77 of 139 +yx:=solve(ode177,y,x) +--R +--R +--R 2 +--R - y(x) + x +--R (77) ----------- +--R (x - 1)y(x) +--R Type: Union(Expression Integer,...) +--E 77 + +--S 78 of 139 +ode177expr := x**2*(x-1)*D(yx,x) - yx**2 - x*(x-2)*yx +--R +--R +--R 6 5 4 , 3 2 2 2 4 +--R (- x + 2x - x )y (x) + (2x - 4x + 2x - 1)y(x) + 2x y(x) - x +--R +--R (78) ----------------------------------------------------------------- +--R 2 2 +--R (x - 2x + 1)y(x) +--R Type: Expression Integer +--E 78 + +--S 79 of 139 +ode178 := 2*x*(x**2-1)*D(y(x),x) + 2*(x**2-1)*y(x)**2 _ + - (3*x**2-5)*y(x) + x**2 - 3 +--R +--R +--R 3 , 2 2 2 2 +--R (79) (2x - 2x)y (x) + (2x - 2)y(x) + (- 3x + 5)y(x) + x - 3 +--R +--R Type: Expression Integer +--E 79 + +--S 80 of 139 +yx:=solve(ode178,y,x) +--R +--R +--R +------+ x +---+ +--I | 2 ++ \|%CL +-+ +--I (- y(x) + 1)\|x - 1 | -------------- d%CL + \|x +--R ++ +--------+ +--R | 2 +--I %CL\|%CL - 1 +--R (80) ----------------------------------------------------- +--R +------+ +--R | 2 +--R (y(x) - 1)\|x - 1 +--R Type: Union(Expression Integer,...) +--E 80 + +--S 81 of 139 +ode178expr := 2*x*(x**2-1)*D(yx,x) + 2*(x**2-1)*yx**2 _ + - (3*x**2-5)*yx + x**2 - 3 +--R +--R +--R (81) +--R +------+ +--R 2 2 2 2 +-+ | 2 +--R ((2x - 2)y(x) + (- 4x + 4)y(x) + 2x - 2)\|x \|x - 1 +--R * +--R x +---+ 2 +--I ++ \|%CL +--I | -------------- d%CL +--R ++ +--------+ +--R | 2 +--I %CL\|%CL - 1 +--R + +--R +------+ +--R 2 2 2 2 +-+ | 2 +--R ((3x - 5)y(x) + (- 6x + 10)y(x) + 3x - 5)\|x \|x - 1 +--R + +--R 3 3 +--R (- 4x + 4x)y(x) + 4x - 4x +--R * +--R x +---+ +--I ++ \|%CL +--I | -------------- d%CL +--R ++ +--------+ +--R | 2 +--I %CL\|%CL - 1 +--R + +--R 4 2 , +--R (- 2x + 2x )y (x) +--R +--R + +--R +------+ +--R 2 2 2 2 +-+ | 2 +--R ((x - 3)y(x) + (- 2x + 6)y(x) + x + 2x - 3)\|x \|x - 1 +--R + +--R 3 2 3 +--R (- 2x + 2x)y(x) + 2x - 2x +--R / +--R +------+ +--R 2 +-+ | 2 +--R (y(x) - 2y(x) + 1)\|x \|x - 1 +--R Type: Expression Integer +--E 81 + +--S 82 of 139 +ode179 := 3*x*(x**2-1)*D(y(x),x) + x*y(x)**2 - (x**2+1)*y(x) - 3*x +--R +--R +--R 3 , 2 2 +--R (82) (3x - 3x)y (x) + x y(x) + (- x - 1)y(x) - 3x +--R +--R Type: Expression Integer +--E 82 + +--S 83 of 139 +ode179a:=solve(ode179,y,x) +--R +--R +--R (83) "failed" +--R Type: Union("failed",...) +--E 83 + +--S 84 of 139 +ode180 := (a*x**2+b*x+c)*(x*D(y(x),x)-y(x)) - y(x)**2 + x**2 +--R +--R +--R 3 2 , 2 2 2 +--R (84) (a x + b x + c x)y (x) - y(x) + (- a x - b x - c)y(x) + x +--R +--R Type: Expression Integer +--E 84 + +--S 85 of 139 random generation, FAILURE OK. +yx:=solve(ode180,y,x) +--R +--R WARNING (genufact): No known algorithm to factor +--R 2 2 +--R 4 - 4a c + 2b 2 b +--R ? + ------------ ? - -----------, trying square-free. +--R 3 2 2 5 4 2 +--R 4a c - a b 4a c - a b +--R WARNING (genufact): No known algorithm to factor +--R 2 2 2 2 +--R 4 - 4a c + 2b - 4a b + 4a 2 - b + 4a b - 4a +--R ? + ------------------------- ? + -----------------, trying square-free. +--R 3 2 2 5 4 2 +--R 4a c - a b 4a c - a b +--R WARNING (genufact): No known algorithm to factor +--R 2 4 2 +--R 9 9b 8 (144a b - 24a)c - 36b + 12b 7 +--R ? - -- ? + ------------------------------ ? +--R a 3 2 2 +--R 4a c - a b +--R + +--R 3 5 3 +--R (- 336a b + 168a b)c + 84b - 84b 6 +--R ----------------------------------- ? +--R 4 3 2 +--R 4a c - a b +--R + +--R 2 4 2 2 2 2 +--R (2016a b - 2016a b + 144a )c +--R + +--R 6 4 2 8 6 4 +--R (- 1008a b + 1512a b - 192a b )c + 126b - 252b + 48b +--R / +--R 6 2 5 2 4 4 +--R 16a c - 8a b c + a b +--R * +--R 5 +--R ? +--R + +--R 2 5 2 3 2 2 +--R (- 2016a b + 3360a b - 720a b)c +--R + +--R 7 5 3 9 7 5 +--R (1008a b - 2520a b + 960a b )c - 126b + 420b - 240b +--R / +--R 7 2 6 2 5 4 +--R 16a c - 8a b c + a b +--R * +--R 4 +--R ? +--R + +--R 3 6 3 4 3 2 3 3 +--R (5376a b - 13440a b + 5760a b - 256a )c +--R + +--R 2 8 2 6 2 4 2 2 2 +--R (- 4032a b + 13440a b - 9120a b + 640a b )c +--R + +--R 10 8 6 4 12 10 +--R (1008a b - 4200a b + 3840a b - 384a b )c - 84b + 420b +--R + +--R 8 6 +--R - 480b + 64b +--R / +--R 9 3 8 2 2 7 4 6 6 +--R 64a c - 48a b c + 12a b c - a b +--R * +--R 3 +--R ? +--R + +--R 3 7 3 5 3 3 3 3 +--R (- 2304a b + 8064a b - 5760a b + 768a b)c +--R + +--R 2 9 2 7 2 5 2 3 2 +--R (1728a b - 8064a b + 9120a b - 1920a b )c +--R + +--R 11 9 7 5 13 11 +--R (- 432a b + 2520a b - 3840a b + 1152a b )c + 36b - 252b +--R + +--R 9 7 +--R 480b - 192b +--R / +--R 10 3 9 2 2 8 4 7 6 +--R 64a c - 48a b c + 12a b c - a b +--R * +--R 2 +--R ? +--R + +--R 3 8 3 6 3 4 3 2 3 +--R (576a b - 2688a b + 2880a b - 768a b )c +--R + +--R 2 10 2 8 2 6 2 4 2 2 2 +--R (- 432a b + 2688a b - 4560a b + 1920a b - 256a b )c +--R + +--R 12 10 8 6 14 12 +--R (108a b - 840a b + 1920a b - 1152a b )c - 9b + 84b +--R + +--R 10 8 +--R - 240b + 192b +--R / +--R 11 3 10 2 2 9 4 8 6 +--R 64a c - 48a b c + 12a b c - a b +--R * +--R ? +--R + +--R 3 9 3 7 3 5 3 3 3 +--R (- 64a b + 384a b - 576a b + 256a b )c +--R + +--R 2 11 2 9 2 7 2 5 2 3 2 +--R (48a b - 384a b + 912a b - 640a b + 256a b )c +--R + +--R 13 11 9 7 15 13 11 +--R (- 12a b + 120a b - 384a b + 384a b )c + b - 12b + 48b +--R + +--R 9 +--R - 64b +--R / +--R 12 3 11 2 2 10 4 9 6 +--R 64a c - 48a b c + 12a b c - a b +--R , trying square-free. +--R WARNING (genufact): No known algorithm to factor +--R 9 9b - 18a 8 +--R ? + -------- ? +--R a +--R + +--R 2 2 3 4 3 +--R (144a b - 576a b + 576a - 24a)c - 36b + 144a b +--R + +--R 2 2 2 +--R (- 144a + 12)b - 24a b + 24a +--R / +--R 3 2 2 +--R 4a c - a b +--R * +--R 7 +--R ? +--R + +--R 3 2 2 3 4 2 5 +--R (336a b - 2016a b + (4032a - 168a)b - 2688a + 336a )c - 84b +--R + +--R 4 2 3 3 2 2 3 +--R 504a b + (- 1008a + 84)b + (672a - 336a)b + 504a b - 336a +--R / +--R 4 3 2 +--R 4a c - a b +--R * +--R 6 +--R ? +--R + +--R 2 4 3 3 4 2 2 +--R 2016a b - 16128a b + (48384a - 2016a )b +--R + +--R 5 3 6 4 2 +--R (- 64512a + 8064a )b + 32256a - 8064a + 144a +--R * +--R 2 +--R c +--R + +--R 6 2 5 3 4 +--R - 1008a b + 8064a b + (- 24192a + 1512a)b +--R + +--R 4 2 3 5 3 2 +--R (32256a - 8064a )b + (- 16128a + 16128a - 192a)b +--R + +--R 4 2 5 3 +--R (- 16128a + 480a )b + 8064a - 480a +--R * +--R c +--R + +--R 8 7 2 6 3 5 +--R 126b - 1008a b + (3024a - 252)b + (- 4032a + 1512a)b +--R + +--R 4 2 4 3 3 4 2 2 +--R (2016a - 3528a + 48)b + (4032a - 192a)b + (- 2016a + 336a )b +--R + +--R 3 4 +--R - 288a b + 144a +--R / +--R 6 2 5 2 4 4 +--R 16a c - 8a b c + a b +--R * +--R 5 +--R ? +--R + +--R 2 5 3 4 4 2 3 +--R 2016a b - 20160a b + (80640a - 3360a )b +--R + +--R 5 3 2 6 4 2 +--R (- 161280a + 20160a )b + (161280a - 40320a + 720a )b +--R + +--R 7 5 3 +--R - 64512a + 26880a - 1440a +--R * +--R 2 +--R c +--R + +--R 7 2 6 3 5 +--R - 1008a b + 10080a b + (- 40320a + 2520a)b +--R + +--R 4 2 4 5 3 3 +--R (80640a - 18480a )b + (- 80640a + 53760a - 960a)b +--R + +--R 6 4 2 2 5 3 6 +--R (32256a - 80640a + 4320a )b + (67200a - 7200a )b - 26880a +--R + +--R 4 +--R 4800a +--R * +--R c +--R + +--R 9 8 2 7 3 6 +--R 126b - 1260a b + (5040a - 420)b + (- 10080a + 3360a)b +--R + +--R 4 2 5 5 3 4 +--R (10080a - 10920a + 240)b + (- 4032a + 18480a - 1440a)b +--R + +--R 4 2 3 5 3 2 4 5 +--R (- 16800a + 3600a )b + (6720a - 4800a )b + 3600a b - 1440a +--R / +--R 7 2 6 2 5 4 +--R 16a c - 8a b c + a b +--R * +--R 4 +--R ? +--R + +--R 3 6 4 5 5 3 4 +--R 5376a b - 64512a b + (322560a - 13440a )b +--R + +--R 6 4 3 7 5 3 2 +--R (- 860160a + 107520a )b + (1290240a - 322560a + 5760a )b +--R + +--R 8 6 4 9 7 +--R (- 1032192a + 430080a - 23040a )b + 344064a - 215040a +--R + +--R 5 3 +--R 23040a - 256a +--R * +--R 3 +--R c +--R + +--R 2 8 3 7 4 2 6 +--R - 4032a b + 48384a b + (- 241920a + 13440a )b +--R + +--R 5 3 5 6 4 2 4 +--R (645120a - 120960a )b + (- 967680a + 443520a - 9120a )b +--R + +--R 7 5 3 3 +--R (774144a - 860160a + 55680a )b +--R + +--R 8 6 4 2 2 +--R (- 258048a + 967680a - 132480a + 640a )b +--R + +--R 7 5 3 8 6 4 +--R (- 645120a + 153600a - 1792a )b + 215040a - 76800a + 1792a +--R * +--R 2 +--R c +--R + +--R 10 2 9 3 8 +--R 1008a b - 12096a b + (60480a - 4200a)b +--R + +--R 4 2 7 5 3 6 +--R (- 161280a + 40320a )b + (241920a - 161280a + 3840a)b +--R + +--R 6 4 2 5 +--R (- 193536a + 349440a - 27840a )b +--R + +--R 7 5 3 4 +--R (64512a - 443520a + 83520a - 384a)b +--R + +--R 6 4 2 3 +--R (322560a - 134400a + 1792a )b +--R + +--R 7 5 3 2 6 4 +--R (- 107520a + 124800a - 3584a )b + (- 69120a + 3584a )b +--R + +--R 7 5 +--R 23040a - 1792a +--R * +--R c +--R + +--R 12 11 2 10 3 9 +--R - 84b + 1008a b + (- 5040a + 420)b + (13440a - 4200a)b +--R + +--R 4 2 8 5 3 7 +--R (- 20160a + 17640a - 480)b + (16128a - 40320a + 3840a)b +--R + +--R 6 4 2 6 +--R (- 5376a + 53760a - 12960a + 64)b +--R + +--R 5 3 5 6 4 2 4 +--R (- 40320a + 24000a - 384a)b + (13440a - 26400a + 1024a )b +--R + +--R 5 3 3 6 4 2 5 6 +--R (17280a - 1536a )b + (- 5760a + 1408a )b - 768a b + 256a +--R / +--R 9 3 8 2 2 7 4 6 6 +--R 64a c - 48a b c + 12a b c - a b +--R * +--R 3 +--R ? +--R + +--R 3 7 4 6 5 3 5 +--R 2304a b - 32256a b + (193536a - 8064a )b +--R + +--R 6 4 4 7 5 3 3 +--R (- 645120a + 80640a )b + (1290240a - 322560a + 5760a )b +--R + +--R 8 6 4 2 +--R (- 1548288a + 645120a - 34560a )b +--R + +--R 9 7 5 3 10 +--R (1032192a - 645120a + 69120a - 768a )b - 294912a +--R + +--R 8 6 4 +--R 258048a - 46080a + 1536a +--R * +--R 3 +--R c +--R + +--R 2 9 3 8 4 2 7 +--R - 1728a b + 24192a b + (- 145152a + 8064a )b +--R + +--R 5 3 6 6 4 2 5 +--R (483840a - 88704a )b + (- 967680a + 411264a - 9120a )b +--R + +--R 7 5 3 4 +--R (1161216a - 1048320a + 73920a )b +--R + +--R 8 6 4 2 3 +--R (- 774144a + 1612800a - 243840a + 1920a )b +--R + +--R 9 7 5 3 2 +--R (221184a - 1548288a + 418560a - 9216a )b +--R + +--R 8 6 4 9 7 5 +--R (903168a - 384000a + 16128a )b - 258048a + 153600a - 10752a +--R * +--R 2 +--R c +--R + +--R 11 2 10 3 9 +--R 432a b - 6048a b + (36288a - 2520a)b +--R + +--R 4 2 8 5 3 7 +--R (- 120960a + 29232a )b + (241920a - 145152a + 3840a)b +--R + +--R 6 4 2 6 +--R (- 290304a + 403200a - 35520a )b +--R + +--R 7 5 3 5 +--R (193536a - 685440a + 139200a - 1152a)b +--R + +--R 8 6 4 2 4 +--R (- 55296a + 725760a - 301440a + 7680a )b +--R + +--R 7 5 3 3 +--R (- 451584a + 393600a - 21504a )b +--R + +--R 8 6 4 2 7 5 +--R (129024a - 318720a + 32256a )b + (161280a - 26880a )b +--R + +--R 8 6 +--R - 46080a + 10752a +--R * +--R c +--R + +--R 13 12 2 11 3 10 +--R - 36b + 504a b + (- 3024a + 252)b + (10080a - 3024a)b +--R + +--R 4 2 9 5 3 8 +--R (- 20160a + 15624a - 480)b + (24192a - 45360a + 4800a)b +--R + +--R 6 4 2 7 +--R (- 16128a + 80640a - 20640a + 192)b +--R + +--R 7 5 3 6 +--R (4608a - 88704a + 49920a - 1536a)b +--R + +--R 6 4 2 5 7 5 3 4 +--R (56448a - 74400a + 5376a )b + (- 16128a + 70080a - 10752a )b +--R + +--R 6 4 3 7 5 2 6 7 +--R (- 40320a + 13440a )b + (11520a - 10752a )b + 5376a b - 1536a +--R / +--R 10 3 9 2 2 8 4 7 6 +--R 64a c - 48a b c + 12a b c - a b +--R * +--R 2 +--R ? +--R + +--R 3 8 4 7 5 3 6 +--R 576a b - 9216a b + (64512a - 2688a )b +--R + +--R 6 4 5 7 5 3 4 +--R (- 258048a + 32256a )b + (645120a - 161280a + 2880a )b +--R + +--R 8 6 4 3 +--R (- 1032192a + 430080a - 23040a )b +--R + +--R 9 7 5 3 2 +--R (1032192a - 645120a + 69120a - 768a )b +--R + +--R 10 8 6 4 11 +--R (- 589824a + 516096a - 92160a + 3072a )b + 147456a +--R + +--R 9 7 5 +--R - 172032a + 46080a - 3072a +--R * +--R 3 +--R c +--R + +--R 2 10 3 9 4 2 8 +--R - 432a b + 6912a b + (- 48384a + 2688a )b +--R + +--R 5 3 7 6 4 2 6 +--R (193536a - 34944a )b + (- 483840a + 196224a - 4560a )b +--R + +--R 7 5 3 5 +--R (774144a - 623616a + 46080a )b +--R + +--R 8 6 4 2 4 +--R (- 774144a + 1236480a - 195840a + 1920a )b +--R + +--R 9 7 5 3 3 +--R (442368a - 1591296a + 453120a - 13056a )b +--R + +--R 10 8 6 4 2 2 +--R (- 110592a + 1333248a - 610560a + 34560a - 256a )b +--R + +--R 9 7 5 3 10 +--R (- 688128a + 460800a - 43008a + 1024a )b + 172032a +--R + +--R 8 6 4 +--R - 153600a + 21504a - 1024a +--R * +--R 2 +--R c +--R + +--R 12 2 11 3 10 +--R 108a b - 1728a b + (12096a - 840a)b +--R + +--R 4 2 9 5 3 8 +--R (- 48384a + 11424a )b + (120960a - 67872a + 1920a)b +--R + +--R 6 4 2 7 +--R (- 193536a + 231168a - 21600a )b +--R + +--R 7 5 3 6 +--R (193536a - 497280a + 105120a - 1152a)b +--R + +--R 8 6 4 2 5 +--R (- 110592a + 698880a - 289920a + 9984a )b +--R + +--R 9 7 5 3 4 +--R (27648a - 634368a + 498240a - 36864a )b +--R + +--R 8 6 4 2 3 +--R (344064a - 552960a + 75264a + 512a )b +--R + +--R 9 7 5 3 2 +--R (- 86016a + 399360a - 91392a - 2560a )b +--R + +--R 8 6 4 9 7 5 +--R (- 184320a + 64512a + 4096a )b + 46080a - 21504a - 2048a +--R * +--R c +--R + +--R 14 13 2 12 3 11 +--R - 9b + 144a b + (- 1008a + 84)b + (4032a - 1176a)b +--R + +--R 4 2 10 5 3 9 +--R (- 10080a + 7224a - 240)b + (16128a - 25536a + 2880a)b +--R + +--R 6 4 2 8 +--R (- 16128a + 57120a - 15120a + 192)b +--R + +--R 7 5 3 7 +--R (9216a - 83328a + 45600a - 1920a)b +--R + +--R 8 6 4 2 6 +--R (- 2304a + 77952a - 87120a + 8448a )b +--R + +--R 7 5 3 5 +--R (- 43008a + 109440a - 21504a )b +--R + +--R 8 6 4 2 4 +--R (10752a - 90240a + 34944a - 256a )b +--R + +--R 7 5 3 3 8 6 4 2 +--R (46080a - 37632a + 1536a )b + (- 11520a + 26880a - 3328a )b +--R + +--R 7 5 8 6 +--R (- 12288a + 3072a )b + 3072a - 1024a +--R / +--R 11 3 10 2 2 9 4 8 6 +--R 64a c - 48a b c + 12a b c - a b +--R * +--R ? +--R + +--R 3 9 4 8 5 3 7 6 4 6 +--R 64a b - 1152a b + (9216a - 384a )b + (- 43008a + 5376a )b +--R + +--R 7 5 3 5 +--R (129024a - 32256a + 576a )b +--R + +--R 8 6 4 4 +--R (- 258048a + 107520a - 5760a )b +--R + +--R 9 7 5 3 3 +--R (344064a - 215040a + 23040a - 256a )b +--R + +--R 10 8 6 4 2 +--R (- 294912a + 258048a - 46080a + 1536a )b +--R + +--R 11 9 7 5 12 10 +--R (147456a - 172032a + 46080a - 3072a )b - 32768a + 49152a +--R + +--R 8 6 +--R - 18432a + 2048a +--R * +--R 3 +--R c +--R + +--R 2 11 3 10 4 2 9 +--R - 48a b + 864a b + (- 6912a + 384a )b +--R + +--R 5 3 8 6 4 2 7 +--R (32256a - 5760a )b + (- 96768a + 38016a - 912a )b +--R + +--R 7 5 3 6 +--R (193536a - 145152a + 11040a )b +--R + +--R 8 6 4 2 5 +--R (- 258048a + 354816a - 57600a + 640a )b +--R + +--R 9 7 5 3 4 +--R (221184a - 580608a + 168960a - 5632a )b +--R + +--R 10 8 6 4 2 3 +--R (- 110592a + 645120a - 303360a + 20224a - 256a )b +--R + +--R 11 9 7 5 3 2 +--R (24576a - 479232a + 336384a - 37376a + 1536a )b +--R + +--R 10 8 6 4 11 9 +--R (221184a - 215040a + 35840a - 3072a )b - 49152a + 61440a +--R + +--R 7 5 +--R - 14336a + 2048a +--R * +--R 2 +--R c +--R + +--R 13 2 12 3 11 4 2 10 +--R 12a b - 216a b + (1728a - 120a)b + (- 8064a + 1872a )b +--R + +--R 5 3 9 6 4 2 8 +--R (24192a - 12960a + 384a)b + (- 48384a + 52416a - 5088a )b +--R + +--R 7 5 3 7 +--R (64512a - 137088a + 29664a - 384a)b +--R + +--R 8 6 4 2 6 +--R (- 55296a + 241920a - 100032a + 4096a )b +--R + +--R 9 7 5 3 5 +--R (27648a - 290304a + 215616a - 18944a )b +--R + +--R 10 8 6 4 2 4 +--R (- 6144a + 230400a - 309888a + 49664a + 512a )b +--R + +--R 9 7 5 3 3 +--R (- 110592a + 301056a - 80640a - 3584a )b +--R + +--R 10 8 6 4 2 +--R (24576a - 196608a + 82432a + 9216a )b +--R + +--R 9 7 5 10 8 6 +--R (82944a - 50176a - 10240a )b - 18432a + 14336a + 4096a +--R * +--R c +--R + +--R 15 14 2 13 3 12 +--R - b + 18a b + (- 144a + 12)b + (672a - 192a)b +--R + +--R 4 2 11 5 3 10 +--R (- 2016a + 1368a - 48)b + (4032a - 5712a + 672a)b +--R + +--R 6 4 2 9 +--R (- 5376a + 15456a - 4176a + 64)b +--R + +--R 7 5 3 8 +--R (4608a - 28224a + 15168a - 768a)b +--R + +--R 8 6 4 2 7 +--R (- 2304a + 34944a - 35664a + 4096a )b +--R + +--R 9 7 5 3 6 +--R (512a - 28416a + 56736a - 12800a )b +--R + +--R 8 6 4 2 5 +--R (13824a - 61824a + 25984a - 256a )b +--R + +--R 9 7 5 3 4 +--R (- 3072a + 45312a - 35840a + 2048a )b +--R + +--R 8 6 4 3 9 7 5 2 +--R (- 20736a + 34048a - 6400a )b + (4608a - 22016a + 9728a )b +--R + +--R 8 6 9 7 +--R (9216a - 7168a )b - 2048a + 2048a +--R / +--R 12 3 11 2 2 10 4 9 6 +--R 64a c - 48a b c + 12a b c - a b +--R , trying square-free. +--R +--R (85) +--R - y(x) + x +--R / +--R (2y(x) + 2x) +--R * +--R %e +--R ** +--R 2 +--R * +--R log +--R +-----------+ +--R 2 2 2 | 2 2 2 +--R (2a x + 2a b x - 2a c + b )\|- 4a c + b + (8a c - 2a b )x +--R + +--R 3 +--R 4a b c - b +--R / +--R 2 +--R a x + b x + c +--R / +--R +-----------+ +--R | 2 +--R \|- 4a c + b +--R Type: Union(Expression Integer,...) +--E 85 + +--S 86 of 139 +ode180expr := (a*x**2+b*x+c)*(x*D(yx,x)-yx) - yx**2 + x**2 +--R +--R +--R (86) +--R 2 2 3 4 +--R (4x y(x) + 8x y(x) + 4x ) +--R * +--R %e +--R ** +--R 2 +--R * +--R log +--R +-----------+ +--R 2 2 2 | 2 +--R (2a x + 2a b x - 2a c + b )\|- 4a c + b +--R + +--R 2 2 3 +--R (8a c - 2a b )x + 4a b c - b +--R / +--R 2 +--R a x + b x + c +--R / +--R +-----------+ +--R | 2 +--R \|- 4a c + b +--R ** +--R 2 +--R + +--R 4 3 2 , 2 2 +--R (- 4a x - 4b x - 4c x )y (x) + (2a x + (2b + 4)x + 2c)y(x) +--R +--R + +--R 3 2 4 3 2 +--R (4a x + 4b x + 4c x)y(x) - 2a x + (- 2b - 4)x - 2c x +--R * +--R %e +--R ** +--R 2 +--R * +--R log +--R +-----------+ +--R 2 2 2 | 2 +--R (2a x + 2a b x - 2a c + b )\|- 4a c + b +--R + +--R 2 2 3 +--R (8a c - 2a b )x + 4a b c - b +--R / +--R 2 +--R a x + b x + c +--R / +--R +-----------+ +--R | 2 +--R \|- 4a c + b +--R + +--R 2 2 +--R - y(x) + 2x y(x) - x +--R / +--R 2 2 +--R (4y(x) + 8x y(x) + 4x ) +--R * +--R %e +--R ** +--R 2 +--R * +--R log +--R +-----------+ +--R 2 2 2 | 2 +--R (2a x + 2a b x - 2a c + b )\|- 4a c + b +--R + +--R 2 2 3 +--R (8a c - 2a b )x + 4a b c - b +--R / +--R 2 +--R a x + b x + c +--R / +--R +-----------+ +--R | 2 +--R \|- 4a c + b +--R ** +--R 2 +--R Type: Expression Integer +--E 86 + +--S 87 of 139 +ode181 := x**4*(D(y(x),x)+y(x)**2) + a +--R +--R +--R 4 , 4 2 +--R (87) x y (x) + x y(x) + a +--R +--R Type: Expression Integer +--E 87 + +--S 88 of 139 +yx:=solve(ode181,y,x) +--R +--R 2 +--R WARNING (genufact): No known algorithm to factor ? + a, trying square-free. +--R +--R +---+ 2 +--R \|- a - x y(x) + x +--R (88) ------------------------------------ +--R +---+ +--R 2\|- a +--R ------- +--R 2 +---+ x +--R ((2x y(x) - 2x)\|- a - 2a)%e +--R Type: Union(Expression Integer,...) +--E 88 + +--S 89 of 139 +ode181expr := x**4*(D(yx,x)+yx**2) + a +--R +--R +--R (89) +--R +---+ +--R 2\|- a +--R ------- +--R 6 x , +--R - 4a x %e y (x) +--R +--R + +--R 2 2 2 +---+ 2 4 2 2 3 2 2 3 +--R ((8a x y(x) - 8a x)\|- a + 4a x y(x) - 8a x y(x) + 4a x - 4a ) +--R * +--R +---+ 2 +--R 2\|- a +--R ------- +--R x +--R (%e ) +--R + +--R +---+ +--R 2\|- a +--R ------- +--R 6 2 2 2 x 6 5 +---+ 8 2 +--R (- 4a x y(x) - 4a x )%e + (2x y(x) - 2x )\|- a - x y(x) +--R + +--R 7 6 4 +--R 2x y(x) - x + a x +--R / +--R 2 +---+ 4 2 3 2 2 +--R ((8a x y(x) - 8a x)\|- a + 4a x y(x) - 8a x y(x) + 4a x - 4a ) +--R * +--R +---+ 2 +--R 2\|- a +--R ------- +--R x +--R (%e ) +--R Type: Expression Integer +--E 89 + +--S 90 of 139 +ode182 := x*(x**3-1)*D(y(x),x) - 2*x*y(x)**2 + y(x) + x**2 +--R +--R +--R 4 , 2 2 +--R (90) (x - x)y (x) - 2x y(x) + y(x) + x +--R +--R Type: Expression Integer +--E 90 +@ + +This never completes +\begin{verbatim} + ode182a:=solve(ode182,y,x) +\end{verbatim} +<<*>>= + +--S 91 of 139 +ode183 := (2*x**4-x)*D(y(x),x) - 2*(x**3-1)*y(x) +--R +--R +--R 4 , 3 +--R (91) (2x - x)y (x) + (- 2x + 2)y(x) +--R +--R Type: Expression Integer +--E 91 + +--S 92 of 139 +ode183a:=solve(ode183,y,x) +--R +--R +--R 2 +--R x +--R (92) [particular= 0,basis= [----------]] +--R +-------+ +--R 3| 3 +--R \|2x - 1 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 92 + +--S 93 of 139 +yx:=ode183a.particular +--R +--R +--R (93) 0 +--R Type: Expression Integer +--E 93 + +--S 94 of 139 +ode183expr := (2*x**4-x)*D(yx,x) - 2*(x**3-1)*yx +--R +--R +--R (94) 0 +--R Type: Expression Integer +--E 94 + +--S 95 of 139 +ode184 := (a*x**2+b*x+c)**2*(D(y(x),x)+y(x)**2) + A +--R +--R +--R (95) +--R 2 4 3 2 2 2 , +--R (a x + 2a b x + (2a c + b )x + 2b c x + c )y (x) +--R +--R + +--R 2 4 3 2 2 2 2 +--R (a x + 2a b x + (2a c + b )x + 2b c x + c )y(x) + A +--R Type: Expression Integer +--E 95 + +@ +This never completes +\begin{verbatim} + ode184a:=solve(ode184,y,x) +\end{verbatim} +<<*>>= + +--S 96 of 139 +ode185 := x**7*D(y(x),x) + 2*(x**2+1)*y(x)**3 + 5*x**3*y(x)**2 +--R +--R +--R 7 , 2 3 3 2 +--R (96) x y (x) + (2x + 2)y(x) + 5x y(x) +--R +--R Type: Expression Integer +--E 96 + +--S 97 of 139 +ode185a:=solve(ode185,y,x) +--R +--R +--R (97) "failed" +--R Type: Union("failed",...) +--E 97 + +--S 98 of 139 +ode186 := x**n*D(y(x),x) + y(x)**2 -(n-1)*x**(n-1)*y(x) + x**(2*n-2) +--R +--R +--R n , 2n - 2 n - 1 2 +--R (98) x y (x) + x + (- n + 1)y(x)x + y(x) +--R +--R Type: Expression Integer +--E 98 + +--S 99 of 139 +ode186a:=solve(ode186,y,x) +--R +--R +--R (99) "failed" +--R Type: Union("failed",...) +--E 99 + +--S 100 of 139 +ode187 := x**n*D(y(x),x) - a*y(x)**2 - b*x**(2*n-2) +--R +--R +--R n , 2n - 2 2 +--R (100) x y (x) - b x - a y(x) +--R +--R Type: Expression Integer +--E 100 + +--S 101 of 139 +ode187a:=solve(ode187,y,x) +--R +--R +--R (101) "failed" +--R Type: Union("failed",...) +--E 101 + +--S 102 of 139 +ode188 := x**(2*n+1)*D(y(x),x) - a*y(x)**3 - b*x**3*n +--R +--R +--R 2n + 1 , 3 3 +--R (102) x y (x) - a y(x) - b n x +--R +--R Type: Expression Integer +--E 102 + +--S 103 of 139 +ode188a:=solve(ode188,y,x) +--R +--R +--R (103) "failed" +--R Type: Union("failed",...) +--E 103 + +--S 104 of 139 +ode189 := x**(m*(n-1)+n)*D(y(x),x) - a*y(x)**n - b*x**(n*(m+1)) +--R +--R +--R (m + 1)n - m , n (m + 1)n +--R (104) x y (x) - a y(x) - b x +--R +--R Type: Expression Integer +--E 104 + +--S 105 of 139 +ode189a:=solve(ode189,y,x) +--R +--R +--R (105) "failed" +--R Type: Union("failed",...) +--E 105 + +--S 106 of 139 +ode190 := sqrt(x**2-1)*D(y(x),x) - sqrt(y(x)**2-1) +--R +--R +--R +------+ +---------+ +--R | 2 , | 2 +--R (106) \|x - 1 y (x) - \|y(x) - 1 +--R +--R Type: Expression Integer +--E 106 + +--S 107 of 139 +ode190a:=solve(ode190,y,x) +--R +--R +--R (107) "failed" +--R Type: Union("failed",...) +--E 107 + +--S 108 of 139 +ode191 := sqrt(1-x**2)*D(y(x),x) - y(x)*sqrt(y(x)**2-1) +--R +--R +--R +--------+ +---------+ +--R | 2 , | 2 +--R (108) \|- x + 1 y (x) - y(x)\|y(x) - 1 +--R +--R Type: Expression Integer +--E 108 + +--S 109 of 139 +ode191a:=solve(ode191,y,x) +--R +--R +--R (109) "failed" +--R Type: Union("failed",...) +--E 109 + +--S 110 of 139 +ode192 := sqrt(x**2+a**2)*D(y(x),x) + y(x) - sqrt(x**2+a**2) + x +--R +--R +--R +-------+ +-------+ +--R | 2 2 , | 2 2 +--R (110) \|x + a y (x) - \|x + a + y(x) + x +--R +--R Type: Expression Integer +--E 110 + +--S 111 of 139 +ode192a:=solve(ode192,y,x) +--R +--R +--R (111) +--R +-------+ +-------+ +-------+ +--R | 2 2 | 2 2 | 2 2 +--R [particular= (- \|x + a + x)log(\|x + a - x),basis= [\|x + a - x]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 111 + +--S 112 of 139 +yx:=ode192a.particular +--R +--R +--R +-------+ +-------+ +--R | 2 2 | 2 2 +--R (112) (- \|x + a + x)log(\|x + a - x) +--R Type: Expression Integer +--E 112 + +--S 113 of 139 +ode192expr := sqrt(x**2+a**2)*D(yx,x) + yx - sqrt(x**2+a**2) + x +--R +--R +--R (113) 0 +--R Type: Expression Integer +--E 113 + +--S 114 of 139 +ode193 := x*D(y(x),x)*log(x) + y(x) - a*x*(log(x)+1) +--R +--R +--R , +--R (114) x log(x)y (x) - a x log(x) + y(x) - a x +--R +--R Type: Expression Integer +--E 114 + +--S 115 of 139 +ode193a:=solve(ode193,y,x) +--R +--R +--R 1 +--R (115) [particular= a x,basis= [------]] +--R log(x) +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 115 + +--S 116 of 139 +yx:=ode193a.particular +--R +--R (116) a x +--R Type: Expression Integer +--E 116 + +--S 117 of 139 +ode193expr := x*D(yx,x)*log(x) + yx - a*x*(log(x)+1) +--R +--R (117) 0 +--R Type: Expression Integer +--E 117 + +--S 118 of 139 +ode194 := x*D(y(x),x)*log(x) - y(x)**2*log(x) - _ + (2*log(x)**2+1)*y(x) - log(x)**3 +--R +--R +--R , 3 2 2 +--R (118) x log(x)y (x) - log(x) - 2y(x)log(x) - y(x) log(x) - y(x) +--R +--R Type: Expression Integer +--E 118 + +--S 119 of 139 +ode194a:=solve(ode194,y,x) +--R +--R +--R (119) "failed" +--R Type: Union("failed",...) +--E 119 + +--S 120 of 139 +ode195 := sin(x)*D(y(x),x) - y(x)**2*sin(x)**2 + (cos(x) - 3*sin(x))*y(x) + 4 +--R +--R +--R , 2 2 +--R (120) sin(x)y (x) - y(x) sin(x) - 3y(x)sin(x) + y(x)cos(x) + 4 +--R +--R Type: Expression Integer +--E 120 + +--S 121 of 139 +yx:=solve(ode195,y,x) +--R +--R +--R - y(x)sin(x) + 1 +--R (121) ------------------------ +--R 5x 5x +--R 5y(x)%e sin(x) + 20%e +--R Type: Union(Expression Integer,...) +--E 121 + +--S 122 of 139 +ode195expr:=sin(x)*D(yx,x) - yx**2*sin(x)**2 + (cos(x) - 3*sin(x))*yx + 4 +--R +--R +--R (122) +--R 5x 2 , 2 4 2 5x 3 +--R - 25%e sin(x) y (x) - y(x) sin(x) + (40y(x) %e + 2y(x))sin(x) +--R +--R + +--R 2 5x 2 2 5x 2 +--R (100y(x) (%e ) + (- 5y(x) cos(x) + 120y(x))%e - 1)sin(x) +--R + +--R 5x 2 5x 5x 2 +--R (800y(x)(%e ) + (- 40y(x)cos(x) - 160)%e )sin(x) + 1600(%e ) +--R + +--R 5x +--R 20cos(x)%e +--R / +--R 2 5x 2 2 5x 2 5x 2 +--R 25y(x) (%e ) sin(x) + 200y(x)(%e ) sin(x) + 400(%e ) +--R Type: Expression Integer +--E 122 + +--S 123 of 139 +ode196 := cos(x)*D(y(x),x) + y(x) + (1 + sin(x))*cos(x) +--R +--R +--R , +--R (123) cos(x)y (x) + cos(x)sin(x) + cos(x) + y(x) +--R +--R Type: Expression Integer +--E 123 + +--S 124 of 139 +ode196a:=solve(ode196,y,x) +--R +--R +--R (124) +--R [ +--R particular = +--R sin(x) - cos(x) - 1 +--R (- 4sin(x) + 4cos(x) + 4)log(-------------------) +--R cos(x) + 1 +--R + +--R 2 2 +--R (2sin(x) - 2cos(x) - 2)log(----------) - sin(x) + (cos(x) + 1)sin(x) +--R cos(x) + 1 +--R / +--R sin(x) + cos(x) + 1 +--R , +--R sin(x) - cos(x) - 1 +--R basis= [-------------------]] +--R sin(x) + cos(x) + 1 +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 124 + +--S 125 of 139 +yx:=ode196a.particular +--R +--R +--R (125) +--R sin(x) - cos(x) - 1 +--R (- 4sin(x) + 4cos(x) + 4)log(-------------------) +--R cos(x) + 1 +--R + +--R 2 2 +--R (2sin(x) - 2cos(x) - 2)log(----------) - sin(x) + (cos(x) + 1)sin(x) +--R cos(x) + 1 +--R / +--R sin(x) + cos(x) + 1 +--R Type: Expression Integer +--E 125 + +--S 126 of 139 +ode196expr := cos(x)*D(yx,x) + yx + (1 + sin(x))*cos(x) +--R +--R +--R (126) +--R 2 2 4 3 2 +--R (- 8cos(x) - 12cos(x) - 4)sin(x) - 8cos(x) - 12cos(x) + 4cos(x) +--R + +--R 12cos(x) + 4 +--R * +--R sin(x) - cos(x) - 1 +--R log(-------------------) +--R cos(x) + 1 +--R + +--R 2 2 4 3 2 +--R (4cos(x) + 6cos(x) + 2)sin(x) + 4cos(x) + 6cos(x) - 2cos(x) +--R + +--R - 6cos(x) - 2 +--R * +--R 2 +--R log(----------) +--R cos(x) + 1 +--R + +--R 2 3 3 2 +--R (- cos(x) - 4cos(x) - 1)sin(x) + (cos(x) - cos(x))sin(x) +--R + +--R 4 3 5 3 +--R (- cos(x) - 4cos(x) + 4cos(x) + 1)sin(x) + cos(x) - 2cos(x) + cos(x) +--R / +--R 2 2 3 2 +--R (cos(x) + 1)sin(x) + (2cos(x) + 4cos(x) + 2)sin(x) + cos(x) + 3cos(x) +--R + +--R 3cos(x) + 1 +--R Type: Expression Integer +--E 126 + +--S 127 of 139 +ode197 := cos(x)*D(y(x),x) - y(x)**4 - y(x)*sin(x) +--R +--R +--R , 4 +--R (127) cos(x)y (x) - y(x)sin(x) - y(x) +--R +--R Type: Expression Integer +--E 127 + +--S 128 of 139 +yx:=solve(ode197,y,x) +--R +--R +--R 3 2 3 +--R (2y(x) cos(x) + y(x) )sin(x) + 1 +--R (128) --------------------------------- +--R 3 3 +--R y(x) cos(x) +--R Type: Union(Expression Integer,...) +--E 128 + +--S 129 of 139 +ode197expr := cos(x)*D(yx,x) - yx**4 - yx*sin(x) +--R +--R +--R (129) +--R 8 10 , +--R - 3y(x) cos(x) y (x) +--R +--R + +--R 12 8 12 6 12 4 +--R - 16y(x) cos(x) - 32y(x) cos(x) - 24y(x) cos(x) +--R + +--R 12 2 12 +--R - 8y(x) cos(x) - y(x) +--R * +--R 4 +--R sin(x) +--R + +--R 9 6 9 4 9 2 9 3 +--R (- 32y(x) cos(x) - 48y(x) cos(x) - 24y(x) cos(x) - 4y(x) )sin(x) +--R + +--R 12 9 6 4 6 2 6 2 +--R (2y(x) cos(x) - 24y(x) cos(x) - 24y(x) cos(x) - 6y(x) )sin(x) +--R + +--R 9 9 3 2 3 12 13 +--R (2y(x) cos(x) - 8y(x) cos(x) - 4y(x) )sin(x) + 2y(x) cos(x) +--R + +--R 12 11 +--R y(x) cos(x) - 1 +--R / +--R 12 12 +--R y(x) cos(x) +--R Type: Expression Integer +--E 129 + +--S 130 of 139 +ode198 := sin(x)*cos(x)*D(y(x),x) - y(x) - sin(x)**3 +--R +--R +--R , 3 +--R (130) cos(x)sin(x)y (x) - sin(x) - y(x) +--R +--R Type: Expression Integer +--E 130 + +--S 131 of 139 +ode198a:=solve(ode198,y,x) +--R +--R +--R sin(x) +--R (131) [particular= - sin(x),basis= [------]] +--R cos(x) +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 131 + +--S 132 of 139 +yx:=ode198a.particular +--R +--R +--R (132) - sin(x) +--R Type: Expression Integer +--E 132 + +--S 133 of 139 +ode198expr := sin(x)*cos(x)*D(yx,x) - yx - sin(x)**3 +--R +--R +--R 3 2 +--R (133) - sin(x) + (- cos(x) + 1)sin(x) +--R Type: Expression Integer +--E 133 + +--S 134 of 139 +ode199 := sin(2*x)*D(y(x),x) + sin(2*y(x)) +--R +--R +--R , +--R (134) sin(2x)y (x) + sin(2y(x)) +--R +--R Type: Expression Integer +--E 134 + +--S 135 of 139 +ode199a:=solve(ode199,y,x) +--R +--R +--R (135) "failed" +--R Type: Union("failed",...) +--E 135 + +--S 136 of 139 +ode200 := (a*sin(x)**2+b)*D(y(x),x) + a*y(x)*sin(2*x) + A*x*(a*sin(x)**2+c) +--R +--R +--R 2 , 2 +--R (136) (a sin(x) + b)y (x) + a y(x)sin(2x) + A a x sin(x) + A c x +--R +--R Type: Expression Integer +--E 136 + +--S 137 of 139 +ode200a:=solve(ode200,y,x) +--R +--R +--R (137) +--R 2 2 +--R - 2A a x cos(x)sin(x) - A a cos(x) + (2A c + A a)x +--R [particular= ----------------------------------------------------, +--R 2 +--R 4a cos(x) - 4b - 4a +--R 1 +--R basis= [-----------------]] +--R 2 +--R a cos(x) - b - a +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 137 + +--S 138 of 139 +yx:=ode200a.particular +--R +--R +--R 2 2 +--R - 2A a x cos(x)sin(x) - A a cos(x) + (2A c + A a)x +--R (138) ---------------------------------------------------- +--R 2 +--R 4a cos(x) - 4b - 4a +--R Type: Expression Integer +--E 138 + +--S 139 of 139 +ode200expr := (a*sin(x)**2+b)*D(yx,x) + a*yx*sin(2*x) + A*x*(a*sin(x)**2+c) +--R +--R +--R (139) +--R 3 3 2 3 3 4 +--R (- 2A a x cos(x) + (2A a b + 2A a )x cos(x))sin(x) - A a cos(x) +--R + +--R 2 3 2 2 3 2 +--R ((2A a c + A a )x + A a b + A a )cos(x) +--R + +--R 2 2 3 2 +--R ((- 2A a b - 2A a )c - A a b - A a )x +--R * +--R sin(2x) +--R + +--R 3 2 2 3 4 +--R (- 2A a x cos(x) + (- 2A a b - 2A a )x)sin(x) +--R + +--R 3 3 2 3 2 3 +--R (- 2A a cos(x) + (4A a c + 2A a )x cos(x))sin(x) +--R + +--R 3 4 2 2 3 2 +--R 2A a x cos(x) + (4A a c - 8A a b - 4A a )x cos(x) +--R + +--R 2 2 2 3 +--R ((- 4A a b - 4A a )c + 2A a b + 4A a b + 2A a )x +--R * +--R 2 +--R sin(x) +--R + +--R 2 3 2 2 +--R (- 2A a b cos(x) + (4A a b c + 2A a b)x cos(x))sin(x) +--R + +--R 2 2 4 +--R (4A a c - 2A a b)x cos(x) +--R + +--R 2 2 2 2 +--R ((- 4A a b - 8A a )c + 2A a b + 4A a b)x cos(x) +--R + +--R 2 2 2 +--R ((4A a b + 4A a )c - 2A a b - 2A a b)x +--R / +--R 2 4 2 2 2 2 +--R 4a cos(x) + (- 8a b - 8a )cos(x) + 4b + 8a b + 4a +--R Type: Expression Integer +--E 139 + +)spool +)lisp (bye) + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html} +\end{thebibliography} +\end{document} diff --git a/src/axiom-website/CATS/kamke3.input.pdf b/src/axiom-website/CATS/kamke3.input.pdf new file mode 100644 index 0000000..3a30466 Binary files /dev/null and b/src/axiom-website/CATS/kamke3.input.pdf differ diff --git a/src/axiom-website/CATS/kamke4.input.pamphlet b/src/axiom-website/CATS/kamke4.input.pamphlet new file mode 100644 index 0000000..57e395d --- /dev/null +++ b/src/axiom-website/CATS/kamke4.input.pamphlet @@ -0,0 +1,1462 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input kamke4.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +This is the 201-250 of the Kamke test suite as published by +E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom +syntax. Where possible we show that the particular solution actually +satisfies the original ordinary differential equation. +\end{abstract} +\eject +\tableofcontents +\eject +<<*>>= +)spool kamke4.output +)set break resume +)set mes auto off +)clear all +--S 1 of 127 +y:=operator 'y +--R +--R +--R (1) y +--R Type: BasicOperator +--E 1 + +--S 2 of 127 +f:=operator 'f +--R +--R +--R (2) f +--R Type: BasicOperator +--E 2 + +--S 3 of 127 +f0:=operator 'f0 +--R +--R +--R (3) f0 +--R Type: BasicOperator +--E 3 + +--S 4 of 127 +f1:=operator 'f1 +--R +--R +--R (4) f1 +--R Type: BasicOperator +--E 4 + +--S 5 of 127 +f2:=operator 'f2 +--R +--R +--R (5) f2 +--R Type: BasicOperator +--E 5 + +--S 6 of 127 +g:=operator 'g +--R +--R +--R (6) g +--R Type: BasicOperator +--E 6 + +--S 7 of 127 +tg:=operator 'tg +--R +--R +--R (7) tg +--R Type: BasicOperator +--E 7 + +--S 8 of 127 +h:=operator 'h +--R +--R +--R (8) h +--R Type: BasicOperator +--E 8 + +--S 9 of 127 +ode201 := 2*f(x)*D(y(x),x)+2*f(x)*y(x)**2-D(f(x),x)*y(x)-2*f(x)**2 +--R +--R +--R , , 2 2 +--R (9) 2f(x)y (x) - y(x)f (x) + 2f(x)y(x) - 2f(x) +--R +--R Type: Expression Integer +--E 9 + +--S 10 of 127 +solve(ode201,y,x) +--R +--R +--R (10) "failed" +--R Type: Union("failed",...) +--E 10 + +--S 11 of 127 +ode202 := f(x)*D(y(x),x)+g(x)*tg(y(x))+h(x) +--R +--R +--R , +--R (11) f(x)y (x) + g(x)tg(y(x)) + h(x) +--R +--R Type: Expression Integer +--E 11 + +--S 12 of 127 +solve(ode202,y,x) +--R +--R +--R (12) "failed" +--R Type: Union("failed",...) +--E 12 + +--S 13 of 127 +ode203 := y(x)*D(y(x),x)+y(x)+x**3 +--R +--R +--R , 3 +--R (13) y(x)y (x) + y(x) + x +--R +--R Type: Expression Integer +--E 13 + +--S 14 of 127 +solve(ode203,y,x) +--R +--R +--R (14) "failed" +--R Type: Union("failed",...) +--E 14 + +--S 15 of 127 +ode204 := y(x)*D(y(x),x)+a*y(x)+x +--R +--R +--R , +--R (15) y(x)y (x) + a y(x) + x +--R +--R Type: Expression Integer +--E 15 + +--S 16 of 127 +solve(ode204,y,x) +--R +--R +--R (16) "failed" +--R Type: Union("failed",...) +--E 16 + +--S 17 of 127 +ode205 := y(x)*D(y(x),x)+a*y(x)+(a**2-1)/(4)*x+b*x**n +--R +--R +--R , n 2 +--R 4y(x)y (x) + 4b x + 4a y(x) + (a - 1)x +--R +--R (17) ---------------------------------------- +--R 4 +--R Type: Expression Integer +--E 17 + +--S 18 of 127 +solve(ode205,y,x) +--R +--R +--R (18) "failed" +--R Type: Union("failed",...) +--E 18 + +--S 19 of 127 +ode206 := y(x)*D(y(x),x)+a*y(x)+b*exp(x)-2*a +--R +--R +--R , x +--R (19) y(x)y (x) + b %e + a y(x) - 2a +--R +--R Type: Expression Integer +--E 19 + +--S 20 of 127 +solve(ode206,y,x) +--R +--R +--R (20) "failed" +--R Type: Union("failed",...) +--E 20 + +--S 21 of 127 +ode207 := y(x)*D(y(x),x)+y(x)**2+4*x*(x+1) +--R +--R +--R , 2 2 +--R (21) y(x)y (x) + y(x) + 4x + 4x +--R +--R Type: Expression Integer +--E 21 + +--S 22 of 127 +yx:=solve(ode207,y,x) +--R +--R +--R 2 2 2x +--R (y(x) + 4x )%e +--R (22) ----------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 22 + +--S 23 of 127 +ode207expr := yx*D(yx,x)+yx**2+4*x*(x+1) +--R +--R +--R (23) +--R 3 2 2x 2 , +--R (2y(x) + 8x y(x))(%e ) y (x) +--R +--R + +--R 4 2 2 4 3 2x 2 2 +--R (3y(x) + (24x + 8x)y(x) + 48x + 32x )(%e ) + 16x + 16x +--R / +--R 4 +--R Type: Expression Integer +--E 23 + +--S 24 of 127 +ode208 := y(x)*D(y(x),x)+a*y(x)**2-b*cos(x+c) +--R +--R +--R , 2 +--R (24) y(x)y (x) - b cos(x + c) + a y(x) +--R +--R Type: Expression Integer +--E 24 + +--S 25 of 127 +yx:=solve(ode208,y,x) +--R +--R +--R 2a x 2 2 2a x +--R - 2b %e sin(x + c) + (- 4a b cos(x + c) + (4a + 1)y(x) )%e +--R (25) ------------------------------------------------------------------ +--R 2 +--R 8a + 2 +--R Type: Union(Expression Integer,...) +--E 25 + +--S 26 of 127 +ode208expr := yx*D(yx,x)+a*yx**2-b*cos(x+c) +--R +--R +--R (26) +--R 2 2a x 2 +--R (- 16a - 4)b y(x)(%e ) sin(x + c) +--R + +--R 3 4 2 3 2a x 2 +--R ((- 32a - 8a)b y(x)cos(x + c) + (32a + 16a + 2)y(x) )(%e ) +--R * +--R , +--R y (x) +--R +--R + +--R 2 2a x 2 2 +--R 4a b (%e ) sin(x + c) +--R + +--R 2 2 3 2 2a x 2 +--R ((32a + 4)b cos(x + c) + (- 32a - 8a)b y(x) )(%e ) sin(x + c) +--R + +--R 3 2 2 4 2 2 +--R (48a + 8a)b cos(x + c) + (- 96a - 32a - 2)b y(x) cos(x + c) +--R + +--R 5 3 4 +--R (48a + 24a + 3a)y(x) +--R * +--R 2a x 2 +--R (%e ) +--R + +--R 4 2 +--R (- 64a - 32a - 4)b cos(x + c) +--R / +--R 4 2 +--R 64a + 32a + 4 +--R Type: Expression Integer +--E 26 + +--S 27 of 127 +ode209 := y(x)*D(y(x),x)-sqrt(a*y(x)**2+b) +--R +--R +--R +-----------+ +--R , | 2 +--R (27) y(x)y (x) - \|a y(x) + b +--R +--R Type: Expression Integer +--E 27 + +--S 28 of 127 +yx:=solve(ode209,y,x) +--R +--R +--R +-----------+ +--R +-+ | 2 2 +-+ +--R - x\|b \|a y(x) + b + y(x) \|b + b x +--R (28) --------------------------------------- +--R +-----------+ +--R +-+ | 2 +--R \|b \|a y(x) + b - b +--R Type: Union(Expression Integer,...) +--E 28 + +--S 29 of 127 +ode209expr := yx*D(yx,x)-sqrt(a*yx**2+b) +--R +--R +--R (29) +--R +-----------+ +--R 2 2 | 2 2 4 2 2 +-+ +--R ((- 3a b y(x) - 4b )\|a y(x) + b + (a y(x) + 5a b y(x) + 4b )\|b ) +--R * +--R ROOT +--R +-----------+ +--R 2 +-+ 2 | 2 2 +-+ +--R ((2a x + 2b)\|b + 2a x y(x) )\|a y(x) + b - 2a x y(x) \|b +--R + +--R 4 2 2 2 2 2 +--R - a y(x) + (- a x - a b)y(x) - 2a b x - 2b +--R / +--R +-----------+ +--R +-+ | 2 2 +--R 2\|b \|a y(x) + b - a y(x) - 2b +--R + +--R +-----------+ +--R 3 +-+ 3 | 2 +--R ((a x y(x) + 4b x y(x))\|b + 2b y(x) )\|a y(x) + b +--R + +--R 5 3 +-+ 3 2 +--R (- a y(x) - 2b y(x) )\|b - 3a b x y(x) - 4b x y(x) +--R * +--R , +--R y (x) +--R +--R + +--R +-----------+ +--R 4 2 +-+ 2 2 | 2 +--R ((a y(x) + 2b y(x) )\|b + 3a b x y(x) + 4b x)\|a y(x) + b +--R + +--R 2 4 2 2 +-+ 4 2 2 +--R (- a x y(x) - 5a b x y(x) - 4b x)\|b - 2a b y(x) - 2b y(x) +--R / +--R +-----------+ +--R 2 2 | 2 2 4 2 2 +-+ +--R (3a b y(x) + 4b )\|a y(x) + b + (- a y(x) - 5a b y(x) - 4b )\|b +--R Type: Expression Integer +--E 29 + +--S 30 of 127 +ode210 := y(x)*D(y(x),x)+x*y(x)**2-4*x +--R +--R +--R , 2 +--R (30) y(x)y (x) + x y(x) - 4x +--R +--R Type: Expression Integer +--E 30 + +--S 31 of 127 +yx:=solve(ode210,y,x) +--R +--R +--R 2 +--R 2 x +--R (y(x) - 4)%e +--R (31) --------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 31 + +--S 32 of 127 +ode210expr := yx*D(yx,x)+x*yx**2-4*x +--R +--R +--R (32) +--R 2 2 2 2 +--R 3 x , 4 2 x +--R (2y(x) - 8y(x))(%e ) y (x) + (3x y(x) - 24x y(x) + 48x)(%e ) - 16x +--R +--R ------------------------------------------------------------------------ +--R 4 +--R Type: Expression Integer +--E 32 + +--S 33 of 127 +ode211 := y(x)*D(y(x),x)-x*exp(x/y(x)) +--R +--R +--R x +--R ---- +--R , y(x) +--R (33) y(x)y (x) - x %e +--R +--R Type: Expression Integer +--E 33 + +--S 34 of 127 +solve(ode211,y,x) +--R +--R +--R (34) "failed" +--R Type: Union("failed",...) +--E 34 + +--S 35 of 127 +ode212 := y(x)*D(y(x),x)+f(x**2+y(x)**2)*g(x)+x +--R +--R +--R , 2 2 +--R (35) y(x)y (x) + g(x)f(y(x) + x ) + x +--R +--R Type: Expression Integer +--E 35 + +--S 36 of 127 +solve(ode212,y,x) +--R +--R +--R (36) "failed" +--R Type: Union("failed",...) +--E 36 + +--S 37 of 127 +ode213 := (y(x)+1)*D(y(x),x)-y(x)-x +--R +--R +--R , +--R (37) (y(x) + 1)y (x) - y(x) - x +--R +--R Type: Expression Integer +--E 37 + +--S 38 of 127 +solve(ode213,y,x) +--R +--R +--R (38) "failed" +--R Type: Union("failed",...) +--E 38 + +--S 39 of 127 +ode214 := (y(x)+x-1)*D(y(x),x)-y(x)+2*x+3 +--R +--R +--R , +--R (39) (y(x) + x - 1)y (x) - y(x) + 2x + 3 +--R +--R Type: Expression Integer +--E 39 + +--S 40 of 127 +solve(ode214,y,x) +--R +--R +--R (40) "failed" +--R Type: Union("failed",...) +--E 40 + +--S 41 of 127 +ode215 := (y(x)+2*x-2)*D(y(x),x)-y(x)+x+1 +--R +--R +--R , +--R (41) (y(x) + 2x - 2)y (x) - y(x) + x + 1 +--R +--R Type: Expression Integer +--E 41 + +--S 42 of 127 +solve(ode215,y,x) +--R +--R +--R (42) "failed" +--R Type: Union("failed",...) +--E 42 + +--S 43 of 127 +ode216 := (y(x)-2*x+1)*D(y(x),x)+y(x)+x +--R +--R +--R , +--R (43) (y(x) - 2x + 1)y (x) + y(x) + x +--R +--R Type: Expression Integer +--E 43 + +--S 44 of 127 +solve(ode216,y,x) +--R +--R +--R (44) "failed" +--R Type: Union("failed",...) +--E 44 + +--S 45 of 127 +ode217 := (y(x)-x**2)*D(y(x),x)-x +--R +--R +--R 2 , +--R (45) (y(x) - x )y (x) - x +--R +--R Type: Expression Integer +--E 45 + +--S 46 of 127 +yx:=solve(ode217,y,x) +--R +--R +--R 2 2y(x) +--R (2y(x) - 2x - 1)%e +--R (46) ------------------------ +--R 4 +--R Type: Union(Expression Integer,...) +--E 46 + +--S 47 of 127 +ode217expr := (yx-x**2)*D(yx,x)-x +--R +--R +--R (47) +--R 2 2 4 2 2y(x) 2 +--R (2y(x) + (- 4x - 1)y(x) + 2x + x )(%e ) +--R + +--R 2 4 2y(x) +--R (- 4x y(x) + 4x )%e +--R * +--R , +--R y (x) +--R +--R + +--R 3 2y(x) 2 3 2y(x) +--R (- 2x y(x) + 2x + x)(%e ) + 4x %e - 4x +--R / +--R 4 +--R Type: Expression Integer +--E 47 + +--S 48 of 127 +ode218 := (y(x)-x**2)*D(y(x),x)+4*x*y(x) +--R +--R +--R 2 , +--R (48) (y(x) - x )y (x) + 4x y(x) +--R +--R Type: Expression Integer +--E 48 + +--S 49 of 127 +yx:=solve(ode218,y,x) +--R +--R +--R 2 +--R 2y(x) + 2x +--R (49) ----------- +--R +----+ +--R \|y(x) +--R Type: Union(Expression Integer,...) +--E 49 + +--S 50 of 127 +ode218expr := (yx-x**2)*D(yx,x)+4*x*yx +--R +--R +--R (50) +--R 2 4 +----+ 2 2 4 , +--R ((2y(x) - 2x )\|y(x) - x y(x) + x y(x))y (x) +--R +--R + +--R 2 3 +----+ 3 3 2 +--R (8x y(x) + 8x y(x))\|y(x) + 8x y(x) + 4x y(x) +--R / +--R 2 +----+ +--R y(x) \|y(x) +--R Type: Expression Integer +--E 50 + +--S 51 of 127 +ode219 := (y(x)+g(x))*D(y(x),x)-f2(x)*y(x)**2-f1(x)*y(x)-f0(x) +--R +--R +--R , 2 +--R (51) (y(x) + g(x))y (x) - f2(x)y(x) - f1(x)y(x) - f0(x) +--R +--R Type: Expression Integer +--E 51 + +--S 52 of 127 +solve(ode219,y,x) +--R +--R +--R (52) "failed" +--R Type: Union("failed",...) +--E 52 + +--S 53 of 127 +ode220 := 2*y(x)*D(y(x),x)-x*y(x)**2-x**3 +--R +--R +--R , 2 3 +--R (53) 2y(x)y (x) - x y(x) - x +--R +--R Type: Expression Integer +--E 53 + +--S 54 of 127 +yx:=solve(ode220,y,x) +--R +--R +--R 2 +--R x +--R - -- +--R 2 2 2 +--R (54) (y(x) + x + 2)%e +--R Type: Union(Expression Integer,...) +--E 54 + +--S 55 of 127 +ode220expr := 2*yx*D(yx,x)-x*yx**2-x**3 +--R +--R +--R (55) +--R 2 2 +--R x +--R - -- +--R 3 2 2 , +--R (4y(x) + (4x + 8)y(x))(%e ) y (x) +--R +--R + +--R 2 2 +--R x +--R - -- +--R 4 3 2 5 3 2 3 +--R (- 3x y(x) + (- 6x - 8x)y(x) - 3x - 8x - 4x)(%e ) - x +--R Type: Expression Integer +--E 55 + +--S 56 of 127 +ode221 := (2*y(x)+x+1)*D(y(x),x)-(2*y(x)+x-1) +--R +--R +--R , +--R (56) (2y(x) + x + 1)y (x) - 2y(x) - x + 1 +--R +--R Type: Expression Integer +--E 56 + +--S 57 of 127 +solve(ode221,y,x) +--R +--R +--R (57) "failed" +--R Type: Union("failed",...) +--E 57 + +--S 58 of 127 +ode222 := (2*y(x)+x+7)*D(y(x),x)-y(x)+2*x+4 +--R +--R +--R , +--R (58) (2y(x) + x + 7)y (x) - y(x) + 2x + 4 +--R +--R Type: Expression Integer +--E 58 + +--S 59 of 127 +solve(ode222,y,x) +--R +--R +--R (59) "failed" +--R Type: Union("failed",...) +--E 59 + +--S 60 of 127 +ode223 := (2*y(x)-x)*D(y(x),x)-y(x)-2*x +--R +--R +--R , +--R (60) (2y(x) - x)y (x) - y(x) - 2x +--R +--R Type: Expression Integer +--E 60 + +--S 61 of 127 +yx:=solve(ode223,y,x) +--R +--R +--R 2 2 +--R (61) y(x) - x y(x) - x +--R Type: Union(Expression Integer,...) +--E 61 + +--S 62 of 127 +ode223expr := (2*yx-x)*D(yx,x)-yx-2*x +--R +--R +--R (62) +--R 3 2 2 3 2 , 3 +--R (4y(x) - 6x y(x) + (- 2x - 2x)y(x) + 2x + x )y (x) - 2y(x) +--R +--R + +--R 2 2 3 2 +--R (- 2x - 1)y(x) + (6x + 2x)y(x) + 4x + 3x - 2x +--R Type: Expression Integer +--E 62 + +--S 63 of 127 +ode224 := (2*y(x)-6*x)*D(y(x),x)-y(x)+3*x+2 +--R +--R +--R , +--R (63) (2y(x) - 6x)y (x) - y(x) + 3x + 2 +--R +--R Type: Expression Integer +--E 63 + +--S 64 of 127 +solve(ode224,y,x) +--R +--R +--R (64) "failed" +--R Type: Union("failed",...) +--E 64 + +--S 65 of 127 +ode225 := (4*y(x)+2*x+3)*D(y(x),x)-2*y(x)-x-1 +--R +--R +--R , +--R (65) (4y(x) + 2x + 3)y (x) - 2y(x) - x - 1 +--R +--R Type: Expression Integer +--E 65 + +--S 66 of 127 +solve(ode225,y,x) +--R +--R +--R (66) "failed" +--R Type: Union("failed",...) +--E 66 + +--S 67 of 127 +ode226 := (4*y(x)-2*x-3)*D(y(x),x)+2*y(x)-x-1 +--R +--R +--R , +--R (67) (4y(x) - 2x - 3)y (x) + 2y(x) - x - 1 +--R +--R Type: Expression Integer +--E 67 + +--S 68 of 127 +solve(ode226,y,x) +--R +--R +--R (68) "failed" +--R Type: Union("failed",...) +--E 68 + +--S 69 of 127 +ode227 := (4*y(x)-3*x-5)*D(y(x),x)-3*y(x)+7*x+2 +--R +--R +--R , +--R (69) (4y(x) - 3x - 5)y (x) - 3y(x) + 7x + 2 +--R +--R Type: Expression Integer +--E 69 + +--S 70 of 127 +yx:=solve(ode227,y,x) +--R +--R +--R 2 2 +--R 4y(x) + (- 6x - 10)y(x) + 7x + 4x +--R (70) ----------------------------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 70 + +--S 71 of 127 +ode227expr := (4*yx-3*x-5)*D(yx,x)-3*yx+7*x+2 +--R +--R +--R (71) +--R 3 2 2 3 +--R 64y(x) + (- 144x - 240)y(x) + (184x + 280x + 160)y(x) - 84x +--R + +--R 2 +--R - 170x - 20x + 50 +--R * +--R , +--R y (x) +--R +--R + +--R 3 2 2 3 2 +--R - 48y(x) + (184x + 140)y(x) + (- 252x - 340x - 20)y(x) + 196x + 105x +--R + +--R - 48x - 16 +--R / +--R 2 +--R Type: Expression Integer +--E 71 + +--S 72 of 127 +ode228 := (4*y(x)+11*x-11) *D(y(x),x)-25*y(x)-8*x+62 +--R +--R +--R , +--R (72) (4y(x) + 11x - 11)y (x) - 25y(x) - 8x + 62 +--R +--R Type: Expression Integer +--E 72 + +--S 73 of 127 +solve(ode228,y,x) +--R +--R +--R (73) "failed" +--R Type: Union("failed",...) +--E 73 + +--S 74 of 127 +ode229 := (12*y(x)-5*x-8)*D(y(x),x)-5*y(x)+2*x+3 +--R +--R +--R , +--R (74) (12y(x) - 5x - 8)y (x) - 5y(x) + 2x + 3 +--R +--R Type: Expression Integer +--E 74 + +--S 75 of 127 +yx:=solve(ode229,y,x) +--R +--R +--R 2 2 +--R (75) 6y(x) + (- 5x - 8)y(x) + x + 3x +--R Type: Union(Expression Integer,...) +--E 75 + +--S 76 of 127 +ode229expr := (12*yx-5*x-8)*D(yx,x)-5*yx+2*x+3 +--R +--R +--R (76) +--R 3 2 2 3 +--R 864y(x) + (- 1080x - 1728)y(x) + (444x + 1332x + 672)y(x) - 60x +--R + +--R 2 +--R - 251x - 208x + 64 +--R * +--R , +--R y (x) +--R +--R + +--R 3 2 2 3 2 +--R - 360y(x) + (444x + 666)y(x) + (- 180x - 502x - 208)y(x) + 24x + 93x +--R + +--R 64x - 21 +--R Type: Expression Integer +--E 76 + +--S 77 of 127 +ode230 := a*y(x)*D(y(x),x)+b*y(x)**2+f(x) +--R +--R +--R , 2 +--R (77) a y(x)y (x) + b y(x) + f(x) +--R +--R Type: Expression Integer +--E 77 + +--S 78 of 127 +solve(ode230,y,x) +--R +--R +--I 2%I b +--R x ----- +--R ++ 2 a +--I (78) | (b y(x) + f(%I))%e d%I +--R ++ +--R Type: Union(Expression Integer,...) +--E 78 + +--S 79 of 127 +ode231 := (a*y(x)+b*x+c)*D(y(x),x)+alpha*y(x)+beta*x+gamma +--R +--R +--R , +--R (79) (a y(x) + b x + c)y (x) + alpha y(x) + beta x + gamma +--R +--R Type: Expression Integer +--E 79 + +--S 80 of 127 +solve(ode231,y,x) +--R +--R +--R (80) "failed" +--R Type: Union("failed",...) +--E 80 + +--S 81 of 127 +ode232 := x*y(x)*D(y(x),x)+y(x)**2+x**2 +--R +--R +--R , 2 2 +--R (81) x y(x)y (x) + y(x) + x +--R +--R Type: Expression Integer +--E 81 + +--S 82 of 127 +yx:=solve(ode232,y,x) +--R +--R +--R 2 2 4 +--R 2x y(x) + x +--R (82) ------------- +--R 4 +--R Type: Union(Expression Integer,...) +--E 82 + +--S 83 of 127 +ode232expr := x*yx*D(yx,x)+yx**2+x**2 +--R +--R +--R 5 3 7 , 4 4 6 2 8 2 +--R (8x y(x) + 4x y(x))y (x) + 12x y(x) + 16x y(x) + 5x + 16x +--R +--R (83) -------------------------------------------------------------- +--R 16 +--R Type: Expression Integer +--E 83 + +--S 84 of 127 +ode233 := x*y(x)*D(y(x),x)-y(x)**2+a*x**3*cos(x) +--R +--R +--R , 3 2 +--R (84) x y(x)y (x) + a x cos(x) - y(x) +--R +--R Type: Expression Integer +--E 84 + +--S 85 of 127 +yx:=solve(ode233,y,x) +--R +--R +--R 2 2 +--R 2a x sin(x) + y(x) +--R (85) ------------------- +--R 2 +--R 2x +--R Type: Union(Expression Integer,...) +--E 85 + +--S 86 of 127 +ode233expr := x*yx*D(yx,x)-yx**2+a*x**3*cos(x) +--R +--R +--R (86) +--R 3 3 , 2 4 2 +--R (4a x y(x)sin(x) + 2x y(x) )y (x) - 4a x sin(x) +--R +--R + +--R 2 5 2 2 3 2 7 4 +--R (4a x cos(x) - 8a x y(x) )sin(x) + (2a x y(x) + 4a x )cos(x) - 3y(x) +--R / +--R 4 +--R 4x +--R Type: Expression Integer +--E 86 + +--S 87 of 127 +ode234 := x*y(x)*D(y(x),x)-y(x)**2+x*y(x)+x**3-2*x**2 +--R +--R +--R , 2 3 2 +--R (87) x y(x)y (x) - y(x) + x y(x) + x - 2x +--R +--R Type: Expression Integer +--E 87 + +--S 88 of 127 +solve(ode234,y,x) +--R +--R +--R (88) "failed" +--R Type: Union("failed",...) +--E 88 + +--S 89 of 127 +ode235 := (x*y(x)+a)*D(y(x),x)+b*y(x) +--R +--R +--R , +--R (89) (x y(x) + a)y (x) + b y(x) +--R +--R Type: Expression Integer +--E 89 + +--S 90 of 127 +yx:=solve(ode235,y,x) +--R +--R +--R y(x) +--R ---- +--R b y(x) +--R (90) b x %e + a Ei(----) +--R b +--R Type: Union(Expression Integer,...) +--E 90 + +--S 91 of 127 +ode235expr := (x*yx+a)*D(yx,x)+b*yx +--R +--R +--R (91) +--R y(x) 2 +--R ---- +--R 3 2 b +--R (b x y(x) + a b x )(%e ) +--R + +--R y(x) +--R ---- +--R 2 2 y(x) 2 b +--R ((a x y(x) + a x)Ei(----) + a x y(x) + a )%e +--R b +--R * +--R , +--R y (x) +--R +--R + +--R y(x) 2 y(x) +--R ---- ---- +--R 2 2 b y(x) 2 b +--R b x y(x)(%e ) + (a b x y(x)Ei(----) + (b x + a b)y(x))%e +--R b +--R + +--R y(x) +--R a b y(x)Ei(----) +--R b +--R / +--R y(x) +--R Type: Expression Integer +--E 91 + +--S 92 of 127 +ode236 := x*(y(x)+4)*D(y(x),x)-y(x)**2-2*y(x)-2*x +--R +--R +--R , 2 +--R (92) (x y(x) + 4x)y (x) - y(x) - 2y(x) - 2x +--R +--R Type: Expression Integer +--E 92 + +--S 93 of 127 +solve(ode236,y,x) +--R +--R +--R (93) "failed" +--R Type: Union("failed",...) +--E 93 + +--S 94 of 127 +ode237 := x*(y(x)+a)*D(y(x),x)+b*y(x)+c*x +--R +--R +--R , +--R (94) (x y(x) + a x)y (x) + b y(x) + c x +--R +--R Type: Expression Integer +--E 94 + +--S 95 of 127 +solve(ode237,y,x) +--R +--R +--R (95) "failed" +--R Type: Union("failed",...) +--E 95 + +--S 96 of 127 +ode238 := (x*(y(x)+x)+a)*D(y(x),x)-y(x)*(y(x)+x)-b +--R +--R +--R 2 , 2 +--R (96) (x y(x) + x + a)y (x) - y(x) - x y(x) - b +--R +--R Type: Expression Integer +--E 96 + +--S 97 of 127 +solve(ode238,y,x) +--R +--R +--R (97) "failed" +--R Type: Union("failed",...) +--E 97 + +--S 98 of 127 +ode239 := (x*y(x)-x**2)*D(y(x),x)+y(x)**2-3*x*y(x)-2*x**2 +--R +--R +--R 2 , 2 2 +--R (98) (x y(x) - x )y (x) + y(x) - 3x y(x) - 2x +--R +--R Type: Expression Integer +--E 98 + +--S 99 of 127 +yx:=solve(ode239,y,x) +--R +--R +--R 2 2 3 4 +--R x y(x) - 2x y(x) - x +--R (99) ---------------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 99 + +--S 100 of 127 +ode239expr := (x*yx-x**2)*D(yx,x)+yx**2-3*x*yx-2*x**2 +--R +--R +--R (100) +--R 5 3 6 2 7 4 8 5 , 4 4 +--R (2x y(x) - 6x y(x) + (2x - 4x )y(x) + 2x + 4x )y (x) + 3x y(x) +--R +--R + +--R 5 3 6 3 2 7 4 8 5 2 +--R - 14x y(x) + (8x - 10x )y(x) + (18x + 24x )y(x) + 5x + 14x - 8x +--R / +--R 4 +--R Type: Expression Integer +--E 100 + +--S 101 of 127 +ode240 := 2*x*y(x)*D(y(x),x)-y(x)**2+a*x +--R +--R +--R , 2 +--R (101) 2x y(x)y (x) - y(x) + a x +--R +--R Type: Expression Integer +--E 101 + +--S 102 of 127 +yx:=solve(ode240,y,x) +--R +--R +--R 2 +--R a x log(x) + y(x) +--R (102) ------------------ +--R x +--R Type: Union(Expression Integer,...) +--E 102 + +--S 103 of 127 +ode240expr := 2*x*yx*D(yx,x)-yx**2+a*x +--R +--R +--R (103) +--R 2 3 , 2 2 2 +--R (4a x y(x)log(x) + 4x y(x) )y (x) - a x log(x) +--R +--R + +--R 2 2 2 4 2 3 +--R (- 4a x y(x) + 2a x )log(x) - 3y(x) + 2a x y(x) + a x +--R / +--R 2 +--R x +--R Type: Expression Integer +--E 103 + +--S 104 of 127 +ode241 := 2*x*y(x)*D(y(x),x)-y(x)**2+a*x**2 +--R +--R +--R , 2 2 +--R (104) 2x y(x)y (x) - y(x) + a x +--R +--R Type: Expression Integer +--E 104 + +--S 105 of 127 +yx:=solve(ode241,y,x) +--R +--R +--R 2 2 +--R y(x) + a x +--R (105) ------------ +--R x +--R Type: Union(Expression Integer,...) +--E 105 + +--S 106 of 127 +ode241expr := 2*x*yx*D(yx,x)-yx**2+a*x**2 +--R +--R +--R 3 3 , 4 2 2 2 4 +--R (4x y(x) + 4a x y(x))y (x) - 3y(x) - 2a x y(x) + (a + a)x +--R +--R (106) -------------------------------------------------------------- +--R 2 +--R x +--R Type: Expression Integer +--E 106 + +--S 107 of 127 +ode242 := 2*x*y(x)*D(y(x),x)+2*y(x)**2+1 +--R +--R +--R , 2 +--R (107) 2x y(x)y (x) + 2y(x) + 1 +--R +--R Type: Expression Integer +--E 107 + +--S 108 of 127 +yx:=solve(ode242,y,x) +--R +--R +--R 2 2 2 +--R 2x y(x) + x +--R (108) ------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 108 + +--S 109 of 127 +ode242expr := 2*x*yx*D(yx,x)+2*yx**2+1 +--R +--R +--R 5 3 5 , 4 4 4 2 4 +--R (8x y(x) + 4x y(x))y (x) + 12x y(x) + 12x y(x) + 3x + 2 +--R +--R (109) ----------------------------------------------------------- +--R 2 +--R Type: Expression Integer +--E 109 + +--S 110 of 127 +ode243 := x*(2*y(x)+x-1)*D(y(x),x)-y(x)*(y(x)+2*x+1) +--R +--R +--R 2 , 2 +--R (110) (2x y(x) + x - x)y (x) - y(x) + (- 2x - 1)y(x) +--R +--R Type: Expression Integer +--E 110 + +--S 111 of 127 +solve(ode243,y,x) +--R +--R +--R (111) "failed" +--R Type: Union("failed",...) +--E 111 + +--S 112 of 127 +ode244 := x*(2*y(x)-x-1)*D(y(x),x)+y(x)*(2*x-y(x)-1) +--R +--R +--R 2 , 2 +--R (112) (2x y(x) - x - x)y (x) - y(x) + (2x - 1)y(x) +--R +--R Type: Expression Integer +--E 112 + +--S 113 of 127 +solve(ode244,y,x) +--R +--R +--R (113) "failed" +--R Type: Union("failed",...) +--E 113 + +--S 114 of 127 +ode245 := (2*x*y(x)+4*x**3)*D(y(x),x)+y(x)**2+112*x**2*y(x) +--R +--R +--R 3 , 2 2 +--R (114) (2x y(x) + 4x )y (x) + y(x) + 112x y(x) +--R +--R Type: Expression Integer +--E 114 + +--S 115 of 127 +solve(ode245,y,x) +--R +--R +--R (115) "failed" +--R Type: Union("failed",...) +--E 115 + +--S 116 of 127 +ode246 := x*(3*y(x)+2*x)*D(y(x),x)+3*(y(x)+x)**2 +--R +--R +--R 2 , 2 2 +--R (116) (3x y(x) + 2x )y (x) + 3y(x) + 6x y(x) + 3x +--R +--R Type: Expression Integer +--E 116 + +--S 117 of 127 +yx:=solve(ode246,y,x) +--R +--R +--R 2 2 3 4 +--R 6x y(x) + 8x y(x) + 3x +--R (117) ------------------------ +--R 4 +--R Type: Union(Expression Integer,...) +--E 117 + +--S 118 of 127 +ode246expr := x*(3*yx+2*x)*D(yx,x)+3*(yx+x)**2 +--R +--R +--R (118) +--R 5 3 6 2 7 4 8 5 , +--R (216x y(x) + 432x y(x) + (300x + 96x )y(x) + 72x + 64x )y (x) +--R +--R + +--R 4 4 5 3 6 3 2 7 4 +--R 324x y(x) + 1008x y(x) + (1200x + 240x )y(x) + (648x + 384x )y(x) +--R + +--R 8 5 2 +--R 135x + 168x + 48x +--R / +--R 16 +--R Type: Expression Integer +--E 118 + +--S 119 of 127 +ode247 := (3*x+2)*(y(x)-2*x-1)*D(y(x),x)-y(x)**2+x*y(x)-7*x**2-9*x-3 +--R +--R +--R 2 , 2 2 +--R (119) ((3x + 2)y(x) - 6x - 7x - 2)y (x) - y(x) + x y(x) - 7x - 9x - 3 +--R +--R Type: Expression Integer +--E 119 + +--S 120 of 127 +solve(ode247,y,x) +--R +--R +--R (120) "failed" +--R Type: Union("failed",...) +--E 120 + +--S 121 of 127 +ode248 := (6*x*y(x)+x**2+3)*D(y(x),x)+3*y(x)**2+2*x*y(x)+2*x +--R +--R +--R 2 , 2 +--R (121) (6x y(x) + x + 3)y (x) + 3y(x) + 2x y(x) + 2x +--R +--R Type: Expression Integer +--E 121 + +--S 122 of 127 +yx:=solve(ode248,y,x) +--R +--R +--R 2 2 2 +--R (122) 3x y(x) + (x + 3)y(x) + x +--R Type: Union(Expression Integer,...) +--E 122 + +--S 123 of 127 +ode248expr := (6*x*yx+x**2+3)*D(yx,x)+3*yx**2+2*x*yx+2*x +--R +--R +--R (123) +--R 3 3 4 2 2 5 4 3 5 +--R 108x y(x) + (54x + 162x )y(x) + (6x + 36x + 42x + 72x)y(x) + 6x +--R + +--R 4 3 2 +--R x + 18x + 6x + 9 +--R * +--R , +--R y (x) +--R +--R + +--R 2 4 3 3 4 3 2 2 +--R 81x y(x) + (72x + 108x)y(x) + (15x + 72x + 63x + 36)y(x) +--R + +--R 4 3 2 4 3 +--R (30x + 4x + 54x + 12x)y(x) + 15x + 4x + 8x +--R Type: Expression Integer +--E 123 + +--S 124 of 127 +ode249 := (a*x*y(x)+b*x**n)*D(y(x),x)+alpha*y(x)**3+beta*y(x)**2 +--R +--R +--R n , 3 2 +--R (124) (b x + a x y(x))y (x) + alpha y(x) + beta y(x) +--R +--R Type: Expression Integer +--E 124 + +--S 125 of 127 +solve(ode249,y,x) +--R +--R +--R (125) "failed" +--R Type: Union("failed",...) +--E 125 + +--S 126 of 127 +ode250 := (B*x*y(x)+A*x**2+a*x+b*y(x)+c)*D(y(x),x)-B*g(x)**2+_ + A*x*y(x)+alpha*x+beta*y(x)+gamma +--R +--R +--R (126) +--R 2 , 2 +--R ((B x + b)y(x) + A x + a x + c)y (x) + (A x + beta)y(x) - B g(x) +--R +--R + +--R alpha x + gamma +--R Type: Expression Integer +--E 126 + +--S 127 of 127 +solve(ode250,y,x) +--R +--R +--R (127) "failed" +--R Type: Union("failed",...) +--E 127 + +)spool +)lisp (bye) + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html} +\end{thebibliography} +\end{document} + diff --git a/src/axiom-website/CATS/kamke4.input.pdf b/src/axiom-website/CATS/kamke4.input.pdf new file mode 100644 index 0000000..ac75173 --- /dev/null +++ b/src/axiom-website/CATS/kamke4.input.pdf @@ -0,0 +1,2203 @@ +%PDF-1.2 +7 0 obj +<< +/Type/Encoding +/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress +160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis] +>> +endobj +10 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F1 +/FontDescriptor 9 0 R +/BaseFont/NFGNHM+CMR17 +/FirstChar 33 +/LastChar 196 +/Widths[249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9 +249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 +249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 +471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 +693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 +458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 +510.9 484.7 667.6 484.7 484.7 406.4 458.6 917.2 458.6 458.6 458.6 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 772.1 719.8 641.1 615.3 693.3 +667.6 719.8 667.6 719.8 0 0 667.6 525.4 499.3 499.3 748.9 748.9 249.6 275.8 458.6 +458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6 +458.6] +>> +endobj +13 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F2 +/FontDescriptor 12 0 R +/BaseFont/QIVRHA+CMR12 +/FirstChar 33 +/LastChar 196 +/Widths[272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 +489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 +462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 +734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 +272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 +544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2 489.6 489.6 +489.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611.8 816 +761.6 679.6 652.8 734 707.2 761.6 707.2 761.6 0 0 707.2 571.2 544 544 816 816 272 +299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 +761.6 272 489.6] +>> +endobj +16 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F3 +/FontDescriptor 15 0 R +/BaseFont/IJERUK+CMBX9 +/FirstChar 33 +/LastChar 196 +/Widths[360.2 617.6 986.1 591.7 986.1 920.4 328.7 460.2 460.2 591.7 920.4 328.7 394.4 +328.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 328.7 328.7 +360.2 920.4 558.8 558.8 920.4 892.9 840.9 854.6 906.6 776.5 743.7 929.9 924.4 446.3 +610.8 925.8 710.8 1121.6 924.4 888.9 808 888.9 886.7 657.4 823.1 908.6 892.9 1221.6 +892.9 892.9 723.1 328.7 617.6 328.7 591.7 328.7 328.7 575.2 657.4 525.9 657.4 543 +361.6 591.7 657.4 328.7 361.6 624.5 328.7 986.1 657.4 591.7 657.4 624.5 488.1 466.8 +460.2 657.4 624.5 854.6 624.5 624.5 525.9 591.7 1183.3 591.7 591.7 591.7 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 710.8 986.1 920.4 827.2 +788.9 924.4 854.6 920.4 854.6 920.4 0 0 854.6 690.3 657.4 657.4 986.1 986.1 328.7 +361.6 591.7 591.7 591.7 591.7 591.7 892.9 525.9 616.8 854.6 920.4 591.7 1071 1202.5 +920.4 328.7 591.7] +>> +endobj +19 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F4 +/FontDescriptor 18 0 R +/BaseFont/GQPUBO+CMR9 +/FirstChar 33 +/LastChar 196 +/Widths[285.5 513.9 856.5 513.9 856.5 799.4 285.5 399.7 399.7 513.9 799.4 285.5 342.6 +285.5 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 285.5 285.5 +285.5 799.4 485.3 485.3 799.4 770.7 727.9 742.3 785 699.4 670.8 806.5 770.7 371 528.1 +799.2 642.3 942 770.7 799.4 699.4 799.4 756.5 571 742.3 770.7 770.7 1056.2 770.7 +770.7 628.1 285.5 513.9 285.5 513.9 285.5 285.5 513.9 571 456.8 571 457.2 314 513.9 +571 285.5 314 542.4 285.5 856.5 571 513.9 571 542.4 402 405.4 399.7 571 542.4 742.3 +542.4 542.4 456.8 513.9 1027.8 513.9 513.9 513.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 642.3 856.5 799.4 713.6 685.2 770.7 742.3 799.4 +742.3 799.4 0 0 742.3 599.5 571 571 856.5 856.5 285.5 314 513.9 513.9 513.9 513.9 +513.9 770.7 456.8 513.9 742.3 799.4 513.9 927.8 1042 799.4 285.5 513.9] +>> +endobj +22 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F5 +/FontDescriptor 21 0 R +/BaseFont/SCGRCL+CMR10 +/FirstChar 33 +/LastChar 196 +/Widths[277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 +500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 +750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 +680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 +277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 +500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000 500 +500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 833.3 +777.8 694.4 666.7 750 722.2 777.8 722.2 777.8 0 0 722.2 583.3 555.6 555.6 833.3 833.3 +277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 +277.8 500] +>> +endobj +24 0 obj +<< +/Filter[/FlateDecode] +/Length 497 +>> +stream +xÚURMÓ0½ó+|à0‘ˆk;_αÐ]$¸ m$ËœÖÛX›&Åvèî¿g&.±çë½—7f‚ ÁÎl=>³Ýî^2Ùp%Y÷̤*xݲ\Š’Wšu‡Gxÿð-k4ì»à;7]—˜å…ð’UÌå%S5Ø’§ÊS÷ew¯˜”¼­°)x#Y^”\—+\ç.s2ÕÀ¨ +f|£1$U\"7J(SïÁí…Zû,'O5â]PBèÄX0ÍÛš•æ¢FŠëjÙ÷!zsܤ•s‰|Š×*I\Èò²ð猃¥‹D&™«J¤ìüœ’[UÀ×Õ…(Ô-Dbê‹‹[ )u]úÑ…ÁžRºßœ ¹;žZøæGÁµ¢]¬^¢ÀOƒíó.ÓZáMÿ(Ÿp¢.jTn C(L¦4ü¢ãšÈ»¬(,ÀÛ›w1¦PÁÜtN•ý«›/)Þ&Bˆæu#ø>XoWU" ªWAWÄÖ0‡àúÑÒ]Âm3B5-„a¦èF2ÓÄÔ³G—«ñÑ—Ñø‡y\¢›§áÒ3âëH5]ø¡ªÆ†ÿPpÞÝdÆõ%Ãf‚§—V*89¯ñG&RN`^‚ý¹båé‰T¬Ýžˆ,K^â +]pÕ¬ˆr%¹ëÞý°­Ùè +endstream +endobj +26 0 obj +<< +/F1 10 0 R +/F2 13 0 R +/F3 16 0 R +/F4 19 0 R +/F5 22 0 R +>> +endobj +6 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 26 0 R +>> +endobj +31 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F6 +/FontDescriptor 30 0 R +/BaseFont/FPQMFZ+CMBX12 +/FirstChar 33 +/LastChar 196 +/Widths[342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5 +562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 +875 531.3 531.3 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 +675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 +687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.8 562.5 625 312.5 +343.8 593.8 312.5 937.5 625 562.5 625 593.8 459.5 443.8 437.5 625 593.8 812.5 593.8 +593.8 500 562.5 1125 562.5 562.5 562.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 675.9 937.5 875 787 750 879.6 812.5 875 812.5 875 0 0 812.5 +656.3 625 625 937.5 937.5 312.5 343.8 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1 +812.5 875 562.5 1018.5 1143.5 875 312.5 562.5] +>> +endobj +32 0 obj +<< +/Filter[/FlateDecode] +/Length 97 +>> +stream +xÚ%Ë+€0EQÏ*žÁÐié4µ|J‚G€û)¨cî…!cpàcB§MpK®…î¦àQ‹Íè°”ýuVŽËgû¹«Uç&yDŠ’–H΢ö(ð·ØÜ`ÔâúY- +endstream +endobj +33 0 obj +<< +/F6 31 0 R +/F5 22 0 R +>> +endobj +28 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 33 0 R +>> +endobj +36 0 obj +<< +/Type/Encoding +/Differences[0/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft +161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus +173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade] +>> +endobj +39 0 obj +<< +/Encoding 36 0 R +/Type/Font +/Subtype/Type1 +/Name/F7 +/FontDescriptor 38 0 R +/BaseFont/YXHVQO+CMSY10 +/FirstChar 33 +/LastChar 196 +/Widths[1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 +275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 +611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9 +820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7 +666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8 +500 500 611.1 500 277.8 833.3 750 833.3 416.7 666.7 666.7 777.8 777.8 444.4 444.4 +444.4 611.1 777.8 777.8 777.8 777.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 0 0 777.8 +777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 +777.8 777.8 1000 1000 777.8 777.8 1000 777.8] +>> +endobj +40 0 obj +<< +/Type/Encoding +/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress +160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis] +>> +endobj +43 0 obj +<< +/Encoding 40 0 R +/Type/Font +/Subtype/Type1 +/Name/F8 +/FontDescriptor 42 0 R +/BaseFont/VYZCRU+CMTI10 +/FirstChar 33 +/LastChar 196 +/Widths[306.7 514.4 817.8 769.1 817.8 766.7 306.7 408.9 408.9 511.1 766.7 306.7 357.8 +306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7 +306.7 766.7 511.1 511.1 766.7 743.3 703.9 715.6 755 678.3 652.8 773.6 743.3 385.6 +525 768.9 627.2 896.7 743.3 766.7 678.3 766.7 729.4 562.2 715.6 743.3 743.3 998.9 +743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7 +460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7 +460 664.4 463.9 485.6 408.9 511.1 1022.2 511.1 511.1 511.1 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 627.2 817.8 766.7 692.2 664.4 743.3 715.6 +766.7 715.6 766.7 0 0 715.6 613.3 562.2 587.8 881.7 894.4 306.7 332.2 511.1 511.1 +511.1 511.1 511.1 831.3 460 536.7 715.6 715.6 511.1 882.8 985 766.7 255.6 511.1] +>> +endobj +44 0 obj +<< +/Type/Encoding +/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace +160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis] +>> +endobj +47 0 obj +<< +/Encoding 44 0 R +/Type/Font +/Subtype/Type1 +/Name/F9 +/FontDescriptor 46 0 R +/BaseFont/MXMDUO+CMTT10 +/FirstChar 33 +/LastChar 196 +/Widths[525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 525 525 525 525 525 525 525 525 525 525 0 0 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525] +>> +endobj +48 0 obj +<< +/Filter[/FlateDecode] +/Length 363 +>> +stream +xÚ­”;oƒ0…÷þ +o…JvüGê5©Ô¥RËV:ÐÈ´QˆŒx üûLH"HJ*&_8ç^ßO0Â|ƒæx‹`¶ò€BJ‚ ’ O(éþž>œ÷3x™­üÎÁïÜhV;éFÂoµMH%·ºêtˆW‚”ºyjLâBA…³v[Í‘)‹´,ö­õ¨s¯.¬ó+ÓÑÖ–™Î˾êÞéÜQY[™8jY':ÊZo’œ:dã€ðݪä0¦}¤^\54©Î¢Â´#﫾 ·^B"<á„ ݺÆ;ÕÐ’µ‘aΕT©žÛËQ¾Y¿ö˜¾<µeHCÓÐq:ÞðvhÚAÇŒÿ†¦§Ð䜚¡Æ}l> +endobj +35 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 49 0 R +>> +endobj +52 0 obj +<< +/Filter[/FlateDecode] +/Length 438 +>> +stream +xÚ­UMo‚0¾ïW4»¬ ­m¥”šx1â²]–lì4v0ÐĈ²è¿_G±“ L£ò–÷£¼ÏG ˜‚2<‚qØŸJ ±ô@˜A± y ÂÉL‡£logE¶µg>¤Ögø @”b©›z½ ‰(FЋ,u&œÀ–+Ñ€¸®„á~õÇdz|ùõrØçhÈ«†Ýçjl€eUzÓ%¡C–èH™h~¼h¢.þ‡í[ØÅõ¸y·8ÆMëÀý3€/¸·RÛ7°·VÛoW[ž:›ÇŒPÝ0éÈì$‚»È²'Ü—'G==“Ö9ÛfH5$¦¡Ê#Óg³«m#Š3G­%„û…¯ødr!u“. éL/´×ðʳ>"ôâI£Ü«ø¨Æ«Jy%ª•.±>s•v›mœçËl­ßŸÖEœÆ]N—N§ä ÕólõG•øÎÞ¹ ÂIý¬Sb8ºOfËU<¿o%‚Éšåß׊ƒÈŒ9ãÓ{j«÷)í¤Áû3?«›ÿ¤õS,ÒCVå—*ßépUìO¹ùQ.ñÀSÀ$öý²Ù-çƒðîEÓ˜³ +endstream +endobj +53 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +51 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 53 0 R +>> +endobj +56 0 obj +<< +/Filter[/FlateDecode] +/Length 390 +>> +stream +xÚ½•Ao‚0€ïû§‚´Ò–¶Öd—E\¶ãÆNcÁ™1jø÷ +H°š¹^ÛG ï{\ìº` Êð‚ÉB…•A $Á’$(–ówˆÐ‹…—†ÐÊ'.waÂ4´2 qZdÒ"Q Ç:¬Ë¥S²rÔIêÁ3p"«óÍz•SêÁ ÛG3}„ŸîÑñ¸Ivzþ´;EëèзÝ×WR')ÊTÉ×*IuLâz./:&Û¯(„É*¢.u2çºú «ÑÒí(^n¶ÑjÔÞ Ú$¨Rmo»BØls0ÆýÏå7¥¶8t00 eýÕ…³{u›íyÝð‚ÍXÇ©m³þb®à$YŽÆ)¢§ û&k`fÞf—Ké_k):í`íð®´’Z) ­ô­ä·´ÒÀÀ1ˆ³•ž•K»öò×/o%å0Cn*ãÒÌIñŸJ>Ð aÐŒ¶“Þ¿”¢×ÉÉ‚7?1Âf"x…§Óò]Ü}A9¤œ +endstream +endobj +57 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +55 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 57 0 R +>> +endobj +60 0 obj +<< +/Filter[/FlateDecode] +/Length 477 +>> +stream +xÚµUÁNã0½ïWXHHŽS»ö4¶c$.+ +bN˜C*\„„ÒŠ®Pú÷¸±ÚBÚF@¤h<žñhæå½qÆ9zB¹B‹á¥A†…Š)Ò‚i¨¦%*.î1¥7  Æàb9wg • ñ]õ<«,>™–Ï/îñdÀ³IòPüCQ!˜Y‡|¡ÖA1c·1¦ƒM£ús¥Ù£.CÂÙy°K‹k› Wÿ¦% NjqIPa“¡Å™Ï«Ó © ©6‹«vÆ/zïØ¤:×V=dWчŽäLûN³ÐÓ2ôݬÃ2 &›['TpÉÛírsЭ~º˜K#j6©ñ1.R¯ª½* +ùt *$@†³Ž(èÜG74®ç¯n±ð4 +þuõß=¹×}Ò›;$Ê ÑböòæläÒ`¹âKïÞ5vÀ1oq\‹¢‰¾ZR;8ä{´dŽÕ’꣥ qõ¼YR ešuhäajäm}XÓ{@DQC§n[D_h(JÊ>ú'lö0xO«ï0øóŸøï1x?j'ƒAì…A}0XÁà¸I Íü¿ß;©øÍoñ< Ê3£¹†—²½J…4l¤üŒ†åys8\‚ãâÏ;¿À¼P +endstream +endobj +61 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +59 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 61 0 R +>> +endobj +64 0 obj +<< +/Filter[/FlateDecode] +/Length 532 +>> +stream +xÚ½VÉnÛ0½÷+x)@É"ÍM\ äRÄ)Úc£žªW +V…ô÷å&ÛRD× ’Ú‡1‡Cræ=>ŽÁ„€àÍGð¡Z^`°‘ ºŠbE’ «T—ß B_2DKUÂ2Zgv@JûvuÖg¨dn¦sîç"˜>º|lô‰îÙø¦ú @”bs8mÖ‰˜ÒLÀªlVaùº{|jv»í6Œ?m5ÍÓÜòuˆ`t˜d'¯ã$ ¶½–2õ|«¾[]ìÚŸ¿›¶ßFTÑ®Îóë˜/Nq ‹M€I—IÄ›ð‘‡h¡<æ)Œ=#Ùû&qÖÀ%Û¯EÓOb¥6>»?ŒsÌÏ×­¥¦NÑT`Œç[ïù8A?ƒ¬ÀPcÏA«‹x7»üÒ¢×9æv³…Ȼܢ¹ ¯Àå€/ïuÄŸÔ6 ~`[PcÛ¡´`ŠÄî\†ÝçÈ×ݱøìÚK"yŽû/ê“^Ûó“¾sóùÛ›`-§öd­«—r\§÷³H±P>W¨­ú˜h÷Í BO9ÛKd‚Ï!J@*'Ëœ#Á·‹ZžÂM¼á“ÆO©Dœ«=QˆÒ«ÄÿòJ¹Í£;gè.ß´;'˜Ík=~…RP%’÷a•øk BÁÜ5§Í¤YÝŽzÖîIâå z’~IOZ^•û¿´4˜K›ÁZû pêºz÷j5âÄ +endstream +endobj +65 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +63 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 65 0 R +>> +endobj +68 0 obj +<< +/Filter[/FlateDecode] +/Length 646 +>> +stream +xÚ­V=oÛ0Ýû+¸lSæ7Å]Š$E;6êTup\%Èbqûß÷DR%‘‚Öƒi“Ç»{ïÞ„HAzFvù‚>Wë{ƒLaªž¦…¦+Vh‰ªÛŸÆßs\ +B2¶É±d2;æ˜ÁDÆr,4lÀJ¥–Á¯ê"SZ˜À‹5ÆÎ†=ºõc“cFÁûáeW·®ÛÍ¥[¶u>ø_w—…ä}l÷‡ÄUÑ_mïP"I·Cëü·ºu™ÄÓ¶ØêŒÉÖÖºÀÿüI„bTZ^§Dh‘•# kXƒ¹ÉªÓksã ì^öÀñÝñõ­9à·ÛþºûÓ<7o«¢(`$ò#»CÆ ãÏü™rëþÉ“ËôÔÓþwÃHÙ@xgtóÉ­§ãⶆïc¹YÀßà WÕåv˜T0ÊÑ|U`+pãt¬9p}BppGjh’ª®.HëÜëÓé¬îµÞ‰.¡ùx=m÷,¹y‹”€DŽ9…®A¹{°34ÎFÐÊÍ[ºƒæíÝ,”ã”Ç=9ä,ž­EºHAap¸š›G§.½ãUBÃLÍ”Ã28‹žõv0™$û\éÉ„{—vf“ „¥8±Ré$c LÞï_#›|+v߉åbé¤BŒù_‡ºÔ¶‹,¼¾€NAA·ùºÏ¶•ðRŠšÐüÌOO¤†Ïýá*d¦GRʱ´HŸ{ZÄ•ðÙøÉÌ7ç1ðŽŽwª½L­\rƨ Å¡ÊfÃF‰xébO«Êe]¬Sp`Œ&:†ª&5™´sªt  à­#ñº1÷¢¡ÚÃõ½<¿”Ri +®´(¹5.íý»êÃ_sBZ© +endstream +endobj +69 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +67 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 69 0 R +>> +endobj +72 0 obj +<< +/Filter[/FlateDecode] +/Length 656 +>> +stream +xÚ­VÑn›0}ßWø‘„ر Æ8R_¦¦ÓöR©eOc‰F«ISÒ%ÕR?~Û€a˜Á4¢È`__sÏ9>QB)zFºù€ÞgÛ;…Q ÊždD2„N¤@Ùí—ãÇ\\šöüdZ_³Oˆ"ÌQ&úü­àT™€Ýi«<(óÕú6·wøãëÏËkÖvpÍÃc¾ú3Æ :áQ„¸»B72é"e›Ž)‚7hY¬îK+ (à1£0Ó¼ve +Ô÷æÛžüíàog…¦ï¸¤$.SYõRìÌì}ùr)®×ïç“yþxz-ž‹ËØô}ËœäQl@k:ƒÖªÜÝ\Ï?~¹exSÕ,þ_ ©‚½t9($©´j¾O\Õ¼éîÐ;=–7%sœGSï±rh6)Á:ù_”¶‹ày—/§rrJÉ!rC¥;„¨^m@ OÊs^9 +þ|ñæ>!o!ãÒÚ·ŠuäM|°häùÒƒÎd‡”·ZÍ’®a{'ÚI&‰ðiEÒT+=Ÿ½û +‹U +endstream +endobj +73 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +71 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 73 0 R +>> +endobj +76 0 obj +<< +/Filter[/FlateDecode] +/Length 612 +>> +stream +xÚVMoœ0½÷WøR‰/{ý1^)—*›ª=6ôTzXTEŠv£lU”_c›]`m ­lðx˜yïÍxFƒG ‡¯àK±¹“@"™â‚0£HpPÜþ + üB*¨”A /Wþ.¾ !H, Á”,„‚¥ÝŽ8„œrܽ!Xo!dDÔ³Ÿ ÁƒRÝ{½1hÌЖAS†Ö‡ñ¤•ÃDÝå[56¤ÕØI7×vû©ó.dó®òÄ— +µèM^}¼ó <õ)k3 Ь h¸?»JšöŽÔáBFÕØŽíûlÜ`ª(á ˜ž45‘ÀŽíd½ÖÆëÿ‚ z*ÙJ…Š\œZŽèGôÌ$\Y. –ecÁº”ºHW¼Ž.‡ö?ªãk0§:¤6ñÔÖò Yư¶èW(Á‹PåÝøUΗá€.8&E@‡nÒ5õä¯î`ã[¤Æëõ7óÜ ÈÒÊtð<´½îµY9•Òœ†ÜºØMDº¦?ñeÈG_¯|%/rµ½h_ê­±Þ5/¯õéôt<˜ço‡¿õcýêÂbg©•ý"eHÚµ{[oØŒÇ3*®=ÿÔŠ +c°½æÝ–v–¨_ÜDöuDa5î”–úÝP(LwRuKé­)]ŠŠn|Æ×1j²z/WQóžð>ÂM6æFáï熬à¦m¶7§ã󿺴4%mò¾SÅWÍXp/æý9¡ûY3wÔ•nœËðs½À'¹l_žJÉÓ™ÆKiw" ¨úyP,•>Æ„ÄÝ™µ¸¹ãç¿„g(¦åLÃí®øô§°Rb +endstream +endobj +77 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +75 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 77 0 R +>> +endobj +80 0 obj +<< +/Filter[/FlateDecode] +/Length 527 +>> +stream +xÚµ•[kÛ0Çß÷)Da _¤è.»°—Ñtl›÷4÷aP9JRš1”o¿cKqŒc' KcÈ‘¬stùŸŸŽ£Œ¡êÌô¹ZÜ—¨¤¥AUƒ,§–#bµUw¿0!?¢…ÆR»i‚åÂ&Õ7Ä᜖Á{óègο¼§ÛOÁî|zWÃîë$ó)tSATêg äû/ ×Vã6W'C3ð \âæÁV–å¡?=­²í‰b$c؇ œ'ÄJͰ‚XÛÏÙŽŸÜ›ØÕŽ }Î$,\„—ðà.µ>XÁĨ¶™íßH]&¦jj0†ªÂ­uV˜±ìäJ¿™Ä ¦¬±§w lÛ®v/î6œp йíöi³ý¯ë?nå^§Â—=ÑqPHZŽh—'i7ÚùˆôNüŽö®ÕO| +Wº‹}ÖÿŸ{ÅAœYò$qÆÚ:ŽóÈoäeæúÄ &{b‚û1¤Ã!vÁq®‘M9Ì&¥S½¡xm7Ï]³šïr,§”N'kÙužjýÖ.ÎS5Є:žÅÁjpºêÚÙùbbη'´¡ZÃg…Í–ë½Êú,¤±†m6õd­ŒBü{ó<Σ>‘Gs!Îâ€óâ^÷_{® -,¬PҢ肠œµ-«ÿ•ˆÞœ +endstream +endobj +81 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +79 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 81 0 R +>> +endobj +84 0 obj +<< +/Filter[/FlateDecode] +/Length 395 +>> +stream +xÚ½•Ooƒ Æïû¤'¬B¤É.KÛe;nî4vXRÛ4ijÓ. ~û±¢ÆþÑê²í`^_à%/ÏóCÁ„€%8„{p—Œf +(¬H@R,)@‚aÉA2y…=yoÉ# QŠÕ•AD¹äPÃPhÏ&„8X¼¯Öé|ÐPÀ$S +&ù6{ˆ3_6«l£«²cl÷ºP“ÒÅlá"eò|«lž2ºã[5Ì54Úó©ö†“2 ìƒÜ+2=d© ŠšVVƒ+JÊJɲ ס_œH{yÙr5‡\Èχútm½‰YT÷fj¶»t¿·¹üaó‘.Ó]›;²Í¸ƒ;ûlý™ê¤ ÿ¶àgÊ_Ð6n¥Tü&¥q]‡TWH£H jÂÔgC㇗OÕG0&: ªÚQ5G$v·(fæ( ÿšcqâŸjö/"=1Ž:b,ºa‘ûØÚ£6_çˆvå˜7plaE¬‰dãÓ~4ãÕrciÛV8Ž‹(;N“›/iÏ¥y +endstream +endobj +85 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +83 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 85 0 R +>> +endobj +88 0 obj +<< +/Filter[/FlateDecode] +/Length 407 +>> +stream +xÚ½•ßo‚0Çß÷W4>•­´Ð–šø²ˆËö8ÙÓØÃј1º,å¿_¥• "S·øt½¶wßûp€˜ƒÊ<Ç´?–@bÉA:‚`Aâ ÒÑ;DèÕA$$4‚¾ó‘¾€ B°lž2Á`#’9Ú X 2ƒjç2Ê g UÆ"ëfNiV«ö¬%Zx¤=•öü¨ˆuöi¹Î&:QëM¾Ý.Š•ñŸW_ù<ß´…'æFT¿†X{8±‡ÔØbf“£âôQÛbùg°˜æ”0¿ôwõ]^Cc“Ÿ +Oká{³ÏÅ2ŸöÎ*A¥l*ñ¶Ò"du˜1nÏ+©Kmèp$CØ)ƒÉ»ªŸ› ƒá¾ÿ¦ßˆºÊÓ¹£ýÎN%Ï,=u›\WSž¡R¼±b¯ƒâ+Úû܆ýЮĖŸbËoêƒU:º¶Q×çË.С@œáV¹.=ÆýWii¨•Èÿe°nl-µ3WÝ{¤²®žð zRªÁ°É§¸e¬öǬþùÆq,tBÇqu‰˜ï'I~¥Ã­, +endstream +endobj +89 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +87 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 89 0 R +>> +endobj +92 0 obj +<< +/Filter[/FlateDecode] +/Length 551 +>> +stream +xÚ­VÁŽÛ ½÷+¸TÂŽ!ƒH{©6[µÇ­{*½Õ»ªT%«MUá¿/ì⼩vs™àaæ½™gƒ×5x£ù>tÛ;V-è€ X€ZŠÝí7ˆÐ}HÍëÒ5­`]߻Ϡˆ¬¢½LPõ¼ q»DÞPãCMk¢‹÷}& áÂ…a­‹áe~¹¤¶W°Œ—Òš)Ø OýÎçòõðóxÐpožžûÓÉþ÷?~÷ýs…1^V܆X{¿µ““6Xß—àÞBÙT\fuüÑS"z{½ß´»ñVÃÁ S–Tå­[TUdÒe%ò»_‘%R*G™%”(å¬h, ÌBG|/xÓL3‘¸‹–éÜLõ…f`—ÍÇÞœµPX›¥Ðж¢-ep½57i”d¾,»‰¹2G€Ö[=Ôàl"k6§™í÷†Ø¢ÊÜEÔ:«µª† Íl¶éª-`g,FˆÛ{›©–Tû£M c(+P4Ô½±¾¥w‚ÕmhˆçLd +r‡·9IhÏõ"ÆIHÛ‘^d„"{?Ë@^"äµ!/äaD1–ˆñ“‰ +M9üoO¤ÑQŒã1BX½ *rfJÃÄ{`ž†EצæÊäùëˆ:×r¹B”º‚¨ÁìnNÇ_z8«†êM8P"/²£ ÐôL­³¥R¯Xwf{ÇçÂ[,……Da)ÇÄÏʾ{÷#“ß¾ +endstream +endobj +93 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +91 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 93 0 R +>> +endobj +96 0 obj +<< +/Filter[/FlateDecode] +/Length 573 +>> +stream +xÚ­VMÛ ½÷W =ù ƒ1f¥^ªÍVí±uO¥‡JkG+­’Õ¦ªl©?¾°×Îb'©š „Þ›÷B%”¢²ÃGô¡ÚÜ+¤ˆ*PÕ Éˆd@¤@ÕÝ÷ã/1.8¥QŠÍ'TŸE˜1¢&BJiý§ÓQ«ã…$š«¨êžë[³DômÿxØëhÛ>¿ÔÇ£™»åOû_õ®~É!á³¶./WC8QÌ¿º  n<4nd ßux¨•µ©ï’nß»QG]‹Û$'wý—Ì Jó¤Mº6 îòEÌDÏ•¹à\ñš!¹ Š¥ÙAÅÈ?ª” 2JÇÑ$qf’²…š¼°5u¾CîLìàBëaǯ-œ%øø,”B:îe° ê’ºdin?ðÁ{¨FG¦í‡ ç%̬ç¡\Tž :¥$˜6åóØ‚ ú ›…`.Á"îOY5žE=ÜÁ2΄²„|jÂ÷­øÎXkÅwìRß©7ž³÷Nwžxë<;ï݇°óÄ-oâ†MWpC¯U]X# ¨Ife—Ï•p1›¯g}ðRØ…|a§ÞZVÈu_ØD¯7Øè;[ë;\Ð÷ãáéw­}û³.ûçv#}7ÍÏǧúáf¡¿ A…ž¡aÛÙwGÀ”‡ø…ò:—? ž«¾èÝ> +endobj +95 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 97 0 R +>> +endobj +100 0 obj +<< +/Filter[/FlateDecode] +/Length 549 +>> +stream +xÚµUKoÛ0 ¾ïWè2ÀN,U¢^V€^†¦Ãv\½Ó¼ÛÜbÀÍ0Èÿ~´$§v¥Á/‰ü>’&œqNžH8>’Íͽ#Ž9CšGb³‚PÌjÒÜ}+(ýR~o>N¨̽*)ØTÑôÏݪ¤t±öÏ/Ýn÷s»‰ò§Íïî©{9¾ŽZŽFÌ%ÛC²©xnã)ÀNo2Á»÷«ÛÝöן®-¶?:^õ•oËÓ_®¤B[å +ÈZ+÷ÇéD«V4fMiæ+5Ç(N g´ºh, +Ž‘mÑ·…ß‹ËøšŸ‹Ð–ï»{ÀñÁ {_7H\›#±bŒÆu½§kB¥8àRŸå2^ ìðýè´ºMU,z¿¸Ã‚ý@-õƒ¸<ò<`õ¼¶)›µD6!¥’»ÆÖ¦ÏYuî͆ÐS‘%•"6F-ÝÐ1Å*Ç¢!uªP}Ðu[FGü +ìŒØ|CÜ`íÇ0Ÿ㠆ˌQ +Ë8ŸäΪ,|à\0O5f+C–$÷óÒéD½‘qÞÌ2Cz‚5½)}è$ÈÉÉŒX'¹ö#Øs½<ò›ËÊïÉáˆÜa¸ÿËXŸYÆæ‚eẊ·Æ7À°ôKÑ–aƒ†yj¦â‹[ +Ä¡zcÜÍdÂÈÒîëH˜×l6b#¦–îuÑÿ2K× Ñ Æ›{½ÿ§ mXm U‚Õ28‹àCÖÍ»¿_ªÑý +endstream +endobj +101 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +99 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 101 0 R +>> +endobj +104 0 obj +<< +/Filter[/FlateDecode] +/Length 429 +>> +stream +xÚ­•ËnÂ0E÷ý +‹•ØØNüBbSU»lÓUÓE%BBAU9_Cš´yª¬FŽgâ™{O@0!`²ðîÃÉRµáHŠ%H0,9ço¡—!âŒC.]LÖ.R&‡ïá QеË>%»¯8‚É*fŒz©g¢áß$„ž{> +endobj +103 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 105 0 R +>> +endobj +108 0 obj +<< +/Filter[/FlateDecode] +/Length 524 +>> +stream +xÚ­V;oÛ0Þû+ˆLÔƒŒø” K§hÇFª";ˆ‹‚ú÷¥Iš–dQ•šL4yÇ3¿Ç +\àØå3øT_ß) °’ Þ‚’à’$).¨oÀýCK)kõËk‚ðæ£[HÓN#Ý$ém;›OÈÐT'?믠ˆ¬\„¾­8DD”Ç/´I"¢4̾¤€4Aœ(u\ËÊSRØsR˜xò{Å乕ïh@øKÈÁ”Ú­ƒXv¢À'Q=¼DMêéÂqŸÒüÞ—6¹§zá†-Ä!õUÖr—E‚J™ ¡…>¤ëÈ\òôô°† +HÎH‡ÔÈØ'|”Æ.¨Œ‰VV† º{io\æÆX´=žö;·ÿ²ûÝ>¶¯S 6^Û€˜2¬|ìÞÇœ¹à~ëqÒò²’í >Ñ'’é©;ìÞuˆý˜±TgtÙ­‰°öžï"Äi‚¡úJuàÙ÷=ɘºzÍ‹ÿG59RͨƨvØ?ÿi/^ÞåKL.œX\E‰ fbõˆø¾34áZŽ1ž~×&@Ó figóбy¹7ofæxÆ.ì¼­yû˜gÒŒ¡ÙWôìË#SµïÎ3O¹4ÎÖˆþ#H̨(¨Ø7³Xhæ¥?¿rÒÌ×w"ü[ Bâª4W¸ªlRÙ¢›úÃ_dìÆ +endstream +endobj +109 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +107 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 109 0 R +>> +endobj +112 0 obj +<< +/Filter[/FlateDecode] +/Length 473 +>> +stream +xÚ­UÑNƒ0}÷+Ÿ`¬µ-´—.ñÅl3ú¨ø$>˜Œ-&fgLù{» +›JBnÚ{/==çÜ QB)Ú C¸E7ÉÕR!E”DÉ#À–œ€@ÉüÙÃøÁǸR^R|d3 .¼§í[¾M½ËõëÛ{¶ºœBRßIîE˜1¢ªæ…­—²Jò¨2÷XæÀÆ|m#ãÐýR¾Ê8—¶`vmcêE“"õtjN4S2O=»35oÀ«´Æ¬ùIY߬±c³PFÊ›º²ö€$0£‚îÑÙÓ-Xl×­¥Á\T—©Kƒ²´§½ÝÍFñ˦†1š.ôÇg¶Û!íúnû•m²Ï!a@Åøwùûw––bN‹½H×¥d>®™¯\éhø»™ã& ìˆuª›ÁéæÐ¸Y»ÙìÚEð3(:Ùϲ˪ñsØv¤èósUZt=ºmùs.ð†VnCÒrUèÙuÓÔÐ5õ¯ÄÐ0Î óœBä¢G`pÕªT +*öKÒåÑ/5õËÐlô°-€ÖâñgЀ®»qN£¾)uˆ<:´FN÷Ð;yh3s~ÏàêÖÐêj`õo†õj)êÿc&$‰Á€V$ŽEÌzv‘\ü¬áËÛ +endstream +endobj +113 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +111 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 113 0 R +>> +endobj +116 0 obj +<< +/Filter[/FlateDecode] +/Length 573 +>> +stream +xÚµVËnÛ0¼÷+„œ(Ù¤¹+>ôRÄ)Úc£žª +Dv…ü÷¥EQ¥TQnô`HÞwg†kgœqž=dÝãcö¡ÚÜÚÌ2«²j—i`2ªi™U7ߥ_r +RKR už¯>g<£ÌFÆ¢$¥‹Ž‚`Nr~~*÷R&Ò¤v…•8Õ¤u¥)pÉÉÊ™ñ|õ/ Dëßz +^çó)`α± ï³;ƒ  ¢ì¨ê9s¾I¡»ì…Á1vªÉxa ÍCkaŽQg’Hž8£—T¤ Dç\/µ~ +è´)úæ»Gµ0·6º#ÜZÝñݵñMK¥'ÀÄ©?À³Äe„¤yˆJœ`\ +>Ï„ýPÛª.SØÁÂeJ‹ÀŒG*u×òf鸒¨uuzn®ýÛöù¥9{ÿýÓþgóм̥o}„†àÄ’ÙÞw×û<µä°ë'@ý÷‡ûÑø€ë÷QxœWEë¢âÅMM¼gí>eGMÑ®^Tè#¡¬MÞˆ°Êp‘ëtN0¡Îõ?ºH#Qɹ…2V¯J,‰ÿG+.ÐZ.Òê+O¿šºgw}ZOÖ‡z9=üåÿÕîÇãSs•›_÷ƒzH[3Ææ×Úv5‚&8ˆÀ¡ÀNå t+¼MOtd½B'ëòmªŽ7„·h/©ZDªœ¥«Ú,ˆZÎÜ +kú5c½JÒ›[9ü%©˜ÑŽ>ËŒéÊ¡ÿ¡ÜVï~N÷· +endstream +endobj +117 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +115 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 117 0 R +>> +endobj +120 0 obj +<< +/Filter[/FlateDecode] +/Length 573 +>> +stream +xÚ­–Moœ0†ïý>X;öø ¯”K•MÕ[r*9$ +Uªv£lU™_ƒÁìFêÉf3ãy^AŒ2†žQ;|AŸ‹«[‹,µ{d85 Ô(TÜüÄ„ì¢@a#“ûâbˆ€ ¶{÷£{§Âx܇‘ƒé9§6|©vÛëÓñ÷ߪÄǧ +Ànê+“÷Ž„|õ’ñÍ“¡†Ä›H?YöâÊ(\úL}D™_¢ë»á) ™—˜„‰raìó2éÝ›ÇÎÛM  À¤ÅEýRmƒçÝá×ñPâ{y­N'?毇?Õsõº¡”.f7Ô{Ä‚Ï`è `•œ¶×ýþ9¤µ#*uÄï9½)=·“·Ô.ƒÔeâ,±3:FŸä’1,¼'0Ó0%X€,xSèÈ2iTZ®’å,gS¸ÜÀˆït‘”rF™ n"m`*ö»k„ЦYtî_ÂÚ»¼Añ>·ÞÂòYj2¸/h ÒT{³–{Ý×ç’B€:ÈAðÖ9dú­2B³5œãiCß«£•˸ʊÁT@¾ì‹ý¦Ú‘ØF[ÄûÂÌ·¦å,(y›Ü‡u›H›Yk0z­Á˜ Œ`Óæò†µ]¥5%{ìÍ)dû*jYImÿØ$þ³öì•`ô!ÏÎDâcªc¯©h>œþeÖ`åÀ]Ë‚¹–¯nÕð·À•¦¹ñq-ÍóÖ©宸ô0äj +endstream +endobj +121 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +119 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 121 0 R +>> +endobj +124 0 obj +<< +/Filter[/FlateDecode] +/Length 542 +>> +stream +xÚ­UQo›0~߯°*E2\ûGêËÔtÊ[ö4÷,$«”&QSMŽ´¿% Ф+9s¾;ßwßC8ãœ,Ia¾‘¯Éõ"Š©ˆ$ "“‚ø0’äö'õý{ç1ùN8ñ…`ªrN_ȸ !¤³¶°{ÇFœSƒá

”!ÕTÆÚ)_þÖΙmi¯©)vy^Øúš¦ÚÑÎ s|ˆÐ3G#¢·†Š>°¡övMöÛllKÿX?mÖšNÌö%ÛípmÝÓõk¶Ì^<Æ6ÓRkbãd\mˆ©rï¡ÜSÖnÖ +§=o挄 ßX«i:´cpgCãþÒÎðV—ƒñroºÚþ~ É^SŒZ¦ÏÏi;êó¾"$ÜëÚ-éS5AØê!mùÚ­ÄUsàD0û +åqB«»âl«x> +endobj +123 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 125 0 R +>> +endobj +128 0 obj +<< +/Filter[/FlateDecode] +/Length 574 +>> +stream +xÚ­VMoÛ0 ½ïWèh'‘j}KzšÛqsOóE熤h†Áþ÷£EʼnËÉÖæJ%‘|¢IÁŠ‚<‘ >‘åÕ­'žyCÊGb9³œP#˜Õ¤¼ùžQºÊ©:s"ÿQ~!¡B2×¾Å5‰róˆ’ »3æœyMÿTn{LõT=&özoÈr€ó{Mª¡@ý!zwk®J¸`Œ‡°êáJCi.®Æs=ƒbÏxï*Ü`’0…#;„”÷8ÐX¸;ˆÆsÚ@ ‘&\£†œAzŒ2ç¸I„ò©óXÄ*AÆÈDh„óÄ"ÚǪ÷U" +H Hë <¹oª!\õ¡Ô¯nuÿýÁµaÎ_> +endobj +127 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 129 0 R +>> +endobj +132 0 obj +<< +/Filter[/FlateDecode] +/Length 522 +>> +stream +xÚ­Ußo›0~ß_aUšdvŒÁ¿"õej:m-{šû¬¤ŠT…ªLü÷s±¡Ø4­):ÌÝqwß÷Ù@g¾ƒoÅòZ…ň‹ N±` ¸ú º‰Pƃæ›1Ê`cÍŸªÖ°Ñ‘]!kä4¦Eè¨ÞFë…{ ©?'%ŒôAG¥uä)žÃÌ¥Þ?(M±MÑ}opv#æ'å/-4!¯¦vÑ>•+Ûͺyz.ëz_ìúÇáoùP>Ó¹K_;Ôxï¤VÎwë|ÂÚjgmJÅi#Õ}I³Ü¬.V±…#¾ÒÓÄü‘{ÓE`â ÑØêŸÑÓùM ™“Ži„¸4­dC¢†u“bà}¢…¶WʱÚ|Rñ(ïÕÓºdÚ¼9ì'³,fX–g°\WÿJíÈNÚ$¨õóI —Ž»Íþ±¼¿A•ñë`0ÐCZ‚1ö÷µF àfaà¯bgS±ëAî‹Í±äÛxî`x‡Ò”±uÏ«X Pê5n|ºv¾í$ël~D¥Çô¨0=Šœ¡Ò¶Y]Ž•ÊN•Ê?¾bÌ/t6)‹m. H§_:ÝŠ Tn'§Ë×Òh=™í½îê‡ï FMémhkQ’û¶V€Ä7wš¡Ë8—×l¸ßSƱ†Z…¥ì‚©½ôÖÅ—ÿ>³ãÚ +endstream +endobj +133 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +131 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 133 0 R +>> +endobj +136 0 obj +<< +/Filter[/FlateDecode] +/Length 553 +>> +stream +xÚ­VMoœ0½÷WøR ÚŃq¤^ªl¢ôØp«sÈ*$Ê%%=À¿ïd  ‰Ô½Œçã½±gY–f{b$®ÙÏje™MmÁªGfdj$F¥†U—"!n¹Ð #+½<=z)Áð»ê˘2µš¬O5äºn^ß¼ÑÅ/]ÔÄm“Ü;_º¨mvãÉUsBüÞTƒRHm>Ü[éøò1!M*j14¡l`ÕRà/``J –sQ€µèEäRgÑ1`¬ evô1/Æi$^Ü{1µsÜEßk.@fY4-mT¼2äf9>”¥ê^3Y)¸T Uà%#(ûMTê-\_æ&¨><;J*`°åÁqD.Ð-Äp(W¢3¸¹ líÐë!À,ç,Ž2¶ +ÃN›Wè-fé+ /Ö»º'·óNµ`7ÊLa—÷¡ Ü-í +ÙyaôbÃO›]£³¤‡kñøsN8¿Ucþ‘^Ç»¨g0Æœ <@Ÿ3¢—YaZÕ¬œÀ „À„_‚m¿ÖEó´ÆU™Ñ©Ú×úÂ'uÀwº~>½øï›—¿õSý¶à0 nòÔž øì€(¦Ã¡‰]—x¢ºA_CBøeƒ€Ø¯qÑ,Wø…;'!CŽvÔ06<ºáCÓº•çG¡bòÐRLíÉK§ƒvnÍW¦ßÿ V(Í)Ý_éáÿ‚ÔEZ> +endobj +135 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 137 0 R +>> +endobj +140 0 obj +<< +/Filter[/FlateDecode] +/Length 443 +>> +stream +xÚ½•Oo‚0Æïû§Rim m©É.‹ºlÇÖüƒÆÄ¨ÑeÁo? Èuf;½­}^|}žŸPB)˜¬<‚‡°3Ð@-A8ŠÅ–œ(ÂÞ;Ü®_‘«IÄ=éîÜØ8ÎGø (ÀŒmE¿\ñ!fB h ö’gaF…­ép¾ˆ&­ \q­a¸[G] .àÛr¾Zš¢Í%„Î%óæ¾ÕkoÈ=¢ó³×üÌ·u5µ•qU#ûýÊ +º÷¶ÆÈÀ‰#í¡qPo¿K=jP~4FñYoä9ø¤ºgìô ;“o¶#ÚìºmË0Þ8;»ªKF'›Çyó5isp¿^?^o¢í6IÐŸÑ,Ú4Åç7Ä'.ˆ¯L±º…bY·]üÅ¢bƒh°A6Ú ()6e޲Œíò@…G·ß‰er{Ì× Üé4é¾ryäq®Ù3 v|ØéqÑ^}0Þÿ5® ä7äW#— ‘«+ÉêäË[îoõ䫲 ¬âCpé®ëèÛŒqŒ¯Ýá9÷ˆcJŽRíI»:Q¼L™$PÉÌšA&â6Î~x÷ XƒÅ +endstream +endobj +141 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +139 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 141 0 R +>> +endobj +144 0 obj +<< +/Filter[/FlateDecode] +/Length 573 +>> +stream +xÚµVËnÛ0¼÷+x¤$“&W¤HÈ¥ˆS´ÇV9U=¨ì . +éïKŠ´¶D»â »K.gfWFŒ2†žP7|AŸËõA†š•Hqª8"P%Qyûò=ùU~C Ω6 g’1 ~‚W ‘ Œ[+­¤¢¤5VØè* ‘n\¬Ä­¹]7'~–*iÃdðȦAÝQ!*_>šù¼æ“¥Aà²}­7>|Û¼¾Õ‡Ãó~ç×_wê§úm^„ð­÷0úh„œš`ûlÆûG?rPç‰´Íææ°ù[Wxÿ»†Ü¬Ú•{Õ¥gÞf/ìØîY„Â!—ÁÁb!H¨”9ä!Fe\f8köwA…³/'ÌjrDàýÎrW-ñ¸¢”ÎC»í[dÓâxžÃÚÞï67½²Ó¶!MšB•¤·•åÝÑœµn‡äig…Ô­ÞM}€Ü&¼¤#¯Ô‘uƒZrnqUa_Örè ¬¿qKªÊ‹.ˆ«˜³eGè\äØ[ }ã¼côÎÙØYÄšÌIC¹G¶ðî"gsn³*¸GÐ!ࣂ}v·–½_Ü€ Qõ Œœá8 àúKˆ /°<ñîÒ_¨›H•ãõR—öü°î +;RõüʪlZñ®˜=H]¹w3Wò$l¦=¤Í»‹ÝˆÉ×ùBGà=ÉÓj> +endobj +143 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 145 0 R +>> +endobj +148 0 obj +<< +/Filter[/FlateDecode] +/Length 514 +>> +stream +xÚ½VÁnã ½÷+8×À˜H½¬šVÛcëžê=Tª­TÅU³ZÙ_ ´ŽHíª¹ Ì 0~o1ÊZ!g®Ñj~e¡¦@Õ3ÒœjŽHT+T]>`Bng¿ªÄ᜚#NÂ%×C"ª@1üè,î¼yiW5îꙟ{Ó{W⥮1g0¬âÌnIö~Ûk‹q­1z89¾1“Wýk³ðeܯ·ë/»×·f³±cïþ¹þÓ¬š·œR/réól…QÔ„àÝGPøAû ÷‹nŸ¬±ø¤Å…·uYße—5î»ÜBEì$ƒóǬ;¬#ðŠ$…`Ìrl±—Æ`HÈgDv-„í”+6í…-*\nå´<óѦ“?®g}Œ>âM¢ÍN@ +wx<è: B’ûä¡í‰.­[Ž9DbA(8ŠDÀ6@Ó”] ÂFâ K÷SäˆX¢1†ÔyŠÍ=ªwLªN—öì-Õ%ävPhb[h|Wiò ÒÔ¨4Q™Ê)ͼڼÓ+Κ‘^@–WNL¡ò“A˜ÐšÔD¬1b¬Ç”ñ?8“‡.Gõ…˱ï›öåoSöò>?Mâñ¯ÓB±£$¸§ìt> +endobj +147 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 149 0 R +>> +endobj +152 0 obj +<< +/Filter[/FlateDecode] +/Length 540 +>> +stream +xÚ­VMÛ ½÷WpÄN`a "í¥ÚlÕ[ï©î!R½«JU²ÚTþ÷å+Î:ñÇf›\†Á¼7o‚e =¡`>¡ÕͽA†šUHqª8"JP…ª»ï˜o‘ 1geì“Tö£ú‚"œS#Cøîg‚7öù%­n£…Üæ­ÍïjÜÚ¥­3â&9,6¹7çÇòuÖYvNb„d¸ÈHQ*,wó¥Ë¬”Ä"øÝ2œ±`Kó'†3ùk3\caã´5v÷Îgνˆ>±‰¶Rgmœ¦ ~H¢)z‡$' âC„9ä©ñ¦ŸxSgö‚W#\*ŠÃð˜ý¿~#y€KF`fŒÁvl¯ÒnoÕ>7«ø‘kÇ¢f¿ÿµÛÆùçíŸæ©yÚ¾>r4­BAÍ)Õ$Ë#a€¼–@à0ò$^ÀÁí¨ÌßÇbyÂâÈÚ“7BRuHB9çäKœ!óKÊì*©)„ô$¦µ«Ûýî÷ߦN`-[Æð/xþ²HâÀ{vB`Bì~z¸G¶iqz™×¸€×ŠW¸PØ~0\R½óÌ5zÀ˜ˆ31!^WãWoîe÷—…Ë’jå¸j¨Ö!B ZWþ¡áï +endstream +endobj +153 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +151 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 153 0 R +>> +endobj +156 0 obj +<< +/Filter[/FlateDecode] +/Length 470 +>> +stream +xÚ½VÉNÃ0½óVOÎ2n¼%u%.¨-‚#„æ€DŠª¶jJÿ'vÒ…¤ ¥âefüìxÞ̳ƒ"E蕯[t“ö' +)¢b”NQBIB$‚$(=c€G$“˜ÒÈ‹© °Ä{IïQ„€R¢d _¼eLp ^ÛwîkÌüƹö‚¨öü‘ÆÖÍÖô«XÀü<0¨Ÿ«<œ ÆuиRF˜yÀ©P8,wSøK•‰ÄºÈÓ|hd fß¹ÍÁîÌÚKËÀ¹ÚÛXk +û³K|P¡Ü`õ çšÄ¼{úÀ’8Ý,³¡]eœ/WÙzý±˜[ÿnþ™½g«¦éãm}Ý(ãDÑÃêÓÕ_/f_™vMnÂüE¬ÊBk{Ó×YöÖk%ƒ)µKÆÓÜð ëi!!¤ycãm²;T2Áºê@´ëtÔ:0p¢€Ä)”Ö;¡¸Î@|a°cUç¿ìѱÿãSÅ«ÊÁÿ±ÿùÑ£@t€Ü@ÙØÕE Œéó6 ø,0õ( •bÎ;Hv‰d‘a’î©xlâìÔñ#ºÝ + 5© hWIvÍÿ>üE1ÚŸÈúG€Ê˜ ÓŠ %šÛ bœ^}ï$ê +endstream +endobj +157 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +155 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 157 0 R +>> +endobj +160 0 obj +<< +/Filter[/FlateDecode] +/Length 598 +>> +stream +xÚ–K›0€ïýhOÁÄ?‰´—j³U{lé©ôPiÉj¥U²ÚTù÷l‡À4M1Ï ão"a9cÉsâ–OÉÇrõX$E^è¤Ü&†ç†'ÔÈÜ$åÃBé·U çÊ?ì·Afñ³ü’°„ržÊ©ö¯êŠìŸj*;fMµ+QúõŸBÝ )WF‘ª QÎ#wÛ_/¯õÓÝ´ +Š‚”Ç·zícý¾{ÙïªÎ,Ëó|:°Íù²áD^ IèY>t‡ (®ïýÚ¤é±"ˆe )þ§ñûÕR¤§í²=Lá6x=Òƒ–›,H†q¿7Ö­«rÝ!ÇÈ  ^úÂQµ8†‡‘Š8™9oA¨ã.ñm“å˸ÙÏø¦y{¯L»ßÞý®Ÿë÷ٜ빜›+ªÿجïû Ç oI¢Œµ9VÝZPiðÒ2b„Q²à>|{-ü©Â07ùź™+4Š Жé¸s#é¼¢‘Í\RíIõ™¬1€ÉfnzÜœ›¸™hà›rß·±QêËC…òÀ²MpôÃ)ˆå"åX¿‚;ò~ذW!YĹsVàs¥$Ìœ"'ÆšKY¡Ï#c\êZ:u9œ0ÿ3"´ói–‰ e@¦Bßi©£!‚³>Zíìg +3ˆðµv– Îñ!BlÄðÒHK{a#‰°rhs--= eÃÅT($˜»=j=×v iƒô@«µš‹ÔÏîÕ£ê>d¸Ò¹5ØöEn­ÓÜyØ”þ> ˜ +endstream +endobj +161 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +159 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 161 0 R +>> +endobj +164 0 obj +<< +/Filter[/FlateDecode] +/Length 568 +>> +stream +xÚ­VÁnÛ0 ½ï+„žÛR%Ê–¬½M‡í¸z§y‡uŠER4àüý(KvlÇNÓµ'š)‰ï &œqNIc¾’ëòòÖÃŒ"åšhÁ´ TÓ9)o~E”þXPÐdQ¹©— šC­ìËk½Û=m7Þÿ¶ùS?Ö¯‹ßåw ‚™¶|å3„(ÚŪŻvÑøí:@ïµ}¨!Ó>ayåmÉØ&P-â*ÚW‘­ð²±¥7m$uQÿÇØ8$êØ¢O æËþiªk|¢™ ™2&¼•Öy”6·ãÎײ±3U¹v=`ÿÕ=Ž©•ëÉúîo°=eïRo” Á×v°ìŠZŒÆ¥ínMy8Ä—zÙº9(3­o†É7aRŸÌ$s‚IÀÏ`Ònûü·®¡Ò½#ÈÇ F ¼Cöb}ÿô\?\ÌT€¤L‹Ÿ„¡êÊRÆØðbc$°Ùb …8WTÅXT*nU’8$r¬§DÆEÁ!?ßÚ ’"÷Ò‘I—IÁ £:ÜEOBj‚Íž÷i/§dÒ®Méæ·†÷ôþ)RÀŸœœ¿Çpo—W}9Çrø¯!Æ‚]*o•kö­g C[Úù§ªšâÔ¤gÞ pÙ±îfð?C†pj +òlÖxI%Ú¡ +m«@Û©ÏŽ•÷±7LÎ1ÀÍÑ=ùçÎJ…%Yc³þ¼¥ÀñäÁfÁb~‘qÇÍ/oóî·CäŠñ3¬(šÃ¤ÇtU~ùÁyK +endstream +endobj +165 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +163 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 165 0 R +>> +endobj +168 0 obj +<< +/Filter[/FlateDecode] +/Length 662 +>> +stream +xÚ­VMs›0½÷W09ñ©HB(3=اÓSz*N°›Çö$™þ÷•„Yj§= V»ÒîÛ÷< ôÖž^>yóüúNxæå+#À‘—0 8õòÛï~’Ü á˜úfuPùt(üº‚A +ý¨±>%õ± 1lŠ`8„9ic ¢5ìxp\÷‡)ƒ±ËÀùz B@X©§Œ+§áM }"\Ó ÁL…Gœ5n‰™cp+#‡a¡ڛ̺ ËÍxª C‹ ÂaÐo8Ñ 4ôµØäFÌM†…P«~·ÐÒ+6(â‘Z4¤šdw»¬¨6ÆDO)áô =¡UwØ{`Q}'¦«ìL`bÙGúÌtÒ)tRrµr*ž¢Ÿ”ïfcJÀ<“ ç‡}uÓx.êýKõúú´Û6oÕºzjä¢Mª«§@˜Í¯í&iv«ÖÀOSÙ=V˜ˆÆáæcÛÔ2¬Ã¦Øh)Ãm„·…¡K¬Ìåfÿ«4>a˜FËê­Åh`˜¦<•J˜Â(–Í%Psœ¥ŽNM›BÞÑ´ð—MMNWÊÎÚË@ö×–±Ýe]í¸dTñG»Œ€÷Ѐº4 6 Ëz^w›ßUaèâ˪øK?hØÕª|ÚTWcÓ‰«Ùfñm+q(º°0œØ¢/vBìLEPè*bÞ+b¦#©)c{p’ÌÃu«†è§¾…q 2»äYf#§Ú–Q´.ŸŸK™X¡ÿÖ 6>sSI#5GµÄ¤ääï§Óß‘Bs¤¤Vƒ³rv†ñaBŒ…u}§„îøÚD-¤Ípý¿Îk.'ÓõîúŽv?sˆ2qÉL²LŸ”6ó{‘ø–D^ +endstream +endobj +169 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +167 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 169 0 R +>> +endobj +172 0 obj +<< +/Filter[/FlateDecode] +/Length 248 +>> +stream +xÚuQANÃ0¼óŠUO¶»ö6¶kŽˆÁÌ sÕ©"EqÔ Ôüž“zòzggv4 ‚ ž;¸qëË­W‚‘ÜH`¹Qàn_c”¡ÙbN\߆kÊ*RœÚcèº*6éß|„C8ÒW÷˜”ÜŽô"MHÔ#ŠnÀ§4©ˆåoc¡ÕÅú3x÷•Èúìäé|HO~ÿqq¡É¤2Šøï}g1&…dU¾Uuد.0Рµó,ž›s ~¢eœó¿ÆI˜yr@=íÚë%ÍÓºêÚÄôä½I{½SÓͤÒ|k€å˜sLÉnòA©pW_n§v +endstream +endobj +173 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +171 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 173 0 R +>> +endobj +178 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F10 +/FontDescriptor 177 0 R +/BaseFont/UOSAHW+CMBX10 +/FirstChar 33 +/LastChar 196 +/Widths[350 602.8 958.3 575 958.3 894.4 319.4 447.2 447.2 575 894.4 319.4 383.3 319.4 +575 575 575 575 575 575 575 575 575 575 575 319.4 319.4 350 894.4 543.1 543.1 894.4 +869.4 818.1 830.6 881.9 755.6 723.6 904.2 900 436.1 594.4 901.4 691.7 1091.7 900 +863.9 786.1 863.9 862.5 638.9 800 884.7 869.4 1188.9 869.4 869.4 702.8 319.4 602.8 +319.4 575 319.4 319.4 559 638.9 511.1 638.9 527.1 351.4 575 638.9 319.4 351.4 606.9 +319.4 958.3 638.9 575 638.9 606.9 473.6 453.6 447.2 638.9 606.9 830.6 606.9 606.9 +511.1 575 1150 575 575 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 691.7 958.3 894.4 805.6 766.7 900 830.6 894.4 830.6 894.4 0 0 830.6 670.8 +638.9 638.9 958.3 958.3 319.4 351.4 575 575 575 575 575 869.4 511.1 597.2 830.6 894.4 +575 1041.7 1169.4 894.4 319.4 575] +>> +endobj +179 0 obj +<< +/Filter[/FlateDecode] +/Length 192 +>> +stream +xÚeޱ‚0†wŸâF¸öJ[©£QLM7€Xt@1€aóÙ¥`4ÑåþKîË÷päÎ0ÅÖ–¥Hb,ÁV  — +"-|ØM\åZw+]ævÏRö¨D“@$šÈŒò!þaH¡4À§û%Œ)èûûбa°ìðÆ"ü(z×ÖMDƒeÁ~»HŽé·èùW#¾-®UmqdÞ&‚“ë祩;œ?¸Öv$‚HI…frÄʰµ‹y|Jè +endstream +endobj +180 0 obj +<< +/F6 31 0 R +/F5 22 0 R +/F10 178 0 R +>> +endobj +175 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 180 0 R +>> +endobj +9 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-33 -250 945 749] +/FontName/NFGNHM+CMR17 +/ItalicAngle 0 +/StemV 53 +/FontFile 8 0 R +/Flags 4 +>> +endobj +8 0 obj +<< +/Filter[/FlateDecode] +/Length1 714 +/Length2 4130 +/Length3 533 +/Length 4681 +>> +stream +xÚí’g8œk»†ÕÁˆ¢EBÔÑ{I¢¢afd3ŒÑ{$ ‰Nô=D´ :Q"e¥3Ñkt_²Öþ¾}ìõí?ûØÿö±ßçÏ{_÷õ\ÏùÜïËÇmd +V…¢`Zh,!*¡R¿o"!’òñ©c`,Ò€`aŠ  ª· HR$!«(%¯() òÔÑþ„ËC,H@]ð·K¤êà œ!(Ð}ö!ÌýWˆ3 2E;#`XQH‰™üÞâ2yÁ0>0¨((!‚"œ± '˜ ûͤ‹‚£ArÉPo¶|`¯_\ _œ‚ _”P4 +é‚Âà@1ô¯Ó`¿XþÇXÿ Õßõ¼‘Hˆûïøßsú·6ÄôÿÚÝà À0 êïÖ°¿Øîào÷¿wu±$ÂYå‚„Äÿ’^Z?Ôu~‚C^°?u +úwˆ_sûAÌ@KÛ@ç¾ð_Ÿô¯¦šù{ü+ö·ûÏZâ?ë_ãÁ ü@6â¢â⿌¿Ö?ßìþv˜&Ê E \@¦X + +Á@ÿ%ü;”šÚ/,%Kʈƒ¤e@rÒ +ÁÿÕgŽBxzÃt5@2âââr +2ªÎÞ …ýó/øußÖpįéÀ`~0g`zÆ5±ƒÈ áÇý6<σÆÁ#àÇÂT™Ã毽ÛÔHrÑQ×§OÜŒöÇhNÖŒ¢Sޏî<{r_)¶íоÓߟ½|ŠY>Ðl3 X³þÎXkM"Öº ‹þà`ó^8G&ОœnzšƒõhÙéæf«;Å +i‡–[ ·ô½_|¾ÔD¤èŒ×ôÕ‹Ît8¬ ¾¨C­Yý«$ƒÝI=¹0ß» 6ªÑq[°èÈP\Ûb9bˆx·µsbžO8&þIHêg.ÍX“.¢¬äYÎø²½DÖùÚÛWæÉÆ!5T»÷Çe•Je²4¸0êjd$#OQa<öÜ¢RÌVX&Œšâ©Á½N²pœäœ‘†¤iŸÐ rc•{ªf%™q‡‚Ÿ‡H}Œèì˜KKªIGdhõØÔôi¥¼wÓÛãÐNÜ|bÏ“!/¡®¹Uá¦}/Ö;Üä"|½y›‹„Ãc$îbÛû¸ ¸Tu†FI¿ƒY²–S¨ñvd¥i™)‡wD‚?^ÍêØP*<¢$ñøaiöƒÙ®¹ 2¿Ê^I•"Ô÷&*¯Ä‰:®öŽ›Qü3uÌÁÏÊ~])ù1ë”1 +poýYý ÇfÀð±2F4Šrô‹2gþ'Ú,ØÆ("ø]ÐììÕ +¹aR:©! ×9Ì&@ô˜”_y‚ʨѣ݇Âsé=W¶ÜðÛ¹a8&Ê6½Ðàu“o/¨V©Šiþ(”u§O ¹ý°ßtÃuÀ÷䎾Ÿ¡ˆˆbÎÕ4éñ?ˆfšßÞ•[l;ZHÍ–IÖÓ§X  ³¹ˆ¾¶Ý¶¶{ëë! NÐl{|Í}&Wwç“ÏИ ´„kP·¶Ëy +~Žê‰þ^qþú‚—~ªY­âÆ0†nþ|4B6;:·ã”ì™ÑŸ¥—yÞbõº!2׺êräòµÌþÇÅø®ÿ ¥I‹©[GuÛDk´_y¥9’_›.° ·bZ‰D(œ…“ò¢’ڪť]nà.CI¥±ÖvTP·:’@3RC9·lªiïÝH#Ágää½Ú×:Æn‹8e¬'¨õwqòÞžxik>ç<ØŸÒþj®G'^|[Ϭób w!݇5ø‚7¶•Ý È¾»—Þ»¿"ÀB èZV‚t{Âe:^Ô9—¤ÖZY¬[GÐåËLµ^³/‰þôßdxñî¶Eèð aüD›E?žÙ6«¢È .ô}çîm¼‚ÕG¶ÈzHnèvžgA–©DðÇA£zšäÌYÛG¯ÛøM²Ö£Æ¦ðý¬·“§÷$§Êæˆ&jøÏaÆÆYØz)‚Ž"xy,¯jù©á} (þî˜ó+ÀsŠ=âm&5*KýO¥ù’ƒÝeØ”£@ÔwP¬ðR:žœÙéy"h~Òqí¼­¶¬u‘ÇQŠdT6ލ±ëpö½±†»8ÕMJHÌmåIb»ÞBBàjkŸáQ/Æ™³Æ!çr:чR½p,¬_+ˆŠjûê§l~Þö>¸ö‘"‰3hU—”±µ¸h×RSÿê{1Œaj#?FîÊÉçxYZ–Û ÷ÁõØR¯7½–ìHþcÖô‘­­ÜÀ‰úó¡HßÁÂi‹Ðöû‚ŽÖ-c†MQdÊwéÌLÂù:’¾)IöXo¼®øül†w=ª&?ÏÏXÐïû±&{»õÚx ÷µ#ê5ÀâpÐ«Éø«l6^¯¢¢æÀ0hïJЌȺ%« M^ö{éP-$i/Žü‚@è¹QïU½‹8°ã«WÄpøÃ“·>)!/É͉D5øµ4ÀöÚ¸6>‡=ÜTçL°±`+;Å^aò.Þ®gSÜ_xúül€š¬yÖ^¯ˆ.ªÍ¤jdaž#°«Zô»Žnc‡Û-½ÆÝÃÁ ¾‘2(†ŽŽÎÍê<>pãžÿhY[““)± ­b1;‘ ܇…ú Ôå'J#tÏûÌ„dú•f=ߤùÍ[^m•k +jùí6ò"ÜÜÕ±ÞOóHet=ŸÁ rØÐæòIh™©Ý^ÕÂ@‹áÕ­Ÿƒ=€Ëe ÛôÍ+ØÕx#BúÃöÊI¡ú‚ð´Ñ<-Wƒö53•ÕõGd›(ç.%‰ùUýøÏydIÖ‘ó†(^ÚÁ¬$Anúä•AOs&³dÍVá٘\Í\Àµ]Ùšûƒœî*€Ã̬è&ÿI©Úœ GrÒùMl–!ŒØ“XÙB¦ûêÚÒòœ&Aû—ÛYßÜr«mâ ©àLo6×¢õÀ3SFü1 ½»}á×-…<¾ƒúÞ+”òÒÏ[r˜y¥Í³é™JF §(›íÁ%±+õ’WáÞ ˜TîNÌ+U…XK’.E™lØR!7k–šÖ°äLÂÒ|}••6ö¼2’c™Wèh¤“]Ù¢Ñ}©¤ G‡Ç7~/ÞeÊ[=USû0>P$•tIž”‚“ê'úNô•ëìY„´ÚÆ|=ßÌÞBÍ<™f7lŽºèÊB (ÖLåù 'S\®ÁáPCV2]GÅëßX0—ä#uko(+ÝîÿÔY\™Ç1àpS¬›Ž}³½G‚Ü>Ú©§/¨cPn£‘ „˜ø¹šIäÑ/Wè×Ä*1m³®,"Ö¤®šä–ÆÁE !Þ7ÓGü˜¯Ÿ¬0¦4´•-!EŽ˜Oò„¸lð—„ù÷|gC~W> +ЉY)³Ì§&àæI’XÔNj-¶#{€}36še?@/¦ÓLÃ~øÎ/ÙòǬI÷+®ž8&.:µC.ÏÞƒüeµE(›è°×ß”ŸF+Í;?LWµÿÒ»þD”N?zÎ_²ò­4¾“N„oÕÊ1‰GàMö(,¨ 9ŠÁdû^Ž•“÷}Íi&íþ¤øoWO^%$$?Õ^_ì(&òÉãCxó÷6-eu×ÌÑSqغfïë~#ïßiK9G-|­OeËNäÚ=H4I/ 4ržœµ¤MFk\4¹&Š;àžç ©úZÀ¼Z÷Pât%”?_䤖XEé$–’¦Ç®«n+t WƒoÃÎËU¡sÚ«TóºèwÒù Ò4…N6E«qÓŽ¶ú¸£Pz¸½óMKWù±fË’‚‰µ]Dø¶ë&Ýן¦úÔ«uø0Úbhéå…Sš'¶Â¥ÂkùŸ|yyÂ¥½ªè™Ã[ÈcŒ öí`^»nBÁ‹‹Y]—Ñ•ŒÍvo–h$e‹qh]£’b ÇåxXmì6ˆ&ä´íHxiÄÚxc‡Ó +N½l¤ûL6¨ÕTbâÍ Õªæ¡Úÿ`î\¶Qé¾R“åÉ Í=†"»R½nz4{ ¾e¥þSdp?“v‚öëÏ· ‘'ò©›à᪈ÒÐkôW“)Ìô¹ŒœÀlàK×íoA'}ë;ÁŸ+^×A+TŸF—¦Ô>¦èƒõB¬Ú#‡Ö~¦TÖã²dg÷ŽìQkÚ^5.]È2ù¯¿T)Nq»å¨¦ÇöÖ®÷¼÷þÉƒÇæÕ¶ûñ–üœz¶åÉÛ• Ôlzc¾†EŒî}û‡:D7Üô͸â‘Z–,¶¹ž˜¢MV¥™ŸIŠˆLCÜ)ÌQ{ +™ ¹Æ FžÉަ©ôIæ+Ū]´hf+‚Š4¿‰ÏÞæRì„ëD6›¥îº.Ðû¥U~zƒÜ²V™·eðf ±†%Qø†¸ä“´@xýðù!Ú?þp±GSž9-ÈUlJmª¹®IwVž¼àÁÜVÍ ðŠæÁYTUL³Ù›ÏÛ”gæžôˆµsd‚uVUž³†»”~§0m»o¥hVºV¯[U%ç9qÃL[ø’Xi9mGÔßÊ\†Ÿ¤Èí]J¥ñG5}þ*Ý©ñ£ññ*®=ˆˆl€ðˆü<Ë1¡ö«±ôDL¿öøä•éb£‰/l.&LsÇïǘŽñ˜v0ÝT!W¯ ðåøä;¨æF jzÍË+¿KиÕn+ iŽÔDóÍêÀàþJæ{.aLk.ê$h­ë‡Ô9á<$÷’”õHÑ™‘—…²#á·L|ÕPw-g× +X_û}y¡Ð?T8ØWg߬x’%p#ÿ ´‘¾£µS|ÚX>Ôð¼¨möa¢Û5¢Îé{©†^~]ò­Â§aÎ «Ç/Ò“vz`*w¥¤.ØkOEƒ¼P /nž]c} šNÎAwF\÷­C±»£‘&æñøÓÜ4ºýmcõõŒf±¤&5oÏæ×®kzo–<_0— 5‰Ùë¼k*ö¢#ûj>¤æÂÆF„~6ÒQóæHÿÑÚe/¼gY !lÂ=ú™@L—×d7,eü&«Û®kѨ˘aOÇ@,HçÊ!¦Z÷ø£ÄrÃëµ´ÃïíX9žO‡à—ÕS±%êNÃNöÇöî¦éæ% 8sŽ ׂS®e +z‰ºF‡T¥Ù0÷Þ‹»’¬lŠ1†~ÕBíϘ}º¾?VQ|7#Î%WîxÍbθ$ tIÁš‰íl“¡pgÃ#OB£wŒÈlÉÅQziB³– F$¹Ø*÷fÖ#†q"’#ï´]I8È Ú`Ï•g-ä^·òÛ]Ùß?!|ñçö°é™KË;šò¦Mgë§t°Ä· úàè·œa}'¸Û ¬pd;¾¥"©[ªóRýRò€O¿÷æx¬GdælêþF‘>zŒrËKøô1×cæGšQãVV&‡^WÕ‘~nUJ–§Žjª<¼!ÿFý2²-€º=|6–ýŠ}ŠH–ž‹áÒcÖs­ Œ?óyÒB7#TI(ÌDÃÇŸ¸uÄp|äO­ Ê¾AÞè%Š:V<6ÚÀàòq#6Õ0+³/²*ŒâxJ[üùÿ?àÿD€3Á`ÑîŒø,?dÙ +endstream +endobj +12 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-34 -251 988 750] +/FontName/QIVRHA+CMR12 +/ItalicAngle 0 +/StemV 65 +/FontFile 11 0 R +/Flags 4 +>> +endobj +11 0 obj +<< +/Filter[/FlateDecode] +/Length1 714 +/Length2 3898 +/Length3 533 +/Length 4442 +>> +stream +xÚí’gX“Ûš†A‘:„Þ6%i*¥÷"=$)CS]º) +A@šÒ;Hï¥KADA”¢ÀÁ½çœ¹fŸù3×ü›k¾õç{Ÿ÷YϺ×û}üÜF¦bª0Œ\ ƒÆ‰ÅÁŠ u}°,. àçWÇÂ!8­ÁÁA`0HÕË$% ßT”–W””øAê?,ÂÅRþí’©¢àX‚éCp®pÔe‚™b 8ÎORE"A&¿·<™ÀÀ±Þp˜8ƒ`(äwA ¿™´ÑÎÜ_2ÌËãŸ-o8öÁ%Hè’StI à‘~ Ü a€¹< ~Éò?Æúo¨þ®å…D@P¿ãÏéßÚé÷ Êà Ç‚ô108ýw«%ü/6}8 á…ú{WA" ªh$$ù—„x …ð…ÃŒ8¨+È‚|ÿS‡£a‡¸œÛŸÆÚ&÷TEÿú¤5 4ÎÌÏã_±¿ÝÖàÿ¬/ǃEø‚l$Å%%Á—ÆËõÏ7»¿¦‰†b`´ ÈAà XØ¿„‡RSÃø>“–‰IÉ‚A +òò 9YÉ€ÿê3G#<½àÚ YIII9™?U¨ Gãþü .ïûÏÚq98ÜdÄpˆ:´OñX6ŽLZò·ŸÉeßõïP!¯Š¿w‹w7:˜¡>Ý2ŠM;âRެÄë+%´Ùwùù±–,Eœ‡šmVKã6ÄÆèk­¯H´}ƒÇ¾q°©Í–}dõúâ,çѺÛÃÍR÷sªß: +±m˜©þ½ÞD¤ÒôÑMÍt8ª C¿U‡YÓ3ûUHÑ B¤ÃÏÍ÷UÄÌ'jî¹ZUåÕf‹³¬æeoÜ»wKéÝGÿ€bª‰Ga®Md­:# )o ™íCuሧ±îÛ¥JØRhgb ÚĤ‰§6h阩œùë_]³Ï¿‡É»M“F’7Ÿ®Ü¦JY U*ù{?dµê÷»²c†ÎWÑP9… ¤Y†v¾m)úÄÎØ»±çYC*åA°¬MÕQzîÆõëšiuÉì˜ëWEÁøÉÝÙŠð±cbd&EÄm^˜T#¢Ùd—«^³=£°èèj}¿(/«×vfµT„`[œ"“Â$š¥2µÿ$‰O=Ÿe1õÈĪ36óBö øÙêQ¬´ó÷]ësZæÙ~ÍŠÉ“ü+`8sŽg±>šÛã[ å‹úïZ[iÁòú9§]ÕôJõÌÍAâe¯"îãŒ#÷œ«9®áý8 ÊÀíäs¦\nè†^Kê‚]…ó^>ø6*RË‚bHE‹~eÇŠ\q‡h½åôg[fvûT»ˆÌݽ‘ŽCXp§Œ€­À¸D9¼e¨¯‡óÇö²(™`bz²¡2½cú~,´Œi“ÉÞ¾Y…Óeœ5k“žÐ´ßDoÕG_h¥^Ž(e}”æ`zÁ3¶ ´üp„©tíÜÝ¢¼úŽ:\¥YP¾©Û)í®¤Êk~ÖÒ,õ€3ûˆÁ‰ü"n$¹ßÕºp­%–­¼ýl ªÖ=¼ »Z>£·ÁqüX‚º¹ÌU%ÿÄÒºö“–¼¼BÛjÕŒ™õþ½W©UòF(«&¸­©”–Bt»4Bë=àÚ³”ë?õÂݬ²*æõ:l›:ÊýKæ5 o tÞé÷[®;‰q÷•ÂiØ—V'Bãäþx"ä%£F^àCð£fµß/ôt7mI5{>Ö-~SÈò`}sMëÊň<Í~fªLóDý6}7ñë\+19~pSÄåW”­º°¦pekò\ž‘Š0¸úaŽçK1÷'áÆ OmÿrÕ¸kò6Ù|Ë6E½1¥Ý§ûBûeÖ½ßDÐár{€pu’l¶qáõ<ˆó̓¼íäµl£2g›£f·" ôçÇaÂȲÙܬ®Pmar%ôkb ˆtÿJ¾‰Þ&Ã¥?Gª{9(ÖæE|­9”ìixù£?ðx×ÝÉô«Ú¬¾Ú@MÁ¤i#Q Í8º1Š®f?¿¾œR=2„ò±géïð¯W’tž?œ[¢;3ª¤gÚáz¸ÝÔ»ë#·<zS;V%%aè\&Lsjx\¨êàÌIªƒ(eîšÑù÷åìÄ*9jwYîõD½—âK~J?-9ü6k–Ú}`5éÞ_ +ÞY ±\Åél7&…ŒWsèÜλªI +/˜ÿªÂÒ¿+7Ù ®;Ÿ^Û!”-5|îòÒR9Œ¢Àp»ÖmŠnšX³Ö}"ܾù`ìA«ÏÍPÇ{ı)ãsÑPW1þȨ/™Ýç&) ¦,ëÑrâ^°úëWgͰ^¾7¬18Šzmuú³´¼,ݸ4÷est¯¶œáóPÕ(ê⋟6‡OVFÇd¢ q˜-„m‘ +ùŽeïM#8Õùa ž)V0ÐÎÇÕ+“ S(w“ÍK2—a÷ùâÔRÓÜ~§Aq€Çèç2m¶hŠ!ÁNÖþmÏ#ÿ Ŷ;S„câDDžÀj¹éÜÛs韧 €»nXwë.¢P'Ë„ 0ÕZã3\·1‹õSk\Y Älør¥,Å®RñO¬9È: ’mŒÎ"(¸t{oØW3ÐSÜB£^GCô\k´W ¨L»>òÙGïw´™Î¤ÎnFk—Cã”÷^z“}!ô{öA1OòÇ©³€ãöà9õµ„nºà•bÝER§mÝÅõrl[xÏ]~Óë§æ•qe¨«¥Á‚-ÖÆ&ƒ#]ìó®ŸòÊu4®½HÌò°‹ŒŸ^Îl„ZiYW[zõCOš. u‹yüÆw³œ^¬¢Æ·{.#-ÅçªsôkS‘Nv¶y°ê8Dáü'GXQý<2vdÅ^îbv4SµÂÜj¦lÁœ̇¡z[ÃvWîgˆ¶ÌáÍAÝuÔþxçššTgÖ(¥,²ò{BNÿ’‿'~~Æ: l¹Ò¨Q£]¿Šæzj@»‹Yó-‹W€19ÊwÞ;<,Ö¶vXÏî±T.ia&øëÙzÝ\áþ…¹¼ÞŠr¾lrwǼŠgg‘ðp‡×‰g‡PÒâ¡jÓQÈn"6(#gs‚œ7Œò\9O`¬JÔ¯äs<ËœŒ\Õ×;Ôæãe.ÞÓ& Éé™ ñj;Ý "&/Ê£P?x,Q“•]ôù¶w9š£‡ÉŒäf2ÇËW;J©Ãèéž¿dß’íNt]rš9jiëš'÷jºU€¯$Uì³¥ûÞå6¿7¡¾bÒA÷>Ø’ ­ÊbL™d…Œ—ˆUIÍݼŠ_*ÙV˜ö™²O;Y$ɢԉñu±ñÕšºß-ê ¢øåÔ|vkëy Çž{´´ÖØùɹíO:ëIÕ Õ´ŒRšµô–ä'‰ÇQ¡+ Ïs릶UíØ±= X%T®Ÿ…¸<üI…”Jk{lk–V'5¨‘UUZØ­·(kEÓ"j„LÆ2¸ܸ!èíòñ¬Ø=õ>¾ç'[Å!ÝÂÑlWÁOUrj•>sã|Þ{bƒ½Í{'€&û@ÏÀçÏä“%_lÁî”Õ¯v¬¸3ZúdëZgƒ>™dI'©äÿòüÀÿ‰(Áâ0(Öø{×Ý +endstream +endobj +15 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-58 -250 1195 750] +/FontName/IJERUK+CMBX9 +/ItalicAngle 0 +/StemV 117 +/FontFile 14 0 R +/Flags 4 +>> +endobj +14 0 obj +<< +/Filter[/FlateDecode] +/Length1 713 +/Length2 2095 +/Length3 533 +/Length 2630 +>> +stream +xÚí’y™¿í—‡Ùxûtô€+o¡’ߣü†_|ëÙïJÞ²%®„g„ë(È¢îžñŸ÷'Ü.{»Ö].‚È&ÊYˆ½Ì㤿3zv»K”3ÞP†º,IpRùOLü„©}0? ß±kÔŽÛU®n!©Öep,Yõ²úvA¥å®Ô=×0F×µN<«^læqKÛ²À©ëLÁ й°Ö\s¸+×з‚' ÕŒåkS‰»,Žñ¢+Æ7À–ÁLŸH9–7ËC$²W—ë¥g…z{*”,¶Š +2‚ký>Ñ ÝòÆ9&?+ü°-QÄá ¨³ÿˆo«ÆœZCÞþ"ÝÂxnq¸DÞ·qççÆa–¾fŽé +îÜÀä¼AĤPÉ›9Ówû¬k©@tÕO­v_½Ìk¬æ'‘Úõä}9å¦'‹òšÕfMtˆr:¦°Z›L3h×óÅr-²}¿HÔcÄKwÙ¿ªàJ©.CÑ÷2ËÔüÂüs m”fÞZˆZ¾‡n=ÿÖCnâl™u;ïñ|d0ØÕ¬T‚±µc—³æƒÞ?½1£Õ-ÙE«ÛÁí¶ÖótrTÔÇGŸYoÕ1ç3Á•[F[0Mž•Æ*‹öåóˆ6L~Œ8¤þ®ÚÐæÀ*6ÞåÂ0 Öçôµ´Û*ßÏHÔÐ tE@íØs§,7©®íÈ´µÀ‹v}³½Zœø‘ûWŸèú½M 79:ãÍ.‘v‘0žòܦ¶<1;2njÞ0q›/Ç®fNEûÏ‘Jp­žÇÓ‰'q5o[RiŠØé¯ÇÜX=ÔÈÙsÝ· +>rÒ Êß}ºp=_è¸e¢Â¡ôÔÀn¥¸¨âž_çkƒN}l Øb<žR=„Z¼Êœ_ +‹ÒöœÓ´R?š²÷8Ãüj4§gÖ~A%5¨´ÙW=á©•‹…~›ô†”Y™U%O¸ø§huͨjŒðI^¦+ôu£›B}SÆëï†Ú8b•™êÒˆA·I·­$XŠ^Ë-ОÆ×ÕguzóTi\¢Å-/Öªi~ÈÆõ}N¹s–ÿ–Ó¹ãa!ɤ¨;CȽǃ>ÑÒÓ¥ü„šÄœ>:ûB쨺22±ü _’\ƒz©vb>'åv%‡'Ù|鸠F9-åíû9Ή­sb.8,uןõ_±‡;e×Mt×ÄÇ2BÂL³MÛM{‰ú¤:ydÂ$;ÚxŒP +á±Cc±h9Ñ»¼ÂãÏúS üE¯¯§t-$wB“£Á|‡Fb ¢Ã¶ÐU³8”…eXP¡py´Úz£ÀÕ +Ĩ»òÍ:¤#òìdhßhÕÚez_r3V§xG&Ö:Öq•sâÐ:0Âr‘/î&½Å‰L¢ØòûÏÜ}袑-,ÓJøÒ)àî})lÝŸÛ»– qïôˆõš[-vH“Ÿ~£„+˜<ßìH»¡ò³œe«¡°¦÷ªKùÌø)½È^däNìò¹d˜a^í ³!'Ú­”˜á«äÝԩЙ<.À0"DOÛ'ßgÔæ´çDQ`é³=¼õX%AáæÚÊ[ÌòïÏgFùRvˆ6é¡Z©»#úT¡£/{‚«;ÑIôÃ)WÎÁÐP~‘mOúmnu*vz6äI8»PR(ÐÚ‘AÌÙª÷+l°Í¹}ìèn]ú%û®yzÅ%¾DÒ“øú¶ã•a„n¿{ƒø>¾üíZ /ôgOÕõZ­ì7ï~ÛVlÙ*ëÄ–í‚-úÕÁ„Ø/¯¾²Ú¥núñ¾°à­ì€ê=ӵ˞â{eê³ð^Î:l¸ÍZ·2m£¦Šçá ”ñðùy¥#ô”xíQm‰ª +¬Éñø~•ÔÝa?)w¨ÙÑ‚æìCÀ ÖLÅOPûóô– ûšt!ÃW³Pg'‚äK-¬-þ•‹5ÿÄ“!fCbÍÜþØýôûó}¦ñÙ¡þNìß[’ʽœû +æ^až-ývÑLqØ0íÔÉ8˜€µ›dÑF‰Î FRXÿe_aÄÂŽ=Ôy¯G6ÿÆozãÄrC#<3¤å‹ïÉ\dÕ•uFg§ ªžõEéBô¾›¥M½´¾õÄ÷{¡k{‹.›'ˆ]Ðį=Ý £ãx"¯èÖ±g2?Üi‚Iè˜ïÊ)½¢"@]7òJ“l_=VeÊ‹,^Mœ†]©aê‘“ LÙ²[ò‚'®¼i¼ixaE•i¿§¹¶ýÒÈ0Qß.ù‹éoôŒ›q8Ïfs]ï'>Ã>Œ>Ƴ\j ßÄ”u«Ùò_ˆ Ür¡¤¥¹+—s$êvÏÕA¥ÖB©ç,DOå3T»=¢èÓ†Vªå „Wò¿¼àÿøŸ A ‘Πùé~pø¡RÁ +endstream +endobj +18 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-39 -250 1036 750] +/FontName/GQPUBO+CMR9 +/ItalicAngle 0 +/StemV 74 +/FontFile 17 0 R +/Flags 4 +>> +endobj +17 0 obj +<< +/Filter[/FlateDecode] +/Length1 712 +/Length2 7662 +/Length3 533 +/Length 8215 +>> +stream +xÚí–UT\Ѷ¦qw $ +—B +îî¬(   pw‡àî‚$¸;îÜà$psÎé{{ô¹ýÒ£ßzôÞ/{þóßÿúö\ëa3Ðhh³KZÀÍ!rp{v..!€´ª– €‹„ÅÀ í1sÂíeÌ\ B.AA.€¤«€àâââÄÂbHÃ< VÖ.fi–¸’v'(ØÌ jæb ±û6ƒ´á`(ÄÅ“„ÁZÿxÅ q†8¹A,8°°¸¸P° ÀbµÇâü’¢½% ð/ÙÂÕá?[n'ç¿\濜,€¿”p{˜'Àb‰Å©ÿ»ä/Ëÿ1Öÿ†êßÃå\a053»ÄÿÓëšÙAažÿ£·spu8Tá'û·êAþ…¦ +±€ºÚý{WÑÅ KÚ[Á п$¨³Ôb¡u[,Í`Îê{‹‡ø;¶"pÊkjèJ©ÿ¹¡ÿêi˜Aí]t<þ+õæÖ\ÿ³þ;'¨ÀÄqý5þ½ÿóéã¿­%k†[@í­Ú.föfNÿ%üw&))¸‡7; €›ïïñðø@¾ÿ«Q×êè +Q”ð@ Aîª`W''ˆ½Ë?ÁßïýÏÚúw:ˆŒ••M +E4a£Þ˜^wÏÑ굎Ïk`uŸ¦óÝæ“M _`ÃP9lÂCm5®q5¢ÓÅ#jýT…ã»oû<=_W®’±Z޶nÝUÅì³O7 qvA¢[L ëù|ÞÆ¨økWù.—4OsC~K•ÀΑÅú¨Ý6!𜬻r"0Çä¶Íþ‡´…1¹g 7±¯]Oè³î/ v]ÿ™o +Ö†k€cÔ¹ý^"3îm¡%¯Ð0W¯Ã_Dɽñå1_ºZø,Ñí‚ðX˜]O^ð=TžŠ¢Ž¹)d‘m?Fɘ&Ï ¼«±;-„^µLef =>èÄ`²^LØÀ ~aLªßºÎr±åb^JÜ÷(Ì ‹ÆÊäø££ „éwà#OÏÈLL`R‡Ô¦‰Çæ ù!ð'ÉŠéj”Õ7ê˜â4>yûÞµ‡^F#º|Œ‹;(_šXYK!Í%'šôÅÈãX“ÂäQHDoÕ"ãDZ1ˆ×¦"6[Óæ#޾«RÛíøXN$X¬!Ó‡¶ˆ;uö¬˜´T[d{]+šb3ï5´¯%—@­4>¡¢/­ÇµÉiÆ>Ãuc#³µ€’ëÜF'…ýÈk ÜœUd4mdxFϹ„Šúss®®º·ÝÝ5 Î> "ÑF dìb×€Bæ“­{^±Iì$——È#0ÝFÿ‚ïå°!ZÓˆ«I˜+½MOoL‰ü Y³ÂF鄇;<ÍlVé^8·ŸiíHVÀß+!n¯Ìopƒï©3?jy ìiÂŽâÎg†Ó2úab¦&æV.õI¥!Èj§(`ñOe8ÈO6†Çf*ýì²jê%-ö¡³ÁøÉ|I`¡Ùýdšø*A¬?½ó¸“¦ŒÙ™\úb6Ä=Ó$®´«0|샫ÓÐSuÊÛ¤'Û“OC¶Œ~fAó$y‹u¸@ot¶©<ðÅ|ÑÜÅBLz¡ªÈ×5s?Þ¸Õ8u»Yçü¦4¾ûs/RåüÉà[ÖÌ(?óâɸf2ñx¥äC¶®ð2ÐpЮ°{¬Ý¯fYðÁÙæ.”'8¨/¿—{?Ë–G”ÒtŠyÞmT;½rúày¶*zÅ~p·;ƒˆ+äÀÏÆßÈ^öHy»âòžêdP-…žäD IŒÚ…=¤Î–ÊÈ¢Ih·Ó@Ò ¼2Š35WS™K5û󥩖GÉF²æÁ["†*Ø5Á¯ØW~€ŒÜ 6ƒdi5³øW˜Ž¿&'´wÃ…°RáÒvSÏ´UçšXu%ýÕíœ\‰}*e<ök~gø'ð«V¯ +óóH¾hÄô|û§DsE{$©pý¢”‹j8ݵð­JÏÌ(}k°=ѯ÷NbIö}t àºï$¥€$Ê´.#2ÄA¾K¯#Ï•|í*šM ߈µO~ÏÕ‡ÈxW†íÕ¦(>Ôq25¤„ðh‡ÑAÐéÿ`R9›?|JþC¹ÍÂ7ˆXp6®gþ¦îöe¿’òì`ɤ§¯ñ³^›''À8s4˳+6n¡&xâyrH6*ÓRÆàUˆÓòZ¬@¹³nQzÉœ$ñ'Ï+@ Y»¤|ü¬\ZÃøï•Â\hðî‡Åpî¸+ƒÄ"i*è":Sу2êðäã åhýdNõrz*ë‚ïªgc"òP÷tÒ#_Zo0åœr-&ÍÇŸlš­,ksÆ‚.sE¿;Ô‡è_´$ ¯¼°a‹øº“ë@ãæ +N5&nOËÒ¦bìÃ.±+õ(óÎç4£˜6¯ ¦œž…ï¹è8«Ì´x +öŽjp'Ž¢ôÍîH”ÍYÕ¯ „ßÎéut….Q…óÎ5˜Ú{]¢âG°seµ˜l73tøÝ‡·^Ÿ·œàª%KŠ­³ú¹Ó#˜do»âÐÉ¿›½ÉzHíûP°2¹¤Æ)[,NönœR>%IíÇkOŒO¼¦ëÚ øÖŠ)ïT@ûÎ>Rz°Aè+\\2mX•%£¢¸;Åä»çü¢”§m7ç›—’òÏ¢çpÈ»\à4‚“„BD£še©D>’½ýBRxÎôÛ¥khiHóH!È4Ï =‰0Ïb=b‹åÚ+gžxUXMiñÓË!Íʬ²ß€e~,FÖ^{ãÒ”y-ÆÌÕ›9P¿-×­°–î—Höõ$\1.n%6Daì™l?ÓûÅá4M¢wHü a䱆§²8Ç7¾Æ[€ýF°ÌF4ÿ‘Pr½þãªg§$ï0hva¿¤ÀŒQìVˆ+ŽÃP4ë¢1° )å·löW ‡Í]gÎ7µÑßv” [Ro\‰Ì³[wŽŽ«`јͧ»àôö}jàWú…ÕÚç‹™ÙÁHô¤ZéE3ÿÞɃ/Ä›¡¡h ,ÚkBÈen”ÜX‘ezCͳí`ñ£“ÓÚWÿôé6C:©l™ÀËU&éβÅ|v¦u­é +>*’©ö£*cRëX²¾³Br¾òêLw´ÇŒPQª:ë&ZQ”äÛ ñ»²‘HµÕT¥ òH„‚K³fôž§#ÕñÔ–‡™T>¹¹Œ'Ø,tj ÿþõ6?=Äæé<¬Î}zóÅ_‚„WEžFág桪–Žô)ïˆ ‡S¹ ¿˜ÜôlF<çäs<@!É{@ZÕ¦òî²·kq,Â9íjœ,‚ÊA|Õô»½bÓé¬]ß#aÇ:¬#5¥!ë{uëw åáb=òS/Äéñ¯¢s ð· ŠJ£¬a¤ê»1{>^?S:›ËYï“á§ŠV1¥æŒUª#•wyB}ÀGfzç ^Çy0IbšD? h~UòqÁßÏÓ[buËÈh)*[ž†ò[Ë)8fJ€‡ ÛÑÕ=KD5I=·³¬®›˜º¬¼!7¬¯úÕ‚s¿ÑÛ±][:vï­wëŽ5<c *¯í/2Ç«„ÏÊôÝUÒ8ÐüûCûg+4£³Œw^ÜŠå¾”w?š)½UËï+µsŒ)º ’¶gÐsÓÁœD9¶DL‘‰7Ñ8—Ùü›•·+|Âx®œWÁ}??tHÄ=âCÅA‡¬+¢Ÿ¬˜fcTZãKöÆ=Äf–;ÈûÄ¥4Wq­)×'ãKBà ’ð™ëv"èÃ?1»Å“û $ܱ$*ûÝÓ¨èDןž•CgÀú· GwëÌÏJ['&_u0c Üo°¿T5¥€K¤ë C¨&ÄW¼/êxÀÈ,hðšØùÕz.ÆÎTãU;o‚¨œ7oOO}Ïòün ó—òRÆÓ•t[bú~ ÝÝK>¯12@ieZæëúUýË,•—LŸ‹Ý{wU´¨Q»ƒhhü=¯¿î÷yJsFfÙ¿l⦬Âëû[‰jß÷Œ›J{Î$ýr¦Ç#TJä8_6’”˜ù²¸Ùä79Ó×½Ø>ÒV"²E~.Üs-†GˆÖ {ª§Ƹ¾¤;÷büÑr4V„{ E¦ûº+=$¨j”ê$^€¤ÓœDqø›9i}?s.˜„M,?‡€”l ‡Ÿí$K¡ýAnïéy+Ê6%iywò}¨µ^>êî]øwVÕßUY2XøPñµ‰/ÖOf'Nof|¨B³$½Ù˜ÌÑÆ;W'j·PKd3’:pk<òÑ1ëŸâ™Ë7u0o¥¤¾³C3A%LRè,f2n iå°|ô}놆wð.„&÷˜F®à üÔTÌŒkÝà(Ð h¢?fNïç\­ÇËÄå™rWÞÎ’D&lÿa›!c‘OõÅu³@šE£OZÏd“[hï*´}®€ŒÇ†O5ì|'%Áo—Ç6£t¢ÌàÙƒã4ó3ÔÄF§åÝËÜÑQgvF_˜zXkqIJvûeñö5RSµDÑU6‹¸£=ªÌ´yű‡“Õ5#o¾²N'èU&ø€!vb¢@Þ Òz¦vGe©ŠÃN‚WSÂ-œru–íïb/+ÒxMM[g¨zàß‘N™T^ЏWJ%JG­ÁŒ¸l·«Këü˜ ÓÏs’Ö}g¡è¬ËéÑîþ!”e'?“°Cò¨FG­D_|\†Ú>÷oô¿îghŸ€50½¯øØ%}ãôDâþ1îÛ6@~,¾SÓ÷s4 ­ºõ‹øªŠV¸_{à\ÃèãáÝ|]H³„ÿ…øi2ö§^üp³¯ ÛWÜõv>cǾ5"|õY€Y‡`@Çm”kͨõÜT÷ÞØ·Z„‡é§5?–pᛃ·_½>öߪê°Q³lÀm.H‘IœOeA¦¯[K<[h]†V©·dN¥þî?óý§ JS…¸p&pÜëôå™”©´¾ +S-¹8I•ÈpUzæÍ¾Ój&⨎åËeG:››Ø.zŠå„®r>2str…µJ0BÎa2Áa’CSéC©Wìá +~e.nù<öî„JÓ,Y”X‚«D»º‘ó@ÚìH°Zœýcð,Ó]Óðj dŸQ²7Ðešà¬§eTÚùÚýJÉÑø-èÿòÂúÿÿO€a3'¸™“-ÖÝ÷2e +endstream +endobj +21 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-251 -250 1009 969] +/FontName/SCGRCL+CMR10 +/ItalicAngle 0 +/StemV 69 +/FontFile 20 0 R +/Flags 4 +>> +endobj +20 0 obj +<< +/Filter[/FlateDecode] +/Length1 720 +/Length2 4401 +/Length3 533 +/Length 4955 +>> +stream +xÚí–gTS[·÷)PéҤׄ‚t¤C“’!¡(J'Hï]šô& ¤I•^‘"]@¤]Î9÷yîxÏ}¿Üq¿½ãÝk=Öœó¿ÿë·æ^6Ð"¢Ç: 4±¼X,PÓÀ¢ *%š;ŠGb1êPÿ6ÿGF£])/ÀÄYaØ‹S™ ”âǨՆä/¾U|G½JŸê\)}yΤn×Ù};,;½òב HŠžx¦°©ý±u .èéw3*eƒ_´’U‡s©’g™TöÚÆ‘³N¥ÄhK±6êc‹gœæøÐ qã³7üaõ†Ü F3Ê1“‡…•0ãU®ÀŽ·ÔÑŸç>¥_†xë¹þ’M!Ó ºôp!Æ‘køú9tŒ#É[%I–ÏîÙ>#DŠY}¿@/(âb?–ëØ3Ï/§ E#…Hä}©£f­é÷µNRþÆ…ßôzæDivõ_Œø·D®ŠˆúÔ¹©’ÊÅŸ¼{ ¶lZŒlÑÁ‰}Qh[e0¥¾ýç«‘fëêÿyã]š×¦©’s§;’ÊÁ:§&ê]”^–­ÿN²‹™Ñ\f­¡zzFŽžA¿ùc®Ä¼´ø½øŸÌ© ›äUq]«¤k+ÒKÅ¿¹ÌQá RžN›€· Ç—úe¿3LÚ¦òJîT \$µÁøÕ߶ľe°¸“bSçÊA<`¿‹ˆ±¾°½&úqâ ù¬”d—2 •c%"Zp3AtËœ™‚(Wz»h„~åö]AP«‡èdšË±’Aæqi3½L‰lX’^ÄÙ©0ñE“ë›CZœ´‡¨:ŒÌè'Z 7o2v– ÄlJô(/õ1`ÐßJ]ô• é|r=Ã/r—?˜•wNŸ ‘>—É÷‹žDöœlZu†•'”‰#Ø.ŸqÌ–V•™×ÕåvR'ú$uCvê?®VžÇæ£ã£—r$`DìAú;jw÷wÑ bÁM–*`S2ˆuð©Ïo\îZå¤õÓ Óªù|Y8ûÞRàDer/I½-”w´ƒÈ²µ‹¹ñk œHì[ÄÀÂÀ&Luí˜ÃÍ—<ö­¼çƈÀ0/O=í ÏIæÝm¡ºmÂ^CG^-W9ÔG12)ø\}˜saË Â(_óå‘&ñ´‚_Êsv/Íj^ÃñÇô×Í)O§>]x™‡Å>mDÂRü0g"J©¿Í¶+à\æ)Íüc†bVöÐX·±à€Ç¯e 1AƺHÁ\H)YØøÅXˆÚð൘̠O7|Í»¾md;GöçšÞäm§YïMý}\çïãE~îË”šÕ=˜|§¾é=BÐdNóž†Ê}k5EBñÛ¸± +Db¿•N€ÄɃ91ì‰aû¹EæžðzÌÔ ðQ#Dâ%.hйƒéÉmJçö\ªTÅ—¤t)~.¢%´#³²k%ZEYèÅÃß_rª¼Û’CéI›º$-»[¾Ü/×<}N„#6©xOc¢§¨½ï) =ÒÕÌ«'e¨Å´w‹•n†Hd Áù(´™#q¯ü¨e÷Ò*Š“~Ç•ª+\?%ÝÜámrÞÐëTèø™A£àmø®g`ôWžøú‰)ÿÓî`H†Bì©ÀÜJE'e‰üβëd/´U +Ê›]òþÜÁyyäŒ<¤ê—£oYÆM=Ñ;(yè +Tëe *Ê­Kþ™ÂM: ’»š¥—ؼÒU%iå&K‹lØ!Kç ;¬ò.ºcêÓ«Ö!ÈAt¾wNzƒTôÅ"X5‡üÝΗ–L3¸r˶ª½€õæ‡)ÝÑe;×ÌÙßÝœ÷†pL^_ÖÊ*eŠ˜"iÛXw¦™§v#¹©|7ª G*§®±¼óü|§4P ÌÈ(¦ù"ÞÛ-Œ{cLg­••fúêXÙžš'Z¾ÂÃÉw²í/®ß_'9Cg :ØfEÇÏ|ŠM2^R|Î7Ÿ Ø÷2†ÎPï½VÈ) 8sùAæm#æ›Eâky„_:(°„œ_#ÌÀM&…¾¸ØÛߺ-W-Û EtcªÈ/€ïÊ´]Ÿ”½í~¶×Н³ýG„ aáÈ|E{Ohò;‚\h7׺ôý)#ú²µiJºƒ2À”œ¤þ-ôÁàjÚ£`ÂòmR¶´™ÓÆ®ok‹ó9å¡üb>÷{(új*G˜¢šÅhß±evuŸƒ%{ò>»bõ<¶SL»È‚üé=ú9l_·{hÉ|$9ùæ¼usÓ=ÁÁ1'U6€û2˜®×L¬”àÎßEn'+±Ûß#ì€pΜ2Ì—h|Ì+}:ëkó¢ûÀ›14Ð(ÓNÕ¬÷i°ur~$ó"æË¤¯¯ÄF9—ß É>$n{}Hf㩬¹;áBÞkaZÌ]ÏÇHh ^,üàéëM»®¼¶6?)¯«AJ\¤fiK4øAßh} "ptÖ¶ÁWr”6.zëD2U¾þ*f,=Á^Ùz±!}ê#,ðôÈ!Áâ®ëËÄ£u‘­ý‚q*Ú Gûá,ë±´ “B·°}¾¾×Ȫ[¸S& +» Ó±3>¯À}Ê}?ä¹nœá3¾êñÅ.8ø¾Â{ÈÁÆW“´Ñ¦ýØs­Íó7Ù„–ÈØx‘©*NÄÖGRÝ=w–¥d'r YˆCOóïb¹ÅöÔ¬lçÕî5½f +|qNȺŠ$”4Än¯*¬ÒÄCcÄ ö‘ž”óª ݰÎú̵M7V‚ÕRС\¸³ „èû¬òÛºžAŠŠíwÂ7Zù*[sxÍŽ ¤ÆL—r´\ÇÒ.{³¾¼FƒÓÐíM¨VEÉ[47 îIÚ€½ûFÙ]yÛýµ,­ïM G9åª$W¥KçÅ·”eÏ–4î×´ÍvM:P +æ~l½1ŠÙhØ€wÇvU¬X=5¨ðš‹@±;.\8åf.œµ5Rå7‚! Ù3ÉG;}/ï<;¹!•0uÏî‹Éïø¹Ó‡ñ›4©Ž]Y…eR£Cêá—/ètSzpó +”iò²ÎOߨÁ" sØzA'ôôò(t<`}X>©¨ÎÜ9õw<¬_š[Í)øƒú0ºYbóS5ŸÜ «òÝ'Æ"Á¯‰å^Oã9˜ò× 3¿,ßZéÍÕqkÕÑÙ&°¸6»6~¨0U‚Yæ+:ÄO6G±gBƒÓ>â~EzUNFlæ«r‰Ò2lßqѽ[ŸJQèCáÊK«$P¿_ýHAš<L•bU08áñ§ñ‰ í—NŠ'}ªµB6™ÆZ³‡;??ž>æù™±£¸>Aª2ÅÚ´tC¯¸ËÖôÆàQúŠáѶgo±´¬!‹’Ùã­tÿXÝv v&šùSÞ¦iY!•OS0]˜ø³ꂪ¾^•Ü6ú¾îôÐÁEãÑ.?°î£èÃÆúœ@>`÷”c†ZZ +òô ëü¯c3…òáëK+ûÐcÀ Î"ãà̼’v€"}°âq~v(DT†ý®r¨æ6äiÍ¥š@½`Yl‡à–OÈXRWt”¯bø^>»8#•V]z62× +7[O„É››Û=æóCp÷eXƒ·Ù¢RŸqݲàÊ +©æ€º"Äsö 77 Ms*‰Ú~ü|¾À +µ2|U -~cWµü¬õ±DEGbÍvç{íÏyз‘Mâv:õìÐΔ2·‚$Ÿáˆ3 +zqЬ‰ùZˆ¯S«âj²p“UQÐC¨É°‹âÚÔÃJ½Jª^âÞµ®Ê£Š}†uO©ÓØt0irWº^§ztƒ½¤ ÙûHþþeŽKâ dQŸÎNïHŧ|á¨+2Óà‚AÜÁ1mÚtz:~´·{ŽN€e½“\!_{± +Þ‰ $6à4ïÙqéeG KXì¬ ¶*â×Ê Œ—c.å5QÍÍóNu¸³÷U›á—o2%1úß•4Öd M"é[르)ßÛ#&õ¶]JµŠjoùHÀâìD[¨¦GKtÆ‚u,«ç®”G<„›ë”*«Fœ-^fè%ôz†âÚÓ5ãde¶]cÅS¢ŽêžE¥Uðl\¸JtãsÏVz®ßÒ FEÆ™^äk ‹2øaº™ò>>oåÓéëå]á«ÊXÀX=¬ Qn0 1V¨EÄŒ°ðJ÷Ì­z®ô¶1û,Ä€ÿ•mbF|HÇQð™¥-G7Õ,ºšÙKnº1Õª±cø­hRz«Ô¹²ïòþ·æ,[?1é[ù²EÍOïbóÄiö¥rO¸I‡XmÌÈçM®‰;¤$ü>—n:Ó·JÛ×{i¢à­áb(Qs£".³4¾•e\mÿeyGÒ0c¤f&ü3Ü'ÓO´bŶLøº5y(rÈMùuÒhkFvÄ&øVŒ~åBZV;pÒ5T,r73É$·yçÀj8|J±`¥3qxô¸> 4¨Í}+–ï­EÌT±Ô°tÁ(|oýÞ‹Úo#Yo'ãÙ·½7B§&^ÂÄï%ß”»±ÐØ™ïüÔØ|cQW|7RA«8òB§æ &t§q`IyÔgÞTßfäO¿¿›Ä>°9§uÆi­î¶5Œ7 p‰Ó×~`B›I›Àœ¼ÿ¤Z`¡~¢KžˆÌûúRÓQ\Ý{R^¢L¿ÖÚð,ýlqŒ÷/“lî†f|èùý¾ Kv¼Êÿ:@…4•…‡¦8Up7ùÆðÑ“V!Gšì.ïùH;¥­eôékFÃN»iÈÍñî‚ê“¶x:ÝÓ4Š[öß*£óÉR–‹J&S.B×ÃFƒ`ºÛ[ó¯žRß,})ÞX|èvõ‹Žiä¹p@ãéidÚ’ÇÈ…ÇáVdÈÙY­‰›ÜÎ÷±‘ÚÄS›ÂçY*…Â<Œ¹Œùó½j U¤–Ò¿î’c y߉[iÏu£Ê$ß»6SrTø Ħa™ïÛ’ˆ£oÚÿYfML@̵¢e‡õ#y„{Îrb˜å¼@ÿË‹òÿü?aC! îx,êîJIùàäñ" +endstream +endobj +30 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-53 -251 1139 750] +/FontName/FPQMFZ+CMBX12 +/ItalicAngle 0 +/StemV 109 +/FontFile 29 0 R +/Flags 4 +>> +endobj +29 0 obj +<< +/Filter[/FlateDecode] +/Length1 716 +/Length2 2541 +/Length3 533 +/Length 3078 +>> +stream +xÚí’yà$`EØZÛC K3C…?>éÏ®G ØPIå~·ÿ¨áÿ¬·ÖCÆŽ0e ¾eܺÿ|Bý2Í€€!bqwÀš‚&`Ñdì_Âß©tu‰Jj@IU Àá$pL ô¯F[ÎÛ4ÖÔ`0ر£È*Æ—L ”¿ÁÖÿY»á¶ö‚ ’‘)€Ûî¬(¦°èò¥¾[Ò®úÕ[ HmÁç›jK¹‚í/fwá9•{.D†{Z|aí^²ˆ¾±,+~üjée3Íøú%§gTªÈýAy·¦ãð¢FqÌ„R_…›Ê“i0ú±³c™B®Z çÞwóØ\ +©n®QB¸r­»ùr]/ö¾ƒBÝKVÙhÔXÍ6 L·¿i¢B–óR ¡MëÀ'D-Qå ò +C„³]8¡dÜYnä9ÏÛ±ø„q^üa|Ö©ôÍoS2iö¥ÉV¼7Êö¯·uEkÅÕ²ïê`mö‰½20=`~QäFEÎiÜŸÍ2++úV¤ž&Õm+%mÌXØ–ŒJ{œV˜9aÄÁð܇~1Dx뫀Ђ¥6áÈÂõÒ|Ê’M©/Z‹GφŒ {_{½¼Û9ÅI I*Kl·†x´ž-aG >ð0JÝÔäóùθÜÚÅŠŽ…Õc<§ R5¹Ÿtưƒ’956>‹“­¥­Û­?§Ñ?ÞÊÀuTJ–ζ¯ÛËí7òMÝÑËkÑÂe¹Ÿ›4CÑœšÑ_b$®¶5úÙ§e^ŸwA ¸p ]ëqN¢UAÜ{ööݳ@; ÊmׯLÔ˜³wÓiF•se±i‚£µÓ"»ÇN[?Q¨Q wLÆú”!j"µ—G›Ç=67¥‹jbòùã(¦YœRo[ÂB¥aV­(·…9ærÁ…ãå†íYu0i?«¶!5רσ,YM‡7¢×ùCŠ¥X7o@^äèØhŽ<Ë—hlÓ‰ú[Žß.ŠÙéöòª‹‹GïhêÔ¢hY?`À¹®ÍÝEifÏ3K¬ùv¸–Â[†¡Ç"èèlÏÄ%&´š 1»ö“|òã%•8D܆„eö×y)^M‰Š#=eç'Œq‹Í÷n¸;Åâ¶K>[ìGm¨‹°]}S¾YUçkqyNüü¼+ÀWígÆD¯¡wúByB‡¨¢Æ²nÍYÇ(Éu›Á¢ú'y™ùë +kdꪜújÆð{? ‹ªe>Į窼–¹Ý@öQnÆè¬¸8í}¢Þ­gi35?ñé•)\åȧ²^ÓèÌë¿:Š[ûÔ}ÈñxñÆ!‹#äû±î7•ǯL¦¨#f†åað3ªÃµé¾qòµô}~BÓËsHÎé6¹‘\™à®B²÷‹d‹Ê=`øÞˆÔÑá!æÓ^‘Èw_3^>À—ñ#{°Ë¢÷ +–‘ò–|aïK"RÌäÍýìc›û‘Û7½i¯Ýü"ölÙÇ´< 'HªL§×¥£z›!’Õ“ì/˰ôpGDœ°ìA#q¾S—/ÚQãïhœk Çˆß$¦-[iAs»*5a)sÅÝKbð‡O† â#«ueŒ§´cć«´ì®GT­®FýÔ´r{êgî ÙNF7¼àâ)zÖ…ó½½*X«?®\Õ©=•PQ°ÑÝ8g˜¹PžS$P ›^ãZñ¿z»Å+¸|P5lÜ[œá©.È“òþäÔ™éŽáOºœç¦%NÌ_€¨Ž<Ó!Ÿ5‚6•Þ®^äS˜‚„à5 ” +Hq[í‰äpç¸ +‹f²2wÍ‹£%:ËO~M¿0p§:)!9TMXå$<Öt™¿n¿æyt¤ª¯6óɼ§}½7Äp=q=öÖoR—Õv^þrI–%ú™>g áikü4!dwcÛHàTšIó,Äf»—…Ù°™\ŽïàÀÎ# KRÛëT®\øôeÒ½!›è·™ŸR[BÚ4ê¾£À¤÷Z°¤„%çR @…©§âý4Ý·ÅÂAê+%}0?ÕãȦIVè>aû„FE +vXfÜ$n8ÝŽ SУI\h¿Óóìqeè¶Í¤«Ù0†Â·nÐ HâKàâ1‹‚<ʹ¥ÁÁªÕÏ®îi»0ÔË©¶Xr®Š—;^Wz„¾w@„½^J5uÎì€>Œ`饸ú.¨¤„;‰í¿ˆ˜AÊê›ý$>òfæXÆ>þÀ*¢ÂÞvùÄúæSóˆ™ö¬j£w'%¯7Ì/{Ñõí|m×cŸ‰)ioéO»›ÆÔ)MÒ/ýy„š9üin.yòÌŽºÅ{‹s[u×ñ'ÌÓY`èÓäcl»j×u‰O‚hÜ&ö]#Ï1M7FnK„•q( &Û8;P]©R™Ã(>Í1Ô“Kw[¢I¨z3´¥òê2-¤24ê—ÄdÓÇÓ†ŸŠÛ²²Oð’æ¾Nƒ£892‘PÝlj‹®³å¿}ðò›‡™Ãw m“Ë“>fl³cÙmÏ’ñQ}kõk­Ó~VæŠJÒ@µ;s!’C§³ZtßÊz ýPš&§Lš#ŒÌ~éU"~åy±†Êµ)’¹&å Aƒ%kÑ ¯óÙ_ú¯Û Ó…º|÷åh„¥k«•Û®èÈ솶ÌÝ>‚ž—Ô'Û¦«Iª›Î\‡M¥·¨›]Z& +ÔŠ›tvQÕI*T±1<•ÍuãEÈ·ÓÁ˜2«#bòLéßvä®*æÉm$°¾˜÷Ì¡š€µWê)‡#[Â#^o¶Ö‹”&’…§åQ¹ÂV±©v#œ¯«½ŸKž?N(,ù´ÏÐýE!!°&Ö}-»Ç.êÕÉ€bÓc’œÌ‡ÌBÒu3xg ,5—Kf~ö)ÕQ¤M)¼7F;¦·ÝwsŽQýxóNU¯´¢è0+ZÖ'‹òþ‹:’6Iº•ýÒî<qÙÍÐÏ#õÆAsü ‘wß8–2ƒõY«+­¸Ò~î(PÅ1{]8%­}ÈäbÚÊ92¯Élý_SóW•îsÙa7[:?³%÷-sxìÄg´VËSÐ +ÖžÁºô»þåþÍ{gy¾´¥×¤ö-³ÈÄKl¸:44‘nVvÄ}gºúªÆö=“T¼U°4DÁ*NqÛ¥uN-íQÕ•¨¸<ÁŽs±œEò}I–"æÕª$FRæ™kË™b ާ6xão>ïT¯Ýu— ùºí#; +¿e•„Ãó"¾$uÂÖò'¶Çê'šŽÚŸ0ÑHàš{pó`0ñÍ,ûi¢¹ò>1®fÍàÞjVÿ®ÞZáCÚ›]&ÍÉBÊ’Z¤EØMpîÀššNÜÐP¨7#Õï…¤é¢GE_mxNa8?.z–ò> +endobj +37 0 obj +<< +/Filter[/FlateDecode] +/Length1 724 +/Length2 924 +/Length3 533 +/Length 1450 +>> +stream +xÚí’iPgÇ ¥r( V* ‚È‘°ŽH@³j ÷! ˜˜]ÂB² › ­uP«§ÅE¹¤ˆ Š‚8#Š”†CêV£ã`K‘FÐ:Å~éô[§»_öyþÿý¿¿÷y_ Ó€`Š,ÜŽø +1‚Q!àÅ +Ž€@¢‚d /á¨ó怜!ÀC G¤3h ÑN&[^B‘Gyq°ÆËê‹xår0€Å!â*„ËáÁB.ŠR*xðù@л_Ä@"Fð$¦’ÉÀ(—¶#<#Û½ƒÚˆÅ +ú\–ˆ>HI.VqkTœV€Šb|)#±d;?¡j5DÅò±þ†j~¸¯„Ï÷ãÞÅÏê#@ùÒ÷¡@$!` aÇæ[Ñ98£Á|u#Áá£\ŒÇG +ä@íçT싦 pJpã€X_ŒÌö ž¢ß,ˆ]Ä– aþ6ïvN à "!øÑ>[CkÕ˜p4ˆ© ©Œª÷ÃWô¼Õ|0®F1Lp0˜ƒÃ6>¥òô¦ì¤Ðœг“êªA@§;îú«1C%ÈFoÀÁµ´9J®ÇŒ˜½ª¨cQÕ”$á’óN¢¤m¶_ÙŒ±G[n›…7´wõŸ;nyZî×½''HcÐïhtW× Û‘SiÇä +“~Çž“©.ŸóÛê]ú¯º\öE­É±¤J{÷'Íûƒ›÷©¿P+ƈ\–fÁ­ÈÑbYX‰‡­‹Võ¤2qç¢`jÇ>vóב¼eçn¸†ëûô¬>Œ'k€ESƒmí㢠”lÞgWbÛÐê0ÑgôÑn­÷ìëç{ºœ²\÷€6Rºé{ko÷Nï‰Ö²·Îaç*V¦lªj›~”U¥tï$Ù­!ü²l»}ÿ³¡Ö!]y‚m|^c$ý·‡3~o[w,ù KE®O4é»-ŽèŒ¾Ø[›Gª”9w©„™åÁÉ…©9îƒ.õ:6'gNO„òj&Yâ¼d»,ž_˜Ä¡íú•ánN0ÞÔìÃ'*¶4eš +¦ÊÉû/õA™eÛʆ]Bî† :"w¼Q‹)•ûý*m9›íÿœ¹;2ÿâÐ@KZgj¶Ü_É\ÿ<£7wÅ+{6qi³×¢ã§[,Í-ãݯ‘H2=¥–½¯2¦|¼þÙJÝ#ÅEqŠ{鯯;$Úìv„Î0pØ„º$ß°1õ‡G¤«zo§¢ôF_^ØcЦw0–Ó ¥6Û,PÈrÍ +ïC¾÷’:¾Y{á<¯È­ùìxù´—‘¯N<ß%:º­Âq‡Á8¬„5°°ÚŒØåê¦4ÆE÷ k¸Ù5¹KÌÚÁoVצjäSÔê4w;XYϨ»¯§¹&ÇVTflNVäßs‹¯ßáÝ“åéHÓm¯Œ™ê2s +uåF?»'ïÕT†§É—ï/¸«ôd¬aÖuáø:uZ§y÷&Çö¤ÊCunõÜôÚ(–R²LF2Â[ µ§¿]R|«@ªŸVY¨9¥ˆ~0Þ´˜VŽw¶Í(Ï– ±ÖÌ¿›ÙÀÏŒaÛ%šk¹ûP³o1§­ šŒ“õ* †µÍ¤V +<_r£ÌÔe]5ôÂZùäÛÕ¹ùxÓ)b°uçXyÔ†®ø‰¶ËÍV®Ê ˆï“Q=“9äȽêÐÄŒ¾”'¾¿»¶:«·†É?Xsñl1ÎÎ-+½g¹uÂ5áõK…­Zc²Óè*}áK&»JæêãÙ>Iº¼×Žq¾µS$±"!þ{[À/{KQÊÒ†ú±§ºe+.imíÉ2Ÿ9‰ÛÌÝMá˲âììnêÜaØ þˇüÀ"€ËG88!pð2ùH8] +endstream +endobj +42 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-163 -250 1146 969] +/FontName/VYZCRU+CMTI10 +/ItalicAngle -14.04 +/StemV 68 +/FontFile 41 0 R +/Flags 68 +>> +endobj +41 0 obj +<< +/Filter[/FlateDecode] +/Length1 728 +/Length2 1814 +/Length3 533 +/Length 2357 +>> +stream +xÚí’{8TûÇ%aO¡ ¶°µË¹¹DDŒ0hGʘµf,æÂ̘h¦˜"[¨\ÂDîD"*¥Ú•Û.e"EÛD”â‘B)—3iﳟÓ>ÿœçüwž³Öúã÷~ßïzŸõ]?M‚‘È‚œt¶…µpxo,À¢0{„ŽŽ Ù0ƒî@dC–ÖÂÂp‚‚Ä ñcijf‰5C t#,Š S‚Ù€>ùÕµ °£AL˜D¤x";¢‰‡ˆT€À Á; +vT*àõõà± &Q €0‰ A˜Ž@År¡“À¶o2ög‹1Yb.@™ ˆ9A€vgˆ÷ƒÄ4ÿ1Ø¿áú~¸S•êN¤}¿ÖßúDLúÃÁ …E°!&€g€“þ½uô píû® ›H…Ivt +Œ°[Q˜­ßt˜åGB Ì&d"•-ëüžDœß2Úw¯ÎËÇð¿û­ëA„élï¨0Àüe_®±Õ┘p$àÇŒÅ÷Ÿ«€ïvs¤“ L§6‘™à?…¿SÙÛ3"¹FX3ÀÈØT|ܰ[Í 3‹Ãÿêô¡Ãá‹`ŠÁ`ÌÍ—UR“ ÑÙËBüÉÖdXœEB$D Á¯?®ÿL£| BWÿ¨p©{¥n:w-fljdžËNÄ/fE©”ÆŸY­;»³W”8…ϲyô¸¬CèìiÜœê†ò̵ éÌ‹<“Ã!VÓB·—”±ñk3;¥¦Nš'¸M_T2»ÑyúîÝ÷¸oŠ‹Xò‰ÎØÅ½½O œÖ…åp çØtN[µ•äìPÓ?Zl°ðà×éëþ$QÃÉ€v¯=ÚÉbJeÎÍiî¨BTDÌoÁ±WJO…µoÚ=³ 1‘bñj:fÀ’s‰Y™³‹g­¬Ztki踴9Uj! ³. å·]ï–Sâá +øYArý5¿ºç ÷d2Ôy’?ë‘>KŸÃùZ”’8vÙÏ×ä|Lò”¿Óç)KõT˜¿†&ÍŽX²”­Vo¨»éœöÑÙ¨•ö¡µÉ/ùÃI}Vu-á?P<§§ .¼1¤1›ÏêŽÅ·KIØÈhn¸Söòõ>¡Nž­°cf{K½m¥\”P<¥UºƒËÿ)Ýÿ3LÖLx€—M»ß<¬åWÛ)ö<ÞŸyK¯„cªäž ¾ÏTy·¿Ví(\庴IÒO†óˆ1qã—bk#ðW½àçkCó¼U_žh®g ^0ð®ùìËJF÷lÿyͦüìQYjö~îþð‰{‡Ì9àUF˜]^ªÈªsqüƒž¬”1û>wý²RütäR¢%ÒO•`vj<å–€üŸÏBˆ)È©¡¥ÑÛè5æÞ +IÃG¾Ðs³kUýr®:î~Ò:‡F§oSʈ¯Ø«`zéÄ!å<+'M}q®AòÕN\ùQ½ÑsÕ"tf÷Ÿ8\ŽÞˆ5ƒùŠ´ãÝfò¯$Ÿ#¦ôç½YÁ;Ú©~WÞ ?SÛÆS³þ¥ð<±–aKÉßó!@¥Yý׃"i•- m’Ì!”å¾píûzã÷ÛX©å ³VW$¯ƒ9ó„É´í +Û­.§þñ¶cò35=‰׸ Óö´–ÑÉŸ­VïV5²5v¼ûˆ¬ÒÛ´ØXóJ7· é?rz®kó3Åråc—:Ë$¨“¾Æ·75¨õi¹'xý^ÏsÌ(Ü6âáׂSùÁ·cS ÍxØý«E6ênlwÙô5¯"‡œÒb‘¢ÜØ™§ +úZz(ø¡û]Ô=<å”KOÅÞZ?'.o÷åZA¢›æwZñ€= -iTIø 42Ùn’Ñùö¼Gë 9yÚørav1Û…bØÖt=̶›~çôÃbBËÒ¼u ¿Žlz´.-ÅÇó‰°Ö@OÌ ?îD4Æç︥ûz­(È>1¿DÍjl;%1óFXh­lÈ\ìIŒ÷s³C"µô}òK޳’çL£…‹Ju©*c¶c ’û3MÍ*ø·9»ªjŸWôƒÂ•¤¾ÕW¥‰.Q¢)ûžf§jÞÉþO®Õ[‹³ÓÚáá·…É噡g—ãßé”õ¬Ùh$Ñ>˜5Ùµrl‹|íhH0ÿÒ&ÛÈs¹m:&Œê¥›¸ч_†ã®5ÄUúÚYNZÞ9mÚuW¨zæzâ~o28±yw=Öƒ—Ýã-"?åòXór²Éa >º§È5«ZÓ èQvUìµepñƒ<¾òÆø EsŸOº"ðBßÇâNµ$EɦO6-r²‰´öÚ#R¼ë/®‘³h÷ÚYŒ°C]J¥ñ¢]‰ù ÅiŽ_z¡UñïKÀ¨÷6'\dìxúf7‡4`\9’2¾§ÀÎuƒñ-›ßÞaï®ô–'iå·D ¾£8¡uú€ÝöϬ9¤ZþÆñ3¡ +JóÈÏ\Ûkš†¥óŽãòº¼š5U¬M ·uE$#“q݆M‚ÇC!Ÿfƃí]›¿ì-œy˜4 +œØcžÒ.ÊúGw˜ì·^y é]'·ê,OÄ'Tëîpm'1¢’“c‚¯”EË´5 ])Z+ütÉMÑ*½ršJnäN2¡w•‰ãŠÖËV†o†çzOgÖª¿y×ÓuÇŸ[ï?Së2ÓªV5c[ †¼ìÏ=»k*n¥Ç)G&U^hˆmû-a'4YUºý²5zÉ¡¾ecj#Ù+/BçDKg}  (øœ˜)¹{rÝs,‘”õÞ€_9üöËúÛæz +³3 ‹ž¼uo‘–ñ•åÂ3FZ«ÖVßpð¨7X=rÇLûµÌNͨ¾ŒÏü:¹—™qfŒCVê;su³Íæ¬ {=%¦‘JqñÝ­~.éíõΗz¥—ÞEúƒéCæF;wŒeŒ~|óÉdËĪ‹Wï#lÝügµçúßÊÌÔ±õ'yÇ´,å&\S Ý*:*ëœõ„›*Ú¡ñ@ºâ¿cù])­¹{3rx5È‘YÿÓÀÍëÏŸŸ +µ½ÌÁü—âÿþ'¨‘ÉfЈÌPâ®`ãú +endstream +endobj +46 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-4 -235 731 800] +/FontName/MXMDUO+CMTT10 +/ItalicAngle 0 +/StemV 69 +/FontFile 45 0 R +/Flags 4 +>> +endobj +45 0 obj +<< +/Filter[/FlateDecode] +/Length1 719 +/Length2 10115 +/Length3 533 +/Length 10668 +>> +stream +xÚí²UT%ßÖå‰'î®wwwww‡ƒspwwwwwM ñÄÝIÜÝI<ûïW_õ¨[õÒ£ßztD<ÄZkÆÜ¿=wP’*«1Š˜;šZH::¸2²2±òÄÔÕYY¬L,,¢ð””b W £ƒ¸‰«€•—— â°qXYø8Øþyàá)bŽN^  •µ+€FŒö_*n€ˆ½hfâP0qµ¶°ÿÇÄÌÄ æh´põbDììªÿúÄ jábr·0g‚‡ge˜Í\¦V@xæaÉ8X:¸ÿ«mîæôß#w Ë?\š“Òþá4wt°ó˜[XÂ3+:þ³žÅ?4ÿÁþ\ÿi.éfg§hbÿ/û‡õ¿ÍMìv^ÿCáhïäæj(8š[€þSªeñ_p +æ@7ûÿœÊ¸šØÍD¬ì,,ÿÕºH=-Ì•®fÖW›Å¿ÛæÿÉðOrÿ&`VÐV×P¢ÿçú_Se ƒ«º—Óÿ´ý—üß5ëÿ]ÿ“è Ðcù'`Ö„ÿÜÿýfð«I8˜9š¬j®&æ& óÿÙøß©DE=}9ŒlìœnvV ‹ßÿ*Óp:»YȈ8YXXxØÙþÝ5s,\ÿýü³ßÿ®-ÿ„caáia¨¦¢@sI³Í‚mTCE¼øQ̯Áýe'°Ô™±çÛHýôKh³ÍÞ—òƒ½Íèô¡öýïT€,cpÖT¢ÿ¹ÌFïDr¨÷­&‚°â4ŽÆ‡õ,Ž<EcZ×l§æ PZ¿.sò‹¶‰–kD.›¢ÊG3Md‡–òª0qWâÒCEƒ™J¦(YÈÄ@û´¸ýæä:ÖfÎßÈPEOyÛ?<™ëˆ¤n6à.0’ š*—7ÕÓß2ØîhY åÒÉË܉‚$ÂóÑ‘’¨Ä#}ÏýYš4Ý«(¹óø*‘†À‚kªä„³‚ßñ#ü c¥Ÿ‰ ˜6úõR×`–§T¼ë/õK¼¶À‰/$ä/køÄù#}µ©£@œš.G _©~-Dæ‡Ovü~÷Túšâ†£|DšiåPÄE]âßö¦;FÌ4!K?¡ü~×7ÏmØå#§¤/ãËjŸ~hE°¼&‹i—ï/X{@^3{>E™EÕ†:õš/ÀÝ™¢Úgï„ù×YXöµ³ëA ÜÅWÞ´"CÆV×kËߟã:(MRl'AK—t£>euØ$BÐÙ[>†‰Ò¬„€~ É·Sþ*>ÎÌ|‹Ap7ëÈ?Ô]þjãÈãò—¼àçe¿ÄÝÄÃNæ?Æc^@s^¸ybèiˆÜá”~1»6í°y)ɬl™ln2•¥„`Å3%@YvA‰ê ]󷉽ÁVIáp„˜ðˆ†¾Ï^=Yu|ŠâÉâ®ÝÙMä¸ëö¢\ñ-ó&Xd“E¨„ ¡‹ìæ€û§+ÉvÅiÏo D§!nеž­G¢®D𩿘« ô7CÒ-è…7÷n ­»;Ìü:r¾)KÂñ÷œñؾîr¾˜s¼7+ñºNç +øzkª¬MÀ”gÃwîÂJò[uæXráB—߇•y,ÖåbúkÔ1HMùѯ–ò ™9Øü`©2í4ra +×hã6ÐÝ!´ÌÈ›ë Ï®Õ+µøF¯–‡ü#Ë¥·¯ 9-Ú Ÿ{;ïŸ=Ù^R²Ùęʔ0æ eÌ”‹ÃåD½“¨ªm ñà¾ÔÞBÍ:…>Õì² r/ 1ãz(ú!ù®A[ó:÷§åhB¢N\3º<L˽©kø­·ñ½¢cG=@M²]ºË%0E{ù/š|™iÒ_#æ.‚é.éì,!K¶¨ö-Ь-- 2êKŠSrôXØ~u€ÚáÌ‚\ìòý.64Ô |ýLLPC~»9?Jy¶^¥ùB‘ ªs•Åk(å÷v¬Ð3|x颓µòä°ºðïfÉþó[É5–6LÞ«×xÛy ÕH‰­J?»€°ä +—$añ“y,w•Ú«cý +•Ã8µÚÅPb_JÿTÇî0«Bƒ:µ| dåÈ”ÿÅ1åOB!uhÁy@(–ñd +)rÑyDÝ,IM¦ioÇd¹Z*s_iá|»ÿôQT¹îËIÙ›\„ݲ‘ÖjȨýÞ<1)U~#dE¶@‹ŽåU/xâIÁÀL5ç2ìŒïúDûëˆbÝ —~ß3ÙªñSèÝìÆ8x]Þ»2C­àG&FæÚNôwI_SSfhë{ +'Ý cKýÞŽÇæÜ ¾ºD% v"ì…„¯–¿½\ ×aÒ ŸG†^¼Eù“ ’á ¶ÏÉnµ‰Ð(b ƒÑ\»QÈÙÀê²|Næ·û0f=¿ïa€<)ÀìÛàÞš¹\óAýìYÞ´ÁÁ)î;I5Oì·¨÷ƒ^‹**î;ËvlzÞ‚_7/¢ìm×T”Z/ +nJA¾‰p›Ë¿uZmOCýHú¶œ¼ò†Á¥C‰ö_°_Rë–/ î +T5¢_ŽÚSÂ!^0·Ý¥>EÐ]uV´2FæÙjQp öÑL3^àìàÉŽ›±a=óÀªpÏÄôc#æ!…Ûl•°Üu£ûñBÜ¡6óñÿÀŸs)á( ^àiÝ=zÌÀ^xBØÎ7 ¸£2X›bÙIA!êüUŒzá]Û9JG÷n…ôÿúCqŽG38sÙZYÚV¨£K×B‚¦ é™jµV•ü)XðÙª_hð)q"bjÇ|ÑzbçÙ\g“Î͈\/õfkü‹°%Þ˜Ã)ú°Óå΄IœïØC †¼›h¦‹WBã“¿àUv_´á¥å½ G‹•阴³gÚ‘Ú ’á˜?£R%ÇŠpS•sð³zGŽ´–§^‹ÅÖ{Ùin-Åò/•oúŽsÔLÚ5ø4j"=®êñµíÞh®½|óDp ©)|ûØÂaDVú¯Žªè{°OôŸåÍ'cX™7Ƙ¦ek¦9òëB¶ºðŸºƒK^­R¨äË\"P›B{¦xõ šytúö_ §VÙJÓ|xyfgËßÉvÅàè|û›Ä³nÇ›8±‰íº20c\òäß¾¨IVE¨õìz†S³Ÿ—©xvMæ‡JÅTJ~å¤üƒYCs!t­MËG‡àˆŽŽ˜Ñ޹ò0ò’‘ÙR+*­ouï„âfÙÆaïUÃ.6ZM¯­b7+M)n ÉÐgÕ¼âçÎäqµßá²jQEB¢Øc lçFȾD`GÁ—H-CÃ)¨äv`¤kg1Pò^ñÂÖÌRQ¼C&"Œ—åBTâÞžÕ ü¦§ä×ÒI®H™ Ä)Ì[ÿ» §‡ökÂ(Ñݱ@û]/Î%9]þ²žÆ%Ëš(½¤ŠR¤A‚hƒqÉÂÆ±÷Âà>g¦¢²ÓòZ:¦‚LÛ®ž’‘6•˜TÕ÷smE–v(ógKC5s?EíºEÆã1›Nl<ý.kf}oûžÒ*¯£‰¤µn__Í&ÜKIÅß~¾’äC±tðn rµ Px8⢛ 7º]ƒÙôw™“w´íô`¶‘AˆD¯XÎ(åj'9÷™ên〮ãÉ …ä En*ù@^ÕR9óWS¤YdøPÓÛB>}‹”ØÞÖPê)¥`ø¢Ò±ÂdïbÊÎøÉNañÊ€‡m³7ÍD|Œ’oï„·—º_ûg] C>O$å¼FËE˜¿õb±“"×”W —øÁ÷FK#€ûBŸ$ƒ·mÕ¬³c¨M)jªóGüT“ÁÏSy¤Gf²"¥Þ‰mþCÊ5ºè1o FG}pÔœ]ÜöXbÓte:ñìy ˆ¤5ïÚž™ï$cÆ»Êम:ýë¬7¨QL…V¾`£ìM›<꿜‹êðnnPH°Â±pŒæ â pÆôö*<(¯ÜËÉz/[{ïöí%x:Ú°UWÝÞÆß©É» ö(Ù¨3‹³±†™ì˜f_Ðú¾ÅœORs;™QWŽ…–]Èæ>J쟣ò¬Äx:¤¡OÖ#8þ/òæÖá‘C@9húqE\žøøZ:ÿ…¦î­©F2²7ûŒ„fF×Tõ?Ø9p_ÖƒfK]ŸŸ¶ æˆŸC‰„êÏ<:ýCß[Ü»Z—)©×WÞ=«è?R'S3 +?½°yUÙJIUêŸ1rä6pÊb‹ÚÒWgn¾ñ8w,Ûª<h7h;gužè7Å<ÊÞZ­e³Ä§\XÚ¥WĽvƒtE6§òKÞ/@FW pØVñ¶tøJô‡m®>ãm¿ø!ÍÜÆô븒POèÆBN>ܱæ õ£BŒ ;œF¨çŒstlí´y7>š• aT_¬¤¥«lYîŠowóÙë´óõÂ5«TOØ$«*¬ü( +±¢ßö⊗§R!·²H-…\%ÆJàm×ãÛ×Þw4_ö¸•=\µÕ +’ «zZ~qYî¹w¦®Ši=è\Ä‹ù¿jGìªñ¥Sb,}7?Ñ®Xœ®/RaÍK:m,[ÊF jìP¶j}÷ôWôË„ÒË š Ž€žß¯#ËHÓn–77+Ѧ-ÉÿRè›H8¤ï˜®:‰±U–ä å½@-ò$¤µáMG‰ŒÚ6H¸Æýʲƒ”7¥´L1ßÝË bÛ7ºÃF*ª•@’ậO›&{9Í °½† ¤h;Tsè,Ì_T-]¬y.E¢U>€“ihf¶{ؘå'…A¦?\ýbÿ^íßd=z*Z +;ÄΦJ° з?¨Ïñ߬‡;Æô½‹`á›0\ÈóÖ±Ðï–%—RýÌsBK$îvuJ¨ Œ")™gsÚVø½VCŸF•ÝHäF 樣’Í]&r¹#Öñ‘±·?±f‚LœEC‰_í‡@0ìbÊö‰ëÚ}[=’e£±ÆG=v>Ò(µ(ÍÝ*”“TêµeŸÔ"K.J“±ºuÙ­¸!“¡ÛEI¢¨²Q[Ë×E̤×(*ß^´¥+‘Þ€YŽ|ô"£Ð6¢Ï‚£„™XíšW¡_•±=*MÔJ{×wÿˆ‚šnôò?vž¥õz}oDÁŒ«~…0ÇŒÒ5%̦ñ¶ØCŸ]ò6wît_„V‚RR»¾ý•¶À•@½µF)mø” t²)Êgßn\ [0Š¿¥ìnÖ¥áA,rfì)DɃ+Í;¦jîØ4ó‰ÓU/´ñd#ò®Vký’Š•´“ªß¡Á‚v”–¤£÷ÿ4eнBð|μM¨ûAÒgc¯¬Ö„vYÿ!I"0ß #̃“È8¦Õ¡7 ·•†¹Ô_ÂÎZYëË͈æD- s¥¹—*h %®Õh%ˆ±´¡]üQ9ùÑWô·o}D&Úô¹^>Ft)O¡¾#åN¸L³VÎ/|° +`&çÅ-YÉŒ.)×â<}àMb‡Üÿ|ÙaiµÐ”âAC7XJ ½²Âå Y­€þñ-”=F}ÔFÆNNa1<¸"àåh;AÍVÄ~OLko~ö|)Ë>¥ž\ˆ(NíÓÀ¶QÊÍ%Ãæâs=8y1XËÉýl…D+ÛÝ`NéSX‡@QFåÎx:x–Í´— OÚ1håø#(ùRçí!èÉ_m¶=JëR ]{ $4KQÿʘƒw±÷ +;ú+' ÃÝ7ÿìòÙûXǸ³HÇ´RJ!¥I ªûJ¡limS©a¼÷BÄ2KXò’XŠ˜½÷<:8éL ˆòÙY–„ý¦¾¦FÂØ@WÃï±¾{@EU¢Ô¸½wã³*D9A» _¢µ§[(O¶lV9|Ÿ›¶Í  „ªsZ†e0·Ï³”ز ¯@‹öå ZÖRd-747êMm+ƒˆË«:¢bKª)Ïï ºÔ}…œÀo[úÔ7Ý3¦/…™î¡Äˆp7s¹¯¡kTΡ˜,§%N˜FxÑ$ ÂÍ7¦³<Єså(VjKõ<á7”Ý5ðÉÛ†Ÿv«ÿ4S{vš’™6›ƒd—….ëYÞÄ»Ë: ð°Õóñx2ní{Xóºô wd.OãÊG|äYE(N¾Iƒ¾©Ò*×ñ¥B§~¼÷ó]ï‡Î¸uÛó¥j1„ÿH‚Ü,(´€ýŠöz?"vÅ;õL€¬â‚(nDCß·ÌŠQÙK,œrø *ÃØqÑ7–LtñŒ¨e&Ð)sïŸÎo,}ídë+­D¦Ü²V”Øòm?ÌòZùÒ`ºBÊ´ž³VH>ç~ÙQ1;!å›Î#>ãªÈãU¤ž®Çœ<§2¤W¤Ò5Ûñ‚ZY^Þ¢ÊêäÅÀÙ†I{…¹BŽÁîQòT4Ô2”¹s7®Ôy0>ãþaQ½ÿP±Yȉ9ß¹ì>é- í‘6Ôÿ|n¸f„¸t1àN„Åú­OFòê9û—¶Œô…3yiÛªVÛ}½ãÌ¡Ž_†Õ×¾.•þjýg\úa÷^ÙSG¿… kn«l·ó)W ·¦K ~‰I<îÄìú¸7nÒù~U*ã`Àpº5sã»[îuºþäSâVpÏ(3ŽU×LæÙŸ7+—8(Éc[{°Ã+t üT³Š÷HB&ç»§iOÄ«Ÿö,á.î»›x’BÆ‹ƒ³u˜VÊ*ÏwÇ‘•ŒÖ.&r¿&½/¬nE³Ëâõ[qžÁ + ‘¹p d VMµT·#jšù&.Ð I6ÑÅç¤á†Ï÷ Kv/%c)ÅÚV,½ +œ^)£À‡cWò Soˆ»9ƒÝ…ó®ÙØE,ê˜P%I4r03Ú3êá‡ß‚N•ö¬ßóäzÓ+øé!S÷E>ìñ+nשfÕ óñJ‰Z(•ª¿ ž…O)ƒÒÐC ¹!æÝRðÁ+Fß®n,—¾{üI;2‘V%å6¸Á¯ôô÷R´ñN¼þ®¸ýJ¯^„!“$£øçWmÃC­qŽ]{Û.ø'îÏSƦf â…ôƒ_q\{U ”ï bš‚+qà=}ãðÚ"a5ê¹£?åIÉ¢9Lg¨úp:Äõ5¼ìX=Ím¼…æ³¼ú“\9ˆ‚—‰o„ã'®`uË Ùdô0SÈÅŠ1–æ M +Ϲ¨RF€Zô€¼Îœ!^~ÅóAj˜mYh”¨ÑÉ'êðÁùY)üo[’˜=%‡a0 +˜{Aä:C5SwdÊ8è!$úz|øÑXmïþ(&޾70.Õ4ªüí +Ua­=øDáZ«tÇ/ÛÊp-b'¶‘½È§‰Oλá|â{”0Û3³t§\ì×`åèFkf䪞3ñURbG|,0Š E® üe§Ie_ £åJ.ÍòÊa¬^ôcUfã'‰-@ŠÉI»Iï˜ì¨ñ\Ô a_”’e_ª¼<^JªûŠjÓ¸ J¾T˜£È +Ty4öï”ѨØÁ7Oãð`FŸ_çâõGqH"é×=ÓseRäáÌÔ¾á:Ç)¤ +~ÿc *ÓΦ mHvó°\CÃçÓ ï“p±9<8ìêì|åiX&Ãþ:‘èÖ0ë^.õíkÉÒô“xKõ¹èîZá>¹ä`g¬»ÿY”é+v@ÉöƒËˆ Ë.â€jZ·&Ò :GKîIa=ÂI¿I¿’uvž<-ˆh Ú(¬]OÜJ@+B~ûÔmt£šc:½­,S]4òróÇ9X/]PÀU,ŸÍ¿¶Ípl³¦by! ÛM£ tç¢èSÛð0@£@ŽSŠÞ¦À ßšr·Ìs³v&c)6]OÙDñ7Ý®™™€2=ÙÚËÐâ¡[´v­æýv/¹.¤èÅ +ô©.8F1í‡ÊÊ(_ÕlôKîVJE»,\Ñe¿€˜u/º½* î9ˆºÜŠ?¬ @`­Né23{àË¡°”¶Q%’íü—1Ú°%ÒÏË×O¸à^)ú%ÏÓÆW‹c•¬0rqÕyeh›Îë%I°RüYñYÄŠb€XxÔ8= ø… +©1¯…`&)µšœt¦ÒÝlô{ˆš|u¬Lõ]XÅÊÃ÷qш#¡åJC´Ò +—[lä‡Ýdè·xp&]DFØD,ø~H’¡UÞZzÏÀÁ™©¥ó›)Ûp)ª4itMŸøLHÚ'~Ä»Ñ&‘ªm³ô(R²#ÍÍd;)7àÉDkã‡Võå] *+ñågþ2;ù¢µŠÓܦÊK&d‚Š9YMÆ.ßÉp]#ð}*¯AùçŸrÉñ¼ÐQ¹ÂFÁ·J!2oâ1aÜQª‰ß}]_/!2¹k©¾¶Ï@èÍ2Lxš‰R/Ç—øï‹]çã#J­¨Ñìùõ¥‘“î;¶ ô Êq`Mì•ÆŠ,¶äòKÈュ4(µè˜¯m©†–g:3s†øÅÐÏ}óç ùkpZ‚hÊc²¤a¦wP]FÝâø?ä5¥JØ?Výbàx6.ÑþyÎ$þ´ôƒV9ÀsÓó“¿ +!‰\æWc¢f,Y}'¶3mìÚ|ÖÍáÏ5©øìÙ$#iæƒíuµoÖS€§~Ššxî;ü‚mWPÜ„æ»ÈLI+1æ3šðñ·˜ºôÝÙ¯Ä\Ї¨6YÛôóüoøoŒìÃqi\Ç¿iîJ„ÒŽ´³B²ŠsZžáwç)p†þÛ%0ö-™52®f~šqÒ8ÃHKQc?WN!pt.%Œy»Ú¿!·åµÛ›B¡\Ê¥@®Î¿ §Å¤P.Òû¾=×Ó+V¿oÿ½›H&—‹qJ÷±Úå‘Â[ïÀi¢ÖÌäêF´4±ƒ)RŸ¼Eôzª–ʳ•3;ï%éÛþÁáè¨2øUô5ÈO!SäÊÙÒóÕ˜$xïþùGƒªtWzR/ü7z¶¸™¶¢Î{×ö·Ö$»£8¾Äm  Âe—Ó!&Ó&;¤’w–›gŸ&\òè}p¬¡œ÷{2\yÀÝÎ-ªcA-Â@•qÆ¢eÚ¯Œ¿š!rø +8âÓ¥…ç&iLë—Š`CÜ,íGl*}´ßîd–µàA&(¨dÍ3‡cô^ ¯u6ÅÉ/t³LÞ‘Þýê›ó×Xý)[©¸¼§{˜<˜Q*¤S—Ï@º“1¡[¹Ç¾‡ šC#⮞ ¬T?ý«¤Ÿ)|·g*¾îÝÔNè·ê¾µ5ÃëÕ+Gé‚Þú-©kôAï¿é^º;ˆ1è¡<ÊQ1d~¸Ïär³<¶—Kš §m¬­®Õrº#B(ÂÖ›?£¬´K¢@Øÿ ”f‹¶B¿¡ IÆŒÿž£$¯nŠ>džZY°§64²•Q'åŒÎË v­á[Á›ƒÃ²[;² + ~‘duFÓ'áœ9Û9y½£üõ¶Š‚ë%&%;0l‹³uÙ²2Ýs"^¤TçZw· ¯£ªàkiÄS$,²dAƒ=û7”ãД4eAa¯‰ˆëþ× ØgJu¿1>Ãë©M>‹íZ—â lÑœ2FO£›gáGƒÑ­‚\Ös{:[‹Ë0Þ¯ËG%tœbdÜè†!ËÛÓxàwôèÆÕ«áó_Óð®AqBM‘^EãÜØ%H'«UÙ›:YGð’ÉžÖçO—;D™Ž6†Éñ…x‚'È\¼}i™.„5#@ Â$Ü­vDZÇÑôÖìÏž T¡ã…~3œìž HÛ2éÚW¢ÕÐæÃ$§Ž ºCd¹ž&*«“5*(ÛÙ°$j¤ùùs[—Cm%–GÂÕÓ;& ¢w‡4§î7“ÎÝí}´"’BåMOjSàÙá7yA)Z5ÑW}à®_áoºÄEfx×>Þ¡öYx›[DÄÊ1ì<{»IK”>'¹Oäη¤_±ùÇ'fW+þÓüËËÊûR¿·z >G%}†º"ñ8:(ÛT9™%IZ;êœ +ÇùaùǸ¡w±Dq¿CUÅÖJ(”R?Íô€0Áòê&XÒ{i¥¾™LKñ +¨­v*ÌKöäߊ·øDÆÜD ‚èD0‡ëÈ3À›Õz 2utg»]B²ÍüXhHC?ú–UˆaõÞyû©ªqáß"I‰ÁÃÓ£Zj*ò…áºyo±qT©æfɉ.ªˆíµ± +à'­S<17ëhâ ³;PZ…´`0z^ÊËÑ ]ê|¢hæÊèM9ýW*>ŸVDH:~¢LÙ«œ¥Ìx…6kï´–¼Ø†‘^6Qœ¬ÆrAÓYó‘nÖÜŽÈ!:Lã ¢-˜WˆI} ˜—û"µ•†¥ÐíRí.ßs0¯#¿V„)«zQ»ƒ0ýù“rG‡‚¢]¶ 1¥ÌCvalå–¬¼•ta¦ƒôgd‘zxvˆ|LÊ“7­¹àL‚q_&Úª”-dr®œ›Sl‹-°«Œ§J©!íu 0îŒ  ˜ÏöùÞ4ËKµXZ:lÈ2Vòõú(ƒ$Þüs6˜SH^G€*ëé’[Xú9N¾£n~Ùß ï£rp³dÌYv@Ì@$­ÆÊƒjgÆg®wÄÉ,™ÔpÕˆ„Lò:Ig{è®öTØ„®½žTêþºzÄ©w -M,4ѰìFªæß;|H<ø v·×K±Oî«ïÑ0àB;/ H­}tˆ3ñÕk—øí~^mþÀVà¸8Sü%±™â=öæq§ˆ\²Ëµ»ìkHK‚P¶ö4#œ—s,‚#y0:iÖMôîrÉQàLâš_Œ;špÄ«TéƒúLõS=í9]–ðÜŽa´âÇ£‡é$ÓêV¯-‰“GGdiå®—ñ?8=ùêØZ±m}Î}5[‰• .©ÓÃh9ˆ¹œÃÑa¸püè ööʉO Ú ÿÞkéïÆñ²ðÄ”Ôgt?ÆÁUM™$¢ý™ÖÏÑ™_%kØV2õR©?lü1¬âz¥€T›;Õx3Ú˜qËuˆ¯þq£€É?³ 9›ôõaB084Ÿ^_ßÃ1è#à6v–(‡ š‘³c)´¼1 †¦?Éœæ5nÁ¹ŠýÎS¸%.,6`tÎ%t&¤‚ß–D¹NŠ +ˆ]ˆÙlS_cBçßó¦Ll±f´QCOÛÉ÷²š“§*³õ¡¯LRñÑ©¬êº# QByà)â? 6i€a±±ì3KB!¤÷áÛ<ñba‘îÊ©0æsög3³°¶ZçªHî± YƒÌ5(]]¥´uF=î ñP©šÞÝÏPÕã¢BX0<˱»ÏYñ¨º` ®Ü¢ÅKoÅŠ7œtáDùØE¾4G{”‚?eUãʶ6„ºç¬¾—Ρ"ʹ‡±òÄÇæDôLV®‰A¤9M’~—_Bäýrfj¯ˆ×¥)qŽà†z£ ¿‹zŒ!#¾L·±öáDQ3dPÔ}m¥àÔÆ:tµ¶âi/}Ò1Eè!5è¬i‰Z!HÅ«®!~ðð² lûù~RLl¾oµ£PÚ´Õaq)¸š‘çUŠ3ݲöSÕáè>Z¯É¿esŸ¸Gi¶N +gŽB¯ +Œ _ Ï:ÈèxÂãaÝ×Xt–êñPí¸+‡“jYJâÈÙBÁ&¨Õ·Œß.Ìfýþéj;I=\7Ÿœäï—7'ÉÛüô=¼[WŽhșɟ;C¡ï1!´ŽhÑ/ܾÆ\:nüÇÎh>cœC…çt<˜ÈÀ.TÊ/0I¥$æZU³5|ãF]yžÄÐ90ÄQg’nb9aÿöGæ»ø Ýß0ºŽ#‚Sâ{=è^™×ÅP¨ñQ]4‹”ø‘Š÷N¦ÔaeÞó øNBA5œlr¹(ÐEР|_ëŽ_É8¶ñ•láÌã,|®ü!˘o$7°ÿçF±²Ï¹:ûਪ;Á=Ž0ò"¹|Š´ø³1e[¨ÃÆÉ^j勉,žWûVšúÕsËM&{R;5Y5]1Œ„„±C.Ù¶Á<gª¨ô±E¿Mò°ÉJײ㈑Ò'^’‚Lj¦üºËFÊ%€7ŽÉ‰ã`ª­DòÖ8ªôe0ŽOmEF~´66O”Õ½·%<6Åýr9hPPBA#ðŒ/HJs·h‚ìßca~úˆ3µœËךͱü¿¼àÿƒÿO˜ÙY˜€\íM@¶ððÿ]„ñì +endstream +endobj +177 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-301 -250 1164 946] +/FontName/UOSAHW+CMBX10 +/ItalicAngle 0 +/StemV 114 +/FontFile 176 0 R +/Flags 4 +>> +endobj +176 0 obj +<< +/Filter[/FlateDecode] +/Length1 721 +/Length2 5063 +/Length3 533 +/Length 5612 +>> +stream +xÚí’UT\Û–† œàÁ)‚îîî®EQ…) +w NA‚‚\ƒ . œP@ Ášsν·GŸÛ/=ú­Gï½ÖœóßÿüÖ\‹I߈WÁîQ…{ yø$J:Šæ@€¨ˆÇƦ„€€.pe" ¨Bî÷Ÿ¤ˆ°$P  ÷ôC¸89#œJ\¨Ä +î„ äÐ!!î÷&` `»@~|€ 0üã/€!Ä ‚ð8òáá ]ÀH€ÄÉÅÿ, ( öWÚÑÛóŸ%Âëž Àù')àžÓîó8B xüºðû~{šÿ1ØÃõwsUoLäþ‡ýŸÃú·:ÈÝæ÷ÜÝÓ AtàŽ„Çߥf¿àá°k£Á\À +N0øWÊÅKÕÅâ¨ï‚;  ˜äÏ<ÄÃñï÷ƒû€ßDÏHAÝŒûÇúWUäâ4öóü—ïò?cÿŒïǃpñXïç+p/¼ÿ¹²ù[70ÜÑÅà `„y8‚ŽÿJü;•¢"Ü÷9¯Ð½¯ Èý=H‹þW¥‰‡ËSoˆ†2@ЉŠÿ™{#äŸ7á~ËÿŒ¡.÷‚@|!`¼#ÎÎEJ ¥];gؗ벘Ð0i±[˜ÌbâVKæZ@-Çù ÜR£^Ûµi£ÝÎiåÕݧ`MqÞ°¬OI_¥÷4;GR#ü˜âËë^מ.d _çâëÚHZ'ZL{å2’¤-ù»ˆ.ÍÍÑ9‚º×õœ1Íz¬úsò ­ÉÓ§e5`ƒWŠÌá#=McÊîK£ KÙw1º¾Únâ¯0T𠘼]x=Tå1•18؆Ê §R:¨f<î)\Gè=¯Þ䬯x·”чa¤Òc›Å|«±†šañ¢4ãí0{¨»8\»KV²>m›¹ö:EÉz"îÛHc¤úw-.rÕÙØAÔe¿ m¸é.²Ø·ž‰|Ö¶W$CÎØržf°£u3ô\R“žm͹uRØDÏÕœÌwpjöàm%.¦u_ÉêaÔ‰™®<׆ºÔþÝÍv–â„£m!!·£ü§Þ_£š2/ßháù q5È›8ç4N—‡Ë|~¢õšÁŒ…Îþ͈"_•+Qàf ›—¶ÿøÄ%~¸(Ô‚ºTÁ¡æyx¹jRuöÀ¨É^È·÷«>.T}.(¶ TŸƒ“$´2Šõ§ÕîW»÷üX°Á•€/hùãDZO„Ý”©ždɽ¥¹Î¾xtñ„©0‡Hc‘n´(p¶À¾d€O‚[yÖ´3ëÓÙIY±{ª™ 2âk~¦âój|Õ”J|¯‚WBâ#®äU=E[¿ÐdJ‚W¶ƒ©ËÃv¦èS±H¦+ÃïT14vF—.† ¨•m€(Ù]Ì65 +–£ßÛ×Ò2äü6îwÝrâ{Óé¯ÔBR3Ê2@Q0Ôžá(åÔ¹¿ŒQXLâ}_‰ÜRmów_'ÔC›D3ÙB”8J»Ìõë‘G×ä¼ Ýv#ùÛh¢l­Ú˜­ÈAÚ iÒKbj± 5ɻլ}æ?Ü-}¨Ö +fÂu¢7Ε¸!¶ûÓ# ²Z¯xeò~°8¥É þ<¥2À¦å¶¥ÚÅodxÊäN6]wáI|jû;cÊ'{ÕV°}|ìŒó/±ð_"¯Þm…‚DƒH_PlÐÜÊ]¿eµU(Zó$&Ò˜á/Ø`ni¸@½^etxãüe.ªWk‡˜.Ó2ißfn3•m#?¡²Ú2Ý–!)pr›!L!„ýÎrPQÍ)‹S“ÜÚ1‚T3d.õà[¡½Q”¢ýˆŸ¿¥ì|¬2”,ZHð`³üfc•§(40ïl«‡ äbÕЫ7UŒa:p;´ð:ÂnJˆïnUßg±˜¶–…Q.y3ÈA=ª£ I°†_c4ÑVßëé-WëÏ ÀEÂ(!“k_mS#pÎm¾ýÉ×þpäxÆþ³¶N¤÷êCÚùY×2Í-ˆœÈJö1Î{bÒ +ùrÑuŒ—p¶ ižœ¾mÏf?˜ƒè¯ºÈϽR…‘”f¼¾qfëG‹ÈïMqŠ¿~Ñ +ÅßžvO`+|üjí¦ÁË£d ‹Ãé;ã>•£e€ífœ–ñëú¢Ûªˆ„žófp˜Ç¹w;©Yè…ÿ\ŒNãʱ{tÎãÞ€,éh ø{Í.wíAÚJF ;͉¡‹Ûâdb +…‡ÏÝÐð|ÏÜq~P«2Ô3õ©Ì£°Þrö åóZ +õâpÂ$24QÄä3•Î:{Y}¨æZƒ£¦y©Oá‹w7,‹1{·fº¯<3Ï„î^„„>!Šêž`«®Ô 4%­ÊeM*7Œ¢¶ Þ,]/QŠ”h'<éÕhùÒ@Ÿä8Dq«ÿ žûÜUí–D Lå0´Ÿ°¶}V§=±Õ× ëxl8®e Í\`Yv§¹ã{.ÃRÑ´ô•AÌ=L-Ý" >í¤zı¹¿ÿ7{3’WCºý¡’©7Qá´áÀÂÎäjŽ &f¤l¸ ÓÏMu#Ü- +_Ö"Ãsiùw{E^rÓ#üÙÜÓïžÁEzи ƒ½».öÅr·ßš}G‘ý»nÙu¥2‘=’ç|ÀÒ‘ŽWr‹$dXºæX(Är•³üÙÞš‹å¸Ý ¦N<ÜuȘ÷ã’”wÅõc´.ØÔàXË€¢HA´Zi¡©ÄqMª×Ûïdx8žº58¶ý5Mæ—óÒì)…zø'`6xn’^C!)ŸœI +Ü*š¼öáSÍ>ÚÈ˜áø’k…ÿè±V@ÁÊÑ× DcŽ*p;ÿì®7=×δ#öÌgÍöýVØ'|ˆñ(ܫơ}&ÿÀ'ty-gãœù†m=zÛÑ|žP²c íœV½f6ª˜Ž’6%h¡¶^ƒ)E×kÿã.%±([™ÒRÌçµCÖþƒÌ«zA­0)£ÛV%IÔS^-Š–¿¤BGuµ$M…}ˆÝû™³ŠÓÓ&ÞŒ#>€´ÙHW¦“õ /á];©k,b$²}—˜{R毦tÖýZÂÑ/¤úiUÅìÌÖ_SºMHøY+üÜ{…w¿-1/e«^ZWŠëC¶‹iÑT¿Ú!»´_‘§åbëÌ`̶ù¾áãj—Ho뛆c§/EaUî˜jØÃJñ»îF,À ÞÞVù­þ#µN§O·xÓ¢?o+ŽãÔW²¢¥„žæå?‚ÆÊDšiº»±€Ceh3à¥y"Ùð:óBx›É÷³tV‡'8¤³–j«Â´w!>¿c¤¸B ë;¿„Î,çݨàFöðs—NËízË«ä™%³/Q¹ítHÛ+Ÿ1àùÉqÛûÞüdchú\¯‰UëÓ€B]$ó£$WØ+Lä˜ÌUÔ_àËHA~’Τ~,ãX…´‘Ð4´´>uÉÐÆÛ¨kœÈ;ôv– ÂGÇ’SÑ‚£Oƒªe®ƒ S%±›–¯M¦Š*΋=†Ý3sÌ{×ÄíkŽ`!^ä&ú šy¬AÙµ/ËöbBøqPQBØ_j‘y¥ÏÈÇÙû±*c¹àÍyƹe»9UçÚ?ßQ^L-yŽ¢irYËAA"ö:Qìð´ëÕgÝ0Tƒv×'n¾‰‡‡x3©0ÝÃj2‰KóˆQÆ:Ru±°9ÊÏ‹±¡*‹ÇU4¡z{Òo[þ#Aâ|bÈ +÷äí=dy¼Òr_Ár¡Ï¯Úeù¿+¤QEdAl,RbŠÊãbDÌ ;…ˆ<àN^xeMå¤ðÓf¿ôk› EÍÔ´”WìÄÖM«SfŠ:ÑÞfN$³ý#€¹«™å_ì¤ÃSد»Ö¬J®õWÎòÛÓDiŠ ó3m7¤ Qâ N¹ËJåôƒ@÷v&•ñ°ˆ„BΡ×c@ìÞògú×' Û¹…¤Ó•u‰]|Ã?Útå÷i“Þ"^Š’lp}ü±Î"„ûÑ„A Ka/ #u¼6؆˜Þ ŽRwWHî’Õã%µ®Õ/6±¨0Ê*M|YŒ~Ž>Zƒœ+v|›»ÄV£ÜXh–m”ÎÌx?T~§ºÏ©°i©˜{Ö(YáŠû4YmŽ üF66 aš`o0I‹ò““ê$á¤îZí%ˆ+ôIÞÐüT¶fÓSQøEuéê73Kz'–µ/À3ì MSKùéf"@±åoÀ¿!õ(”[Ejld!†Z\p¦ÐÙ› U +–µ"9Àªã¯—>yXÕ,O𴆔‘üp­È"ó',”¹>h}ÂÉQèÑdÓIîr¼05P÷ì[h¬53øÅ;ÿz KχÊÝyåþÐ;bdçÈf-—È5 4§üð`6:þšV—puÍ*N0»ØŸaI9œZ;‰c+TPO3Ï´YR?#5waãé¯NgF…òÿ(|"ïÂýîÙòh Cµ1·Š„C²—ïM/RhnIS¹kLãöfÐÓ¾úÃ\òTmJ+tM+hPÊ;×¶XºŸ›ì´½8ÂTGÖ7ë= ‡=³>E+A~5õçÞj´'å\|éº-»\ëM/€¶7h­¾òa¥¯ |%x×ókž3¹/«ý.£eÂ^/TÜ®ù ðz÷y +”XgŸ_ÙìÎlÏGb³ÜÅ‚VnöýVÔ?RÓ™#›ªôý×T'Ç+µý“…ïªÀ\§FB¼SÈÎËѫӮ*ëÔc«ÚOÐùÓò)V¸K´Í«²ëT‘W9Q˜M/6u‰ÍC&JGž?‘'Îkhþ!_œ S"¯$0Ä>0€ ˜å)¢ï*J“OÖ0x<ãq;ÚtµÑ^ÉkYº™È®2¸ÏoÇRСðNĹjtÝÞnMØ»°‡Ã%ï© Þ”ïF=DNÍØÝ!ZD®uË08}WûÍ1©ôìÈ3¥ÔCüG$—U5Þà`6½6œ^!G 6>5ÒUEÎug´ÂYWØtHÒÀºy4W8W­¼ÊÇá¥iìsiÅhœŽ+;$vT¯¨äjÄ·†U¼Ø™µKGœÕxÞ˜8Ý–˜äLñ­b/LÂXeð˧™ä[ñt×øû û‡(øöµé'Ù'–ÊTY‘Í)¡—¯ò5i^7Ö}ùpV7§süIˆAÙîd¿Ï‡v¥óbùZ…‡àɄχ,±>yˆ¸¸JÕ)\G¢m`÷"ÎÄiþ+š¿Ãª›î‰â~_­kUrÑ­˜%UJé.ôÝ©Ìrsr=ÎÙã»-ÏGÝTóœ|ŒŒ’)„—r6øý<ð낈¸ƒýÍ ¶¤kH +] ïÀ%ó)ŽƒP*éê¥s »Ÿ$c}ßÉ¿ª]dö{®ê9ӃÛI¨kPò¿¡CLñùÛÃýsGdé{|OéÆM•0¾g¹Ã‡¡Hãö­VAßÏ?¢̾”žW·’¶ˆ_™ÜD†kz„dörˆ®” Oð—5V¼ü\£ÄtZÙn­¼0ü=èÁr÷šQk®ï@Zá¦#Fº;Ih‘†Ïw²Í-Ðú’s7Ö ÆË-ÚèË`‡]KS¤äAÄÙäb¿Õ[îu®9ãE÷œ•všRãœ[Dh×2íbI¿=ç/¿ôšŠzÊ8ÔêÐÚSGgÖ\;q¬24*3܈ݘ=½I‘Χßç¬,@xdÕ¿ýÛ¦ûÎÇ…7 ªFmi 2ag-Cbé¤E°è÷ZËS—ËæŒýl¨j¡áúÄ:ÛôzEúûµãÕÁ0|q™NÓyÔ'ùï€â w<¹cæCn,î¦;î<Ϋç¾Öo³#Ü­h$)¨fær@èB¯£Jú9é«Ã×”e'$±YUSËŠÈW6.‡GµöDä2‡tÓÌང1û6 Õ@!ÞGŒ©5AI-&¤ò>A¡Ù=À’ñØ©m±ò‚â3óŸ·ÑEÞ1À€ëÎIç´^Gþ*Øê>øfyt[׌øUA)w5Eïy[^^Ÿ²š Ë#:Ž{£¾˜T÷‹‰mm Íbä|€Fÿê@–‰ƒq,ø’ìØÏªø’øÛ„;\…m:Š j'W#‰§*Í:oÔ©7ÔUqÍIAÝÊO=mâíÒRÛì;«HïqÖô<ü}ºgeµ –â=Êk/1 ¨ül©¡Ê’úv+¸ÄM ¢76ê;éþ·LζDžn¶Öó^òk‰gМ8çK‹'jϪžFš)eT±øEpÎ|yrhŽhΗ›kTc½êfê6èÅ6&ºGÕ)8LÛëfWìkóÚqÕ¨³8Vnñ8Kø‰§Éôš`öåWPIû(¤c +b&ú¢èœ,§t-G{˜Èõ´ê‡n>ÎoSc[ v8 ÝôFKœ}ºÚkNLº[ßFGïsã¶ÎèëÑÃr7àç1˜”èþ.(Òp* S|Bú½˜‚ö²˜"Zn‰8ÂVmšå%~—­$%b¯ÂuPtœ°x¦ ü_>xÿo𠃀H¸;ᆇ÷žWž +endstream +endobj +1 0 obj +<< +/Creator( TeX output 2008.12.30:1745) +/Producer(dvipdfm 0.13.2c, Copyright \251 1998, by Mark A. Wicks) +/CreationDate(D:20081230174603-05'00') +>> +endobj +5 0 obj +<< +/Type/Page +/Resources 6 0 R +/Contents[23 0 R 4 0 R 24 0 R 25 0 R] +/Parent 182 0 R +>> +endobj +27 0 obj +<< +/Type/Page +/Resources 28 0 R +/Contents[23 0 R 4 0 R 32 0 R 25 0 R] +/Parent 182 0 R +>> +endobj +182 0 obj +<< +/Type/Pages +/Count 2 +/Kids[5 0 R 27 0 R] +/Parent 181 0 R +>> +endobj +34 0 obj +<< +/Type/Page +/Resources 35 0 R +/Contents[23 0 R 4 0 R 48 0 R 25 0 R] +/Parent 183 0 R +>> +endobj +50 0 obj +<< +/Type/Page +/Resources 51 0 R +/Contents[23 0 R 4 0 R 52 0 R 25 0 R] +/Parent 183 0 R +>> +endobj +183 0 obj +<< +/Type/Pages +/Count 2 +/Kids[34 0 R 50 0 R] +/Parent 181 0 R +>> +endobj +54 0 obj +<< +/Type/Page +/Resources 55 0 R +/Contents[23 0 R 4 0 R 56 0 R 25 0 R] +/Parent 184 0 R +>> +endobj +58 0 obj +<< +/Type/Page +/Resources 59 0 R +/Contents[23 0 R 4 0 R 60 0 R 25 0 R] +/Parent 184 0 R +>> +endobj +184 0 obj +<< +/Type/Pages +/Count 2 +/Kids[54 0 R 58 0 R] +/Parent 181 0 R +>> +endobj +62 0 obj +<< +/Type/Page +/Resources 63 0 R +/Contents[23 0 R 4 0 R 64 0 R 25 0 R] +/Parent 185 0 R +>> +endobj +66 0 obj +<< +/Type/Page +/Resources 67 0 R +/Contents[23 0 R 4 0 R 68 0 R 25 0 R] +/Parent 185 0 R +>> +endobj +185 0 obj +<< +/Type/Pages +/Count 2 +/Kids[62 0 R 66 0 R] +/Parent 181 0 R +>> +endobj +181 0 obj +<< +/Type/Pages +/Count 8 +/Kids[182 0 R 183 0 R 184 0 R 185 0 R] +/Parent 3 0 R +>> +endobj +70 0 obj +<< +/Type/Page +/Resources 71 0 R +/Contents[23 0 R 4 0 R 72 0 R 25 0 R] +/Parent 187 0 R +>> +endobj +74 0 obj +<< +/Type/Page +/Resources 75 0 R +/Contents[23 0 R 4 0 R 76 0 R 25 0 R] +/Parent 187 0 R +>> +endobj +187 0 obj +<< +/Type/Pages +/Count 2 +/Kids[70 0 R 74 0 R] +/Parent 186 0 R +>> +endobj +78 0 obj +<< +/Type/Page +/Resources 79 0 R +/Contents[23 0 R 4 0 R 80 0 R 25 0 R] +/Parent 188 0 R +>> +endobj +82 0 obj +<< +/Type/Page +/Resources 83 0 R +/Contents[23 0 R 4 0 R 84 0 R 25 0 R] +/Parent 188 0 R +>> +endobj +188 0 obj +<< +/Type/Pages +/Count 2 +/Kids[78 0 R 82 0 R] +/Parent 186 0 R +>> +endobj +86 0 obj +<< +/Type/Page +/Resources 87 0 R +/Contents[23 0 R 4 0 R 88 0 R 25 0 R] +/Parent 189 0 R +>> +endobj +90 0 obj +<< +/Type/Page +/Resources 91 0 R +/Contents[23 0 R 4 0 R 92 0 R 25 0 R] +/Parent 189 0 R +>> +endobj +189 0 obj +<< +/Type/Pages +/Count 2 +/Kids[86 0 R 90 0 R] +/Parent 186 0 R +>> +endobj +94 0 obj +<< +/Type/Page +/Resources 95 0 R +/Contents[23 0 R 4 0 R 96 0 R 25 0 R] +/Parent 190 0 R +>> +endobj +98 0 obj +<< +/Type/Page +/Resources 99 0 R +/Contents[23 0 R 4 0 R 100 0 R 25 0 R] +/Parent 190 0 R +>> +endobj +102 0 obj +<< +/Type/Page +/Resources 103 0 R +/Contents[23 0 R 4 0 R 104 0 R 25 0 R] +/Parent 190 0 R +>> +endobj +190 0 obj +<< +/Type/Pages +/Count 3 +/Kids[94 0 R 98 0 R 102 0 R] +/Parent 186 0 R +>> +endobj +186 0 obj +<< +/Type/Pages +/Count 9 +/Kids[187 0 R 188 0 R 189 0 R 190 0 R] +/Parent 3 0 R +>> +endobj +106 0 obj +<< +/Type/Page +/Resources 107 0 R +/Contents[23 0 R 4 0 R 108 0 R 25 0 R] +/Parent 192 0 R +>> +endobj +110 0 obj +<< +/Type/Page +/Resources 111 0 R +/Contents[23 0 R 4 0 R 112 0 R 25 0 R] +/Parent 192 0 R +>> +endobj +192 0 obj +<< +/Type/Pages +/Count 2 +/Kids[106 0 R 110 0 R] +/Parent 191 0 R +>> +endobj +114 0 obj +<< +/Type/Page +/Resources 115 0 R +/Contents[23 0 R 4 0 R 116 0 R 25 0 R] +/Parent 193 0 R +>> +endobj +118 0 obj +<< +/Type/Page +/Resources 119 0 R +/Contents[23 0 R 4 0 R 120 0 R 25 0 R] +/Parent 193 0 R +>> +endobj +193 0 obj +<< +/Type/Pages +/Count 2 +/Kids[114 0 R 118 0 R] +/Parent 191 0 R +>> +endobj +122 0 obj +<< +/Type/Page +/Resources 123 0 R +/Contents[23 0 R 4 0 R 124 0 R 25 0 R] +/Parent 194 0 R +>> +endobj +126 0 obj +<< +/Type/Page +/Resources 127 0 R +/Contents[23 0 R 4 0 R 128 0 R 25 0 R] +/Parent 194 0 R +>> +endobj +194 0 obj +<< +/Type/Pages +/Count 2 +/Kids[122 0 R 126 0 R] +/Parent 191 0 R +>> +endobj +130 0 obj +<< +/Type/Page +/Resources 131 0 R +/Contents[23 0 R 4 0 R 132 0 R 25 0 R] +/Parent 195 0 R +>> +endobj +134 0 obj +<< +/Type/Page +/Resources 135 0 R +/Contents[23 0 R 4 0 R 136 0 R 25 0 R] +/Parent 195 0 R +>> +endobj +138 0 obj +<< +/Type/Page +/Resources 139 0 R +/Contents[23 0 R 4 0 R 140 0 R 25 0 R] +/Parent 195 0 R +>> +endobj +195 0 obj +<< +/Type/Pages +/Count 3 +/Kids[130 0 R 134 0 R 138 0 R] +/Parent 191 0 R +>> +endobj +191 0 obj +<< +/Type/Pages +/Count 9 +/Kids[192 0 R 193 0 R 194 0 R 195 0 R] +/Parent 3 0 R +>> +endobj +142 0 obj +<< +/Type/Page +/Resources 143 0 R +/Contents[23 0 R 4 0 R 144 0 R 25 0 R] +/Parent 197 0 R +>> +endobj +146 0 obj +<< +/Type/Page +/Resources 147 0 R +/Contents[23 0 R 4 0 R 148 0 R 25 0 R] +/Parent 197 0 R +>> +endobj +197 0 obj +<< +/Type/Pages +/Count 2 +/Kids[142 0 R 146 0 R] +/Parent 196 0 R +>> +endobj +150 0 obj +<< +/Type/Page +/Resources 151 0 R +/Contents[23 0 R 4 0 R 152 0 R 25 0 R] +/Parent 198 0 R +>> +endobj +154 0 obj +<< +/Type/Page +/Resources 155 0 R +/Contents[23 0 R 4 0 R 156 0 R 25 0 R] +/Parent 198 0 R +>> +endobj +198 0 obj +<< +/Type/Pages +/Count 2 +/Kids[150 0 R 154 0 R] +/Parent 196 0 R +>> +endobj +158 0 obj +<< +/Type/Page +/Resources 159 0 R +/Contents[23 0 R 4 0 R 160 0 R 25 0 R] +/Parent 199 0 R +>> +endobj +162 0 obj +<< +/Type/Page +/Resources 163 0 R +/Contents[23 0 R 4 0 R 164 0 R 25 0 R] +/Parent 199 0 R +>> +endobj +199 0 obj +<< +/Type/Pages +/Count 2 +/Kids[158 0 R 162 0 R] +/Parent 196 0 R +>> +endobj +166 0 obj +<< +/Type/Page +/Resources 167 0 R +/Contents[23 0 R 4 0 R 168 0 R 25 0 R] +/Parent 200 0 R +>> +endobj +170 0 obj +<< +/Type/Page +/Resources 171 0 R +/Contents[23 0 R 4 0 R 172 0 R 25 0 R] +/Parent 200 0 R +>> +endobj +174 0 obj +<< +/Type/Page +/Resources 175 0 R +/Contents[23 0 R 4 0 R 179 0 R 25 0 R] +/Parent 200 0 R +>> +endobj +200 0 obj +<< +/Type/Pages +/Count 3 +/Kids[166 0 R 170 0 R 174 0 R] +/Parent 196 0 R +>> +endobj +196 0 obj +<< +/Type/Pages +/Count 9 +/Kids[197 0 R 198 0 R 199 0 R 200 0 R] +/Parent 3 0 R +>> +endobj +3 0 obj +<< +/Type/Pages +/Count 35 +/Kids[181 0 R 186 0 R 191 0 R 196 0 R] +/MediaBox[0 0 595 842] +>> +endobj +23 0 obj +<< +/Length 1 +>> +stream + +endstream +endobj +25 0 obj +<< +/Length 1 +>> +stream + +endstream +endobj +4 0 obj +<< +/Length 33 +>> +stream +1.00028 0 0 1.00028 72 769.82 cm +endstream +endobj +201 0 obj +<< +>> +endobj +202 0 obj +null +endobj +203 0 obj +<< +>> +endobj +2 0 obj +<< +/Type/Catalog +/Pages 3 0 R +/Outlines 201 0 R +/Threads 202 0 R +/Names 203 0 R +>> +endobj +xref +0 204 +0000000000 65535 f +0000088577 00000 n +0000094550 00000 n +0000094195 00000 n +0000094400 00000 n +0000088741 00000 n +0000006354 00000 n +0000000009 00000 n +0000037643 00000 n +0000037459 00000 n +0000000913 00000 n +0000042623 00000 n +0000042437 00000 n +0000001906 00000 n +0000047367 00000 n +0000047179 00000 n +0000002823 00000 n +0000050297 00000 n +0000050111 00000 n +0000003822 00000 n +0000058814 00000 n +0000058626 00000 n +0000004790 00000 n +0000094300 00000 n +0000005707 00000 n +0000094350 00000 n +0000006277 00000 n +0000088844 00000 n +0000007574 00000 n +0000064072 00000 n +0000063883 00000 n +0000006415 00000 n +0000007361 00000 n +0000007530 00000 n +0000089029 00000 n +0000014314 00000 n +0000007636 00000 n +0000067459 00000 n +0000067264 00000 n +0000009252 00000 n +0000010203 00000 n +0000069217 00000 n +0000069022 00000 n +0000011110 00000 n +0000012091 00000 n +0000071874 00000 n +0000071688 00000 n +0000013068 00000 n +0000013812 00000 n +0000014248 00000 n +0000089134 00000 n +0000014931 00000 n +0000014376 00000 n +0000014887 00000 n +0000089320 00000 n +0000015500 00000 n +0000014993 00000 n +0000015456 00000 n +0000089425 00000 n +0000016156 00000 n +0000015562 00000 n +0000016112 00000 n +0000089611 00000 n +0000016867 00000 n +0000016218 00000 n +0000016823 00000 n +0000089716 00000 n +0000017692 00000 n +0000016929 00000 n +0000017648 00000 n +0000089999 00000 n +0000018527 00000 n +0000017754 00000 n +0000018483 00000 n +0000090104 00000 n +0000019318 00000 n +0000018589 00000 n +0000019274 00000 n +0000090290 00000 n +0000020024 00000 n +0000019380 00000 n +0000019980 00000 n +0000090395 00000 n +0000020598 00000 n +0000020086 00000 n +0000020554 00000 n +0000090581 00000 n +0000021184 00000 n +0000020660 00000 n +0000021140 00000 n +0000090686 00000 n +0000021914 00000 n +0000021246 00000 n +0000021870 00000 n +0000090872 00000 n +0000022666 00000 n +0000021976 00000 n +0000022622 00000 n +0000090977 00000 n +0000023396 00000 n +0000022728 00000 n +0000023351 00000 n +0000091083 00000 n +0000024007 00000 n +0000023459 00000 n +0000023962 00000 n +0000091377 00000 n +0000024714 00000 n +0000024071 00000 n +0000024669 00000 n +0000091485 00000 n +0000025370 00000 n +0000024778 00000 n +0000025325 00000 n +0000091676 00000 n +0000026126 00000 n +0000025434 00000 n +0000026081 00000 n +0000091784 00000 n +0000026882 00000 n +0000026190 00000 n +0000026837 00000 n +0000091975 00000 n +0000027607 00000 n +0000026946 00000 n +0000027562 00000 n +0000092083 00000 n +0000028364 00000 n +0000027671 00000 n +0000028319 00000 n +0000092274 00000 n +0000029069 00000 n +0000028428 00000 n +0000029024 00000 n +0000092382 00000 n +0000029805 00000 n +0000029133 00000 n +0000029760 00000 n +0000092490 00000 n +0000030431 00000 n +0000029869 00000 n +0000030386 00000 n +0000092786 00000 n +0000031187 00000 n +0000030495 00000 n +0000031142 00000 n +0000092894 00000 n +0000031884 00000 n +0000031251 00000 n +0000031839 00000 n +0000093085 00000 n +0000032607 00000 n +0000031948 00000 n +0000032562 00000 n +0000093193 00000 n +0000033260 00000 n +0000032671 00000 n +0000033215 00000 n +0000093384 00000 n +0000034041 00000 n +0000033324 00000 n +0000033996 00000 n +0000093492 00000 n +0000034792 00000 n +0000034105 00000 n +0000034747 00000 n +0000093683 00000 n +0000035637 00000 n +0000034856 00000 n +0000035592 00000 n +0000093791 00000 n +0000036068 00000 n +0000035701 00000 n +0000036023 00000 n +0000093899 00000 n +0000037395 00000 n +0000082850 00000 n +0000082658 00000 n +0000036132 00000 n +0000037071 00000 n +0000037337 00000 n +0000089902 00000 n +0000088949 00000 n +0000089239 00000 n +0000089530 00000 n +0000089821 00000 n +0000091280 00000 n +0000090209 00000 n +0000090500 00000 n +0000090791 00000 n +0000091191 00000 n +0000092689 00000 n +0000091593 00000 n +0000091892 00000 n +0000092191 00000 n +0000092598 00000 n +0000094098 00000 n +0000093002 00000 n +0000093301 00000 n +0000093600 00000 n +0000094007 00000 n +0000094482 00000 n +0000094505 00000 n +0000094527 00000 n +trailer +<< +/Size 204 +/Root 2 0 R +/Info 1 0 R +>> +startxref +94648 +%%EOF diff --git a/src/axiom-website/CATS/kamke5.input.pamphlet b/src/axiom-website/CATS/kamke5.input.pamphlet new file mode 100644 index 0000000..34a8ee0 --- /dev/null +++ b/src/axiom-website/CATS/kamke5.input.pamphlet @@ -0,0 +1,1634 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input kamke5.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +This is the 251-300 of the Kamke test suite as published by +E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom +syntax. Where possible we show that the particular solution actually +satisfies the original ordinary differential equation. +\end{abstract} +\eject +\tableofcontents +\eject +<<*>>= +)spool kamke5.output +)set break resume +)set mes auto off +)clear all + +--S 1 of 130 +y:=operator 'y +--R +--R +--R (1) y +--R Type: BasicOperator +--E 1 + +--S 2 of 130 +f:=operator 'f +--R +--R +--R (2) f +--R Type: BasicOperator +--E 2 + +--S 3 of 130 +f0:=operator 'f0 +--R +--R +--R (3) f0 +--R Type: BasicOperator +--E 3 + +--S 4 of 130 +f1:=operator 'f1 +--R +--R +--R (4) f1 +--R Type: BasicOperator +--E 4 + +--S 5 of 130 +f2:=operator 'f2 +--R +--R +--R (5) f2 +--R Type: BasicOperator +--E 5 + +--S 6 of 130 +f3:=operator 'f3 +--R +--R +--R (6) f3 +--R Type: BasicOperator +--E 6 + +--S 7 of 130 +g:=operator 'g +--R +--R +--R (7) g +--R Type: BasicOperator +--E 7 + +--S 8 of 130 +g0:=operator 'g0 +--R +--R +--R (8) g0 +--R Type: BasicOperator +--E 8 + +--S 9 of 130 +g1:=operator 'g1 +--R +--R +--R (9) g1 +--R Type: BasicOperator +--E 9 + +--S 10 of 130 +h:=operator 'h +--R +--R +--R (10) h +--R Type: BasicOperator +--E 10 + +--S 11 of 130 +ode251 := (x**2*y(x)-1)*D(y(x),x)+x*y(x)**2-1 +--R +--R +--R 2 , 2 +--R (11) (x y(x) - 1)y (x) + x y(x) - 1 +--R +--R Type: Expression Integer +--E 11 + +--S 12 of 130 +yx:=solve(ode251,y,x) +--R +--R +--R 2 2 +--R x y(x) - 2y(x) - 2x +--R (12) -------------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 12 + +--S 13 of 130 +ode251expr := (x**2*yx-1)*D(yx,x)+x*yx**2-1 +--R +--R +--R (13) +--R 6 3 4 2 5 3 , 5 4 3 3 +--R (2x y(x) - 6x y(x) - 4x y(x) + 4x + 4)y (x) + 3x y(x) - 8x y(x) +--R +--R + +--R 4 2 2 3 +--R - 10x y(x) + 12x y(x) + 8x +--R / +--R 4 +--R Type: Expression Integer +--E 13 + +--S 14 of 130 +ode252 := (x**2*y(x)-1)*D(y(x),x)-(x*y(x)**2-1) +--R +--R +--R 2 , 2 +--R (14) (x y(x) - 1)y (x) - x y(x) + 1 +--R +--R Type: Expression Integer +--E 14 + +--S 15 of 130 +solve(ode252,y,x) +--R +--R +--R (15) "failed" +--R Type: Union("failed",...) +--E 15 + +--S 16 of 130 +ode253 := (x**2*y(x)-1)*D(y(x),x)+8*(x*y(x)**2-1) +--R +--R +--R 2 , 2 +--R (16) (x y(x) - 1)y (x) + 8x y(x) - 8 +--R +--R Type: Expression Integer +--E 16 + +--S 17 of 130 +solve(ode253,y,x) +--R +--R +--R (17) "failed" +--R Type: Union("failed",...) +--E 17 + +--S 18 of 130 +ode254 := x*(x*y(x)-2)*D(y(x),x)+x**2*y(x)**3+x*y(x)**2-2*y(x) +--R +--R +--R 2 , 2 3 2 +--R (18) (x y(x) - 2x)y (x) + x y(x) + x y(x) - 2y(x) +--R +--R Type: Expression Integer +--E 18 + +--S 19 of 130 +solve(ode254,y,x) +--R +--R +--R (19) "failed" +--R Type: Union("failed",...) +--E 19 + +--S 20 of 130 +ode255 := x*(x*y(x)-3)*D(y(x),x)+x*y(x)**2-y(x) +--R +--R +--R 2 , 2 +--R (20) (x y(x) - 3x)y (x) + x y(x) - y(x) +--R +--R Type: Expression Integer +--E 20 + +--S 21 of 130 +solve(ode255,y,x) +--R +--R +--R (21) "failed" +--R Type: Union("failed",...) +--E 21 + +--S 22 of 130 +ode256 := x**2*(y(x)-1)*D(y(x),x)+(x-1)*y(x) +--R +--R +--R 2 2 , +--R (22) (x y(x) - x )y (x) + (x - 1)y(x) +--R +--R Type: Expression Integer +--E 22 + +--S 23 of 130 +solve(ode256,y,x) +--R +--R +--R (23) "failed" +--R Type: Union("failed",...) +--E 23 + +--S 24 of 130 +ode257 := x*(x*y(x)+x**4-1)*D(y(x),x)-y(x)*(x*y(x)-x**4-1) +--R +--R +--R 2 5 , 2 4 +--R (24) (x y(x) + x - x)y (x) - x y(x) + (x + 1)y(x) +--R +--R Type: Expression Integer +--E 24 + +--S 25 of 130 +solve(ode257,y,x) +--R +--R +--R (25) "failed" +--R Type: Union("failed",...) +--E 25 + +--S 26 of 130 +ode258 := 2*x**2*y(x)*D(y(x),x)+y(x)**2-2*x**3-x**2 +--R +--R +--R 2 , 2 3 2 +--R (26) 2x y(x)y (x) + y(x) - 2x - x +--R +--R Type: Expression Integer +--E 26 + +--S 27 of 130 +yx:=solve(ode258,y,x) +--R +--R +--R 1 +--R - - +--R 2 2 x +--R (27) (y(x) - x )%e +--R Type: Union(Expression Integer,...) +--E 27 + +--S 28 of 130 +ode258expr := 2*x**2*yx*D(yx,x)+yx**2-2*x**3-x**2 +--R +--R +--R (28) +--R 1 2 +--R - - +--R 2 3 4 x , +--R (4x y(x) - 4x y(x))(%e ) y (x) +--R +--R + +--R 1 2 +--R - - +--R 4 3 2 2 5 4 x 3 2 +--R (3y(x) + (- 4x - 6x )y(x) + 4x + 3x )(%e ) - 2x - x +--R Type: Expression Integer +--E 28 + +--S 29 of 130 +ode259 := 2*x**2*y(x)*D(y(x),x)-y(x)**2-x**2*exp(x-1/x) +--R +--R +--R 2 +--R x - 1 +--R ------ +--R 2 , 2 x 2 +--R (29) 2x y(x)y (x) - x %e - y(x) +--R +--R Type: Expression Integer +--E 29 + +--S 30 of 130 +yx:=solve(ode259,y,x) +--R +--R +--R 2 +--R 1 x - 1 1 +--R - ------ - +--R x x 2 x +--R (30) - %e %e + y(x) %e +--R Type: Union(Expression Integer,...) +--E 30 + +--S 31 of 130 +ode259expr := 2*x**2*yx*D(yx,x)-yx**2-x**2*exp(x-1/x) +--R +--R +--R (31) +--R 2 +--R 1 2 x - 1 1 2 +--R - ------ - +--R 2 x x 2 3 x , +--R (- 4x y(x)(%e ) %e + 4x y(x) (%e ) )y (x) +--R +--R + +--R 2 2 2 +--R 1 2 x - 1 1 2 x - 1 +--R - ------ - ------ +--R 2 x x 2 2 x 2 x +--R (2x - 1)(%e ) (%e ) + ((- 2x + 4)y(x) (%e ) - x )%e +--R + +--R 1 2 +--R - +--R 4 x +--R - 3y(x) (%e ) +--R Type: Expression Integer +--E 31 + +--S 32 of 130 +ode260 := (2*x**2*y(x)+x)*D(y(x),x)-x**2*y(x)**3+2*x*y(x)**2+y(x) +--R +--R +--R 2 , 2 3 2 +--R (32) (2x y(x) + x)y (x) - x y(x) + 2x y(x) + y(x) +--R +--R Type: Expression Integer +--E 32 + +--S 33 of 130 +solve(ode260,y,x) +--R +--R +--R (33) "failed" +--R Type: Union("failed",...) +--E 33 + +--S 34 of 130 +ode261 := (2*x**2*y(x)-x)*D(y(x),x)-2*x*y(x)**2-y(x) +--R +--R +--R 2 , 2 +--R (34) (2x y(x) - x)y (x) - 2x y(x) - y(x) +--R +--R Type: Expression Integer +--E 34 + +--S 35 of 130 +solve(ode261,y,x) +--R +--R +--R (35) "failed" +--R Type: Union("failed",...) +--E 35 + +--S 36 of 130 +ode262 := (2*x**2*y(x)-x**3)*D(y(x),x)+y(x)**3-4*x*y(x)**2+2*x**3 +--R +--R +--R 2 3 , 3 2 3 +--R (36) (2x y(x) - x )y (x) + y(x) - 4x y(x) + 2x +--R +--R Type: Expression Integer +--E 36 + +--S 37 of 130 +solve(ode262,y,x) +--R +--R +--R (37) "failed" +--R Type: Union("failed",...) +--E 37 + +--S 38 of 130 +ode263 := 2*x**3+y(x)*D(y(x),x)+3*x**2*y(x)**2+7 +--R +--R +--R , 2 2 3 +--R (38) y(x)y (x) + 3x y(x) + 2x + 7 +--R +--R Type: Expression Integer +--E 38 + +--S 39 of 130 +solve(ode263,y,x) +--R +--R +--R x 3 +--I ++ 2 2 3 2%K +--I (39) | (3%K y(x) + 2%K + 7)%e d%K +--R ++ +--R Type: Union(Expression Integer,...) +--E 39 + +--S 40 of 130 +ode264 := 2*x*(x**3*y(x)+1)*D(y(x),x)+(3*x**3*y(x)-1)*y(x) +--R +--R +--R 4 , 3 2 +--R (40) (2x y(x) + 2x)y (x) + 3x y(x) - y(x) +--R +--R Type: Expression Integer +--E 40 + +--S 41 of 130 +solve(ode264,y,x) +--R +--R +--R (41) "failed" +--R Type: Union("failed",...) +--E 41 + +--S 42 of 130 +ode265 := (x**(n*(n+1))*y(x)-1)*D(y(x),x)+2*(n+1)**2*x**(n-1)_ + *(x**(n**2)*y(x)**2-1) +--R +--R +--R (42) +--R 2 2 +--R n + n , 2 2 n - 1 n +--R (y(x)x - 1)y (x) + (2n + 4n + 2)y(x) x x +--R +--R + +--R 2 n - 1 +--R (- 2n - 4n - 2)x +--R Type: Expression Integer +--E 42 + +--S 43 of 130 +solve(ode265,y,x) +--R +--R +--R (43) "failed" +--R Type: Union("failed",...) +--E 43 + +--S 44 of 130 +ode266 := (y(x)-x)*sqrt(x**2+1)*D(y(x),x)-a*sqrt((y(x)**2+1)**3) +--R +--R +--R +------+ +---------------------------+ +--R | 2 , | 6 4 2 +--R (44) (y(x) - x)\|x + 1 y (x) - a\|y(x) + 3y(x) + 3y(x) + 1 +--R +--R Type: Expression Integer +--E 44 + +--S 45 of 130 +solve(ode266,y,x) +--R +--R +--R (45) "failed" +--R Type: Union("failed",...) +--E 45 + +--S 46 of 130 +ode267 := y(x)*D(y(x),x)*sin(x)**2+y(x)**2*cos(x)*sin(x)-1 +--R +--R +--R 2 , 2 +--R (46) y(x)sin(x) y (x) + y(x) cos(x)sin(x) - 1 +--R +--R Type: Expression Integer +--E 46 + +--S 47 of 130 +yx:=solve(ode267,y,x) +--R +--R +--R 2 2 +--R y(x) sin(x) - 2x +--R (47) ----------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 47 + +--S 48 of 130 +ode267expr := yx*D(yx,x)*sin(x)**2+yx**2*cos(x)*sin(x)-1 +--R +--R +--R (48) +--R 3 6 4 , 4 5 +--R (2y(x) sin(x) - 4x y(x)sin(x) )y (x) + 3y(x) cos(x)sin(x) +--R +--R + +--R 2 4 2 3 2 2 +--R - 2y(x) sin(x) - 8x y(x) cos(x)sin(x) + 4x sin(x) + 4x cos(x)sin(x) - 4 +--R / +--R 4 +--R Type: Expression Integer +--E 48 + +--S 49 of 130 +ode268 := f(x)*y(x)*D(y(x),x)+g(x)*y(x)**2+h(x) +--R +--R +--R , 2 +--R (49) f(x)y(x)y (x) + g(x)y(x) + h(x) +--R +--R Type: Expression Integer +--E 49 + +--S 50 of 130 +solve(ode268,y,x) +--R +--R +--R >> Error detected within library code: +--R Function not supported by Risch d.e. +--R +--R Continuing to read the file... +--R +--E 50 + +--S 51 of 130 +ode269 := (g1(x)*y(x)+g0(x))*D(y(x),x)-f1(x)*y(x)-_ + f2(x)*y(x)**2-f3(x)*y(x)**3-f0(x) +--R +--R +--R (50) +--R , 3 2 +--R (g1(x)y(x) + g0(x))y (x) - f3(x)y(x) - f2(x)y(x) - f1(x)y(x) - f0(x) +--R +--R Type: Expression Integer +--E 51 + +--S 52 of 130 +solve(ode269,y,x) +--R +--R +--R (51) "failed" +--R Type: Union("failed",...) +--E 52 + +--S 53 of 130 +ode270 := (y(x)**2-x)*D(y(x),x)-y(x)+x**2 +--R +--R +--R 2 , 2 +--R (52) (y(x) - x)y (x) - y(x) + x +--R +--R Type: Expression Integer +--E 53 + +--S 54 of 130 +yx:=solve(ode270,y,x) +--R +--R +--R 3 3 +--R y(x) - 3x y(x) + x +--R (53) -------------------- +--R 3 +--R Type: Union(Expression Integer,...) +--E 54 + +--S 55 of 130 +ode270expr := (yx**2-x)*D(yx,x)-yx+x**2 +--R +--R +--R (54) +--R 8 6 3 5 2 4 4 3 +--R y(x) - 7x y(x) + 2x y(x) + 15x y(x) - 8x y(x) +--R + +--R 6 3 2 5 7 2 +--R (x - 9x - 9x)y(x) + 6x y(x) - x + 9x +--R * +--R , +--R y (x) +--R +--R + +--R 7 2 6 5 3 4 5 2 3 +--R - y(x) + x y(x) + 6x y(x) - 8x y(x) + (2x - 9x - 3)y(x) +--R + +--R 4 2 6 8 3 2 +--R 15x y(x) + (- 7x + 18x)y(x) + x - 12x + 9x +--R / +--R 9 +--R Type: Expression Integer +--E 55 + +--S 56 of 130 +ode271 := (y(x)**2+x**2)*D(y(x),x)+2*x*(y(x)+2*x) +--R +--R +--R 2 2 , 2 +--R (55) (y(x) + x )y (x) + 2x y(x) + 4x +--R +--R Type: Expression Integer +--E 56 + +--S 57 of 130 +yx:=solve(ode271,y,x) +--R +--R +--R 3 2 3 +--R y(x) + 3x y(x) + 4x +--R (56) --------------------- +--R 3 +--R Type: Union(Expression Integer,...) +--E 57 + +--S 58 of 130 +ode271expr := (yx**2+x**2)*D(yx,x)+2*x*(yx+2*x) +--R +--R +--R (57) +--R 8 2 6 3 5 4 4 5 3 +--R y(x) + 7x y(x) + 8x y(x) + 15x y(x) + 32x y(x) +--R + +--R 6 2 2 7 8 4 +--R (25x + 9x )y(x) + 24x y(x) + 16x + 9x +--R * +--R , +--R y (x) +--R +--R + +--R 7 2 6 3 5 4 4 5 3 +--R 2x y(x) + 4x y(x) + 12x y(x) + 40x y(x) + (50x + 6x)y(x) +--R + +--R 6 2 7 3 8 4 2 +--R 84x y(x) + (128x + 36x )y(x) + 64x + 60x + 36x +--R / +--R 9 +--R Type: Expression Integer +--E 58 + +--S 59 of 130 +ode272 := (y(x)**2+x**2)*D(y(x),x)-y(x)**2 +--R +--R +--R 2 2 , 2 +--R (58) (y(x) + x )y (x) - y(x) +--R +--R Type: Expression Integer +--E 59 + +--S 60 of 130 +solve(ode272,y,x) +--R +--R +--R (59) "failed" +--R Type: Union("failed",...) +--E 60 + +--S 61 of 130 +ode273 := (y(x)**2+x**2+a)*D(y(x),x)+2*x*y(x) +--R +--R +--R 2 2 , +--R (60) (y(x) + x + a)y (x) + 2x y(x) +--R +--R Type: Expression Integer +--E 61 + +--S 62 of 130 +yx:=solve(ode273,y,x) +--R +--R +--R 3 2 +--R y(x) + (3x + 3a)y(x) +--R (61) ---------------------- +--R 3 +--R Type: Union(Expression Integer,...) +--E 62 + +--S 63 of 130 +ode273expr := (yx**2+x**2+a)*D(yx,x)+2*x*yx +--R +--R +--R (62) +--R 8 2 6 4 2 2 4 +--R y(x) + (7x + 7a)y(x) + (15x + 30a x + 15a )y(x) +--R + +--R 6 4 2 2 3 2 4 2 2 +--R (9x + 27a x + (27a + 9)x + 9a + 9a)y(x) + 9x + 18a x + 9a +--R * +--R , +--R y (x) +--R +--R + +--R 7 3 5 5 3 2 3 +--R 2x y(x) + (12x + 12a x)y(x) + (18x + 36a x + (18a + 6)x)y(x) +--R + +--R 3 +--R (36x + 36a x)y(x) +--R / +--R 9 +--R Type: Expression Integer +--E 63 + +--S 64 of 130 +ode274 := (y(x)**2+x**2+a)*D(y(x),x)+2*x*y(x)+x**2+b +--R +--R +--R 2 2 , 2 +--R (63) (y(x) + x + a)y (x) + 2x y(x) + x + b +--R +--R Type: Expression Integer +--E 64 + +--S 65 of 130 +yx:=solve(ode274,y,x) +--R +--R +--R 3 2 3 +--R y(x) + (3x + 3a)y(x) + x + 3b x +--R (64) ---------------------------------- +--R 3 +--R Type: Union(Expression Integer,...) +--E 65 + +--S 66 of 130 +ode274expr := (yx**2+x**2+a)*D(yx,x)+2*x*yx+x**2+b +--R +--R +--R (65) +--R 8 2 6 3 5 +--R y(x) + (7x + 7a)y(x) + (2x + 6b x)y(x) +--R + +--R 4 2 2 4 5 3 3 +--R (15x + 30a x + 15a )y(x) + (8x + (24b + 8a)x + 24a b x)y(x) +--R + +--R 6 4 2 2 2 3 2 +--R (10x + (6b + 27a)x + (9b + 27a + 9)x + 9a + 9a)y(x) +--R + +--R 7 5 2 3 2 8 +--R (6x + (18b + 12a)x + (36a b + 6a )x + 18a b x)y(x) + x +--R + +--R 6 2 4 2 2 2 +--R (6b + a)x + (9b + 6a b + 9)x + (9a b + 18a)x + 9a +--R * +--R , +--R y (x) +--R +--R + +--R 7 2 6 3 5 +--R 2x y(x) + (x + b)y(x) + (12x + 12a x)y(x) +--R + +--R 4 2 4 +--R (10x + (18b + 6a)x + 6a b)y(x) +--R + +--R 5 3 2 2 3 +--R (20x + (8b + 36a)x + (6b + 18a + 6)x)y(x) +--R + +--R 6 4 2 2 2 2 +--R (21x + (45b + 30a)x + (54a b + 9a )x + 9a b)y(x) +--R + +--R 7 5 2 3 2 8 +--R (8x + (36b + 6a)x + (36b + 24a b + 36)x + (18a b + 36a)x)y(x) + x +--R + +--R 6 2 4 3 2 +--R 7b x + (15b + 15)x + (9b + 27b + 9a + 9)x + (9a + 9)b +--R / +--R 9 +--R Type: Expression Integer +--E 66 + +--S 67 of 130 +ode275 := (y(x)**2+x**2+x)*D(y(x),x)-y(x) +--R +--R +--R 2 2 , +--R (66) (y(x) + x + x)y (x) - y(x) +--R +--R Type: Expression Integer +--E 67 + +--S 68 of 130 +solve(ode275,y,x) +--R +--R +--R (67) "failed" +--R Type: Union("failed",...) +--E 68 + +--S 69 of 130 +ode276 := (y(x)**2-x**2)*D(y(x),x)+2*x*y(x) +--R +--R +--R 2 2 , +--R (68) (y(x) - x )y (x) + 2x y(x) +--R +--R Type: Expression Integer +--E 69 + +--S 70 of 130 +yx:=solve(ode276,y,x) +--R +--R +--R 2 2 +--R y(x) + x +--R (69) ---------- +--R y(x) +--R Type: Union(Expression Integer,...) +--E 70 + +--S 71 of 130 +ode276expr := (yx**2-x**2)*D(yx,x)+2*x*yx +--R +--R +--R 6 6 , 5 3 3 5 +--R (y(x) - x )y (x) + 4x y(x) + 4x y(x) + 2x y(x) +--R +--R (70) ------------------------------------------------- +--R 4 +--R y(x) +--R Type: Expression Integer +--E 71 + +--S 72 of 130 +ode277 := (y(x)**2+x**4)*D(y(x),x)-4*x**3*y(x) +--R +--R +--R 2 4 , 3 +--R (71) (y(x) + x )y (x) - 4x y(x) +--R +--R Type: Expression Integer +--E 72 + +--S 73 of 130 +yx:=solve(ode277,y,x) +--R +--R +--R 2 4 +--R y(x) - x +--R (72) ---------- +--R y(x) +--R Type: Union(Expression Integer,...) +--E 73 + +--S 74 of 130 +ode277expr := (yx**2+x**4)*D(yx,x)-4*x**3*yx +--R +--R +--R 6 12 , 3 5 7 3 11 +--R (y(x) + x )y (x) - 8x y(x) + 8x y(x) - 4x y(x) +--R +--R (73) --------------------------------------------------- +--R 4 +--R y(x) +--R Type: Expression Integer +--E 74 + +--S 75 of 130 +ode278 := (y(x)**2+4*sin(x))*D(y(x),x)-cos(x) +--R +--R +--R 2 , +--R (74) (4sin(x) + y(x) )y (x) - cos(x) +--R +--R Type: Expression Integer +--E 75 + +--S 76 of 130 +yx:=solve(ode278,y,x) +--R +--R +--R 2 - 4y(x) +--R (- 32sin(x) - 8y(x) - 4y(x) - 1)%e +--R (75) ------------------------------------------ +--R 32 +--R Type: Union(Expression Integer,...) +--E 76 + +--S 77 of 130 +ode278expr := (yx**2+4*sin(x))*D(yx,x)-cos(x) +--R +--R +--R (76) +--R 3 2 2 +--R 4096sin(x) + (3072y(x) + 1024y(x) + 256)sin(x) +--R + +--R 4 3 2 6 +--R (768y(x) + 512y(x) + 192y(x) + 32y(x) + 4)sin(x) + 64y(x) +--R + +--R 5 4 3 2 +--R 64y(x) + 32y(x) + 8y(x) + y(x) +--R * +--R - 4y(x) 3 +--R (%e ) +--R + +--R 2 2 - 4y(x) +--R (16384sin(x) + 4096y(x) sin(x))%e +--R * +--R , +--R y (x) +--R +--R + +--R 2 2 +--R - 1024cos(x)sin(x) + (- 512y(x) - 256y(x) - 64)cos(x)sin(x) +--R + +--R 4 3 2 +--R (- 64y(x) - 64y(x) - 32y(x) - 8y(x) - 1)cos(x) +--R * +--R - 4y(x) 3 +--R (%e ) +--R + +--R - 4y(x) +--R - 4096cos(x)sin(x)%e - 1024cos(x) +--R / +--R 1024 +--R Type: Expression Integer +--E 77 + +--S 78 of 130 +ode279 := (y(x)**2+2*y(x)+x)*D(y(x),x)+(y(x)+x)**2*y(x)**2+y(x)*(y(x)+1) +--R +--R +--R 2 , 4 3 2 2 +--R (77) (y(x) + 2y(x) + x)y (x) + y(x) + 2x y(x) + (x + 1)y(x) + y(x) +--R +--R Type: Expression Integer +--E 78 + +--S 79 of 130 +solve(ode279,y,x) +--R +--R +--R (78) "failed" +--R Type: Union("failed",...) +--E 79 + +--S 80 of 130 +ode280 := (y(x)+x)**2*D(y(x),x)-a**2 +--R +--R +--R 2 2 , 2 +--R (79) (y(x) + 2x y(x) + x )y (x) - a +--R +--R Type: Expression Integer +--E 80 + +--S 81 of 130 +solve(ode280,y,x) +--R +--R +--R (80) "failed" +--R Type: Union("failed",...) +--E 81 + +--S 82 of 130 +ode281 := (y(x)**2+2*x*y(x)-x**2)*D(y(x),x)-_ + y(x)**2+2*x*y(x)+x**2 +--R +--R +--R 2 2 , 2 2 +--R (81) (y(x) + 2x y(x) - x )y (x) - y(x) + 2x y(x) + x +--R +--R Type: Expression Integer +--E 82 + +--S 83 of 130 +solve(ode281,y,x) +--R +--R +--R (82) "failed" +--R Type: Union("failed",...) +--E 83 + +--S 84 of 130 +ode282 := (y(x)+3*x-1)**2*D(y(x),x)-(2*y(x)-1)*(4*y(x)+6*x-3) +--R +--R +--R (83) +--R 2 2 , 2 +--R (y(x) + (6x - 2)y(x) + 9x - 6x + 1)y (x) - 8y(x) + (- 12x + 10)y(x) + 6x +--R +--R + +--R - 3 +--R Type: Expression Integer +--E 84 + +--S 85 of 130 +solve(ode282,y,x) +--R +--R +--R (84) "failed" +--R Type: Union("failed",...) +--E 85 + +--S 86 of 130 +ode283 := 3*(y(x)**2-x**2)*D(y(x),x)+2*y(x)**3-6*x*(x+1)*y(x)-3*exp(x) +--R +--R +--R 2 2 , x 3 2 +--R (85) (3y(x) - 3x )y (x) - 3%e + 2y(x) + (- 6x - 6x)y(x) +--R +--R Type: Expression Integer +--E 86 + +--S 87 of 130 +yx:=solve(ode283,y,x) +--R +--R +--R x 3 3 2 x 2 +--R (86) - (%e ) + (y(x) - 3x y(x))(%e ) +--R Type: Union(Expression Integer,...) +--E 87 + +--S 88 of 130 +ode283expr := 3*(yx**2-x**2)*D(yx,x)+2*yx**3-6*x*(x+1)*yx-3*exp(x) +--R +--R +--R (87) +--R 2 2 x 8 5 2 3 4 x 7 +--R (9y(x) - 9x )(%e ) + (- 18y(x) + 72x y(x) - 54x y(x))(%e ) +--R + +--R 8 2 6 4 4 6 2 x 6 +--R (9y(x) - 63x y(x) + 135x y(x) - 81x y(x) )(%e ) +--R + +--R 2 2 4 x 2 +--R (- 9x y(x) + 9x )(%e ) +--R * +--R , +--R y (x) +--R +--R + +--R x 9 3 2 x 8 +--R - 11(%e ) + (30y(x) + (- 90x - 18x)y(x))(%e ) +--R + +--R 6 2 4 4 3 2 x 7 +--R (- 27y(x) + (162x + 36x)y(x) + (- 243x - 108x )y(x) )(%e ) +--R + +--R 9 2 7 4 3 5 +--R 8y(x) + (- 72x - 18x)y(x) + (216x + 108x )y(x) +--R + +--R 6 5 3 +--R (- 216x - 162x )y(x) +--R * +--R x 6 +--R (%e ) +--R + +--R 2 x 3 2 3 4 3 x 2 x +--R (15x + 6x)(%e ) + ((- 12x - 6x)y(x) + (36x + 36x )y(x))(%e ) - 3%e +--R Type: Expression Integer +--E 88 + +--S 89 of 130 +ode284 := (4*y(x)**2+x**2)*D(y(x),x)-x*y(x) +--R +--R +--R 2 2 , +--R (88) (4y(x) + x )y (x) - x y(x) +--R +--R Type: Expression Integer +--E 89 + +--S 90 of 130 +yx:=solve(ode284,y,x) +--R +--R +--R 2 2 +--R 8y(x) log(y(x)) - x +--R (89) -------------------- +--R 2 +--R 2y(x) +--R Type: Union(Expression Integer,...) +--E 90 + +--S 91 of 130 +ode284expr := (4*yx**2+x**2)*D(yx,x)-x*yx +--R +--R +--R (90) +--R 6 2 4 2 +--R (512y(x) + 128x y(x) )log(y(x)) +--R + +--R 2 4 4 2 2 6 4 4 4 2 +--R (- 128x y(x) - 32x y(x) )log(y(x)) + 8x y(x) + 2x y(x) + 8x y(x) +--R + +--R 6 +--R 2x +--R * +--R , +--R y (x) +--R +--R + +--R 5 2 7 3 3 3 5 +--R - 128x y(x) log(y(x)) + (- 8x y(x) + 32x y(x) )log(y(x)) - x y(x) +--R + +--R 5 +--R - 2x y(x) +--R / +--R 7 +--R 2y(x) +--R Type: Expression Integer +--E 91 + +--S 92 of 130 +ode285 := (4*y(x)**2+2*x*y(x)+3*x**2)*D(y(x),x)+y(x)**2+6*x*y(x)+2*x**2 +--R +--R +--R 2 2 , 2 2 +--R (91) (4y(x) + 2x y(x) + 3x )y (x) + y(x) + 6x y(x) + 2x +--R +--R Type: Expression Integer +--E 92 + +--S 93 of 130 +yx:=solve(ode285,y,x) +--R +--R +--R 3 2 2 3 +--R 4y(x) + 3x y(x) + 9x y(x) + 2x +--R (92) --------------------------------- +--R 3 +--R Type: Union(Expression Integer,...) +--E 93 + +--S 94 of 130 +ode285expr := (4*yx**2+2*x*yx+3*x**2)*D(yx,x)+yx**2+6*x*yx+2*x**2 +--R +--R +--R (93) +--R 8 7 2 6 3 5 +--R 256y(x) + 512x y(x) + 1680x y(x) + (2056x + 96x)y(x) +--R + +--R 4 2 4 5 3 3 +--R (3020x + 120x )y(x) + (2160x + 324x )y(x) +--R + +--R 6 4 2 2 7 5 3 8 +--R (1468x + 210x + 108x )y(x) + (464x + 186x + 54x )y(x) + 48x +--R + +--R 6 4 +--R 36x + 81x +--R * +--R , +--R y (x) +--R +--R + +--R 8 7 2 6 3 5 +--R 64y(x) + 480x y(x) + (1028x + 16)y(x) + (2416x + 48x)y(x) +--R + +--R 4 2 4 5 3 3 +--R (2700x + 243x )y(x) + (2936x + 280x + 72x)y(x) +--R + +--R 6 4 2 2 7 5 3 8 6 +--R (1624x + 465x + 81x )y(x) + (384x + 216x + 324x )y(x) + 32x + 28x +--R + +--R 4 2 +--R 90x + 18x +--R / +--R 9 +--R Type: Expression Integer +--E 94 + +--S 95 of 130 +ode286 := (2*y(x)-3*x+1)**2*D(y(x),x)-(3*y(x)-2*x-4)**2 +--R +--R +--R (94) +--R 2 2 , 2 +--R (4y(x) + (- 12x + 4)y(x) + 9x - 6x + 1)y (x) - 9y(x) + (12x + 24)y(x) +--R +--R + +--R 2 +--R - 4x - 16x - 16 +--R Type: Expression Integer +--E 95 + +--S 96 of 130 +solve(ode286,y,x) +--R +--R +--R (95) "failed" +--R Type: Union("failed",...) +--E 96 + +--S 97 of 130 +ode287 := (2*y(x)-4*x+1)**2*D(y(x),x)-(y(x)-2*x)**2 +--R +--R +--R (96) +--R 2 2 , 2 2 +--R (4y(x) + (- 16x + 4)y(x) + 16x - 8x + 1)y (x) - y(x) + 4x y(x) - 4x +--R +--R Type: Expression Integer +--E 97 + +--S 98 of 130 +solve(ode287,y,x) +--R +--R +--R (97) "failed" +--R Type: Union("failed",...) +--E 98 + +--S 99 of 130 +ode288 := (6*y(x)**2-3*x**2*y(x)+1)*D(y(x),x)-3*x*y(x)**2+x +--R +--R +--R 2 2 , 2 +--R (98) (6y(x) - 3x y(x) + 1)y (x) - 3x y(x) + x +--R +--R Type: Expression Integer +--E 99 + +--S 100 of 130 +yx:=solve(ode288,y,x) +--R +--R +--R 3 2 2 2 +--R 4y(x) - 3x y(x) + 2y(x) + x +--R (99) ------------------------------ +--R 2 +--R Type: Union(Expression Integer,...) +--E 100 + +--S 101 of 130 +ode288expr := (6*yx**2-3*x**2*yx+1)*D(yx,x)-3*x*yx**2+x +--R +--R +--R (100) +--R 8 2 7 4 6 6 2 5 +--R 576y(x) - 1152x y(x) + (756x + 672)y(x) + (- 162x - 720x )y(x) +--R + +--R 4 4 6 2 3 4 2 +--R (90x + 240)y(x) + (54x - 48x )y(x) + (- 54x + 48)y(x) + 4 +--R * +--R , +--R y (x) +--R +--R + +--R 8 3 7 5 6 3 5 +--R - 288x y(x) + 432x y(x) + (- 162x - 240x)y(x) + 72x y(x) +--R + +--R 5 4 3 3 5 +--R (81x - 24x)y(x) - 72x y(x) - 3x + 8x +--R / +--R 4 +--R Type: Expression Integer +--E 101 + +--S 102 of 130 +ode289 := (6*y(x)-x)**2*D(y(x),x)-6*y(x)**2+2*x*y(x)+a +--R +--R +--R 2 2 , 2 +--R (101) (36y(x) - 12x y(x) + x )y (x) - 6y(x) + 2x y(x) + a +--R +--R Type: Expression Integer +--E 102 + +--S 103 of 130 +yx:=solve(ode289,y,x) +--R +--R +--R 3 2 2 +--R (102) 12y(x) - 6x y(x) + x y(x) + a x +--R Type: Union(Expression Integer,...) +--E 103 + +--S 104 of 130 +ode289expr := (6*yx-x)**2*D(yx,x)-6*yx**2+2*x*yx+a +--R +--R +--R (103) +--R 8 7 2 6 +--R 186624y(x) - 248832x y(x) + 145152x y(x) +--R + +--R 3 5 +--R (- 46656x + (31104a - 5184)x)y(x) +--R + +--R 4 2 4 5 3 3 +--R (8640x + (- 25920a + 4320)x )y(x) + (- 864x + (8640a - 1440)x )y(x) +--R + +--R 6 4 2 2 2 +--R (36x + (- 1296a + 216)x + (1296a - 432a + 36)x )y(x) +--R + +--R 5 2 3 2 4 +--R ((72a - 12)x + (- 432a + 144a - 12)x )y(x) + (36a - 12a + 1)x +--R * +--R , +--R y (x) +--R +--R + +--R 8 7 2 6 +--R - 31104y(x) + 41472x y(x) + (- 23328x + 5184a - 864)y(x) +--R + +--R 3 5 4 2 4 +--R (6912x + (- 10368a + 1728)x)y(x) + (- 1080x + (6480a - 1080)x )y(x) +--R + +--R 5 3 2 3 +--R (72x + (- 1728a + 288)x + (864a - 288a + 24)x)y(x) +--R + +--R 4 2 2 2 2 3 +--R ((180a - 30)x + (- 648a + 216a - 18)x )y(x) + (144a - 48a + 4)x y(x) +--R + +--R 3 2 2 +--R (36a - 18a + 3a)x + a +--R Type: Expression Integer +--E 104 + +--S 105 of 130 +ode290 := (a*y(x)**2+2*b*x*y(x)+c*x**2)*D(y(x),x)+b*y(x)**2+2*c*x*y(x)+d*x**2 +--R +--R +--R 2 2 , 2 2 +--R (104) (a y(x) + 2b x y(x) + c x )y (x) + b y(x) + 2c x y(x) + d x +--R +--R Type: Expression Integer +--E 105 + +--S 106 of 130 +yx:=solve(ode290,y,x) +--R +--R +--R 3 2 2 3 +--R a y(x) + 3b x y(x) + 3c x y(x) + d x +--R (105) --------------------------------------- +--R 3 +--R Type: Union(Expression Integer,...) +--E 106 + +--S 107 of 130 +ode290expr:=(a*yx**2+2*b*x*yx+c*x**2)*D(yx,x)+b*yx**2+2*c*x*yx+d*x**2 +--R +--R +--R (106) +--R 4 8 3 7 3 2 2 2 6 +--R a y(x) + 8a b x y(x) + (7a c + 21a b )x y(x) +--R + +--R 3 2 3 3 2 5 +--R ((2a d + 36a b c + 18a b )x + 6a b x)y(x) +--R + +--R 2 2 2 2 4 2 2 4 +--R ((10a b d + 15a c + 45a b c)x + 30a b x )y(x) +--R + +--R 2 2 2 5 3 3 3 +--R (((8a c + 12a b )d + 36a b c )x + (24a b c + 36b )x )y(x) +--R + +--R 2 2 3 6 2 4 2 2 +--R ((a d + 18a b c d + 9a c )x + (6a b d + 54b c)x + 9a c x )y(x) +--R + +--R 2 2 7 2 2 5 3 2 8 +--R ((2a b d + 6a c d)x + (12b d + 18b c )x + 18b c x )y(x) + a c d x +--R + +--R 6 2 4 +--R 6b c d x + 9c x +--R * +--R , +--R y (x) +--R +--R + +--R 3 8 3 2 2 7 +--R a b y(x) + (2a c + 6a b )x y(x) +--R + +--R 3 2 3 2 2 6 +--R ((a d + 18a b c + 9a b )x + a b)y(x) +--R + +--R 2 2 2 2 3 2 5 +--R ((8a b d + 12a c + 36a b c)x + 12a b x)y(x) +--R + +--R 2 2 2 4 3 2 4 +--R (((10a c + 15a b )d + 45a b c )x + (18a b c + 27b )x )y(x) +--R + +--R 2 2 3 5 2 3 3 +--R ((2a d + 36a b c d + 18a c )x + (8a b d + 72b c)x + 6a c x)y(x) +--R + +--R 2 2 6 2 2 4 2 2 +--R ((7a b d + 21a c d)x + (30b d + 45b c )x + 27b c x )y(x) +--R + +--R 2 7 5 2 3 3 8 2 6 4 2 +--R (8a c d x + 36b c d x + 36c x )y(x) + a d x + 7b d x + 15c d x + 9d x +--R / +--R 9 +--R Type: Expression Integer +--E 107 + +--S 108 of 130 +ode291 := (b*(beta*y(x)+alpha*x)**2-beta*(b*y(x)+a*x))*D(y(x),x)+_ + a*(beta*y(x)+alpha*x)**2-alpha*(b*y(x)+a*x) +--R +--R +--R (107) +--R 2 2 2 2 +--R (b beta y(x) + (2alpha b beta x - b beta)y(x) + alpha b x - a beta x) +--R * +--R , +--R y (x) +--R +--R + +--R 2 2 2 2 +--R a beta y(x) + (2a alpha beta x - alpha b)y(x) + a alpha x - a alpha x +--R Type: Expression Integer +--E 108 + +--S 109 of 130 +solve(ode291,y,x) +--R +--R +--R (108) "failed" +--R Type: Union("failed",...) +--E 109 + +--S 110 of 130 +ode292 := (a*y(x)+b*x+c)**2*D(y(x),x)+(alpha*y(x)+beta*x+gamma)**2 +--R +--R +--R (109) +--R 2 2 2 2 2 , 2 2 +--R (a y(x) + (2a b x + 2a c)y(x) + b x + 2b c x + c )y (x) + alpha y(x) +--R +--R + +--R 2 2 2 +--R (2alpha beta x + 2alpha gamma)y(x) + beta x + 2beta gamma x + gamma +--R Type: Expression Integer +--E 110 + +--S 111 of 130 +solve(ode292,y,x) +--R +--R +--R (110) "failed" +--R Type: Union("failed",...) +--E 111 + +--S 112 of 130 +ode293 := x*(y(x)**2-3*x)*D(y(x),x)+2*y(x)**3-5*x*y(x) +--R +--R +--R 2 2 , 3 +--R (111) (x y(x) - 3x )y (x) + 2y(x) - 5x y(x) +--R +--R Type: Expression Integer +--E 112 + +--S 113 of 130 +solve(ode293,y,x) +--R +--R +--R (112) "failed" +--R Type: Union("failed",...) +--E 113 + +--S 114 of 130 +ode294 := x*(y(x)**2+x**2-a)*D(y(x),x)-y(x)*(y(x)**2+x**2+a) +--R +--R +--R 2 3 , 3 2 +--R (113) (x y(x) + x - a x)y (x) - y(x) + (- x - a)y(x) +--R +--R Type: Expression Integer +--E 114 + +--S 115 of 130 +solve(ode294,y,x) +--R +--R +--R (114) "failed" +--R Type: Union("failed",...) +--E 115 + +--S 116 of 130 +ode295 := x*(y(x)**2+x*y(x)-x**2)*D(y(x),x)-y(x)**3+x*y(x)**2+x**2*y(x) +--R +--R +--R 2 2 3 , 3 2 2 +--R (115) (x y(x) + x y(x) - x )y (x) - y(x) + x y(x) + x y(x) +--R +--R Type: Expression Integer +--E 116 + +--S 117 of 130 +solve(ode295,y,x) +--R +--R +--R (116) "failed" +--R Type: Union("failed",...) +--E 117 + +--S 118 of 130 +ode296 := x*(y(x)**2+x**2*y(x)+x**2)*D(y(x),x)-2*y(x)**3-2*x**2*y(x)**2+x**4 +--R +--R +--R 2 3 3 , 3 2 2 4 +--R (117) (x y(x) + x y(x) + x )y (x) - 2y(x) - 2x y(x) + x +--R +--R Type: Expression Integer +--E 118 + +--S 119 of 130 +solve(ode296,y,x) +--R +--R +--R (118) "failed" +--R Type: Union("failed",...) +--E 119 + +--S 120 of 130 +ode297 := 2*x*(y(x)**2+5*x**2)*D(y(x),x)+y(x)**3-x**2*y(x) +--R +--R +--R 2 3 , 3 2 +--R (119) (2x y(x) + 10x )y (x) + y(x) - x y(x) +--R +--R Type: Expression Integer +--E 120 + +--S 121 of 130 +solve(ode297,y,x) +--R +--R +--R (120) "failed" +--R Type: Union("failed",...) +--E 121 + +--S 122 of 130 +ode298 := 3*x*y(x)**2*D(y(x),x)+y(x)**3-2*x +--R +--R +--R 2 , 3 +--R (121) 3x y(x) y (x) + y(x) - 2x +--R +--R Type: Expression Integer +--E 122 + +--S 123 of 130 +yx:=solve(ode298,y,x) +--R +--R +--R 3 2 +--R (122) x y(x) - x +--R Type: Union(Expression Integer,...) +--E 123 + +--S 124 of 130 +ode298expr := 3*x*yx**2*D(yx,x)+yx**3-2*x +--R +--R +--R (123) +--R 4 8 5 5 6 2 , 3 9 4 6 5 3 +--R (9x y(x) - 18x y(x) + 9x y(x) )y (x) + 4x y(x) - 15x y(x) + 18x y(x) +--R +--R + +--R 6 +--R - 7x - 2x +--R Type: Expression Integer +--E 124 + +--S 125 of 130 +ode299 := (3*x*y(x)**2-x**2)*D(y(x),x)+y(x)**3-2*x*y(x) +--R +--R +--R 2 2 , 3 +--R (124) (3x y(x) - x )y (x) + y(x) - 2x y(x) +--R +--R Type: Expression Integer +--E 125 + +--S 126 of 130 +yx:=solve(ode299,y,x) +--R +--R +--R 3 2 +--R (125) x y(x) - x y(x) +--R Type: Union(Expression Integer,...) +--E 126 + +--S 127 of 130 +ode299expr := (3*x*yx**2-x**2)*D(yx,x)+yx**3-2*x*yx +--R +--R +--R (126) +--R 4 8 5 6 6 4 7 3 2 4 , +--R (9x y(x) - 21x y(x) + 15x y(x) + (- 3x - 3x )y(x) + x )y (x) +--R +--R + +--R 3 9 4 7 5 5 6 2 3 3 +--R 4x y(x) - 15x y(x) + 18x y(x) + (- 7x - 3x )y(x) + 4x y(x) +--R Type: Expression Integer +--E 127 + +--S 128 of 130 +ode300 := 6*x*y(x)**2*D(y(x),x)+2*y(x)**3+x +--R +--R +--R 2 , 3 +--R (127) 6x y(x) y (x) + 2y(x) + x +--R +--R Type: Expression Integer +--E 128 + +--S 129 of 130 +yx:=solve(ode300,y,x) +--R +--R +--R 3 2 +--R 4x y(x) + x +--R (128) ------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 129 + +--S 130 of 130 +ode300expr := 6*x*yx**2*D(yx,x)+2*yx**3+x +--R +--R +--R (129) +--R 4 8 5 5 6 2 , 3 9 4 6 +--R (576x y(x) + 288x y(x) + 36x y(x) )y (x) + 256x y(x) + 240x y(x) +--R +--R + +--R 5 3 6 +--R 72x y(x) + 7x + 4x +--R / +--R 4 +--R Type: Expression Integer +--E 130 + +)spool +)lisp (bye) + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html} +\end{thebibliography} +\end{document} diff --git a/src/axiom-website/CATS/kamke5.input.pdf b/src/axiom-website/CATS/kamke5.input.pdf new file mode 100644 index 0000000..3d07ba6 Binary files /dev/null and b/src/axiom-website/CATS/kamke5.input.pdf differ diff --git a/src/axiom-website/CATS/kamke6.input.pamphlet b/src/axiom-website/CATS/kamke6.input.pamphlet new file mode 100644 index 0000000..ad31cd3 --- /dev/null +++ b/src/axiom-website/CATS/kamke6.input.pamphlet @@ -0,0 +1,3661 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input kamke6.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +This is the 301-350 of the Kamke test suite as published by +E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom +syntax. Where possible we show that the particular solution actually +satisfies the original ordinary differential equation. +\end{abstract} +\eject +\tableofcontents +\eject +<<*>>= +)spool kamke6.output +)set break resume +)set mes auto off +)clear all + +--S 1 of 120 +y:=operator 'y +--R +--R +--R (1) y +--R Type: BasicOperator +--E 1 + +--S 2 of 120 +--Rf:=operator 'f +--R +--R +--R (2) f +--R Type: BasicOperator +--E 2 + +--S 3 of 120 +--Rg:=operator 'g +--R +--R +--R (3) g +--R Type: BasicOperator +--R +--E 3 + +--S 4 of 120 +--Rode301 := (6*x*y(x)**2+x**2)*D(y(x),x)-y(x)*(3*y(x)**2-x) +--R +--R +--R 2 2 , 3 +--R (4) (6x y(x) + x )y (x) - 3y(x) + x y(x) +--R +--R Type: Expression Integer +--E 4 + +--S 5 of 120 +--Rsolve(ode301,y,x) +--R +--R +--R (5) "failed" +--R Type: Union("failed",...) +--E 5 + +--S 6 of 120 +--Rode302 := (x**2*y(x)**2+x)*D(y(x),x)+y(x) +--R +--R +--R 2 2 , +--R (6) (x y(x) + x)y (x) + y(x) +--R +--R Type: Expression Integer +--E 6 + +--S 7 of 120 +--Rsolve(ode302,y,x) +--R +--R +--R (7) "failed" +--R Type: Union("failed",...) +--E 7 + +--S 8 of 120 +--Rode303 := (x*y(x)-1)**2*x*D(y(x),x)+(x**2*y(x)**2+1)*y(x) +--R +--R +--R 3 2 2 , 2 3 +--R (8) (x y(x) - 2x y(x) + x)y (x) + x y(x) + y(x) +--R +--R Type: Expression Integer +--E 8 + +--S 9 of 120 +--Rsolve(ode303,y,x) +--R +--R +--R (9) "failed" +--R Type: Union("failed",...) +--E 9 + +--S 10 of 120 +--Rode304 := (10*x**3*y(x)**2+x**2*y(x)+2*x)*D(y(x),x)+5*x**2*y(x)**3+x*y(x)**2 +--R +--R +--R 3 2 2 , 2 3 2 +--R (10) (10x y(x) + x y(x) + 2x)y (x) + 5x y(x) + x y(x) +--R +--R Type: Expression Integer +--E 10 + +--S 11 of 120 +--Rsolve(ode304,y,x) +--R +--R +--R (11) "failed" +--R Type: Union("failed",...) +--E 11 + +--S 12 of 120 +--Rode305 := (y(x)**3-3*x)*D(y(x),x)-3*y(x)+x**2 +--R +--R +--R 3 , 2 +--R (12) (y(x) - 3x)y (x) - 3y(x) + x +--R +--R Type: Expression Integer +--E 12 + +--S 13 of 120 +--Ryx:=solve(ode305,y,x) +--R +--R +--R 4 3 +--R 3y(x) - 36x y(x) + 4x +--R (13) ----------------------- +--R 12 +--R Type: Union(Expression Integer,...) +--E 13 + +--S 14 of 120 +--Rode305expr := (yx**3-3*x)*D(yx,x)-3*yx+x**2 +--R +--R +--R (14) +--R 15 12 3 11 2 9 4 8 +--R 27y(x) - 1053x y(x) + 108x y(x) + 14580x y(x) - 2916x y(x) +--R + +--R 6 7 3 6 5 5 7 4 +--R 144x y(x) - 81648x y(x) + 23328x y(x) - 2160x y(x) +--R + +--R 9 4 3 6 2 8 10 +--R (64x + 139968x - 5184x)y(x) - 46656x y(x) + 5184x y(x) - 192x +--R + +--R 2 +--R 15552x +--R * +--R , +--R y (x) +--R +--R + +--R 13 2 12 10 3 9 5 8 +--R - 81y(x) + 27x y(x) + 2916x y(x) - 1296x y(x) + 108x y(x) +--R + +--R 2 7 4 6 6 5 +--R - 34992x y(x) + 19440x y(x) - 3024x y(x) +--R + +--R 8 3 4 5 3 7 2 +--R (144x + 139968x - 1296)y(x) - 93312x y(x) + 20736x y(x) +--R + +--R 9 11 3 2 +--R (- 1920x + 31104x)y(x) + 64x - 6912x + 1728x +--R / +--R 1728 +--R Type: Expression Integer +--E 14 + +--S 15 of 120 +--Rode306 := (y(x)**3-x**3)*D(y(x),x)-x**2*y(x) +--R +--R +--R 3 3 , 2 +--R (15) (y(x) - x )y (x) - x y(x) +--R +--R Type: Expression Integer +--E 15 + +--S 16 of 120 +--Ryx:=solve(ode306,y,x) +--R +--R +--R 6 3 3 +--R y(x) - 2x y(x) +--R (16) ---------------- +--R 6 +--R Type: Union(Expression Integer,...) +--E 16 + +--S 17 of 120 +--Rode306expr := (yx**3-x**3)*D(yx,x)-x**2*yx +--R +--R +--R (17) +--R 23 3 20 6 17 9 14 12 11 +--R y(x) - 7x y(x) + 18x y(x) - 20x y(x) + 8x y(x) +--R + +--R 3 5 6 2 +--R - 216x y(x) + 216x y(x) +--R * +--R , +--R y (x) +--R +--R + +--R 2 21 5 18 8 15 11 12 2 6 5 3 +--R - x y(x) + 6x y(x) - 12x y(x) + 8x y(x) - 36x y(x) + 288x y(x) +--R / +--R 216 +--R Type: Expression Integer +--E 17 + +--S 18 of 120 +--Rode307 := (y(x)**2+x**2+a)*y(x)*D(y(x),x)+(y(x)**2+x**2-a)*x +--R +--R +--R 3 2 , 2 3 +--R (18) (y(x) + (x + a)y(x))y (x) + x y(x) + x - a x +--R +--R Type: Expression Integer +--E 18 + +--S 19 of 120 +--Ryx:=solve(ode307,y,x) +--R +--R +--R 4 2 2 4 2 +--R y(x) + (2x + 2a)y(x) + x - 2a x +--R (19) ------------------------------------ +--R 4 +--R Type: Union(Expression Integer,...) +--E 19 + +--S 20 of 120 +--Rode307expr := (yx**2+x**2+a)*yx*D(yx,x)+(yx**2+x**2-a)*x +--R +--R +--R (20) +--R 15 2 13 4 2 2 11 +--R y(x) + (7x + 7a)y(x) + (21x + 30a x + 18a )y(x) +--R + +--R 6 4 2 2 3 9 +--R (35x + 45a x + 30a x + 20a )y(x) +--R + +--R 8 6 2 4 3 2 4 7 +--R (35x + 20a x - 12a x + (- 16a + 16)x + 8a + 16a)y(x) +--R + +--R 10 8 2 6 3 4 4 2 +--R 21x - 15a x - 36a x + (- 24a + 48)x + (- 24a + 96a)x +--R + +--R 2 +--R 48a +--R * +--R 5 +--R y(x) +--R + +--R 12 10 2 8 3 6 4 4 2 2 +--R 7x - 18a x - 6a x + (16a + 48)x + (24a + 80a)x + 64a x +--R + +--R 3 +--R 32a +--R * +--R 3 +--R y(x) +--R + +--R 14 12 2 10 3 8 4 6 2 4 3 2 +--R (x - 5a x + 6a x + (4a + 16)x - 8a x - 48a x - 32a x )y(x) +--R * +--R , +--R y (x) +--R +--R + +--R 14 3 12 5 3 2 10 +--R x y(x) + (7x + 5a x)y(x) + (21x + 18a x + 6a x)y(x) +--R + +--R 7 5 2 3 3 8 +--R (35x + 15a x - 6a x + (- 4a + 4)x)y(x) +--R + +--R 9 7 2 5 3 3 4 6 +--R (35x - 20a x - 36a x + (- 16a + 32)x + (- 8a + 32a)x)y(x) +--R + +--R 11 9 2 7 3 5 4 3 2 4 +--R (21x - 45a x - 12a x + (24a + 72)x + (24a + 80a)x + 32a x)y(x) +--R + +--R 13 11 2 9 3 7 4 5 2 3 3 2 +--R (7x - 30a x + 30a x + (16a + 64)x - 24a x - 96a x - 32a x)y(x) +--R + +--R 15 13 2 11 3 9 4 7 3 3 +--R x - 7a x + 18a x + (- 20a + 20)x + (8a - 48a)x + (32a + 64)x +--R + +--R - 64a x +--R / +--R 64 +--R Type: Expression Integer +--E 20 + +--S 21 of 120 +--Rode308 := 2*y(x)**3*D(y(x),x)+x*y(x)**2 +--R +--R +--R 3 , 2 +--R (21) 2y(x) y (x) + x y(x) +--R +--R Type: Expression Integer +--E 21 + +--S 22 of 120 +--Ryx:=solve(ode308,y,x) +--R +--R +--R 2 2 +--R 2y(x) + x +--R (22) ----------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 22 + +--S 23 of 120 +--Rode308expr := 2*yx**3*D(yx,x)+x*yx**2 +--R +--R +--R (23) +--R 7 2 5 4 3 6 , 6 +--R (16y(x) + 24x y(x) + 12x y(x) + 2x y(x))y (x) + 8x y(x) +--R +--R + +--R 3 4 5 3 2 7 5 +--R (12x + 4x)y(x) + (6x + 4x )y(x) + x + x +--R / +--R 4 +--R Type: Expression Integer +--E 23 + +--S 24 of 120 +--Rode309 := (2*y(x)**3+y(x))*D(y(x),x)-2*x**3-x +--R +--R +--R 3 , 3 +--R (24) (2y(x) + y(x))y (x) - 2x - x +--R +--R Type: Expression Integer +--E 24 + +--S 25 of 120 +--Ryx:=solve(ode309,y,x) +--R +--R +--R 4 2 4 2 +--R y(x) + y(x) - x - x +--R (25) ----------------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 25 + +--S 26 of 120 +--Rode309expr := (2*yx**3+yx)*D(yx,x)-2*x**3-x +--R +--R +--R (26) +--R 15 13 4 2 11 +--R 2y(x) + 7y(x) + (- 6x - 6x + 9)y(x) +--R + +--R 4 2 9 8 6 4 2 7 +--R (- 15x - 15x + 5)y(x) + (6x + 12x - 6x - 12x + 5)y(x) +--R + +--R 8 6 4 2 5 +--R (9x + 18x + 6x - 3x + 6)y(x) +--R + +--R 12 10 8 6 4 2 3 +--R (- 2x - 6x - 3x + 4x - x - 4x + 2)y(x) +--R + +--R 12 10 8 6 4 2 +--R (- x - 3x - 3x - x - 2x - 2x )y(x) +--R * +--R , +--R y (x) +--R +--R + +--R 3 12 3 10 7 5 3 8 +--R (- 2x - x)y(x) + (- 6x - 3x)y(x) + (6x + 9x - 3x - 3x)y(x) +--R + +--R 7 5 3 6 11 9 7 5 3 4 +--R (12x + 18x + 4x - x)y(x) + (- 6x - 15x - 6x + 6x - x - 2x)y(x) +--R + +--R 11 9 7 5 3 2 15 13 11 9 +--R (- 6x - 15x - 12x - 3x - 4x - 2x)y(x) + 2x + 7x + 9x + 5x +--R + +--R 7 5 3 +--R 5x + 6x - 6x - 4x +--R / +--R 4 +--R Type: Expression Integer +--E 26 + +--S 27 of 120 +--Rode310 := (2*y(x)**3+5*x**2*y(x))*D(y(x),x)+5*x*y(x)**2+x**3 +--R +--R +--R 3 2 , 2 3 +--R (27) (2y(x) + 5x y(x))y (x) + 5x y(x) + x +--R +--R Type: Expression Integer +--E 27 + +--S 28 of 120 +--Ryx:=solve(ode310,y,x) +--R +--R +--R 4 2 2 4 +--R 2y(x) + 10x y(x) + x +--R (28) ----------------------- +--R 4 +--R Type: Union(Expression Integer,...) +--E 28 + +--S 29 of 120 +--Rode310expr := (2*yx**3+5*x**2*yx)*D(yx,x)+5*x*yx**2+x**3 +--R +--R +--R (29) +--R 15 2 13 4 11 6 9 +--R 16y(x) + 280x y(x) + 1824x y(x) + 5300x y(x) +--R + +--R 8 2 7 10 4 5 +--R (6212x + 160x )y(x) + (1590x + 1200x )y(x) +--R + +--R 12 6 3 14 8 +--R (152x + 2080x )y(x) + (5x + 200x )y(x) +--R * +--R , +--R y (x) +--R +--R + +--R 14 3 12 5 10 7 8 +--R 40x y(x) + 608x y(x) + 3180x y(x) + (6212x + 40x)y(x) +--R + +--R 9 3 6 11 5 4 13 7 2 +--R (2650x + 800x )y(x) + (456x + 3120x )y(x) + (35x + 800x )y(x) +--R + +--R 15 9 3 +--R x + 50x + 32x +--R / +--R 32 +--R Type: Expression Integer +--E 29 + +--S 30 of 120 +--Rode311 := (20*y(x)**3-3*x*y(x)**2+6*x**2*y(x)+3*x**3)*D(y(x),x)-_ +--R y(x)**3+6*x*y(x)**2+9*x**2*y(x)+4*x**3 +--R +--R +--R (30) +--R 3 2 2 3 , 3 2 2 3 +--R (20y(x) - 3x y(x) + 6x y(x) + 3x )y (x) - y(x) + 6x y(x) + 9x y(x) + 4x +--R +--R Type: Expression Integer +--E 30 + +--S 31 of 120 +--Ryx:=solve(ode311,y,x) +--R +--R +--R 4 3 2 2 3 4 +--R (31) 5y(x) - x y(x) + 3x y(x) + 3x y(x) + x +--R Type: Union(Expression Integer,...) +--E 31 + +--S 32 of 120 +--Rode311expr := (20*yx**3-3*x*yx**2+6*x**2*yx+3*x**3)*D(yx,x)-_ +--R yx**3+6*x*yx**2+9*x**2*yx+4*x**3 +--R +--R +--R (32) +--R 15 14 2 13 3 12 +--R 50000y(x) - 37500x y(x) + 115500x y(x) + 37700x y(x) +--R + +--R 4 11 5 2 10 +--R (67860x - 1500x)y(x) + (111540x + 825x )y(x) +--R + +--R 6 3 9 7 4 8 +--R (90600x - 2400x )y(x) + (72720x - 1206x )y(x) +--R + +--R 8 5 2 7 9 6 3 6 +--R (71880x - 1032x + 600x )y(x) + (52080x - 1554x - 210x )y(x) +--R + +--R 10 7 4 5 11 8 5 4 +--R (29880x - 1206x + 558x )y(x) + (17100x - 630x + 360x )y(x) +--R + +--R 12 9 6 3 3 +--R (8860x - 420x + 156x + 60x )y(x) +--R + +--R 13 10 7 4 2 +--R (3180x - 234x + 144x - 9x )y(x) +--R + +--R 14 11 8 5 15 12 9 6 +--R (660x - 72x + 90x + 18x )y(x) + 60x - 9x + 18x + 9x +--R * +--R , +--R y (x) +--R +--R + +--R 15 14 2 13 3 12 +--R - 2500y(x) + 16500x y(x) + 8700x y(x) + (22620x - 125)y(x) +--R + +--R 4 11 5 2 10 6 3 9 +--R (50700x + 150x)y(x) + (54360x - 720x )y(x) + (56560x - 536x )y(x) +--R + +--R 7 4 8 8 5 2 7 +--R (71880x - 645x + 150x)y(x) + (66960x - 1332x - 90x )y(x) +--R + +--R 9 6 3 6 10 7 4 5 +--R (49800x - 1407x + 372x )y(x) + (37620x - 1008x + 360x )y(x) +--R + +--R 11 8 5 2 4 +--R (26580x - 945x + 234x + 45x )y(x) +--R + +--R 12 9 6 3 3 +--R (13780x - 780x + 336x - 12x )y(x) +--R + +--R 13 10 7 4 2 +--R (4620x - 396x + 360x + 45x )y(x) +--R + +--R 14 11 8 5 15 12 9 6 3 +--R (900x - 108x + 162x + 54x )y(x) + 80x - 13x + 30x + 21x + 4x +--R Type: Expression Integer +--E 32 + +--S 33 of 120 +--Rode312 := (y(x)**2/b+x**2/a)*(y(x)*D(y(x),x)+x)+((a-b)/(a+b))*_ +--R (y(x)*D(y(x),x)-x) +--R +--R +--R (33) +--R 2 3 2 2 2 2 , +--R ((a b + a )y(x) + ((b + a b)x - a b + a b)y(x))y (x) +--R +--R + +--R 2 2 2 3 2 2 +--R (a b + a )x y(x) + (b + a b)x + (a b - a b)x +--R / +--R 2 2 +--R a b + a b +--R Type: Expression Integer +--E 33 + +--S 34 of 120 +--Rsolve(ode312,y,x) +--R +--R +--R (34) "failed" +--R Type: Union("failed",...) +--E 34 + +--S 35 of 120 +--Rode313 := (2*a*y(x)**3+3*a*x*y(x)**2-b*x**3+c*x**2)*D(y(x),x)-_ +--R a*y(x)**3+c*y(x)**2+3*b*x**2*y(x)+2*b*x**3 +--R +--R +--R (35) +--R 3 2 3 2 , 3 2 2 +--R (2a y(x) + 3a x y(x) - b x + c x )y (x) - a y(x) + c y(x) + 3b x y(x) +--R +--R + +--R 3 +--R 2b x +--R Type: Expression Integer +--E 35 + +--S 36 of 120 +--Rsolve(ode313,y,x) +--R +--R +--R (36) "failed" +--R Type: Union("failed",...) +--E 36 + +--S 37 of 120 +--Rode314 := x*y(x)**3*D(y(x),x)+y(x)**4-x*sin(x) +--R +--R +--R 3 , 4 +--R (37) x y(x) y (x) - x sin(x) + y(x) +--R +--R Type: Expression Integer +--E 37 + +--S 38 of 120 +--Ryx:=solve(ode314,y,x) +--R +--R +--R 3 4 2 4 4 +--R (- 16x + 96x)sin(x) + (4x - 48x + 96)cos(x) + x y(x) +--R (38) -------------------------------------------------------- +--R 4 +--R Type: Union(Expression Integer,...) +--E 38 + +--S 39 of 120 +--Rode314expr := x*yx**3*D(yx,x)+yx**4-x*sin(x) +--R +--R +--R (39) +--R 14 12 10 8 3 3 +--R (- 16384x + 294912x - 1769472x + 3538944x )y(x) sin(x) +--R + +--R 15 13 11 9 7 +--R (12288x - 294912x + 2506752x - 8847360x + 10616832x ) +--R * +--R 3 +--R y(x) cos(x) +--R + +--R 15 13 11 7 +--R (3072x - 36864x + 110592x )y(x) +--R * +--R 2 +--R sin(x) +--R + +--R 16 14 12 10 8 +--R - 3072x + 92160x - 1032192x + 5308416x - 12386304x +--R + +--R 6 +--R 10616832x +--R * +--R 3 2 +--R y(x) cos(x) +--R + +--R 16 14 12 10 7 +--R (- 1536x + 27648x - 147456x + 221184x )y(x) cos(x) +--R + +--R 16 14 11 +--R (- 192x + 1152x )y(x) +--R * +--R sin(x) +--R + +--R 17 15 13 11 9 7 +--R 256x - 9216x + 129024x - 884736x + 3096576x - 5308416x +--R + +--R 5 +--R 3538944x +--R * +--R 3 3 +--R y(x) cos(x) +--R + +--R 17 15 13 11 9 7 2 +--R (192x - 4608x + 36864x - 110592x + 110592x )y(x) cos(x) +--R + +--R 17 15 13 11 17 15 +--R (48x - 576x + 1152x )y(x) cos(x) + 4x y(x) +--R * +--R , +--R y (x) +--R +--R + +--R 14 12 10 8 6 +--R 16384x - 229376x + 196608x + 10616832x - 56623104x +--R + +--R 4 +--R 84934656x +--R * +--R 4 +--R sin(x) +--R + +--R 15 13 11 9 7 +--R - 12288x + 229376x - 540672x - 13959168x + 116785152x +--R + +--R 5 3 +--R - 339738624x + 339738624x +--R * +--R cos(x) +--R + +--R 15 13 11 9 7 4 +--R (- 3072x + 4096x + 479232x - 3538944x + 7077888x )y(x) +--R * +--R 3 +--R sin(x) +--R + +--R 16 14 12 10 8 +--R 3072x - 67584x + 147456x + 7372800x - 79626240x +--R + +--R 6 4 2 +--R 343277568x - 679477248x + 509607936x +--R * +--R 2 +--R cos(x) +--R + +--R 16 14 12 10 8 +--R 1536x - 3072x - 442368x + 4792320x - 17694720x +--R + +--R 6 +--R 21233664x +--R * +--R 4 +--R y(x) cos(x) +--R + +--R 16 14 12 10 8 +--R (192x + 3456x - 55296x + 165888x )y(x) +--R * +--R 2 +--R sin(x) +--R + +--R 17 15 13 11 9 +--R - 256x + 5120x + 43008x - 2064384x + 23445504x +--R + +--R 7 5 3 +--R - 129171456x + 378667008x - 566231040x + 339738624x +--R * +--R 3 +--R cos(x) +--R + +--R 17 15 13 11 9 +--R - 192x - 1536x + 147456x - 1953792x + 10506240x +--R + +--R 7 5 +--R - 24772608x + 21233664x +--R * +--R 4 2 +--R y(x) cos(x) +--R + +--R 17 15 13 11 9 8 +--R (- 48x - 1728x + 40320x - 221184x + 331776x )y(x) cos(x) +--R + +--R 17 15 13 12 +--R (- 4x - 256x + 1536x )y(x) - 256x +--R * +--R sin(x) +--R + +--R 16 14 12 10 8 6 +--R 256x - 12288x + 245760x - 2654208x + 16809984x - 63700992x +--R + +--R 4 2 +--R 141557760x - 169869312x + 84934656 +--R * +--R 4 +--R cos(x) +--R + +--R 16 14 12 10 8 6 +--R 512x - 18432x + 258048x - 1769472x + 6193152x - 10616832x +--R + +--R 4 +--R 7077888x +--R * +--R 4 3 +--R y(x) cos(x) +--R + +--R 16 14 12 10 8 8 2 +--R (288x - 6912x + 55296x - 165888x + 165888x )y(x) cos(x) +--R + +--R 16 14 12 12 16 16 +--R (64x - 768x + 1536x )y(x) cos(x) + 5x y(x) +--R / +--R 256 +--R Type: Expression Integer +--E 39 + +--S 40 of 120 +--Rode315 := (2*x*y(x)**3-x**4)*D(y(x),x)-y(x)**4+2*x**3*y(x) +--R +--R +--R 3 4 , 4 3 +--R (40) (2x y(x) - x )y (x) - y(x) + 2x y(x) +--R +--R Type: Expression Integer +--E 40 + +--S 41 of 120 +--Rsolve(ode315,y,x) +--R +--R +--R (41) "failed" +--R Type: Union("failed",...) +--E 41 + +--S 42 of 120 +--Rode316 := (2*x*y(x)**3+y(x))*D(y(x),x)+2*y(x)**2 +--R +--R +--R 3 , 2 +--R (42) (2x y(x) + y(x))y (x) + 2y(x) +--R +--R Type: Expression Integer +--E 42 + +--S 43 of 120 +--Ryx:=solve(ode316,y,x) +--R +--R +--R 2 +--R y(x) +--R ----- 2 +--R 2 y(x) +--R 4x %e + Ei(-----) +--R 2 +--R (43) ---------------------- +--R 2 +--R Type: Union(Expression Integer,...) +--E 43 + +--S 44 of 120 +--Rode316expr := (2*x*yx**3+yx)*D(yx,x)+2*yx**2 +--R +--R +--R (44) +--R 2 4 2 3 +--R y(x) y(x) +--R ----- 2 ----- +--R 5 2 4 2 4 2 3 y(x) 2 +--R (128x y(x) + 64x )(%e ) + (96x y(x) + 48x )Ei(-----)(%e ) +--R 2 +--R + +--R 2 2 +--R y(x) +--R 2 2 ----- +--R 3 2 2 y(x) 2 2 2 +--R ((24x y(x) + 12x )Ei(-----) + 16x y(x) + 8x)(%e ) +--R 2 +--R + +--R 2 +--R y(x) +--R 2 3 2 ----- +--R 2 2 y(x) 2 y(x) 2 +--R ((2x y(x) + x)Ei(-----) + (4x y(x) + 2)Ei(-----))%e +--R 2 2 +--R * +--R , +--R y (x) +--R +--R + +--R 2 4 2 3 +--R y(x) y(x) +--R ----- 2 ----- +--R 4 2 3 y(x) 2 +--R 128x y(x)(%e ) + 96x y(x)Ei(-----)(%e ) +--R 2 +--R + +--R 2 2 +--R y(x) +--R 2 2 ----- +--R 2 y(x) 2 2 +--R (24x y(x)Ei(-----) + (32x + 16x)y(x))(%e ) +--R 2 +--R + +--R 2 +--R y(x) +--R 2 3 2 ----- 2 2 +--R y(x) y(x) 2 y(x) +--R (2x y(x)Ei(-----) + (16x + 4)y(x)Ei(-----))%e + 2y(x)Ei(-----) +--R 2 2 2 +--R / +--R 4y(x) +--R Type: Expression Integer +--E 44 + +--S 45 of 120 +--Rode317 := (2*x*y(x)**3+x*y(x)+x**2)*D(y(x),x)+y(x)**2-x*y(x) +--R +--R +--R 3 2 , 2 +--R (45) (2x y(x) + x y(x) + x )y (x) + y(x) - x y(x) +--R +--R Type: Expression Integer +--E 45 + +--S 46 of 120 +--Rsolve(ode317,y,x) +--R +--R +--R (46) "failed" +--R Type: Union("failed",...) +--E 46 + +--S 47 of 120 +--Rode318 := (3*x*y(x)**3-4*x*y(x)+y(x))*D(y(x),x)+y(x)**2*(y(x)**2-2) +--R +--R +--R 3 , 4 2 +--R (47) (3x y(x) + (- 4x + 1)y(x))y (x) + y(x) - 2y(x) +--R +--R Type: Expression Integer +--E 47 + +--S 48 of 120 +--Ryx:=solve(ode318,y,x) +--R +--R +--R (48) +--R +---------+ +--R 4 2 | 2 5 3 +--R (- x y(x) + (2x - 1)y(x) + 2)\|y(x) - 2 + x y(x) + (- 2x + 1)y(x) +--R + +--R - 2y(x) +--R / +--R +---------+ +--R | 2 2 +--R y(x)\|y(x) - 2 - y(x) + 2 +--R Type: Union(Expression Integer,...) +--E 48 + +--S 49 of 120 +--Rode318expr := (3*x*yx**3-4*x*yx+yx)*D(yx,x)+yx**2*(yx**2-2) +--R +--R +--R (49) +--R 5 11 5 4 9 5 4 3 7 +--R 9x y(x) + (- 30x + 30x )y(x) + (24x - 96x + 36x )y(x) +--R + +--R 4 3 2 5 3 2 3 +--R (72x - 120x + 21x )y(x) + (88x - 68x + 7x)y(x) +--R + +--R 2 +--R (40x - 14x + 1)y(x) +--R * +--R , +--R y (x) +--R +--R + +--R 4 12 4 3 10 4 3 2 8 +--R 4x y(x) + (- 16x + 13x )y(x) + (16x - 52x + 15x )y(x) +--R + +--R 3 2 6 2 4 2 +--R (52x - 66x + 8x)y(x) + (72x - 38x + 2)y(x) + (44x - 8)y(x) + 8 +--R Type: Expression Integer +--E 49 + +--S 50 of 120 +--Rode319 := (7*x*y(x)**3+y(x)-5*x)*D(y(x),x)+y(x)**4-5*y(x) +--R +--R +--R 3 , 4 +--R (50) (7x y(x) + y(x) - 5x)y (x) + y(x) - 5y(x) +--R +--R Type: Expression Integer +--E 50 + +--S 51 of 120 +--Ryx:=solve(ode319,y,x) +--R +--R +--R 7 5 4 2 +--R 10x y(x) + 2y(x) - 100x y(x) - 25y(x) + 250x y(x) +--R (51) ----------------------------------------------------- +--R 10 +--R Type: Union(Expression Integer,...) +--E 51 + +--S 52 of 120 +--Rode319expr := (7*x*yx**3+yx-5*x)*D(yx,x)+yx**4-5*yx +--R +--R +--R (52) +--R 5 27 4 25 5 24 3 23 +--R 490000x y(x) + 364000x y(x) - 17500000x y(x) + 100800x y(x) +--R + +--R 4 22 5 2 21 3 20 +--R - 13685000x y(x) + (269500000x + 12320x )y(x) - 3969000x y(x) +--R + +--R 4 19 5 2 18 +--R (210000000x + 560x)y(x) + (- 2327500000x - 505400x )y(x) +--R + +--R 3 17 4 16 +--R 60952500x y(x) + (- 1710625000x - 23800x)y(x) +--R + +--R 5 2 15 3 14 +--R (12250000000x + 7784000x )y(x) - 464625000x y(x) +--R + +--R 4 2 13 +--R (7962500000x + 70000x + 367500x)y(x) +--R + +--R 5 2 12 3 11 +--R (- 39812500000x - 55168750x )y(x) + (1842750000x + 24000x)y(x) +--R + +--R 4 2 10 +--R (- 20934375000x - 1100000x - 2406250x)y(x) +--R + +--R 5 2 9 +--R (76562500000x + 175000000x + 2000)y(x) +--R + +--R 3 8 +--R (- 3543750000x - 405000x)y(x) +--R + +--R 4 2 7 +--R (28000000000x + 6000000x + 5468750x)y(x) +--R + +--R 5 2 6 +--R (- 76562500000x - 191756250x - 35000)y(x) +--R + +--R 3 5 +--R (2460937500x + 1800000x)y(x) +--R + +--R 4 2 4 +--R (- 13671875000x - 12500000x - 50000x)y(x) +--R + +--R 5 2 3 2 +--R (27343750000x + 2000000x + 125000)y(x) - 1875000x y(x) +--R + +--R 2 2 +--R (6250000x + 250000x)y(x) - 1250000x +--R * +--R , +--R y (x) +--R +--R + +--R 4 28 3 26 4 25 2 24 +--R 80000x y(x) + 50000x y(x) - 3200000x y(x) + 10800x y(x) +--R + +--R 3 23 4 22 2 21 +--R - 2125000x y(x) + (56000000x + 880x)y(x) - 486000x y(x) +--R + +--R 3 20 4 19 +--R (37500000x + 16)y(x) + (- 560000000x - 41800x)y(x) +--R + +--R 2 18 3 17 +--R 8707500x y(x) + (- 359375000x - 800)y(x) +--R + +--R 4 16 2 15 +--R (3500000000x + 764500x)y(x) - 79650000x y(x) +--R + +--R 3 14 +--R (2031250000x + 10000x + 15000)y(x) +--R + +--R 4 13 2 12 +--R (- 14000000000x - 6668750x)y(x) + (394875000x + 2000)y(x) +--R + +--R 3 11 +--R (- 6796875000x - 200000x - 125000)y(x) +--R + +--R 4 10 2 9 +--R (35000000000x + 27500000x)y(x) + (- 1012500000x - 45000)y(x) +--R + +--R 3 8 +--R (12500000000x + 1500000x + 390625)y(x) +--R + +--R 4 7 2 6 +--R (- 50000000000x - 43068750x)y(x) + (1054687500x + 300000)y(x) +--R + +--R 3 5 +--R (- 9765625000x - 5000000x - 10000)y(x) +--R + +--R 4 4 3 2 +--R (31250000000x + 1000000x)y(x) - 625000y(x) + (6250000x + 125000)y(x) +--R + +--R - 2500000x y(x) +--R / +--R 10000 +--R Type: Expression Integer +--E 52 + +--S 53 of 120 +--Rode320 := (x**2*y(x)**3+x*y(x))*D(y(x),x)-1 +--R +--R +--R 2 3 , +--R (53) (x y(x) + x y(x))y (x) - 1 +--R +--R Type: Expression Integer +--E 53 + +--S 54 of 120 +--Rsolve(ode320,y,x) +--R +--R +--R (54) "failed" +--R Type: Union("failed",...) +--E 54 + +--S 55 of 120 +--Rode321 := (2*x**2*y(x)**3+x**2*y(x)**2-2*x)*D(y(x),x)-2*y(x)-1 +--R +--R +--R 2 3 2 2 , +--R (55) (2x y(x) + x y(x) - 2x)y (x) - 2y(x) - 1 +--R +--R Type: Expression Integer +--E 55 + +--S 56 of 120 +--Rsolve(ode321,y,x) +--R +--R +--R (56) "failed" +--R Type: Union("failed",...) +--E 56 + +--S 57 of 120 +--Rode322 := (10*x**2*y(x)**3-3*y(x)**2-2)*D(y(x),x)+5*x*y(x)**4+x +--R +--R +--R 2 3 2 , 4 +--R (57) (10x y(x) - 3y(x) - 2)y (x) + 5x y(x) + x +--R +--R Type: Expression Integer +--E 57 + +--S 58 of 120 +--Ryx:=solve(ode322,y,x) +--R +--R +--R 2 4 3 2 +--R 5x y(x) - 2y(x) - 4y(x) + x +--R (58) ------------------------------ +--R 2 +--R Type: Union(Expression Integer,...) +--E 58 + +--S 59 of 120 +--Rode322expr := (10*x**2*yx**3-3*yx**2-2)*D(yx,x)+5*x*yx**4+x +--R +--R +--R (59) +--R 10 15 8 14 6 13 +--R 25000x y(x) - 37500x y(x) + 21000x y(x) +--R + +--R 8 4 12 10 6 2 11 +--R (- 65000x - 5200x )y(x) + (15000x + 69000x + 480x )y(x) +--R + +--R 8 4 10 6 2 9 +--R (- 16500x - 23100x )y(x) + (66000x + 2000x )y(x) +--R + +--R 8 4 8 10 6 2 7 +--R (- 27000x - 38520x + 144)y(x) + (3000x + 18000x + 3840x )y(x) +--R + +--R 8 4 6 6 2 5 +--R (- 2100x - 24920x + 672)y(x) + (14760x + 4656x )y(x) +--R + +--R 8 4 4 10 6 2 3 +--R (- 3000x - 3600x + 960)y(x) + (200x + 840x + 1856x )y(x) +--R + +--R 8 4 2 6 2 8 4 +--R (- 60x - 1884x + 480)y(x) + (480x - 192x )y(x) - 40x + 24x + 64 +--R * +--R , +--R y (x) +--R +--R + +--R 9 16 7 15 5 14 7 3 13 +--R 15625x y(x) - 20000x y(x) + 9000x y(x) + (- 40000x - 1600x )y(x) +--R + +--R 9 5 12 7 3 11 +--R (12500x + 34500x + 80x)y(x) + (- 12000x - 8400x )y(x) +--R + +--R 5 10 7 3 9 +--R (39600x + 400x)y(x) + (- 24000x - 17120x )y(x) +--R + +--R 9 5 8 7 3 7 +--R (3750x + 13500x + 960x)y(x) + (- 2400x - 14240x )y(x) +--R + +--R 5 6 7 3 5 +--R (14760x + 1552x)y(x) + (- 4800x - 2880x )y(x) +--R + +--R 9 5 4 7 3 3 +--R (500x + 1260x + 928x)y(x) + (- 160x - 2512x )y(x) +--R + +--R 5 2 7 3 9 5 +--R (1440x - 192x)y(x) + (- 320x + 96x )y(x) + 25x - 12x - 16x +--R / +--R 16 +--R Type: Expression Integer +--E 59 + +--S 60 of 120 +--Rode323 := (a*x*y(x)**3+c)*x*D(y(x),x)+(b*x**3*y(x)+c)*y(x) +--R +--R +--R 2 3 , 3 2 +--R (60) (a x y(x) + c x)y (x) + b x y(x) + c y(x) +--R +--R Type: Expression Integer +--E 60 + +--S 61 of 120 +--Rsolve(ode323,y,x) +--R +--R +--R (61) "failed" +--R Type: Union("failed",...) +--E 61 + +--S 62 of 120 +--Rode324 := (2*x**3*y(x)**3-x)*D(y(x),x)+2*x**3*y(x)**3-y(x) +--R +--R +--R 3 3 , 3 3 +--R (62) (2x y(x) - x)y (x) + 2x y(x) - y(x) +--R +--R Type: Expression Integer +--E 62 + +--S 63 of 120 +--Rsolve(ode324,y,x) +--R +--R +--R (63) "failed" +--R Type: Union("failed",...) +--E 63 + +--S 64 of 120 +--Rode325 := y(x)*(y(x)**3-2*x**3)*D(y(x),x)+(2*y(x)**3-x**3)*x +--R +--R +--R 4 3 , 3 4 +--R (64) (y(x) - 2x y(x))y (x) + 2x y(x) - x +--R +--R Type: Expression Integer +--E 64 + +--S 65 of 120 +--Rsolve(ode325,y,x) +--R +--R +--R (65) "failed" +--R Type: Union("failed",...) +--E 65 + +--S 66 of 120 +--Rode326 := y(x)*((a*y(x)+b*x)**3+b*x**3)*D(y(x),x)+x*((a*y(x)+b*x)**3+a*y(x)**3) +--R +--R +--R (66) +--R 3 4 2 3 2 2 2 3 3 , +--R (a y(x) + 3a b x y(x) + 3a b x y(x) + (b + b)x y(x))y (x) +--R +--R + +--R 3 3 2 2 2 2 3 3 4 +--R (a + a)x y(x) + 3a b x y(x) + 3a b x y(x) + b x +--R Type: Expression Integer +--E 66 + +--S 67 of 120 +--Rsolve(ode326,y,x) +--R +--R +--R (67) "failed" +--R Type: Union("failed",...) +--E 67 + +--S 68 of 120 +--Rode327 := (x*y(x)**4+2*x**2*y(x)**3+2*y(x)+x)*D(y(x),x)+y(x)**5+y(x) +--R +--R +--R 4 2 3 , 5 +--R (68) (x y(x) + 2x y(x) + 2y(x) + x)y (x) + y(x) + y(x) +--R +--R Type: Expression Integer +--E 68 + +--S 69 of 120 +--Rsolve(ode327,y,x) +--R +--R +--R (69) "failed" +--R Type: Union("failed",...) +--E 69 + +--S 70 of 120 +--Rode328 := a*x**2*y(x)**n*D(y(x),x)-2*x*D(y(x),x)+y(x) +--R +--R +--R 2 n , +--R (70) (a x y(x) - 2x)y (x) + y(x) +--R +--R Type: Expression Integer +--E 70 + +--S 71 of 120 +--Rsolve(ode328,y,x) +--R +--R +--R (71) "failed" +--R Type: Union("failed",...) +--E 71 + +--S 72 of 120 +--Rode329 := y(x)**m*x**n*(a*x*D(y(x),x)+b*y(x))+alpha*x*D(y(x),x)+beta*y(x) +--R +--R +--R n m , n m +--R (72) (a x x y(x) + alpha x)y (x) + b y(x)x y(x) + beta y(x) +--R +--R Type: Expression Integer +--E 72 + +--S 73 of 120 +--Rsolve(ode329,y,x) +--R +--R +--R (73) "failed" +--R Type: Union("failed",...) +--E 73 + +--S 74 of 120 +--Rode330 := (f(x+y(x))+1)*D(y(x),x)+f(x+y(x)) +--R +--R +--R , +--R (74) (f(y(x) + x) + 1)y (x) + f(y(x) + x) +--R +--R Type: Expression Integer +--E 74 + +--S 75 of 120 +--Rsolve(ode330,y,x) +--R +--R +--R >> Error detected within library code: +--R Sorry - cannot handle that integrand yet +--R +--R Continuing to read the file... +--R +--E 75 + +@ +I have no idea what to do with this +\begin{verbatim} + ode331 := D(y(x),x)*convert([sum(f[nu](x)*y(x)**nu,'nu'=1..p)],`+`)-_ + convert([sum(g[nu](x)*y(x)**nu,'nu'=1..q)],`+`) +\end{verbatim} +<<*>>= +--R +--S 76 of 120 +--Rode333 := (2*x**(5/2)*y(x)**(3/2)+x**2*y(x)-x)*D(y(x),x)-_ +--R x**(3/2)*y(x)**(5/2)+x*y(x)**2-y(x) +--R +--R +--R (75) +--R 2 +-+ +----+ 2 , 2 +-+ +----+ 2 +--R (2x y(x)\|x \|y(x) + x y(x) - x)y (x) - x y(x) \|x \|y(x) + x y(x) - y(x) +--R +--R Type: Expression Integer +--E 76 + +--S 77 of 120 +--Rsolve(ode333,y,x) +--R +--R +--R (76) "failed" +--R Type: Union("failed",...) +--E 77 + +--S 78 of 120 +--Rode334 := (sqrt(y(x)+x)+1)*D(y(x),x)+1 +--R +--R +--R +--------+ , +--R (77) (\|y(x) + x + 1)y (x) + 1 +--R +--R Type: Expression Integer +--E 78 + +--S 79 of 120 +--Rsolve(ode334,y,x) +--R +--R +--R (78) "failed" +--R Type: Union("failed",...) +--E 79 + +--S 80 of 120 +--Rode335 := sqrt(y(x)**2-1)*D(y(x),x)-sqrt(x**2-1) +--R +--R +--R +---------+ +------+ +--R | 2 , | 2 +--R (79) \|y(x) - 1 y (x) - \|x - 1 +--R +--R Type: Expression Integer +--E 80 + +--S 81 of 120 +--Ryx:=solve(ode335,y,x) +--R +--R +--R (80) +--R +------+ +---------+ +--R | 2 2 | 2 +--R (4x y(x)\|x - 1 + (- 4x + 2)y(x))\|y(x) - 1 +--R + +--R +------+ +--R 2 | 2 2 2 2 +--R (- 4x y(x) + 2x)\|x - 1 + (4x - 2)y(x) - 2x + 1 +--R * +--R +---------+ +--R | 2 +--R log(\|y(x) - 1 - y(x)) +--R + +--R +------+ +------+ +--R | 2 2 | 2 +--R (- 4x y(x)\|x - 1 + (4x - 2)y(x))log(\|x - 1 - x) +--R + +--R +------+ +--R 3 3 | 2 2 3 +--R (- 4x y(x) + 4x y(x))\|x - 1 + (4x - 2)y(x) +--R + +--R 4 2 +--R (- 4x + 2x + 1)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R +------+ +------+ +--R 2 | 2 2 2 2 | 2 +--R ((4x y(x) - 2x)\|x - 1 + (- 4x + 2)y(x) + 2x - 1)log(\|x - 1 - x) +--R + +--R +------+ +--R 4 3 2 3 | 2 2 4 +--R (4x y(x) + (- 4x - 2x)y(x) + 2x - x)\|x - 1 + (- 4x + 2)y(x) +--R + +--R 4 2 4 2 +--R (4x - 2)y(x) - 2x + 2x +--R / +--R +------+ +---------+ +--R | 2 2 | 2 +--R (8x y(x)\|x - 1 + (- 8x + 4)y(x))\|y(x) - 1 +--R + +--R +------+ +--R 2 | 2 2 2 2 +--R (- 8x y(x) + 4x)\|x - 1 + (8x - 4)y(x) - 4x + 2 +--R Type: Union(Expression Integer,...) +--E 81 + +--S 82 of 120 +--Rode335expr := sqrt(yx**2-1)*D(yx,x)-sqrt(x**2-1) +--R +--R +--R (81) +--R 4 2 5 4 2 3 +--R (- 64x + 64x - 8)y(x) + (96x - 96x + 12)y(x) +--R + +--R 4 2 +--R (- 32x + 32x - 4)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 5 3 5 5 3 3 +--R (64x - 96x + 32x)y(x) + (- 96x + 144x - 48x)y(x) +--R + +--R 5 3 +--R (32x - 48x + 16x)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 4 2 6 4 2 4 +--R (64x - 64x + 8)y(x) + (- 128x + 128x - 16)y(x) +--R + +--R 4 2 2 4 2 +--R (72x - 72x + 9)y(x) - 8x + 8x - 1 +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 5 3 6 5 3 4 +--R (- 64x + 96x - 32x)y(x) + (128x - 192x + 64x)y(x) +--R + +--R 5 3 2 5 3 +--R (- 72x + 108x - 36x)y(x) + 8x - 12x + 4x +--R * +--R , +--R y (x) +--R +--R + +--R 5 3 4 5 3 2 5 +--R (64x - 96x + 32x)y(x) + (- 64x + 96x - 32x)y(x) + 8x +--R + +--R 3 +--R - 12x + 4x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 6 4 2 4 6 4 2 2 +--R (- 64x + 128x - 72x + 8)y(x) + (64x - 128x + 72x - 8)y(x) +--R + +--R 6 4 2 +--R - 8x + 16x - 9x + 1 +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 5 3 5 5 3 3 +--R (- 64x + 96x - 32x)y(x) + (96x - 144x + 48x)y(x) +--R + +--R 5 3 +--R (- 32x + 48x - 16x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 6 4 2 5 6 4 2 3 +--R (64x - 128x + 72x - 8)y(x) + (- 96x + 192x - 108x + 12)y(x) +--R + +--R 6 4 2 +--R (32x - 64x + 36x - 4)y(x) +--R * +--R ROOT +--R +------+ +--R 3 3 3 | 2 +--R ((64x - 32x)y(x) + (- 32x + 16x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 64x + 64x - 8)y(x) + (32x - 32x + 4)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R ((- 64x + 32x)y(x) + (64x - 32x)y(x) - 8x + 4x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 4 +--R (64x - 64x + 8)y(x) + (- 64x + 64x - 8)y(x) + 8x +--R + +--R 2 +--R - 8x + 1 +--R * +--R +---------+ 2 +--R | 2 +--R log(\|y(x) - 1 - y(x)) +--R + +--R +------+ +--R 3 3 3 | 2 +--R ((- 128x + 64x)y(x) + (64x - 32x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (128x - 128x + 16)y(x) + (- 64x + 64x - 8)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 5 5 3 +--R (- 128x + 64x)y(x) + (128x - 48x)y(x) +--R + +--R 5 3 +--R (- 64x + 48x )y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 5 +--R (128x - 128x + 16)y(x) +--R + +--R 6 4 2 3 +--R (- 128x + 64x + 64x - 16)y(x) +--R + +--R 6 4 2 +--R (64x - 80x + 16x + 2)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R (128x - 64x)y(x) + (- 128x + 64x)y(x) + 16x +--R + +--R - 8x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 +--R (- 128x + 128x - 16)y(x) + (128x - 128x + 16)y(x) +--R + +--R 4 2 +--R - 16x + 16x - 2 +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 6 5 3 4 +--R (128x - 64x)y(x) + (- 128x - 64x + 80x)y(x) +--R + +--R 5 3 2 5 3 +--R (128x - 64x - 16x)y(x) - 16x + 16x - 2x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 6 6 2 4 +--R (- 128x + 128x - 16)y(x) + (128x - 128x + 24)y(x) +--R + +--R 6 4 2 6 4 2 +--R (- 128x + 128x - 8)y(x) + 16x - 24x + 8x +--R * +--R +---------+ +--R | 2 +--R log(\|y(x) - 1 - y(x)) +--R + +--R +------+ +--R 3 3 3 | 2 +--R ((64x - 32x)y(x) + (- 32x + 16x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 64x + 64x - 8)y(x) + (32x - 32x + 4)y(x) +--R * +--R +------+ 2 +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 5 5 3 +--R (128x - 64x)y(x) + (- 128x + 48x)y(x) +--R + +--R 5 3 +--R (64x - 48x )y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 5 +--R (- 128x + 128x - 16)y(x) +--R + +--R 6 4 2 3 +--R (128x - 64x - 64x + 16)y(x) +--R + +--R 6 4 2 +--R (- 64x + 80x - 16x - 2)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 7 5 3 5 +--R (64x - 32x)y(x) + (- 128x + 32x + 32x)y(x) +--R + +--R 7 5 3 3 +--R (64x + 32x - 320x + 128x)y(x) +--R + +--R 7 5 3 +--R (- 32x + 32x + 128x - 66x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 7 6 4 2 5 +--R (- 64x + 64x - 8)y(x) + (128x - 96x - 32x + 12)y(x) +--R + +--R 8 4 2 3 +--R (- 64x + 344x - 280x + 28)y(x) +--R + +--R 8 6 4 2 +--R (32x - 48x - 116x + 132x - 16)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R ((- 64x + 32x)y(x) + (64x - 32x)y(x) - 8x + 4x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 4 +--R (64x - 64x + 8)y(x) + (- 64x + 64x - 8)y(x) + 8x +--R + +--R 2 +--R - 8x + 1 +--R * +--R +------+ 2 +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 6 5 3 4 +--R (- 128x + 64x)y(x) + (128x + 64x - 80x)y(x) +--R + +--R 5 3 2 5 3 +--R (- 128x + 64x + 16x)y(x) + 16x - 16x + 2x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 6 6 2 4 +--R (128x - 128x + 16)y(x) + (- 128x + 128x - 24)y(x) +--R + +--R 6 4 2 6 4 2 +--R (128x - 128x + 8)y(x) - 16x + 24x - 8x +--R * +--R +------+ +--R | 2 +--R log(\|x - 1 - x) +--R + +--R 3 8 5 6 +--R (- 64x + 32x)y(x) + (128x - 48x)y(x) +--R + +--R 7 5 3 4 +--R (- 64x - 96x + 344x - 116x)y(x) +--R + +--R 7 5 3 2 7 5 3 +--R (64x - 32x - 280x + 132x)y(x) - 8x + 12x + 28x - 16x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 8 6 4 2 6 +--R (64x - 64x + 8)y(x) + (- 128x + 64x + 64x - 16)y(x) +--R + +--R 8 6 4 2 4 +--R (64x + 64x - 400x + 272x - 23)y(x) +--R + +--R 8 6 4 2 2 8 6 4 +--R (- 64x + 64x + 272x - 272x + 31)y(x) + 8x - 16x - 23x +--R + +--R 2 +--R 31x - 4 +--R / +--R +------+ +--R 3 3 3 | 2 +--R ((256x - 128x)y(x) + (- 128x + 64x)y(x))\|x - 1 +--R + +--R 4 2 3 4 2 +--R (- 256x + 256x - 32)y(x) + (128x - 128x + 16)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 3 4 3 2 3 +--R ((- 256x + 128x)y(x) + (256x - 128x)y(x) - 32x + 16x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 4 2 4 4 2 2 4 +--R (256x - 256x + 32)y(x) + (- 256x + 256x - 32)y(x) + 32x +--R + +--R 2 +--R - 32x + 4 +--R + +--R 5 3 4 5 3 2 5 +--R (64x - 96x + 32x)y(x) + (- 64x + 96x - 32x)y(x) + 8x +--R + +--R 3 +--R - 12x + 4x +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 6 4 2 4 6 4 2 2 +--R (- 64x + 128x - 72x + 8)y(x) + (64x - 128x + 72x - 8)y(x) +--R + +--R 6 4 2 +--R - 8x + 16x - 9x + 1 +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 5 3 5 5 3 3 +--R (- 64x + 96x - 32x)y(x) + (96x - 144x + 48x)y(x) +--R + +--R 5 3 +--R (- 32x + 48x - 16x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 6 4 2 5 6 4 2 3 +--R (64x - 128x + 72x - 8)y(x) + (- 96x + 192x - 108x + 12)y(x) +--R + +--R 6 4 2 +--R (32x - 64x + 36x - 4)y(x) +--R / +--R 4 2 4 4 2 2 4 2 +--R ((64x - 64x + 8)y(x) + (- 64x + 64x - 8)y(x) + 8x - 8x + 1) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 5 3 4 5 3 2 5 3 +--R (- 64x + 96x - 32x)y(x) + (64x - 96x + 32x)y(x) - 8x + 12x - 4x +--R * +--R +---------+ +--R | 2 +--R \|y(x) - 1 +--R + +--R 4 2 5 4 2 3 +--R (- 64x + 64x - 8)y(x) + (96x - 96x + 12)y(x) +--R + +--R 4 2 +--R (- 32x + 32x - 4)y(x) +--R * +--R +------+ +--R | 2 +--R \|x - 1 +--R + +--R 5 3 5 5 3 3 +--R (64x - 96x + 32x)y(x) + (- 96x + 144x - 48x)y(x) +--R + +--R 5 3 +--R (32x - 48x + 16x)y(x) +--R Type: Expression Integer +--E 82 + +--S 83 of 120 +--Rode336 := (sqrt(y(x)**2+1)+a*x)*D(y(x),x)+sqrt(x**2+1)+a*y(x) +--R +--R +--R +---------+ +------+ +--R | 2 , | 2 +--R (82) (\|y(x) + 1 + a x)y (x) + \|x + 1 + a y(x) +--R +--R Type: Expression Integer +--E 83 + +--S 84 of 120 +--Ryx:=solve(ode336,y,x) +--R +--R +--R (83) +--R +------+ +---------+ +--R | 2 2 | 2 +--R (- 4x y(x)\|x + 1 + (4x + 2)y(x))\|y(x) + 1 +--R + +--R +------+ +--R 2 | 2 2 2 2 +--R (4x y(x) + 2x)\|x + 1 + (- 4x - 2)y(x) - 2x - 1 +--R * +--R +---------+ +--R | 2 +--R log(\|y(x) + 1 - y(x)) +--R + +--R +------+ +------+ +--R | 2 2 | 2 +--R (- 4x y(x)\|x + 1 + (4x + 2)y(x))log(\|x + 1 - x) +--R + +--R +------+ +--R 3 2 2 3 | 2 +--R (- 4x y(x) + 8a x y(x) + (- 4x - 4x)y(x))\|x + 1 +--R + +--R 2 3 3 2 4 2 +--R (4x + 2)y(x) + (- 8a x - 4a x)y(x) + (4x + 6x + 1)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R +------+ +------+ +--R 2 | 2 2 2 2 | 2 +--R ((4x y(x) + 2x)\|x + 1 + (- 4x - 2)y(x) - 2x - 1)log(\|x + 1 - x) +--R + +--R +------+ +--R 4 2 3 3 2 2 3 | 2 +--R (4x y(x) - 8a x y(x) + (4x + 6x)y(x) - 4a x y(x) + 2x + x)\|x + 1 +--R + +--R 2 4 3 3 4 2 2 +--R (- 4x - 2)y(x) + (8a x + 4a x)y(x) + (- 4x - 8x - 2)y(x) +--R + +--R 3 4 2 +--R (4a x + 2a x)y(x) - 2x - 2x +--R / +--R +------+ +---------+ +--R | 2 2 | 2 +--R (8x y(x)\|x + 1 + (- 8x - 4)y(x))\|y(x) + 1 +--R + +--R +------+ +--R 2 | 2 2 2 2 +--R (- 8x y(x) - 4x)\|x + 1 + (8x + 4)y(x) + 4x + 2 +--R Type: Union(Expression Integer,...) +--E 84 + +--S 85 of 120 +--Rode336expr := (sqrt(yx**2+1)+a*x)*D(yx,x)+sqrt(x**2+1)+a*yx +--R +--R +--R (84) +--R 6 4 2 7 +--R (- 2048x - 3072x - 1152x - 64)y(x) +--R + +--R 7 5 3 6 +--R (2048a x + 3072a x + 1152a x + 64a x)y(x) +--R + +--R 6 4 2 5 +--R (- 4096x - 6144x - 2304x - 128)y(x) +--R + +--R 7 5 3 4 +--R (3072a x + 4608a x + 1728a x + 96a x)y(x) +--R + +--R 6 4 2 3 +--R (- 2432x - 3648x - 1368x - 76)y(x) +--R + +--R 7 5 3 2 +--R (1152a x + 1728a x + 648a x + 36a x)y(x) +--R + +--R 6 4 2 7 5 +--R (- 384x - 576x - 216x - 12)y(x) + 64a x + 96a x +--R + +--R 3 +--R 36a x + 2a x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 7 +--R (2048x + 4096x + 2432x + 384x)y(x) +--R + +--R 8 6 4 2 6 +--R (- 2048a x - 4096a x - 2432a x - 384a x )y(x) +--R + +--R 7 5 3 5 +--R (4096x + 8192x + 4864x + 768x)y(x) +--R + +--R 8 6 4 2 4 +--R (- 3072a x - 6144a x - 3648a x - 576a x )y(x) +--R + +--R 7 5 3 3 +--R (2432x + 4864x + 2888x + 456x)y(x) +--R + +--R 8 6 4 2 2 +--R (- 1152a x - 2304a x - 1368a x - 216a x )y(x) +--R + +--R 7 5 3 8 6 4 +--R (384x + 768x + 456x + 72x)y(x) - 64a x - 128a x - 76a x +--R + +--R 2 +--R - 12a x +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 6 4 2 8 +--R (2048x + 3072x + 1152x + 64)y(x) +--R + +--R 7 5 3 7 +--R (- 2048a x - 3072a x - 1152a x - 64a x)y(x) +--R + +--R 6 4 2 6 +--R (5120x + 7680x + 2880x + 160)y(x) +--R + +--R 7 5 3 5 +--R (- 4096a x - 6144a x - 2304a x - 128a x)y(x) +--R + +--R 6 4 2 4 +--R (4224x + 6336x + 2376x + 132)y(x) +--R + +--R 7 5 3 3 +--R (- 2432a x - 3648a x - 1368a x - 76a x)y(x) +--R + +--R 6 4 2 2 +--R (1216x + 1824x + 684x + 38)y(x) +--R + +--R 7 5 3 6 4 +--R (- 384a x - 576a x - 216a x - 12a x)y(x) + 64x + 96x +--R + +--R 2 +--R 36x + 2 +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 8 +--R (- 2048x - 4096x - 2432x - 384x)y(x) +--R + +--R 8 6 4 2 7 +--R (2048a x + 4096a x + 2432a x + 384a x )y(x) +--R + +--R 7 5 3 6 +--R (- 5120x - 10240x - 6080x - 960x)y(x) +--R + +--R 8 6 4 2 5 +--R (4096a x + 8192a x + 4864a x + 768a x )y(x) +--R + +--R 7 5 3 4 +--R (- 4224x - 8448x - 5016x - 792x)y(x) +--R + +--R 8 6 4 2 3 +--R (2432a x + 4864a x + 2888a x + 456a x )y(x) +--R + +--R 7 5 3 2 +--R (- 1216x - 2432x - 1444x - 228x)y(x) +--R + +--R 8 6 4 2 7 5 3 +--R (384a x + 768a x + 456a x + 72a x )y(x) - 64x - 128x - 76x +--R + +--R - 12x +--R * +--R , +--R y (x) +--R +--R + +--R 6 4 2 7 +--R (2048a x + 3072a x + 1152a x + 64a)y(x) +--R + +--R 7 5 3 6 +--R (- 2048x - 4096x - 2432x - 384x)y(x) +--R + +--R 6 4 2 5 +--R (3072a x + 4608a x + 1728a x + 96a)y(x) +--R + +--R 7 5 3 4 +--R (- 3072x - 6144x - 3648x - 576x)y(x) +--R + +--R 6 4 2 3 +--R (1152a x + 1728a x + 648a x + 36a)y(x) +--R + +--R 7 5 3 2 +--R (- 1152x - 2304x - 1368x - 216x)y(x) +--R + +--R 6 4 2 7 5 3 +--R (64a x + 96a x + 36a x + 2a)y(x) - 64x - 128x - 76x - 12x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 7 +--R (- 2048a x - 4096a x - 2432a x - 384a x)y(x) +--R + +--R 8 6 4 2 6 +--R (2048x + 5120x + 4224x + 1216x + 64)y(x) +--R + +--R 7 5 3 5 +--R (- 3072a x - 6144a x - 3648a x - 576a x)y(x) +--R + +--R 8 6 4 2 4 +--R (3072x + 7680x + 6336x + 1824x + 96)y(x) +--R + +--R 7 5 3 3 +--R (- 1152a x - 2304a x - 1368a x - 216a x)y(x) +--R + +--R 8 6 4 2 2 +--R (1152x + 2880x + 2376x + 684x + 36)y(x) +--R + +--R 7 5 3 8 6 4 +--R (- 64a x - 128a x - 76a x - 12a x)y(x) + 64x + 160x + 132x +--R + +--R 2 +--R 38x + 2 +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 6 4 2 8 +--R (- 2048a x - 3072a x - 1152a x - 64a)y(x) +--R + +--R 7 5 3 7 +--R (2048x + 4096x + 2432x + 384x)y(x) +--R + +--R 6 4 2 6 +--R (- 4096a x - 6144a x - 2304a x - 128a)y(x) +--R + +--R 7 5 3 5 +--R (4096x + 8192x + 4864x + 768x)y(x) +--R + +--R 6 4 2 4 +--R (- 2432a x - 3648a x - 1368a x - 76a)y(x) +--R + +--R 7 5 3 3 +--R (2432x + 4864x + 2888x + 456x)y(x) +--R + +--R 6 4 2 2 +--R (- 384a x - 576a x - 216a x - 12a)y(x) +--R + +--R 7 5 3 +--R (384x + 768x + 456x + 72x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 8 +--R (2048a x + 4096a x + 2432a x + 384a x)y(x) +--R + +--R 8 6 4 2 7 +--R (- 2048x - 5120x - 4224x - 1216x - 64)y(x) +--R + +--R 7 5 3 6 +--R (4096a x + 8192a x + 4864a x + 768a x)y(x) +--R + +--R 8 6 4 2 5 +--R (- 4096x - 10240x - 8448x - 2432x - 128)y(x) +--R + +--R 7 5 3 4 +--R (2432a x + 4864a x + 2888a x + 456a x)y(x) +--R + +--R 8 6 4 2 3 +--R (- 2432x - 6080x - 5016x - 1444x - 76)y(x) +--R + +--R 7 5 3 2 +--R (384a x + 768a x + 456a x + 72a x)y(x) +--R + +--R 8 6 4 2 +--R (- 384x - 960x - 792x - 228x - 12)y(x) +--R * +--R ROOT +--R +------+ +--R 3 3 3 | 2 +--R ((64x + 32x)y(x) + (32x + 16x)y(x))\|x + 1 +--R + +--R 4 2 3 4 2 +--R (- 64x - 64x - 8)y(x) + (- 32x - 32x - 4)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 3 4 3 2 3 +--R ((- 64x - 32x)y(x) + (- 64x - 32x)y(x) - 8x - 4x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 4 4 2 2 4 2 +--R (64x + 64x + 8)y(x) + (64x + 64x + 8)y(x) + 8x + 8x +--R + +--R 1 +--R * +--R +---------+ 2 +--R | 2 +--R log(\|y(x) + 1 - y(x)) +--R + +--R +------+ +--R 3 3 3 | 2 +--R ((128x + 64x)y(x) + (64x + 32x)y(x))\|x + 1 +--R + +--R 4 2 3 4 2 +--R (- 128x - 128x - 16)y(x) + (- 64x - 64x - 8)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x + 1 - x) +--R + +--R 3 5 4 2 4 +--R (128x + 64x)y(x) + (- 256a x - 128a x )y(x) +--R + +--R 5 3 3 +--R (128x + 256x + 80x)y(x) +--R + +--R 4 2 2 5 3 +--R (- 128a x - 64a x )y(x) + (64x + 80x + 16x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 5 +--R (- 128x - 128x - 16)y(x) +--R + +--R 5 3 4 +--R (256a x + 256a x + 32a x)y(x) +--R + +--R 6 4 2 3 +--R (- 128x - 320x - 192x - 16)y(x) +--R + +--R 5 3 2 +--R (128a x + 128a x + 16a x)y(x) +--R + +--R 6 4 2 +--R (- 64x - 112x - 48x - 2)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 3 4 3 2 3 +--R (- 128x - 64x)y(x) + (- 128x - 64x)y(x) - 16x +--R + +--R - 8x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 4 4 2 2 +--R (128x + 128x + 16)y(x) + (128x + 128x + 16)y(x) +--R + +--R 4 2 +--R 16x + 16x + 2 +--R * +--R +------+ +--R | 2 +--R log(\|x + 1 - x) +--R + +--R 3 6 4 2 5 +--R (- 128x - 64x)y(x) + (256a x + 128a x )y(x) +--R + +--R 5 3 4 4 2 3 +--R (- 128x - 320x - 112x)y(x) + (256a x + 128a x )y(x) +--R + +--R 5 3 2 4 2 +--R (- 128x - 192x - 48x)y(x) + (32a x + 16a x )y(x) +--R + +--R 5 3 +--R - 16x - 16x - 2x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 6 +--R (128x + 128x + 16)y(x) +--R + +--R 5 3 5 +--R (- 256a x - 256a x - 32a x)y(x) +--R + +--R 6 4 2 4 +--R (128x + 384x + 256x + 24)y(x) +--R + +--R 5 3 3 +--R (- 256a x - 256a x - 32a x)y(x) +--R + +--R 6 4 2 2 +--R (128x + 256x + 128x + 8)y(x) +--R + +--R 5 3 6 4 2 +--R (- 32a x - 32a x - 4a x)y(x) + 16x + 24x + 8x +--R * +--R +---------+ +--R | 2 +--R log(\|y(x) + 1 - y(x)) +--R + +--R +------+ +--R 3 3 3 | 2 +--R ((64x + 32x)y(x) + (32x + 16x)y(x))\|x + 1 +--R + +--R 4 2 3 4 2 +--R (- 64x - 64x - 8)y(x) + (- 32x - 32x - 4)y(x) +--R * +--R +------+ 2 +--R | 2 +--R log(\|x + 1 - x) +--R + +--R 3 5 4 2 4 +--R (128x + 64x)y(x) + (- 256a x - 128a x )y(x) +--R + +--R 5 3 3 +--R (128x + 256x + 80x)y(x) +--R + +--R 4 2 2 5 3 +--R (- 128a x - 64a x )y(x) + (64x + 80x + 16x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 5 +--R (- 128x - 128x - 16)y(x) +--R + +--R 5 3 4 +--R (256a x + 256a x + 32a x)y(x) +--R + +--R 6 4 2 3 +--R (- 128x - 320x - 192x - 16)y(x) +--R + +--R 5 3 2 +--R (128a x + 128a x + 16a x)y(x) +--R + +--R 6 4 2 +--R (- 64x - 112x - 48x - 2)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x + 1 - x) +--R + +--R 3 7 4 2 6 +--R (64x + 32x)y(x) + (- 256a x - 128a x )y(x) +--R + +--R 2 5 2 3 5 +--R ((256a + 128)x + (128a + 224)x + 64x)y(x) +--R + +--R 6 4 2 4 +--R (- 256a x - 512a x - 160a x )y(x) +--R + +--R 7 2 5 2 3 3 +--R (64x + (128a + 224)x + (64a + 448)x + 160x)y(x) +--R + +--R 6 4 2 2 +--R (- 128a x - 160a x - 32a x )y(x) +--R + +--R 7 5 3 +--R (32x + 64x + 160x + 66x)y(x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 7 5 3 6 +--R (- 64x - 64x - 8)y(x) + (256a x + 256a x + 32a x)y(x) +--R + +--R 2 6 2 4 2 2 +--R (- 256a - 128)x + (- 256a - 288)x + (- 32a - 160)x +--R + +--R - 12 +--R * +--R 5 +--R y(x) +--R + +--R 7 5 3 4 +--R (256a x + 640a x + 384a x + 32a x)y(x) +--R + +--R 8 2 6 2 4 +--R - 64x + (- 128a - 256)x + (- 128a - 552)x +--R + +--R 2 2 +--R (- 16a - 360)x - 36 +--R * +--R 3 +--R y(x) +--R + +--R 7 5 3 2 +--R (128a x + 224a x + 96a x + 4a x)y(x) +--R + +--R 8 6 4 2 +--R (- 32x - 80x - 188x - 140x - 16)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 3 4 3 2 3 +--R ((- 64x - 32x)y(x) + (- 64x - 32x)y(x) - 8x - 4x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 4 4 2 2 4 2 +--R (64x + 64x + 8)y(x) + (64x + 64x + 8)y(x) + 8x + 8x +--R + +--R 1 +--R * +--R +------+ 2 +--R | 2 +--R log(\|x + 1 - x) +--R + +--R 3 6 4 2 5 +--R (- 128x - 64x)y(x) + (256a x + 128a x )y(x) +--R + +--R 5 3 4 4 2 3 +--R (- 128x - 320x - 112x)y(x) + (256a x + 128a x )y(x) +--R + +--R 5 3 2 4 2 +--R (- 128x - 192x - 48x)y(x) + (32a x + 16a x )y(x) +--R + +--R 5 3 +--R - 16x - 16x - 2x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 6 +--R (128x + 128x + 16)y(x) +--R + +--R 5 3 5 +--R (- 256a x - 256a x - 32a x)y(x) +--R + +--R 6 4 2 4 +--R (128x + 384x + 256x + 24)y(x) +--R + +--R 5 3 3 +--R (- 256a x - 256a x - 32a x)y(x) +--R + +--R 6 4 2 2 +--R (128x + 256x + 128x + 8)y(x) +--R + +--R 5 3 6 4 2 +--R (- 32a x - 32a x - 4a x)y(x) + 16x + 24x + 8x +--R * +--R +------+ +--R | 2 +--R log(\|x + 1 - x) +--R + +--R 3 8 4 2 7 +--R (- 64x - 32x)y(x) + (256a x + 128a x )y(x) +--R + +--R 2 5 2 3 6 +--R ((- 256a - 128)x + (- 128a - 256)x - 80x)y(x) +--R + +--R 6 4 2 5 +--R (256a x + 640a x + 224a x )y(x) +--R + +--R 7 2 5 2 3 4 +--R (- 64x + (- 256a - 288)x + (- 128a - 552)x - 188x)y(x) +--R + +--R 6 4 2 3 +--R (256a x + 384a x + 96a x )y(x) +--R + +--R 7 2 5 2 3 2 +--R (- 64x + (- 32a - 160)x + (- 16a - 360)x - 140x)y(x) +--R + +--R 6 4 2 7 5 3 +--R (32a x + 32a x + 4a x )y(x) - 8x - 12x - 36x - 16x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 8 5 3 7 +--R (64x + 64x + 8)y(x) + (- 256a x - 256a x - 32a x)y(x) +--R + +--R 2 6 2 4 2 2 6 +--R ((256a + 128)x + (256a + 320)x + (32a + 192)x + 16)y(x) +--R + +--R 7 5 3 5 +--R (- 256a x - 768a x - 512a x - 48a x)y(x) +--R + +--R 8 2 6 2 4 2 2 +--R 64x + (256a + 320)x + (256a + 688)x + (32a + 432)x +--R + +--R 41 +--R * +--R 4 +--R y(x) +--R + +--R 7 5 3 3 +--R (- 256a x - 512a x - 256a x - 16a x)y(x) +--R + +--R 8 2 6 2 4 2 2 +--R (64x + (32a + 192)x + (32a + 432)x + (4a + 304)x + 33) +--R * +--R 2 +--R y(x) +--R + +--R 7 5 3 8 6 4 2 +--R (- 32a x - 48a x - 16a x )y(x) + 8x + 16x + 41x + 33x + 4 +--R / +--R +------+ +--R 3 3 3 | 2 +--R ((256x + 128x)y(x) + (128x + 64x)y(x))\|x + 1 +--R + +--R 4 2 3 4 2 +--R (- 256x - 256x - 32)y(x) + (- 128x - 128x - 16)y(x) +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 3 4 3 2 3 +--R ((- 256x - 128x)y(x) + (- 256x - 128x)y(x) - 32x - 16x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 4 2 4 4 2 2 4 +--R (256x + 256x + 32)y(x) + (256x + 256x + 32)y(x) + 32x +--R + +--R 2 +--R 32x + 4 +--R + +--R 6 4 2 6 +--R (- 1024a x - 1536a x - 576a x - 32a)y(x) +--R + +--R 6 4 2 4 +--R (- 1536a x - 2304a x - 864a x - 48a)y(x) +--R + +--R 6 4 2 2 6 4 +--R (- 576a x - 864a x - 324a x - 18a)y(x) - 32a x - 48a x +--R + +--R 2 +--R - 18a x - a +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 6 +--R (1024a x + 2048a x + 1216a x + 192a x)y(x) +--R + +--R 7 5 3 4 +--R (1536a x + 3072a x + 1824a x + 288a x)y(x) +--R + +--R 7 5 3 2 7 5 +--R (576a x + 1152a x + 684a x + 108a x)y(x) + 32a x + 64a x +--R + +--R 3 +--R 38a x + 6a x +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 6 4 2 7 +--R (1024a x + 1536a x + 576a x + 32a)y(x) +--R + +--R 6 4 2 5 +--R (2048a x + 3072a x + 1152a x + 64a)y(x) +--R + +--R 6 4 2 3 +--R (1216a x + 1824a x + 684a x + 38a)y(x) +--R + +--R 6 4 2 +--R (192a x + 288a x + 108a x + 6a)y(x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 7 +--R (- 1024a x - 2048a x - 1216a x - 192a x)y(x) +--R + +--R 7 5 3 5 +--R (- 2048a x - 4096a x - 2432a x - 384a x)y(x) +--R + +--R 7 5 3 3 +--R (- 1216a x - 2432a x - 1444a x - 228a x)y(x) +--R + +--R 7 5 3 +--R (- 192a x - 384a x - 228a x - 36a x)y(x) +--R * +--R +---------+ +--R | 2 +--R log(\|y(x) + 1 - y(x)) +--R + +--R 7 5 3 7 +--R (- 2048a x - 3072a x - 1152a x - 64a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 6 +--R (2048a x + 3072a x + 1152a x + 64a x )y(x) +--R + +--R 7 5 3 5 +--R (- 4096a x - 6144a x - 2304a x - 128a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 4 +--R (3072a x + 4608a x + 1728a x + 96a x )y(x) +--R + +--R 7 5 3 3 +--R (- 2432a x - 3648a x - 1368a x - 76a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 2 +--R (1152a x + 1728a x + 648a x + 36a x )y(x) +--R + +--R 7 5 3 2 8 2 6 +--R (- 384a x - 576a x - 216a x - 12a x)y(x) + 64a x + 96a x +--R + +--R 2 4 2 2 +--R 36a x + 2a x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 8 6 4 2 7 +--R (2048a x + 4096a x + 2432a x + 384a x )y(x) +--R + +--R 2 9 2 7 2 5 2 3 6 +--R (- 2048a x - 4096a x - 2432a x - 384a x )y(x) +--R + +--R 8 6 4 2 5 +--R (4096a x + 8192a x + 4864a x + 768a x )y(x) +--R + +--R 2 9 2 7 2 5 2 3 4 +--R (- 3072a x - 6144a x - 3648a x - 576a x )y(x) +--R + +--R 8 6 4 2 3 +--R (2432a x + 4864a x + 2888a x + 456a x )y(x) +--R + +--R 2 9 2 7 2 5 2 3 2 +--R (- 1152a x - 2304a x - 1368a x - 216a x )y(x) +--R + +--R 8 6 4 2 2 9 2 7 +--R (384a x + 768a x + 456a x + 72a x )y(x) - 64a x - 128a x +--R + +--R 2 5 2 3 +--R - 76a x - 12a x +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 7 5 3 8 +--R (2048a x + 3072a x + 1152a x + 64a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 7 +--R (- 2048a x - 3072a x - 1152a x - 64a x )y(x) +--R + +--R 7 5 3 6 +--R (5120a x + 7680a x + 2880a x + 160a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 5 +--R (- 4096a x - 6144a x - 2304a x - 128a x )y(x) +--R + +--R 7 5 3 4 +--R (4224a x + 6336a x + 2376a x + 132a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 3 +--R (- 2432a x - 3648a x - 1368a x - 76a x )y(x) +--R + +--R 7 5 3 2 +--R (1216a x + 1824a x + 684a x + 38a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 7 5 +--R (- 384a x - 576a x - 216a x - 12a x )y(x) + 64a x + 96a x +--R + +--R 3 +--R 36a x + 2a x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 8 6 4 2 8 +--R (- 2048a x - 4096a x - 2432a x - 384a x )y(x) +--R + +--R 2 9 2 7 2 5 2 3 7 +--R (2048a x + 4096a x + 2432a x + 384a x )y(x) +--R + +--R 8 6 4 2 6 +--R (- 5120a x - 10240a x - 6080a x - 960a x )y(x) +--R + +--R 2 9 2 7 2 5 2 3 5 +--R (4096a x + 8192a x + 4864a x + 768a x )y(x) +--R + +--R 8 6 4 2 4 +--R (- 4224a x - 8448a x - 5016a x - 792a x )y(x) +--R + +--R 2 9 2 7 2 5 2 3 3 +--R (2432a x + 4864a x + 2888a x + 456a x )y(x) +--R + +--R 8 6 4 2 2 +--R (- 1216a x - 2432a x - 1444a x - 228a x )y(x) +--R + +--R 2 9 2 7 2 5 2 3 8 6 +--R (384a x + 768a x + 456a x + 72a x )y(x) - 64a x - 128a x +--R + +--R 4 2 +--R - 76a x - 12a x +--R * +--R , +--R y (x) +--R +--R + +--R 6 4 2 6 +--R (- 1024a x - 1536a x - 576a x - 32a)y(x) +--R + +--R 6 4 2 4 +--R (- 1536a x - 2304a x - 864a x - 48a)y(x) +--R + +--R 6 4 2 2 6 4 +--R (- 576a x - 864a x - 324a x - 18a)y(x) - 32a x - 48a x +--R + +--R 2 +--R - 18a x - a +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 6 +--R (1024a x + 2048a x + 1216a x + 192a x)y(x) +--R + +--R 7 5 3 4 +--R (1536a x + 3072a x + 1824a x + 288a x)y(x) +--R + +--R 7 5 3 2 7 5 +--R (576a x + 1152a x + 684a x + 108a x)y(x) + 32a x + 64a x +--R + +--R 3 +--R 38a x + 6a x +--R * +--R +------+ +--R | 2 +--R log(\|x + 1 - x) +--R + +--R 6 4 2 8 +--R (- 1024a x - 1536a x - 576a x - 32a)y(x) +--R + +--R 2 7 2 5 2 3 2 7 +--R (4096a x + 6144a x + 2304a x + 128a x)y(x) +--R + +--R 8 7 6 5 4 3 +--R - 3072a x - 2048x - 8192a x - 4096x - 6720a x - 2432x +--R + +--R 2 +--R - 1728a x - 384x - 64a +--R * +--R 6 +--R y(x) +--R + +--R 2 7 2 5 2 3 2 5 +--R (6144a x + 9216a x + 3456a x + 192a x)y(x) +--R + +--R 8 7 6 5 4 3 +--R - 4608a x - 3072x - 10432a x - 6144x - 7296a x - 3648x +--R + +--R 2 +--R - 1548a x - 576x - 38a +--R * +--R 4 +--R y(x) +--R + +--R 2 7 2 5 2 3 2 3 +--R (2304a x + 3456a x + 1296a x + 72a x)y(x) +--R + +--R 8 7 6 5 4 3 +--R - 1728a x - 1152x - 3648a x - 2304x - 2340a x - 1368x +--R + +--R 2 +--R - 432a x - 216x - 6a +--R * +--R 2 +--R y(x) +--R + +--R 2 7 2 5 2 3 2 8 7 6 +--R (128a x + 192a x + 72a x + 4a x)y(x) - 96a x - 64x - 192a x +--R + +--R 5 4 3 2 +--R - 128x - 114a x - 76x - 18a x - 12x +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 8 +--R (1024a x + 2048a x + 1216a x + 192a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 7 +--R (- 4096a x - 8192a x - 4864a x - 768a x )y(x) +--R + +--R 9 8 7 6 5 4 +--R 3072a x + 2048x + 9728a x + 5120x + 10432a x + 4224x +--R + +--R 3 2 +--R 4256a x + 1216x + 480a x + 64 +--R * +--R 6 +--R y(x) +--R + +--R 2 8 2 6 2 4 2 2 5 +--R (- 6144a x - 12288a x - 7296a x - 1152a x )y(x) +--R + +--R 9 8 7 6 5 4 +--R 4608a x + 3072x + 12736a x + 7680x + 11936a x + 6336x +--R + +--R 3 2 +--R 4180a x + 1824x + 372a x + 96 +--R * +--R 4 +--R y(x) +--R + +--R 2 8 2 6 2 4 2 2 3 +--R (- 2304a x - 4608a x - 2736a x - 432a x )y(x) +--R + +--R 9 8 7 6 5 4 +--R 1728a x + 1152x + 4512a x + 2880x + 3948a x + 2376x +--R + +--R 3 2 +--R 1254a x + 684x + 90a x + 36 +--R * +--R 2 +--R y(x) +--R + +--R 2 8 2 6 2 4 2 2 9 8 +--R (- 128a x - 256a x - 152a x - 24a x )y(x) + 96a x + 64x +--R + +--R 7 6 5 4 3 2 +--R 240a x + 160x + 198a x + 132x + 57a x + 38x + 3a x + 2 +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 6 4 2 7 +--R (1024a x + 1536a x + 576a x + 32a)y(x) +--R + +--R 6 4 2 5 +--R (2048a x + 3072a x + 1152a x + 64a)y(x) +--R + +--R 6 4 2 3 +--R (1216a x + 1824a x + 684a x + 38a)y(x) +--R + +--R 6 4 2 +--R (192a x + 288a x + 108a x + 6a)y(x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 7 +--R (- 1024a x - 2048a x - 1216a x - 192a x)y(x) +--R + +--R 7 5 3 5 +--R (- 2048a x - 4096a x - 2432a x - 384a x)y(x) +--R + +--R 7 5 3 3 +--R (- 1216a x - 2432a x - 1444a x - 228a x)y(x) +--R + +--R 7 5 3 +--R (- 192a x - 384a x - 228a x - 36a x)y(x) +--R * +--R +------+ +--R | 2 +--R log(\|x + 1 - x) +--R + +--R 6 4 2 9 +--R (1024a x + 1536a x + 576a x + 32a)y(x) +--R + +--R 2 7 2 5 2 3 2 8 +--R (- 4096a x - 6144a x - 2304a x - 128a x)y(x) +--R + +--R 8 7 6 5 4 3 +--R 3072a x + 2048x + 8704a x + 4096x + 7488a x + 2432x +--R + +--R 2 +--R 2016a x + 384x + 80a +--R * +--R 7 +--R y(x) +--R + +--R 2 7 2 5 2 3 2 6 +--R (- 8192a x - 12288a x - 4608a x - 256a x)y(x) +--R + +--R 8 7 6 5 4 3 +--R 6144a x + 4096x + 14400a x + 8192x + 10464a x + 4864x +--R + +--R 2 +--R 2340a x + 768x + 66a +--R * +--R 5 +--R y(x) +--R + +--R 2 7 2 5 2 3 2 4 +--R (- 4864a x - 7296a x - 2736a x - 152a x)y(x) +--R + +--R 8 7 6 5 4 3 +--R 3648a x + 2432x + 7904a x + 4864x + 5244a x + 2888x +--R + +--R 2 +--R 1026a x + 456x + 19a +--R * +--R 3 +--R y(x) +--R + +--R 2 7 2 5 2 3 2 2 +--R (- 768a x - 1152a x - 432a x - 24a x)y(x) +--R + +--R 8 7 6 5 4 3 2 +--R 576a x + 384x + 1184a x + 768x + 732a x + 456x + 126a x +--R + +--R 72x + a +--R * +--R y(x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 9 +--R (- 1024a x - 2048a x - 1216a x - 192a x)y(x) +--R + +--R 2 8 2 6 2 4 2 2 8 +--R (4096a x + 8192a x + 4864a x + 768a x )y(x) +--R + +--R 9 8 7 6 5 4 +--R - 3072a x - 2048x - 10240a x - 5120x - 11456a x - 4224x +--R + +--R 3 2 +--R - 4864a x - 1216x - 576a x - 64 +--R * +--R 7 +--R y(x) +--R + +--R 2 8 2 6 2 4 2 2 6 +--R (8192a x + 16384a x + 9728a x + 1536a x )y(x) +--R + +--R 9 8 7 6 5 4 +--R - 6144a x - 4096x - 17472a x - 10240x - 16896a x - 8448x +--R + +--R 3 2 +--R - 6156a x - 2432x - 588a x - 128 +--R * +--R 5 +--R y(x) +--R + +--R 2 8 2 6 2 4 2 2 4 +--R (4864a x + 9728a x + 5776a x + 912a x )y(x) +--R + +--R 9 8 7 6 5 4 +--R - 3648a x - 2432x - 9728a x - 6080x - 8740a x - 5016x +--R + +--R 3 2 +--R - 2888a x - 1444x - 228a x - 76 +--R * +--R 3 +--R y(x) +--R + +--R 2 8 2 6 2 4 2 2 2 +--R (768a x + 1536a x + 912a x + 144a x )y(x) +--R + +--R 9 8 7 6 5 4 3 +--R - 576a x - 384x - 1472a x - 960x - 1252a x - 792x - 380a x +--R + +--R 2 +--R - 228x - 24a x - 12 +--R * +--R y(x) +--R / +--R 6 4 2 6 +--R (2048x + 3072x + 1152x + 64)y(x) +--R + +--R 6 4 2 4 +--R (3072x + 4608x + 1728x + 96)y(x) +--R + +--R 6 4 2 2 6 4 2 +--R (1152x + 1728x + 648x + 36)y(x) + 64x + 96x + 36x + 2 +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 6 +--R (- 2048x - 4096x - 2432x - 384x)y(x) +--R + +--R 7 5 3 4 +--R (- 3072x - 6144x - 3648x - 576x)y(x) +--R + +--R 7 5 3 2 7 5 3 +--R (- 1152x - 2304x - 1368x - 216x)y(x) - 64x - 128x - 76x - 12x +--R * +--R +---------+ +--R | 2 +--R \|y(x) + 1 +--R + +--R 6 4 2 7 +--R (- 2048x - 3072x - 1152x - 64)y(x) +--R + +--R 6 4 2 5 +--R (- 4096x - 6144x - 2304x - 128)y(x) +--R + +--R 6 4 2 3 +--R (- 2432x - 3648x - 1368x - 76)y(x) +--R + +--R 6 4 2 +--R (- 384x - 576x - 216x - 12)y(x) +--R * +--R +------+ +--R | 2 +--R \|x + 1 +--R + +--R 7 5 3 7 +--R (2048x + 4096x + 2432x + 384x)y(x) +--R + +--R 7 5 3 5 +--R (4096x + 8192x + 4864x + 768x)y(x) +--R + +--R 7 5 3 3 7 5 3 +--R (2432x + 4864x + 2888x + 456x)y(x) + (384x + 768x + 456x + 72x)y(x) +--R Type: Expression Integer +--E 85 + +--S 86 of 120 +--Rode337 := (sqrt(y(x)**2+x**2)+x)*D(y(x),x)-y(x) +--R +--R +--R +----------+ +--R | 2 2 , +--R (85) (\|y(x) + x + x)y (x) - y(x) +--R +--R Type: Expression Integer +--E 86 + +--S 87 of 120 +--Rsolve(ode337,y,x) +--R +--R +--R (86) "failed" +--R Type: Union("failed",...) +--E 87 + +--S 88 of 120 +--Rode338 := (y(x)*sqrt(y(x)**2+x**2)+(y(x)**2-x**2)*sin(alpha)-_ +--R 2*x*y(x)*cos(alpha))*D(y(x),x)+x*sqrt(y(x)**2+x**2)+_ +--R 2*x*y(x)*sin(alpha)+(y(x)**2-x**2)*cos(alpha) +--R +--R +--R (87) +--R +----------+ +--R | 2 2 2 2 , +--R (y(x)\|y(x) + x + (y(x) - x )sin(alpha) - 2x y(x)cos(alpha))y (x) +--R +--R + +--R +----------+ +--R | 2 2 2 2 +--R x\|y(x) + x + 2x y(x)sin(alpha) + (y(x) - x )cos(alpha) +--R Type: Expression Integer +--E 88 + +--S 89 of 120 +--Rsolve(ode338,y,x) +--R +--R +--R (88) "failed" +--R Type: Union("failed",...) +--E 89 + +--S 90 of 120 +--Rode339 := (x*sqrt(x**2+y(x)**2+1)-y(x)*(x**2+y(x)**2))*D(y(x),x)-_ +--R y(x)*sqrt(x**2+y(x)**2+1)-x*(x**2+y(x)**2) +--R +--R +--R (89) +--R +--------------+ +--------------+ +--R | 2 2 3 2 , | 2 2 +--R (x\|y(x) + x + 1 - y(x) - x y(x))y (x) - y(x)\|y(x) + x + 1 +--R +--R + +--R 2 3 +--R - x y(x) - x +--R Type: Expression Integer +--E 90 + +--S 91 of 120 +--Rsolve(ode339,y,x) +--R +--R +--R (90) "failed" +--R Type: Union("failed",...) +--E 91 + +--S 92 of 120 +--Rode340 := (e1*(x+a)/((x+a)**2+y(x)**2)**(3/2)+e2*(x-a)/_ +--R ((x-a)**2+y(x)**2)**(3/2))*D(y(x),x)-y(x)*_ +--R (e1/((x+a)**2+y(x)**2)**(3/2)+e2/((x-a)**2+y(x)**2)**(3/2)) +--R +--R +--R (91) +--R 2 3 2 2 3 +--R ((e2 x - a e2)y(x) + e2 x + a e2 x - a e2 x - a e2) +--R * +--R +----------------------+ +--R | 2 2 2 +--R \|y(x) + x + 2a x + a +--R + +--R 2 3 2 2 3 +--R ((e1 x + a e1)y(x) + e1 x - a e1 x - a e1 x + a e1) +--R * +--R +----------------------+ +--R | 2 2 2 +--R \|y(x) + x - 2a x + a +--R * +--R , +--R y (x) +--R +--R + +--R +----------------------+ +--R 3 2 2 | 2 2 2 +--R (- e2 y(x) + (- e2 x - 2a e2 x - a e2)y(x))\|y(x) + x + 2a x + a +--R + +--R +----------------------+ +--R 3 2 2 | 2 2 2 +--R (- e1 y(x) + (- e1 x + 2a e1 x - a e1)y(x))\|y(x) + x - 2a x + a +--R / +--R +----------------------+ +--R 4 2 2 2 4 2 2 4 | 2 2 2 +--R (y(x) + (2x + 2a )y(x) + x - 2a x + a )\|y(x) + x - 2a x + a +--R * +--R +----------------------+ +--R | 2 2 2 +--R \|y(x) + x + 2a x + a +--R Type: Expression Integer +--E 92 + +--S 93 of 120 +--Rsolve(ode340,y,x) +--R +--R +--R (92) "failed" +--R Type: Union("failed",...) +--E 93 + +--S 94 of 120 +--Rode341 := (x*exp(y(x))+exp(x))*D(y(x),x)+exp(y(x))+y(x)*exp(x) +--R +--R +--R y(x) x , y(x) x +--R (93) (x %e + %e )y (x) + %e + y(x)%e +--R +--R Type: Expression Integer +--E 94 + +--S 95 of 120 +--Ryx:=solve(ode341,y,x) +--R +--R +--R y(x) x +--R (94) x %e + y(x)%e +--R Type: Union(Expression Integer,...) +--E 95 + +--S 96 of 120 +--Rode341expr := (x*exp(yx)+exp(x))*D(yx,x)+exp(yx)+yx*exp(x) +--R +--R +--R (95) +--R y(x) x +--R 2 y(x) x , y(x) x x %e + y(x)%e +--R ((x %e + x %e )y (x) + x %e + x y(x)%e + 1)%e +--R +--R + +--R x y(x) x 2 , x y(x) x 2 +--R (x %e %e + (%e ) )y (x) + (x + 1)%e %e + 2y(x)(%e ) +--R +--R Type: Expression Integer +--E 96 + +--S 97 of 120 +--Rode342 := x*(3*exp(x*y(x))+2*exp(-x*y(x)))*(x*D(y(x),x)+y(x))+1 +--R +--R +--R (96) +--R 2 x y(x) 2 - x y(x) , x y(x) - x y(x) +--R (3x %e + 2x %e )y (x) + 3x y(x)%e + 2x y(x)%e + 1 +--R +--R Type: Expression Integer +--E 97 + +--S 98 of 120 +--Ryx:=solve(ode342,y,x) +--R +--R +--R x y(x) 2 x y(x) +--R 3(%e ) + log(x)%e - 2 +--R (97) --------------------------------- +--R x y(x) +--R %e +--R Type: Union(Expression Integer,...) +--E 98 + +--S 99 of 120 +--Rode342expr := x*(3*exp(x*yx)+2*exp(-x*yx))*(x*D(yx,x)+yx)+1 +--R +--R +--R (98) +--R 3 x y(x) 2 3 , 2 x y(x) 2 +--R (9x (%e ) + 6x )y (x) + (9x y(x) + 9x)(%e ) +--R +--R + +--R x y(x) 2 +--R (3x log(x) + 3x)%e + 6x y(x) - 6x +--R * +--R x y(x) 2 x y(x) +--R 3x (%e ) + x log(x)%e - 2x +--R -------------------------------------- +--R x y(x) +--R %e +--R %e +--R + +--R 3 x y(x) 2 3 , 2 x y(x) 2 +--R (6x (%e ) + 4x )y (x) + (6x y(x) + 6x)(%e ) +--R +--R + +--R x y(x) 2 +--R (2x log(x) + 2x)%e + 4x y(x) - 4x +--R * +--R x y(x) 2 x y(x) +--R - 3x (%e ) - x log(x)%e + 2x +--R ---------------------------------------- +--R x y(x) +--R %e +--R %e +--R + +--R x y(x) +--R %e +--R / +--R x y(x) +--R %e +--R Type: Expression Integer +--E 99 + +--S 100 of 120 +--Rode343 := (log(y(x))+x)*D(y(x),x)-1 +--R +--R +--R , +--R (99) (log(y(x)) + x)y (x) - 1 +--R +--R Type: Expression Integer +--E 100 + +--S 101 of 120 +--Ryx:=solve(ode343,y,x) +--R +--R +--R - y(x) - y(x) +--R (100) - %e log(y(x)) - x %e + Ei(- y(x)) +--R Type: Union(Expression Integer,...) +--E 101 + +--S 102 of 120 +--Rode343expr := (log(yx)+x)*D(yx,x)-1 +--R +--R +--R (101) +--R - y(x) - y(x) , - y(x) +--R ((%e log(y(x)) + x %e )y (x) - %e ) +--R +--R * +--R - y(x) - y(x) +--R log(- %e log(y(x)) - x %e + Ei(- y(x))) +--R + +--R - y(x) 2 - y(x) , - y(x) +--R (x %e log(y(x)) + x %e )y (x) - x %e - 1 +--R +--R Type: Expression Integer +--E 102 + +--S 103 of 120 +--Rode344 := (log(y(x))+2*x-1)*D(y(x),x)-2*y(x) +--R +--R +--R , +--R (102) (log(y(x)) + 2x - 1)y (x) - 2y(x) +--R +--R Type: Expression Integer +--E 103 + +--S 104 of 120 +--Ryx:=solve(ode344,y,x) +--R +--R +--R - log(y(x)) - 2x +--R (103) ---------------- +--R y(x) +--R Type: Union(Expression Integer,...) +--E 104 + +--S 105 of 120 +--Rode344expr := (log(yx)+2*x-1)*D(yx,x)-2*yx +--R +--R +--R (104) +--R , - log(y(x)) - 2x +--R ((log(y(x)) + 2x - 1)y (x) - 2y(x))log(----------------) +--R y(x) +--R + +--R 2 , +--R ((2x - 1)log(y(x)) + 4x - 4x + 1)y (x) + 2y(x)log(y(x)) + 2y(x) +--R +--R / +--R 2 +--R y(x) +--R Type: Expression Integer +--E 105 + +--S 106 of 120 +--Rode345 := x*(2*x**2*y(x)*log(y(x))+1)*D(y(x),x)-2*y(x) +--R +--R +--R 3 , +--R (105) (2x y(x)log(y(x)) + x)y (x) - 2y(x) +--R +--R Type: Expression Integer +--E 106 + +--S 107 of 120 +--Ryx:=solve(ode345,y,x) +--R +--R +--R 2 2 2 2 +--R 2x y(x) log(y(x)) - x y(x) + 2y(x) +--R (106) ----------------------------------- +--R 2 +--R 2x +--R Type: Union(Expression Integer,...) +--E 107 + +--S 108 of 120 +--Rode345expr := x*(2*x**2*yx*log(yx)+1)*D(yx,x)-2*yx +--R +--R +--R (107) +--R 5 3 2 5 3 3 2 3 2 +--R 4x y(x) log(y(x)) + (- 2x y(x) + 6x y(x) )log(y(x)) - x y(x) +--R + +--R 2x y(x) +--R * +--R , +--R y (x) +--R +--R + +--R 2 3 2 3 2 +--R - 4x y(x) log(y(x)) + 2x y(x) - 4y(x) +--R * +--R 2 2 2 2 +--R 2x y(x) log(y(x)) - x y(x) + 2y(x) +--R log(-----------------------------------) +--R 2 +--R 2x +--R + +--R 3 , 2 2 2 2 +--R (2x y(x)log(y(x)) + x)y (x) - 2x y(x) log(y(x)) + x y(x) - 4y(x) +--R +--R / +--R 2 +--R x +--R Type: Expression Integer +--E 108 + +--S 109 of 120 +--Rode346 := x*(y(x)*log(x*y(x))+y(x)-a*x)*D(y(x),x)-_ +--R y(x)*(a*x*log(x*y(x))-y(x)+a*x) +--R +--R +--R (108) +--R 2 , 2 +--R (x y(x)log(x y(x)) + x y(x) - a x )y (x) - a x y(x)log(x y(x)) + y(x) +--R +--R + +--R - a x y(x) +--R Type: Expression Integer +--E 109 + +--S 110 of 120 +--Rsolve(ode346,y,x) +--R +--R +--R (109) "failed" +--R Type: Union("failed",...) +--E 110 + +--S 111 of 120 +--Rode347 := D(y(x),x)*(1+sin(x))*sin(y(x))+cos(x)*(cos(y(x))-1) +--R +--R +--R , +--R (110) (sin(x) + 1)sin(y(x))y (x) + cos(x)cos(y(x)) - cos(x) +--R +--R Type: Expression Integer +--E 111 + +--S 112 of 120 +--Ryx:=solve(ode347,y,x) +--R +--R +--R (111) +--R 2 2 2 +--R (- 4cos(x) - 8cos(x) - 4)sin(x) + (- 8cos(x) - 16cos(x) - 8)sin(x) +--R + +--R 2 +--R - 4cos(x) - 8cos(x) - 4 +--R * +--R cos(y(x)) +--R + +--R 5 4 2 3 +--R - sin(x) + (- 4cos(x) - 4)sin(x) + (- 6cos(x) - 12cos(x) - 6)sin(x) +--R + +--R 3 2 2 +--R (- 4cos(x) - 12cos(x) - 12cos(x) - 4)sin(x) +--R + +--R 4 3 2 +--R (- cos(x) - 4cos(x) - 6cos(x) - 4cos(x) - 1)sin(x) +--R / +--R 5 4 2 3 +--R sin(x) + (4cos(x) + 5)sin(x) + (6cos(x) + 16cos(x) + 10)sin(x) +--R + +--R 3 2 2 +--R (4cos(x) + 18cos(x) + 24cos(x) + 10)sin(x) +--R + +--R 4 3 2 4 +--R (cos(x) + 8cos(x) + 18cos(x) + 16cos(x) + 5)sin(x) + cos(x) +--R + +--R 3 2 +--R 4cos(x) + 6cos(x) + 4cos(x) + 1 +--R Type: Union(Expression Integer,...) +--E 112 + +--S 113 of 120 +--Rode347expr := D(yx,x)*(1+sin(x))*sin(yx)+cos(x)*(cos(yx)-1) +--R +--R +--R (112) +--R 2 4 +--R (- 4cos(x) - 8cos(x) - 4)sin(x) +--R + +--R 3 2 3 +--R (- 4cos(x) - 24cos(x) - 36cos(x) - 16)sin(x) +--R + +--R 3 2 2 +--R (- 12cos(x) - 48cos(x) - 60cos(x) - 24)sin(x) +--R + +--R 3 2 3 +--R (- 12cos(x) - 40cos(x) - 44cos(x) - 16)sin(x) - 4cos(x) +--R + +--R 2 +--R - 12cos(x) - 12cos(x) - 4 +--R * +--R , +--R sin(y(x))y (x) +--R +--R + +--R 5 2 4 +--R (- 8cos(x) - 8)sin(x) + (8cos(x) - 8cos(x) - 16)sin(x) +--R + +--R 3 3 +--R (- 12cos(x) + 12cos(x))sin(x) +--R + +--R 4 3 2 2 +--R (4cos(x) - 28cos(x) - 44cos(x) + 4cos(x) + 16)sin(x) +--R + +--R 4 3 2 +--R (8cos(x) - 20cos(x) - 56cos(x) - 20cos(x) + 8)sin(x) +--R + +--R 4 3 2 +--R 4cos(x) - 4cos(x) - 20cos(x) - 12cos(x) +--R * +--R cos(y(x)) +--R + +--R 5 2 4 +--R cos(x)sin(x) + (5cos(x) + 5cos(x))sin(x) +--R + +--R 3 2 3 +--R (10cos(x) + 20cos(x) + 10cos(x))sin(x) +--R + +--R 4 3 2 2 +--R (10cos(x) + 30cos(x) + 30cos(x) + 10cos(x))sin(x) +--R + +--R 5 4 3 2 +--R (5cos(x) + 20cos(x) + 30cos(x) + 20cos(x) + 5cos(x))sin(x) +--R + +--R 6 5 4 3 2 +--R cos(x) + 5cos(x) + 10cos(x) + 10cos(x) + 5cos(x) + cos(x) +--R * +--R sin +--R 2 2 +--R (4cos(x) + 8cos(x) + 4)sin(x) +--R + +--R 2 2 +--R (8cos(x) + 16cos(x) + 8)sin(x) + 4cos(x) + 8cos(x) + 4 +--R * +--R cos(y(x)) +--R + +--R 5 4 +--R sin(x) + (4cos(x) + 4)sin(x) +--R + +--R 2 3 +--R (6cos(x) + 12cos(x) + 6)sin(x) +--R + +--R 3 2 2 +--R (4cos(x) + 12cos(x) + 12cos(x) + 4)sin(x) +--R + +--R 4 3 2 +--R (cos(x) + 4cos(x) + 6cos(x) + 4cos(x) + 1)sin(x) +--R / +--R 5 4 +--R sin(x) + (4cos(x) + 5)sin(x) +--R + +--R 2 3 +--R (6cos(x) + 16cos(x) + 10)sin(x) +--R + +--R 3 2 2 +--R (4cos(x) + 18cos(x) + 24cos(x) + 10)sin(x) +--R + +--R 4 3 2 4 +--R (cos(x) + 8cos(x) + 18cos(x) + 16cos(x) + 5)sin(x) + cos(x) +--R + +--R 3 2 +--R 4cos(x) + 6cos(x) + 4cos(x) + 1 +--R + +--R 6 2 5 +--R cos(x)sin(x) + (5cos(x) + 6cos(x))sin(x) +--R + +--R 3 2 4 +--R (10cos(x) + 25cos(x) + 15cos(x))sin(x) +--R + +--R 4 3 2 3 +--R (10cos(x) + 40cos(x) + 50cos(x) + 20cos(x))sin(x) +--R + +--R 5 4 3 2 2 +--R (5cos(x) + 30cos(x) + 60cos(x) + 50cos(x) + 15cos(x))sin(x) +--R + +--R 6 5 4 3 2 +--R (cos(x) + 10cos(x) + 30cos(x) + 40cos(x) + 25cos(x) + 6cos(x)) +--R * +--R sin(x) +--R + +--R 6 5 4 3 2 +--R cos(x) + 5cos(x) + 10cos(x) + 10cos(x) + 5cos(x) + cos(x) +--R * +--R cos +--R 2 2 +--R (4cos(x) + 8cos(x) + 4)sin(x) +--R + +--R 2 2 +--R (8cos(x) + 16cos(x) + 8)sin(x) + 4cos(x) + 8cos(x) + 4 +--R * +--R cos(y(x)) +--R + +--R 5 4 +--R sin(x) + (4cos(x) + 4)sin(x) +--R + +--R 2 3 +--R (6cos(x) + 12cos(x) + 6)sin(x) +--R + +--R 3 2 2 +--R (4cos(x) + 12cos(x) + 12cos(x) + 4)sin(x) +--R + +--R 4 3 2 +--R (cos(x) + 4cos(x) + 6cos(x) + 4cos(x) + 1)sin(x) +--R / +--R 5 4 +--R sin(x) + (4cos(x) + 5)sin(x) +--R + +--R 2 3 +--R (6cos(x) + 16cos(x) + 10)sin(x) +--R + +--R 3 2 2 +--R (4cos(x) + 18cos(x) + 24cos(x) + 10)sin(x) +--R + +--R 4 3 2 4 +--R (cos(x) + 8cos(x) + 18cos(x) + 16cos(x) + 5)sin(x) + cos(x) +--R + +--R 3 2 +--R 4cos(x) + 6cos(x) + 4cos(x) + 1 +--R + +--R 6 2 5 +--R - cos(x)sin(x) + (- 5cos(x) - 6cos(x))sin(x) +--R + +--R 3 2 4 +--R (- 10cos(x) - 25cos(x) - 15cos(x))sin(x) +--R + +--R 4 3 2 3 +--R (- 10cos(x) - 40cos(x) - 50cos(x) - 20cos(x))sin(x) +--R + +--R 5 4 3 2 2 +--R (- 5cos(x) - 30cos(x) - 60cos(x) - 50cos(x) - 15cos(x))sin(x) +--R + +--R 6 5 4 3 2 +--R (- cos(x) - 10cos(x) - 30cos(x) - 40cos(x) - 25cos(x) - 6cos(x)) +--R * +--R sin(x) +--R + +--R 6 5 4 3 2 +--R - cos(x) - 5cos(x) - 10cos(x) - 10cos(x) - 5cos(x) - cos(x) +--R / +--R 6 5 2 4 +--R sin(x) + (5cos(x) + 6)sin(x) + (10cos(x) + 25cos(x) + 15)sin(x) +--R + +--R 3 2 3 +--R (10cos(x) + 40cos(x) + 50cos(x) + 20)sin(x) +--R + +--R 4 3 2 2 +--R (5cos(x) + 30cos(x) + 60cos(x) + 50cos(x) + 15)sin(x) +--R + +--R 5 4 3 2 +--R (cos(x) + 10cos(x) + 30cos(x) + 40cos(x) + 25cos(x) + 6)sin(x) +--R + +--R 5 4 3 2 +--R cos(x) + 5cos(x) + 10cos(x) + 10cos(x) + 5cos(x) + 1 +--R Type: Expression Integer +--E 113 + +--S 114 of 120 +--Rode348 := (x*cos(y(x))+sin(x))*D(y(x),x)+y(x)*cos(x)+sin(y(x)) +--R +--R +--R , +--R (113) (x cos(y(x)) + sin(x))y (x) + sin(y(x)) + y(x)cos(x) +--R +--R Type: Expression Integer +--E 114 + +--S 115 of 120 +--Ryx:=solve(ode348,y,x) +--R +--R +--R (114) x sin(y(x)) + y(x)sin(x) +--R Type: Union(Expression Integer,...) +--E 115 + +--S 116 of 120 +--Rode348expr := (x*cos(yx)+sin(x))*D(yx,x)+yx*cos(x)+sin(yx) +--R +--R +--R (115) +--R sin(x sin(y(x)) + y(x)sin(x)) +--R + +--R 2 , +--R ((x cos(y(x)) + x sin(x))y (x) + x sin(y(x)) + x y(x)cos(x)) +--R +--R * +--R cos(x sin(y(x)) + y(x)sin(x)) +--R + +--R 2 , +--R (x sin(x)cos(y(x)) + sin(x) )y (x) + (sin(x) + x cos(x))sin(y(x)) +--R +--R + +--R 2y(x)cos(x)sin(x) +--R Type: Expression Integer +--E 116 + +--S 117 of 120 +--Rode349 := x*D(y(x),x)*cot(y(x)/x)+2*x*sin(y(x)/x)-y(x)*cot(y(x)/x) +--R +--R +--R y(x) , y(x) y(x) +--R (116) x cot(----)y (x) + 2x sin(----) - y(x)cot(----) +--R x x x +--R Type: Expression Integer +--E 117 + +--S 118 of 120 +--Rsolve(ode349,y,x) +--R +--R +--R (117) "failed" +--R Type: Union("failed",...) +--E 118 + +--S 119 of 120 +--Rode350 := D(y(x),x)*cos(y(x))-cos(x)*sin(y(x))**2-sin(y(x)) +--R +--R +--R , 2 +--R (118) cos(y(x))y (x) - cos(x)sin(y(x)) - sin(y(x)) +--R +--R Type: Expression Integer +--E 119 + +--S 120 of 120 +--Rsolve(ode350,y,x) +--R +--R +--R (119) "failed" +--R Type: Union("failed",...) +--E 120 + + +)spool +)lisp (bye) + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html} +\end{thebibliography} +\end{document} diff --git a/src/axiom-website/CATS/kamke6.input.pdf b/src/axiom-website/CATS/kamke6.input.pdf new file mode 100644 index 0000000..3dadfbf --- /dev/null +++ b/src/axiom-website/CATS/kamke6.input.pdf @@ -0,0 +1,4095 @@ +%PDF-1.2 +7 0 obj +<< +/Type/Encoding +/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress +160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis] +>> +endobj +10 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F1 +/FontDescriptor 9 0 R +/BaseFont/UVGUYE+CMR17 +/FirstChar 33 +/LastChar 196 +/Widths[249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9 +249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6 +249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6 +471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3 +693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8 +458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1 +510.9 484.7 667.6 484.7 484.7 406.4 458.6 917.2 458.6 458.6 458.6 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 772.1 719.8 641.1 615.3 693.3 +667.6 719.8 667.6 719.8 0 0 667.6 525.4 499.3 499.3 748.9 748.9 249.6 275.8 458.6 +458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6 +458.6] +>> +endobj +13 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F2 +/FontDescriptor 12 0 R +/BaseFont/HGRDUJ+CMR12 +/FirstChar 33 +/LastChar 196 +/Widths[272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6 +489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 +462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 +734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 +272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 +544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2 489.6 489.6 +489.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611.8 816 +761.6 679.6 652.8 734 707.2 761.6 707.2 761.6 0 0 707.2 571.2 544 544 816 816 272 +299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 +761.6 272 489.6] +>> +endobj +16 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F3 +/FontDescriptor 15 0 R +/BaseFont/ZMUMXI+CMBX9 +/FirstChar 33 +/LastChar 196 +/Widths[360.2 617.6 986.1 591.7 986.1 920.4 328.7 460.2 460.2 591.7 920.4 328.7 394.4 +328.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 328.7 328.7 +360.2 920.4 558.8 558.8 920.4 892.9 840.9 854.6 906.6 776.5 743.7 929.9 924.4 446.3 +610.8 925.8 710.8 1121.6 924.4 888.9 808 888.9 886.7 657.4 823.1 908.6 892.9 1221.6 +892.9 892.9 723.1 328.7 617.6 328.7 591.7 328.7 328.7 575.2 657.4 525.9 657.4 543 +361.6 591.7 657.4 328.7 361.6 624.5 328.7 986.1 657.4 591.7 657.4 624.5 488.1 466.8 +460.2 657.4 624.5 854.6 624.5 624.5 525.9 591.7 1183.3 591.7 591.7 591.7 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 710.8 986.1 920.4 827.2 +788.9 924.4 854.6 920.4 854.6 920.4 0 0 854.6 690.3 657.4 657.4 986.1 986.1 328.7 +361.6 591.7 591.7 591.7 591.7 591.7 892.9 525.9 616.8 854.6 920.4 591.7 1071 1202.5 +920.4 328.7 591.7] +>> +endobj +19 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F4 +/FontDescriptor 18 0 R +/BaseFont/TPWNPF+CMR9 +/FirstChar 33 +/LastChar 196 +/Widths[285.5 513.9 856.5 513.9 856.5 799.4 285.5 399.7 399.7 513.9 799.4 285.5 342.6 +285.5 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 285.5 285.5 +285.5 799.4 485.3 485.3 799.4 770.7 727.9 742.3 785 699.4 670.8 806.5 770.7 371 528.1 +799.2 642.3 942 770.7 799.4 699.4 799.4 756.5 571 742.3 770.7 770.7 1056.2 770.7 +770.7 628.1 285.5 513.9 285.5 513.9 285.5 285.5 513.9 571 456.8 571 457.2 314 513.9 +571 285.5 314 542.4 285.5 856.5 571 513.9 571 542.4 402 405.4 399.7 571 542.4 742.3 +542.4 542.4 456.8 513.9 1027.8 513.9 513.9 513.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 642.3 856.5 799.4 713.6 685.2 770.7 742.3 799.4 +742.3 799.4 0 0 742.3 599.5 571 571 856.5 856.5 285.5 314 513.9 513.9 513.9 513.9 +513.9 770.7 456.8 513.9 742.3 799.4 513.9 927.8 1042 799.4 285.5 513.9] +>> +endobj +22 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F5 +/FontDescriptor 21 0 R +/BaseFont/VQQJAA+CMR10 +/FirstChar 33 +/LastChar 196 +/Widths[277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8 +500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8 +750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8 +680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8 +277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6 +500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000 500 +500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 833.3 +777.8 694.4 666.7 750 722.2 777.8 722.2 777.8 0 0 722.2 583.3 555.6 555.6 833.3 833.3 +277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8 +277.8 500] +>> +endobj +24 0 obj +<< +/Filter[/FlateDecode] +/Length 496 +>> +stream +xÚURMÓ0½ó+|à0‘ˆk;_αÐ]$¸ m$ËœÖÛX›&Åvèî¿g&.±çë½—7f‚ ÁÎl=>³Ýî^2Ùp%Y÷̤*xݲ\Š’Wšu‡Gxÿð-k4ì»à;7]—˜å…ð’UÌå%S5Øš§ÊS÷ew¯˜”¼­°)x#Y^”\—+\ç.s2ÕÀ¨ +f|£1$U\"7J(SïÁí…Zû,'O5â]PBèÄX0ÍÛš•æ¢FŠëjÙ÷!zsܤ•s‰|Š×*I\Èò²ð猃¥‹DJ‰"eçç”ܪ¾®.4@¡n!ÚSGX\ÜzLH©ëÒ. ö”ÒýæÍÝñÔòÀ7? +®íbõ~lŸw™®Ð +oúGù„uQ£rKBÁ`2¥á}ˆ×DÞµ`íDaÞÞ¼‹1… +–à¦sªì_Ý|IÙð6B4¯Á÷Áz»ªIP½ +º"¶†9×–în›ªi! 3E7ª™&¦žÕ8º\Ƨ8ÌãÝ<¥—¶˜_Gª™èÂU56ü‡‚ûðîì&3þ«/6û<½´RÁÉáx?2‘ªèpóìÏÅ+OO¤bíöDdYò7Pè‚«fE”+É]÷î7º¯Ùì +endstream +endobj +26 0 obj +<< +/F1 10 0 R +/F2 13 0 R +/F3 16 0 R +/F4 19 0 R +/F5 22 0 R +>> +endobj +6 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 26 0 R +>> +endobj +31 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F6 +/FontDescriptor 30 0 R +/BaseFont/OXXWTX+CMBX12 +/FirstChar 33 +/LastChar 196 +/Widths[342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5 +562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6 +875 531.3 531.3 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8 +675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5 +687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.8 562.5 625 312.5 +343.8 593.8 312.5 937.5 625 562.5 625 593.8 459.5 443.8 437.5 625 593.8 812.5 593.8 +593.8 500 562.5 1125 562.5 562.5 562.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 675.9 937.5 875 787 750 879.6 812.5 875 812.5 875 0 0 812.5 +656.3 625 625 937.5 937.5 312.5 343.8 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1 +812.5 875 562.5 1018.5 1143.5 875 312.5 562.5] +>> +endobj +32 0 obj +<< +/Filter[/FlateDecode] +/Length 97 +>> +stream +xÚ%Ë+€0EQÏ*žÁÐié4µ|J‚G€û)¨cî…!cpàcB§MpK®…î¦àQ‹Íè°”ýuVŽËgû¹«Uç&yDŠ’–H΢ö(ð·ØÜ`ÔâúY- +endstream +endobj +33 0 obj +<< +/F6 31 0 R +/F5 22 0 R +>> +endobj +28 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 33 0 R +>> +endobj +36 0 obj +<< +/Type/Encoding +/Differences[0/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft +161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus +173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade] +>> +endobj +39 0 obj +<< +/Encoding 36 0 R +/Type/Font +/Subtype/Type1 +/Name/F7 +/FontDescriptor 38 0 R +/BaseFont/AAGTGA+CMSY10 +/FirstChar 33 +/LastChar 196 +/Widths[1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 +275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 +611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9 +820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7 +666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8 +500 500 611.1 500 277.8 833.3 750 833.3 416.7 666.7 666.7 777.8 777.8 444.4 444.4 +444.4 611.1 777.8 777.8 777.8 777.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 0 0 777.8 +777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 +777.8 777.8 1000 1000 777.8 777.8 1000 777.8] +>> +endobj +40 0 obj +<< +/Type/Encoding +/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress +160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis] +>> +endobj +43 0 obj +<< +/Encoding 40 0 R +/Type/Font +/Subtype/Type1 +/Name/F8 +/FontDescriptor 42 0 R +/BaseFont/FFPBTO+CMTI10 +/FirstChar 33 +/LastChar 196 +/Widths[306.7 514.4 817.8 769.1 817.8 766.7 306.7 408.9 408.9 511.1 766.7 306.7 357.8 +306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7 +306.7 766.7 511.1 511.1 766.7 743.3 703.9 715.6 755 678.3 652.8 773.6 743.3 385.6 +525 768.9 627.2 896.7 743.3 766.7 678.3 766.7 729.4 562.2 715.6 743.3 743.3 998.9 +743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7 +460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7 +460 664.4 463.9 485.6 408.9 511.1 1022.2 511.1 511.1 511.1 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 627.2 817.8 766.7 692.2 664.4 743.3 715.6 +766.7 715.6 766.7 0 0 715.6 613.3 562.2 587.8 881.7 894.4 306.7 332.2 511.1 511.1 +511.1 511.1 511.1 831.3 460 536.7 715.6 715.6 511.1 882.8 985 766.7 255.6 511.1] +>> +endobj +44 0 obj +<< +/Type/Encoding +/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace +160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis] +>> +endobj +47 0 obj +<< +/Encoding 44 0 R +/Type/Font +/Subtype/Type1 +/Name/F9 +/FontDescriptor 46 0 R +/BaseFont/JNEICV+CMTT10 +/FirstChar 33 +/LastChar 196 +/Widths[525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 525 525 525 525 525 525 525 525 525 525 0 0 525 +525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 +525 525] +>> +endobj +48 0 obj +<< +/Filter[/FlateDecode] +/Length 489 +>> +stream +xÚ­UMs›0½÷Whr© –"„ćgrÉÄ鴗Τܪh"¨Ç8b îÀ¿¯ŒqL=©°ËîÛeßî‚Á„€tâ ¸KnBã8I‡ €Drÿþvž’o7Ñ€ðqÒù\ã;ŠÆ<²¾µ 3þxð#‚Y çáØdNU*U8ˆS7év#¬öu¹¯¡:Õ{¬¬ ò×N¦£îdµßÊYôVVFI÷µ2šÊ²©çB¦;‹-ŠA}{¡Æëõiì#%ãtíòV•r—ÖʦüÜŽA=þÓ FäñC=áhpO¤D>a,†I[Ê¥yù]Z­Ÿ¿÷õL­zfG¬ß“¦³¤‡*³ïìc¼ùˆ7xg—æMg¦íŸ1mýö|D<¿ÔÀýx~1â3ÝðOo;o Ô‹ô‰ýL–·F +¸Û +ØÇuéu£oZ»ÐØúBÖ­9¿!‘ÿ½C#ä°ÃÔ3²kçBW†ìðôⱡÿšCcؘê¬ùÚØ¬K8mϸƒTd;;f]“›0] #ÊŽ§¾jJýG¬ÖêÕ<}­e.çŸ5?oÔ•*þHÍÄíâò}çC§®²t]È—+s¤ðáHñxŒý@Wã(êâÍ(Wɧ¿8-¢X +endstream +endobj +49 0 obj +<< +/F7 39 0 R +/F8 43 0 R +/F9 47 0 R +/F5 22 0 R +>> +endobj +35 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 49 0 R +>> +endobj +52 0 obj +<< +/Filter[/FlateDecode] +/Length 491 +>> +stream +xÚµVËNÃ0¼ó§¼ìúÛ1DAp„p"šV•P[Q„’¿g§©Û&¡å­½»¶7;3N%”¢ªÍ=ºIGwbJ§H3¢Š-Qzûêaüäc®¹1^Z®ò+K.½—Å|¹È¼Ëéûü#Ÿ\F„Ì÷ßÒGDfŒ˜Íâ±Í—›Ä4¡gRÖ,§Ö2N»öyZNrA¹Í¹º¶6óŠ àA 6óaVæ6ó¬#‚'´CwGÕ¾V×1ÝÎê4êÁéœÑÚ +ó¨'™I]Õ¦à\Ì($B ¶à¦ë ­eû:U°†;ù¿ª\¤»H‹Õg¾^\vþ°øÊgùçVª+}VëåÇwžy²¨ŒÎ@ÓTݶoýžü?SV»m`»}HNà¬8䬅³š´A±GÙVWyG2á(‹-¹‚’jUÅøŒ…Ò²å¹èáXEò ¿±õñ½˜Cï!ê(æä^œCI¿*Ì T—*Ä¡*äTaþOj· ¦¿ Œž Šx_Œ‚á^æ[„ ’ƒ«];:a±]|•ÙÝ(•@U®P+µŽ+¡ÄÜñC^¬k! ¢Ä¨£F‡¾ ½’áCš‘GoÙמÑl˜4D(@Ú$©“âzÝ8½øé|éP +endstream +endobj +53 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +51 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 53 0 R +>> +endobj +56 0 obj +<< +/Filter[/FlateDecode] +/Length 604 +>> +stream +xÚ­–MoÛ0 †ïûBOv©õ —¡é°[ï4ï0 NQ HŠfä?Y–<DZf[.6EQ!¾T‚(¡=¡ðø„>×wYb*¶H3¢ +ˆ–¨¸ý–a|ŸcÐDVÔ¯Õ:Çd¶q¯oÕáð¼ßµöçÝÏê©zË¿_E˜1bSø¦ÝÁhr'6ú¢µÏý6Ú@ÇNº?ì_~Ue¶¬8«zåʼ¿Ou /b&µÌJŸ‚? 3*ivµýñüR=^M€kû,¾î<†² [BŽó’`}l€Þ‡"0ížõMû,³ºÌ<“Å‚c¾h^nÓRƒÊ¯µÆÒ-p£QÄXsÏŠûS•¸ò¶Ñ"ƒ3”¡£œ2‹&nKà~¥NÕoóšœuomÙ>Ü%½þ2†¹æñ÷5¯v뛾–å©–åßh9´DäØp¯P>Ñ7¡û(à+×¾ŒpîLgùŸÓÆ?Sñ>„ö°[TŒMÛDçΟ럸dø*ŸÂɺãásiðÜ? Ým1uóac›ÄýÍ ­7×IP¯L` hqÁzhM°ÍÄ7KíOÝé¦I§«]òr‚{™ÜfÒë3ÒС¿'J°l ËñüBQË©Á0þ U¬P‡Í¢C¢b°Œ¶ŒDt´Å&ÄLò†)aÆü pf®x¦èdñê’âm m›6{a=„ bÑ&ÕEçª.3Õ”Ý/…ù;Gwœ¿dF47úHiB)©fЄÐV"õéO³àÎ +áúNvÿk˜´„+?õ–6Ë¿)>ü — 8 +endstream +endobj +57 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +55 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 57 0 R +>> +endobj +60 0 obj +<< +/Filter[/FlateDecode] +/Length 607 +>> +stream +xÚ¥VÁŽÓ0½ó9¦%Ií±=ÎTÚ Ú.‚#„áFv…„ÚÕ.Béß3±6MíÒB¥ÖvÞŒ3oÞxÜLTBdO™ÞgïšÕeTfÍcfeeeV"TÖdÍý×¼,?-ÊšÀä°øÖ|ÌDVJYÑ4Öš\c OX(iD¾L¹ƒEÔ–_¼wFy›÷íbj‡»¸3 {½M€¶¢V!8`kA”Kž`ÍnRðËAˆœ-@òHl‰ìbºNqŒJq-÷>èR;„âž‚íý$ +’Äv”@g°Ð4zKQŸ¢×&g‰ÀÒ: t®ÃCV0¬ÍYPš΂æ¤A“Ö"†þô¿±š€¨œf¾ÚXSV[‡5UamÃ.±ks©‡¸N¨("¬ûÓøÍÚEŒ)%/e„U˜¤Ž·T:ùBá +—ÇÂvã_HŽ$ÄŒ¬’¼cdfàPÅè3©[$Gô$WêTÃpv«K:Þ)ÜÖ\±Íþ¹[û7múç—îõõÇnë×¶¿º§î%–ËMˆM ¨Šö9`Æ»ÇQ^ d÷½S½Íúnla>YË¥*{þáÙýø¬àïð–—ªü†ög•9¶/’Z8auRu'—¶9Ôb=”¡*YýisvÓS‹+Éü§~f¦Ÿ™ê'gâuîûõÝëîçï®Í½–ž¸Jü°ºûCõ¹tF€kZâ¨&½gŸ„£»ð1% WÎD /[Ö¦MéTTUï\›ƒ éÓfo9mGpvâúÙië''Í5 Õƒ9üÿ‘†*… Uuí6÷Ámš7yê É +endstream +endobj +61 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +59 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 61 0 R +>> +endobj +64 0 obj +<< +/Filter[/FlateDecode] +/Length 596 +>> +stream +xÚµVMÚ0½÷Wäh 6¶ãO¤½TËVí±MOM+5»ªTÁj©*óï;‰íXÛ»H-8Ìx<ïùAE ¥Õc5.ª÷íúÎV–XUµ•fD³ ++N´¬ÚÛoãÏ‹ïí§ŠV˜1b_1b&µDbº[dvh;x³À\q‰†•QŠ8]à† ‹T00=$E6DaD¤+6v6 +-¦QðR›¡3ÎÔe…CE«Œ7}à8ïe.g]jîèS2¤OQÍMFðqa,ì–‘&ÐÆDƒŒ,aÑÂCcñ5Ž÷tFS*+Œ·€¾ÊÒf ê´œ"F6E8ÉÂ9e Y—º^äÜÚíÛãS¿ñ™¶îé¹?~îwþûÇÝïþ±N…oCó::yClð}‰—ͯû‡8(šlbÿ£o¨ö{67‘_¾ëå’¯ÜðqÏÁt5¼W—;ñ°Ó]AÍŒ‚5’¢(`|¼‡nVÍŒªÍ+i&P»$Ærç¨Ýïƒu~ÑÆÇUš¦³ðxZà×}´&©óÿ8a +œ°ENL…Ýææ°ÿõ§ï§G}¬³—à +X•¤â$ ûv‚SÑÈi±À$ŽüH>!YDˆ§ JÉNçà7¼rR!pXä€çF1þë0ïrø×„ô/ÀvB:Ë‚áÀÛ•¡‡ +^¨ƒ;W7ª‚‹Šàþ±8õ-¯ïäôgŠIK]ZbÌá%qÛ¾û ¥ › +endstream +endobj +65 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +63 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 65 0 R +>> +endobj +68 0 obj +<< +/Filter[/FlateDecode] +/Length 668 +>> +stream +xÚ¥—Ë’Û E÷ù +–Ò8h i^ÛT2©Ê2å]”…6“_ðü}€°”¬\†sïiº1acä ßÉ—ûë›%v°ŠÜß‰æƒæ„*´$÷¯¿:JöT-;.{*¸dôTÚŽ 7 Ü ö…‰ +Ü +Þÿ¾ÿ ŒPλÙOj·êcìcßS.Ý—›ßSvc§n„¹M∞ƾ |Š`Ó<—mÁM_vªŸ +5øíë“Á…¢ê€yߤ[Dݶ%{ì„̈²~ð#AÀ‚ÔA& +R{A×&À (F ú¢@È…ÐHêÇ%@M~Æ,±TcŸ›)í¦ÿí·bg.Œ[ëZ“~΀­3É©õ +ÔQëmë“8É“5_\&«'¾f¢Ñ¾[ïУ•msà`6ˆDÇã ;Àá¥e—-Lä<øT§C€Ù”µùnoAãÝâk^XfÜo[îÙ0ºåX±•']ë\¥†âÁ¸ØÔÖÍ/H}iýܺz)5ÉÕÿŸãŒøû ŸŒT¬÷9:Îýªhǹ×Ç‚ñä#$»ñ›Æ¥ŠÎ¢²\ÓQ¶Ü–1ô.$7B˜i™PéÑõ^´OÙZw):‘KÜËóûd£½—ȬûеD‡\Qg5Óö»äiÿ-Ê´€¬þâlŠØéÀ#uÅ#÷ºžÕÛ½I:ëg2ëgb-sáÛ¦”WsE»Ò5·N5µµªÎ±×7¹ü½áÒB +v0&Ï×äÛýÓ_>N½7 +endstream +endobj +69 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +67 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 69 0 R +>> +endobj +72 0 obj +<< +/Filter[/FlateDecode] +/Length 625 +>> +stream +xÚ­–ÉnÛ0†ï} +%Û¤¹S4K§h­z*s0%(PØA\ÒÛ—â¢Í”ì5`KœE"¿áÏ1ÀcðÜåøXn4ÐHKP>E"JŠ”åý ¯9TàŒ°rŠí É!#ÖB[Ï´J%2®*¸¹KÌÄ0ÚGµCÖ™Ë/HÒƒwºG™LÕ9$ÂÞÂŽþ&Ú× ;¶Ï v“y›$7¹‹â:>•òIv°k™¶3í&oLû;³ +*i;Å´ÓÓa­„Aµ˜¹²|#WÝsu™jÂ-‘œ`TiФHÛM +`rk0‡È‹Ã/‰(ñ²0ƒEÈAºÂøn é`÷ÆíR½$ŸóªÂ.¹l^«Ǿ~}«Î矧£>þ®^ª·Ôö`tR†tð} >⯧çP>x4‘ÓSÅpácvw!wå÷ájÅV÷&óƒý®ëÎ3#µ$ð4żrÛ7nr{Lh=+`·Œ]”‡‡NƒT\z·AgYw[Ïùdõÿª#&Õ!ÃêIyèmåiêÝÝùôëOe2_©M³yßRÒpðí(ÁóǦ=1Dz¨®úJh—ûÏÒ>˜›¥íÉ:¨Ã÷£-™+Ç!”¦³ï¸/…½G3•Â…nꨙ:꥾E+×ʹ²Ùæà(ªþÔw…uíÒòãaÌâ¡âZÙn¼Ø7‰LíÊÇê9 ]pŽ}¶ëÍÉ·øwý^ñšBùNçþŠðÀH„¤È(2TËeFtÒ“xßÎ'½J^DOž–Úmʻډ\#Ú>ˆîÿ1i• QQ¸`íò÷凿ü}*Ý +endstream +endobj +73 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +71 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 73 0 R +>> +endobj +76 0 obj +<< +/Filter[/FlateDecode] +/Length 606 +>> +stream +xÚ­VËnÛ0¼÷+x”l“áûa —"IÑSåTõV%(PØA\òßw)R2ÍPª‹Ä€A.¹+îìÌRB”PŠžÐ0|B›«;‡q5È0bš£Psó­Âø¾ÆÜX.«æøÜmk¬¸ªnûç—îpø¹ßûóîw÷Ô½Ôß›/ˆ"ÌqcømðàbÜ䂸¸÷5îÉ0îÃÈ8-=é~ÿ£ÔŸíuÛŠ¯ŽmÕ·õj%Öaó›¶ +ó ü1_õ°‹ûô©z‚W:ª¼ˆ5ª5–ŽÞÀÈœ«ÄŒ3SfÈO¶5TQo„¬¢½Ƭ#¤ÁÃOq,P¢Ýÿ3gý¾äÉòÔeäûíõaÿëO×VÇÍÑsófJ´…CA@BCµ9Àe”z›S †Ï üÍS‘Wû’âOt«S|ù7!ô<ã”EN¥KY|Øí™BÈyqsJÕ¥úú±ƒ +=ÙýØÇ^ìß·ÇZë2Fð°ŠÉ@›’û‰ˆ½ê…¡ù ”AŒÍÄ+ãå4ÉÁŸ%bJ‹í¨©%Ø@]ttÐæ!~A™ëXµÎdå¢mã¨#Äs?È{ é”?S€ÓBD &gËí úz”͈}¦6ŒÏ>úÒâ¤w³xUùŠoµ\—C°ÙBAäû%úBA³<¦ÌhÄ`ã‚N.·“¸ˆØ¡Ö^±)‰#‘yp™¹ó7Qç_«eàp¢è¼\ÜsÀ%|%¼)¾Üü•ëíAæË0ñ­æá°¹Y|%¥_àwu§¦O3¦4±îkG¬âX¸–o›Ôú* +endstream +endobj +77 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +75 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 77 0 R +>> +endobj +80 0 obj +<< +/Filter[/FlateDecode] +/Length 652 +>> +stream +xÚ­VËŽÓ0ÝóY¦iú:ñ«ÒlÐt,!¬;2#$ÔŽ¦¥ϵc§yØi+¨”Ú÷Ç>ç>œÐœÒä%±Ã‡ä}µ}҉εHªçDB.!!‚å’'Õ㷔ϫïÕ§„& ×%a‚ñt1Š‚Ò´X‘R¢0œ€ÖFÁ§)Ð)'Ò-ÃÝèTdÙBHžÖ)±n)kW(º;¹­WçÚü£šK³9«îýÅÄ¿ˆ¾Ðy–ÚkôìÍèJ·‚%.F.ñÛÒA2€Á+S#C0œƒvCì CÛbW.c=jîl &ŠrÖÛVŸ“{ô¦¸¯Ãf’jƒÙ¢:ÙU!ÜF:“} @!TL˜ÑŸëìÏn=9ãaÇñ"íÕÃòc\L— Œ«Û?·»‡Óñן¦N;ò7çM´~ÝÎ%‘…-è] ó4™‘b7-—R7ÈÐûqïÙWý $ü[HçxWbÌ”¶_È]ãq“çù×)›jM}Oþ6¸ƒ@·Ãüm]î¶—¼mÿ[Îzàu´*íZ—-À>.L ³W†ÒŒieV!œ"ÖÒìEDèNÄÔ,vVÀ,Œš±ëbO›ñûÛ'Þ_;‹\IäLçJÙýàžÍ÷Õ»¿³šYÇ +endstream +endobj +81 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +79 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 81 0 R +>> +endobj +84 0 obj +<< +/Filter[/FlateDecode] +/Length 655 +>> +stream +xÚ¥VËŽ›0Ý÷+XÁŽ}ýŽ4›j2U»léªTÝ”Uª’ѤªÈß×Cb›´] ×÷uÎñ…Œ`B²§Ì-ï²·õöÁd™Õ™¢XÑ IÀJdõý—¡â +D¾)¾Ö2’!J±™µ±F] &•È¡@ çÊ;Qbo€œ;ƒÈE$ŠPÖ»É%Pè +D‰ 6!}Iºá®)ÎMÞ5Åk{“Saú-T(19ÙœK¯pâtoÜ–NÁ÷ }sÌ6Km”û®õÜ]^5E,ʢךW.76äJ+c0ƒ5V)(ÎcÑ á^»1•¶LpYü€sVØ´Gšø"”ÇNÇzìÃð À\’è„•Qrè÷éVOB µ5š½’¤€Ò}”*ÊüòˆÀï659HAçG“5©q!»%>°æÄ¼@y"Ï?À4À!¼Œ_YJ‹Ú¯`–ɰ»ÛµM•ÉbxƒÒ–¿úüÜî†,ûîù¥=~Ãóûïö©} ßûmF#0l¼í“¯™ ëñqšgÁ2ß[Ö‹§ß³»¹R ”%C¬ì¦'ØHûT‚±ém%³–ûÆ„Ê^è[¤i§á)²‹u‰l^Eæ.òêYy9kÅF¢jrùuüü€Ÿ#Ìs\÷‰Ù¾dz ¯Îò-'ÈLsrap9[—S2µîÝqn3Ý0¢Ùxæ2¢ùÿW5# UÓ¤ª§êÎÝîîtüù»mòAàÕ¹ºås´¦&Å„ûµ1jÅ}|FM°é%-I:± BêHÐÅþÂ6£²‹" ÜÌIû|°|51î*ŒqËýÄRœA2¸}Ó/$ke ÖÚyÓaˆîë7ŒµR‡ +endstream +endobj +85 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +83 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 85 0 R +>> +endobj +88 0 obj +<< +/Filter[/FlateDecode] +/Length 790 +>> +stream +xÚ­W¹nÜ0íó*%Ù”9¼† &p e°]d¤‰“2A*í߇ÇH¦H-×1¼ wy ç½9·ãçݯ.Ÿ»§»׹əîô³C˜:fÄ„º;ÝëûúûÇ“xZþü˜ºÿ!s/øx^ÆQ29.ñ›¸1cü›07Êyïçþ¼Ü.óÀ¾§/ïÀä6û³Šó>ZŠç“%·YRÑÒñÙ—O2М–bòæy‡Sš÷ †R¹TÄÉ{10ÞCSè‘ËuB\¸*îÒÜÎsï‘Óå,'Ñ/-éûný&Íèö‰X®û!M<Ô`Ýc4V(§7‡~·¦S´ Îðƹ7hMð¸gŠBpŽ\ŸýM Õv‚¦­Ð„g;v¢ëˆŒwMøQFªwE¤yEÀl—㆗¸„ÚhÏÐe0把ÁMÝÅËŠ&µ… ¥£uCÆ$­› |Zk+·¹E˜ÌUüZðÚÖj7åÝþVŒøM‘(Y¬‰’ÚÑŒ¥QÓÕÎሓ¬t)”9f­íN—†ŒL,ù>³µy JÐbð’v9¢$dƒ/Ê-d;,•tæ¯eÉ‚6Uv¼I»Bp#Üb–FÑŽ„*tBª¥è³J™ê^ ãeÈ9EŒÇäeKšú,¬Yƒ©tëR=h¸UlPÀ\«:Eï 2Ë*ýU ˜‚ýÃAeRѽÌêLf›T(g«w(Ž26±–ŠJ¤ÂÈå˜ó²5½XF¯'EñpPUÄÄ݃Þþ>yMœ,vL¸ÉÚh ’Ô~:½û±ÆÝÞ +endstream +endobj +89 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +87 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 89 0 R +>> +endobj +92 0 obj +<< +/Filter[/FlateDecode] +/Length 685 +>> +stream +xÚµVMoÛ0 ½ïW=ÉqäHÔ‡­» M‡í¸e§y(’Ö- +MуûïG}XqœÈm‡î`Ð|¢(¿GŠpÆJƲ›Ì™ÏÙ§ÕâÜd¦4:[]g/+žQ e¥²ÕÙOBé·œ‚EZÕ¬Ë)W•"4§ +Q#•E˜b¤ð9B\ˆ}iòç†tMžÿZ}ÍXF9/Íà—·H,jÁáS¡1Ê8+‰FËñ$>R$v\T 2ø^!t„ÿÊ@ïU…‹\œ +U  ÃWÂ4©aÌ@Ýų=¢Ùÿ¨îÇÈž/µe Q=G(¹rÙ¬~]™ Sä¬QäF•St^X=¨;Q´±fÀÇ"v‰ÒBUƒ$«ç‡öÔG.»‡Çöéév{ïý/÷¿Û›öñíe8=ÖDiÂÚ÷¾!½Ý^÷íÈŽ +¸½j…ÕÜÆœ~ b/Æl‹MÑY³F/ÂgýÛŸÂ> îYÓM“/Ðh1ê"A\×Ã#örÑd“½ôkP€dÃÖçľòˆ¾»¾³ëÜûŸ'’¹vvü½x›½ZÛkØv×fê“4ùhœì²ïÂå ÜçGÛ§I©_PÍi‘ºÄU])ÒÏQ/œŒÂˆî›jZ¦p«õ¢V1r¨Ö–nHôŽÍ²H4nß“,ŽÇŠ5@;ßa ˆ‰ 'Bäù´½ûÓ6ÄÏ…ùóü=¯¤Œ5=¹^ßÞµW'I-À˜¡?îQ†&n›—ey¼¿—‘mZ õ†Ñ(Æ£fëY?E!Ðë¢tƒ—ÖÀÁx»Hý¨Ø‘8L{¹K‰G¸¤ ¼/Þp»§«¢’ƒÒ}* m5`÷ßÔHWÊyøÑB\V0œ˜tq®â"Wº¬+¬ˆ)ëÚÂ}•–«±Lu +endstream +endobj +93 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +91 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 93 0 R +>> +endobj +96 0 obj +<< +/Filter[/FlateDecode] +/Length 593 +>> +stream +xÚ­VÉnÛ0½÷+ˆœ$Ûd¸/r)âí±QOeYäÀ@`qQÈ_ФE¢”¥ñ…9Cß¼yc€ÆàøáøZœ^`‘ ØE"JŠ”Åùï Ÿ9¤’ŠÌfô:‡ÂÍŽ6«mžC‚ΖaŽ:aÃÚMgÑw¼}ágócœÿfÝG—s38#×M*®«âÀ‚Ìó3“‹%ÜaéM®š+&6=j´»¿g${FJSžÇÇr 7õãSy8ìª}øþ¾ÿSÞ—O©;6ñ‰¢Ý¤ ™¸w÷d«m ÅÉhÕÃßÒfÕ]É[Wä> +endobj +95 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 97 0 R +>> +endobj +100 0 obj +<< +/Filter[/FlateDecode] +/Length 603 +>> +stream +xÚµV±’Ô0 íù +—És’lÉvËÀ1CÉlÇRÝ ×Üþ=²ïgcv¨âØŠ­÷ôž€ùfÊãƒy{¸H&MIÌá« 84Vh +lï>Ö~mLÄÃq@¢ŸG‹x°£e¥äR|'ý@ ˜šÐ}pyæX%ºœ_ãøåðÑ€±ˆSZåœ~s·³ˆú­ÛY-韎ón^yüù4¿]Ž—HÊjQÚ£GëƒBEW¶„q´$ºöÄItZbœDñ¿Q¨(G©‚OÊÊ©—pI`›”tWêA}úþc³û +±âlèX3ïDóCYÂÐk6ADªÐSÀ{ùU&Vä,D$ÂY3| Cp„©dÑ£4ä"¹¨ç+¿qì¢ó’Ò ;Ä”Ì_ô{ƒn­Ce‘þ›~×G䬥ê×WýRÀ%!ËFÈ•_vÒ‚‚ø¶O ž¥Ö±bôµ!œE~;Fä $cD­_ÆX©G»Þ¬¹n¤¥Ò&Ík½(Wد´Û,¹Pq­Ùº Û¥åÙíFÄ­[²ÛZ씀|ãÀ¹—7‘’pJ”mlùÏbåž»˜ü®½»­±«¸Oƒ\/Á¿Pæ¶~«”£×NXêGypñ)ƒt6áœÝ^o(E>®%»Ðîb[Ÿõ=cÛ{fåËóä|#ß¾Õ\ï$,WhQ±{±çrgh áLPö¦Í,òû“uç×3–¸ü»œÛÑ©w'–šÜõ4÷¦ÇÐi¡vŸI¼àó²L1Kiбá|+½?¼úOË\ +endstream +endobj +101 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +99 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 101 0 R +>> +endobj +104 0 obj +<< +/Filter[/FlateDecode] +/Length 582 +>> +stream +xÚ­V;Ô0îù.“;%çyxÆÓ"8$J´K…¢âšåßã8N6çÝX·+*'¶3ž™ïá8?zï~º<|rïOÏæl4q‡NaTpƒà¨Á>|í†áK? `èûo‡Ïλ`´Í¢™†¸²u€ÓCðø~ò¾‹e”ï%¦à ùÔR°!‡èT–ÉÇyLÄÇW“œÎH8Mûtv DÀ§¸×Oªûe„‰·«R%Ùˆ%È^|‚áagQc:œwYSø—_¿ÝéØïì¹e“ ŸP *´  +5h+½ÒG@Œ±Âá58KÃÙ‹â<Éë×dÁ< 8 <µx±‹C:!”]ô†"ˆL) +r•Çfþz+sßZI~ÿóÒ*ƒÙVO*„Á*œ2=­ŒZç—k±~aŒ½ÕZb5$¬0¤@ÑxîRbNÙª^5fLoÇþo«àKÞK… ýWÞoy‘MÝ“Š‹-MýÄÒ¢-58³í_é‹h8;ÔÂaV²ð}i)Fï«ÏÕ$%ÎþÔ2”ݪR1Rvq±Y¦zϲ[Ë0ÖÔšZŽ!ÑëѮ™5eYŒ·jDÞ¨‘ ¨Y$w‚ +jú‚33’Ä +ÓY)5¦ ’š‰þ>C©/ÅZ%H$ÂwA­á9³¢á\ÊͶÉ5ò‚N¼hoû'EÛÞV{­ê:_1/| $ÌÞ”ëfsªy’yüôÖŸ"2FuÚcÞ óµùñðî›dø* +endstream +endobj +105 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +103 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 105 0 R +>> +endobj +108 0 obj +<< +/Filter[/FlateDecode] +/Length 603 +>> +stream +xÚ­V=“Ó0íù*ícìÓj¿´-Ç %“ŽP1s ×ÿI¶âD‰M¨¤H+iß¾·Ïq~ôÞ}weøèÞíŸÌÙhâvÏNaTpƒ„QÙíÞé†ás?î^~üÜw¯û¾ÿºûä¼F;Š ’bÞ®lø´ š®³x¾°X5M ½ïlå)jHÑéT`yMw²æË +CðÍ¥Ûâ´F‡ƒ^#5‘‰˜}Z¾ü´Ä™!#H÷ëÅóˆW €` @Ͼ¦ƒEtN>¯Ïñ,<ù“xêM1JXÍ?öÝÃʦ™®§[°|ûõrÆ»4Ú¸÷’Í}¼ƒ…J]]al¥¤TõAËIF]N×ÐTÅT7=ñÇÐPÈ +ñ9}^©Î‰lI5ÈÂk•D‘ûè‹–¥Þ)(láø=‘Xž¼D)_Iiyq¥“ µ0Olö„¸RšÂÿ¾‡bK­†Ø¶´Ç¥ÍkQ@íh:´‚jÖ@þ±ïÿtJLgè(Yº\k€3RX# ÚB8³³*묒%ý'Ëg.?V¤ð°Õ­ÿâäEÐ •u*dúÜÐ~îˆ8²U“#èW ±å=«œ/LaqøZ9‰ÞlÄ‘w +&CµlwÐ>™•>¢Ó&k圾œ&â›÷A,Š!„¦÷#’°\MeËmú‹ÖÏy–Ûx.“«xf8sîHØúqàè/ø€XÊ¡áY U“C[f/IxÍåKH[(ԫƬÎË%Ûd«xp5jÜÊï·Z||âÃ8`£º!Øc †Éƒ?ìÞüŠ +endstream +endobj +109 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +107 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 109 0 R +>> +endobj +112 0 obj +<< +/Filter[/FlateDecode] +/Length 565 +>> +stream +xÚÅVKoœ0¾÷W œÌÃ^{üÂ+åReSµÇ–žJUÃF‘¢%ÊVüûÛ°„’´‘ºÒ +Ïxlü=lQBit¹Ç‡è}±¹6‘!FEÅ>ÒŒhaD˨¸ú†0þcÅ)ELÅX@×¶¡A 1– m††FcP »'g6†ø{ñ)¢fŒ˜Ñ„\i‰JyÞĘI`7R†AŸJ}JJ0jRÆ”ÌOcÓI² ʸ-QSÆ]$ÐÏúè£ùå¸5§ RkéÀ»E;ðÌÞs,ô5À> +endobj +111 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 113 0 R +>> +endobj +116 0 obj +<< +/Filter[/FlateDecode] +/Length 653 +>> +stream +xÚ•–;oÛ0€÷þ +-(;dø~èRÄ)Ú1U§²[• ‹$¤ßIÉ’*Ò®мîôÝUQBiõ\…åKõ¹¹}p•#NWÍSe1¬Âš£ªæþ'Âø±ÆÒp…dWcëǶƂ)Šöqxñ ¯ë_Í·ŠV˜1âfæL2#ÏI•QÈ#)À3 +Žñæ“3 šuÎ9•5ýk{£ýq|9=:t¯oíû;¼Çã¯Ç?ísûvCY¦¡“¯CÔ“brA\’}O2×ÓS\§›Q~·‚é"ˆzwŸâêßu»¾Ûíľï|½»÷¨ïnàmÏÃq&Éh/|k™gå$XÅŒâ^{‘32ŒzºÀÐ: ’v%ƒˆ55ÄœÑ;'l%(¨¤È‡2¸2•ã£1!è³ÎEÚá mT¶^‚èlªö))z®x=¶‚¯}h®Ãf©å‘ÓAOn:‘vr2ë ¥¿,n¡)1dÃa̧³uF¡w÷WJe&W!ÞÑcm I´JF3Ò8 ÖàU c^JmP‹j¾Brãg¥@ïZè2Y`Ëø–•Ž.8°ÝŒ¢Dù°¢0ÿ¥¶lma4‘vUñìã®M©=§¦ÇŒkZèЙ¥±fAD2ç¦ÏdDlSÉÿ³Yá‹wT•`óeïÕ@-Kó 3¡Õê¶™•y˜7»\.„7%ÞýsWêýKNç‹ØQ£æ=]ÆÅ}1¡¥+Ïó ?Žs¸qÝUÅ2Žë±aô¸¡ÜBI\UA¸Ö…™ì–{ÍàÕëŸ ~5…¹ÐØùÌ()s¾,@åöAM?fLib¡S¹#ÖÆ®‡æÃ_)¿$§ +endstream +endobj +117 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +115 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 117 0 R +>> +endobj +120 0 obj +<< +/Filter[/FlateDecode] +/Length 585 +>> +stream +xÚ½V]kÛ0}߯…íDоeú2šŽíqóžæ> ê”@IJ3†óï§OGñlÏÒäÁÖ½:WÒ¹ç(a ž€{|ŸªÕ½i ª-P) ¤H PÝýÌ ü–CB±Í¡ îaÇܤÌ'¨¾ !H'¡<€Ió<ÕY[ç͵ –Ú•F:DQÞúåU¥É†ã­-Ìε,RkÆ”`(†ªLé.¤¹©™6U Õqä(5pYv|þ‡ü¹ÜªýkˆðH|‚©sÛFÎ8úoÝavíbŽˆ£ÙÐ#]d„L»¹ÕTùäñ}¿ªÓK³ö;Ý´/¯Íñ¸;ìýøËþwóÔ¼Á7“”!MBò{H +ÿÎèËAMÈ¡œ'‡S»¾MÍQžÍ±ºÝ"$*•YH£²tXJ\½Mõá/Ï$ +endstream +endobj +121 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +119 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 121 0 R +>> +endobj +124 0 obj +<< +/Filter[/FlateDecode] +/Length 685 +>> +stream +xÚVMs›0½÷Wp`aiõ™^:q:í±%§ª·:™^ìLÒÌäÇw¢ÅÂN¹´OË~=k+‹°|.>µÛ;W¸Æé¢}( o /¨†Æ¨¢½ýA(ýVþl¿¬ œ7îÂ&åÊ(≴¾Ì €I#IM§«Îà¬dŒÈ’‹p(©àŠ‘W<ÏqŸÀg…8Šˆ¹}r"t‡–T!ª—Þ“㜡‡zÜó¢5b¹/ÏáÀ—Þ¿.,ñ,oÞ%Ýé]Ó‘ªÓWf*§ö¼1d:ù]u¢ÜfŒxœåš£جœÃu%î1¤ µ£ùeÃPÙ¶ÚߌÀûÃïãÁ“]÷ô¼yÁûqûËáÏþqÿ¼išæ|ev#NÚÉ¢q<¿G£×ãCì°³aí·{ aÄÝ|œ:/ª®ê»ªT†»ºÇL«[Oúnƒwõ`ƒjxÄ•B®‰ÿÁH—e¡b39/©46ÇÒÊØ@gLE*ʸŠh7™Q Î\J‡!¨”‚uËž‡)3œ•Ý|r$q:u¡S+ôÉqKÛ¡÷$b] æ­æû*°!°Cdœ…zxb [=ÎR;ð é[›øÐváBÓ½;oä ëyH–æ!ßùU¦®Ê½иY‹½ŸŠÑ]ÁÐbõc*'F@LVÆÎOÏÙ 9Qa°kDy %x:Ï\¼‰ÅÁÓ‰èBA2\]G‰Õ +…‚,F £c= ¨v¨KPqÈô ÔÁÏ"œÆ8ÍÚv9 +¼¡‘°ËñƒÜI)—‚oçÀ“Xg{h,Ör¦;ÁY“7—š¥Ò(¶ª4z¡4.U3hKH•¦飯&© Ï£ÜDDk‡.éMüÃÿ3,â&~ åÞÞ©ÿ™\éÆÌÜ5Ö†Ã0NÉ®ýðü’V¯ +endstream +endobj +125 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +123 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 125 0 R +>> +endobj +128 0 obj +<< +/Filter[/FlateDecode] +/Length 717 +>> +stream +xÚ¥VMoÛ0 ½ïWø¨$µKRßzšÛqËNËns‹CS´Ã`ÿûQ¶dçC6š&Y”Hñ=>J) (‹nøT|Ü\ßûÂWÞ›‡Âbe±( UV›»¢,¿.JÔV‹­Ð°]ð4ðÄ6‹R“íV4ƒyuh ße?h6´ýçÞâ*#9DãÏÍ—Š±òcFYcIÖ‘›ö¹¾éc¬›ç—úõõ÷~ú[?Ö/9÷u<Ò"ÉÊc\ü±wýˆÙLÚææöu÷ç_½»_µDÕ^%Ïy>Ô.J…Þ ½(Šç–í´ïdF§na¦Z”£!ëWIgé#Ÿ<Œ¤&£¾ç7ÝI«8ý)(¿¯‘ïO,í”T®ªªÊYš˜ ½M0½JjN¡ßws›:Å.›eÛ,—rÕ6¥^2©Ë»­h› §UXPlm›‹¥•jB‡`÷täŠEG¬ A6$ÈDªdHrv¨™ râhmùhåN’ŠÚ’FMlH‚µò1TŠÁi8x“D»¦YMq…Zw}GÀ}H\c+{nb#–dˆÛÀÌ1`Hãô<[AÆ`÷IRòäëö„%%¤7f80çr`ˆ9@/'‹ž8@7™ @ˆ6ÐÀ§+H’=$!= œ°ðž:sÐQ¿h;Œ*€îêf›˜˜¯ã ]Cú +ɠ׆7׉Lß”œ”˺ÕÑ(MTóuB"¯”µn¯1s¢ãæ6j€waë„Ë¢ÛÕÁ±Î†ž™ &fo½¡l¿ØŒMš «æ"áðe5>Ðé)]™„ó¤Gö¤wHy¥k4p‚üAeèTl•#¨ÔUîl¤æ©Š)3À †éÇ÷_ŸRI›Ñ=b.§êxYiR?× ¨+‘»¯ïõð7µ©œå7ÝWÎuÞñùZo>ü±'uF +endstream +endobj +129 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +127 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 129 0 R +>> +endobj +132 0 obj +<< +/Filter[/FlateDecode] +/Length 601 +>> +stream +xÚ­V½’Ó0îy +•2‡|Ú•v%µ 3”L:L ¯{{ôgÇÑYJŽÆã•c}»²Ð³ÖâÈ—oâóéù%ˆ0§ßÂÁì@(ÆÙ‘8}ù)•ú1)rŽä"#éô;O +4iù‘$¸RnëKËôºÈó2M¿Nß… +`»w[Ÿ{ê,‚´ÒLÊùˆÀwžªðTÙÓ5Î +¦.Xªçwãád­¥Í[Z‰“ò6Þ»1.ôzý5òða•,G¶ÿôJ8¶AÒ¤Ø'ê•ïðÀæº!Öšº¡ŽÏ|/\ÔAôÙ›`õ´¬C¶¸Maú?f¹H.Þ“º.þ×ÏÙk…;Ö“‡›I—@f¸¦oéLÛ*»¾=èr¼òùšáÆ;Ý=@(5i"RŒÀ±ð5§-úF×\¼vâÜÙÞ@|ÍÇžlñ¿òÓˆÕkÙdÀþ˜ò@’ܺ1‘IŸ·ÊC±¸ª±=A ®Û#Ëi¨ê7¶) GÛ4ê­¯½úÆ@ûû‚1TÁ¤ i“e±—FÅjÏFF¤+v,i`_$iï÷Û b=ßÉ—0µ®mk‡CÑ[dmë7Ì ææ:‘¸9©VRi¶ÞšTC>ù_Ý_G½©á×ѨdÔé:îû>mGQ9Zþæ‡È}¥Ã" U¼…Ýpƒ:Ž-é^\àƒæ»<7à£Ò³v µÃ± +;0k‰ôcºFHùx-iSãU`Èóÿù…¶T ž½ +Ãì}~Oo_OþØNÿ +endstream +endobj +133 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +131 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 133 0 R +>> +endobj +136 0 obj +<< +/Filter[/FlateDecode] +/Length 598 +>> +stream +xÚµVÉnÛ0¼÷+ˆœ(Ť¹è‘b€^Š8E{lÕS•CÈA€À⢰ÿ¾O¤(ku¥lŠRœ™7$L‚Üß|&ŸŠå#Ž;CŠ5±’[I˜QÜ)®Rƾ%L ´¤,a €ÊLÄÏ>aR€ˆˆ1&· öer()þ" +¸ò2 %Õ.«ñãºQ8Ô®¹-¾A˜”Üu((£êMƒR +D5>(pŽJ93¯¯ÃXgútØ‘Ž¬;Q´‚×4’¸ƒ YÂr§2*…ÀÍfrlÝiÎF¦Gól€f] +DÐ0’›Á[í÷ÊjûµDiùi%‘ÅX‰„®ñÍ v÷ž¢gÎNÀÑx›0‹U¯}·h*5geåèþÈ=-F¡ïhB½²³\í_÷޹‡wúRœ5`ÔDìALå^¼K8j÷5RÌš´û°Ü[ý#öÇ´ Ã"F©ïÞD~ÙtA6ˆÙ+Ï÷q¼AzI>]ÏmyjC¯tn‚Í1ÓÅ᩺ +{­öOÏÕn÷°Ý„þ—Íïê¾zžZ¾jÊÞ–@iîd~o@Úí:Ú4Íd{Wi„üœ«Ñé}šª4¨OS}¹ož±w]6®,ðËfîëóØp¤• 7ö3º˜‹$øln³Tz¥ê%¦aBZuõÄîQ™®ðÿ+œînP·ìdÝZv»í㟪¤¡|‹Ãb6û/¨E´7k¼Xÿzx¬î.f½Px5t¼ø±AÊvÙ‚s>}~V­Úy'à –Ã«t”áNW1ÄGiŽxˆõòÚW Ï-²t<ÏýÆ*ÜÙ«âÃ_÷M  +endstream +endobj +137 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +135 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 137 0 R +>> +endobj +140 0 obj +<< +/Filter[/FlateDecode] +/Length 564 +>> +stream +xÚ­VÉnÛ0½÷+ˆœdÙdÈÑ@.Eœ¢=¶ê©Ê¡@ä @`qQP_nZj‹rÄJ3¤4ó–‘%”¢Gä—/èsu}§‘&Z¢j‹#Š!,(ªÛ_Æß÷Õ7DfŒè3A, J3X``v-â +ÃZHųUâ0Jdu&D½°7TP{fˆ¬­3Ó‡—!6•Â!6҆˘u—]²=±³]Ê¡PP%ð¬j_šu8½1/¯Íáð´ß…û¯»?Ícó:õÌMØ!D—„‚è˜ûs2¬ûm¬ èdu‡ýóߦÎöMlÕ®\O“_@`Çì½Úþ~zn®@Öc,~î, ulEù¿®c$ä v…z{Ö7ñŒæ&Ï!|çy‹þ0Øå¶Žòqà-…ÝÞåùÒ\€[ ¥SÛàÎ,TÎÌ⺊yžYÇ„¹ÑÍ“F˜òAô˜õÖ}~„Ôœ +Ê·© 5ë›±)àÔïâQ(5ðÈ-ø”àùœ>ÄU +âã14òö”'sF!åðÙ_Êò ýpNp ”Où;Añy»—sDëKìÞØ’–7Ñîflu3ØÜ|ŒÅ;tjöâR»FhT^<+»R‘] ˜U¡ Ô Ow/ WD7” 'SÂ壘Ü;Žò3ú]¦Ú¶¯§®?Òl =]þ¹Ô·Û5e?ùÁ<~‡ÿÎ^߉þ’”ʪA“²ô/€ðAØTŸþÆLö8 +endstream +endobj +141 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +139 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 141 0 R +>> +endobj +144 0 obj +<< +/Filter[/FlateDecode] +/Length 724 +>> +stream +xÚ­—AsÛ …ïýq[Éì ôØiÒißêÝL/i&éAþ÷’,„ä´>Å$ñ½·¼˜h…`,þùÌ>ö÷޹Ö;üdZ¬!lf‡OßyÓ|Û5Úͼñ¿PsÒBˆn×€Ð"iŒCáçqw>òî¸ó ´¿í]åo›Œ’ËR.)[<éÇá+¬hÝdWÊ`xÐòdØœà6®R\í$¿D|²àä'ü–9¦ WyÌ%9ô9JØD'š(–FQˆæ¤θc›î +¼ñÇœ×\Å‹¦tZZïõŒ”š O&Ž\ÎMWl©†´ê®;7ÀbPÅs}PZ®\!¬IÊÐ|¹"M]/Ç/½–œxUâ æK2¥ùò*p¹à=Æ95n,œïM¾¨›tø?ßM:Ì^pã5%p<Ò‡‘_·¢ø˜vsÀZ5wÓVEèÓìâ~‡E\„«¦×¨ço#UQ!R½­™ŽÀû5qÏyÏU–oŽ5UË'²1]›pŒ|~¦£iò€Né<àÍ#_yaEœ9¹kE­í×$U/"¸ÃV,Íç*^ŸŠA‰I¿šÂµA^ +5-aéýqÉ +J°&¬Éá3u™±ªóÕYkZËðçx ™^ƒìQ }z…´PML©õÖœH¥+C)lo U‰ðVæšÏVF>›ÒgŽg6ðŒ.2Sê¥îj4!ž+T75Òú³MÐiÉêŠ]è’ 5naù€-ú³µ7±1T£*Ú¨R’ÎédE·DW:Xà:´[´P´#Ô€·ªÙ ‰#dì)2YêÒõ¦•j©ém I,‹z±Q澨çïÀ"™»•¯¾_+uߪ**šPä‡óÓéCÿ–»îéùôòòë÷cýåñÏéáô¼tû]úXŠ‘¶¿×Ãg—ï_­5Ìÿ×ZcŸ w‡7Ú0ç‚ +endstream +endobj +145 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +143 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 145 0 R +>> +endobj +148 0 obj +<< +/Filter[/FlateDecode] +/Length 491 +>> +stream +xÚ½–QOƒ0ÇßýO…ÑÚ^i &¾§ÑGÅ'ñA7fLÌfœ1ìÛ[8@6‘ ]| ××Ò»ûýÛÁ… O¤4ä49:IÌcC’±’[I˜n5IÎî(c7Ó ©h3´„wŸ\A˜”<®£¯ÓL˜ã´)}ðs•Ò<õ|_&ÎäþYJѸg”ÒGçóUVÆà°ó3œÌDnà1BP·µPÆ1 œµÎ¯*?´'›¯ÉRÛ"#ÜF˜ZÙ`Z9šj—ør„¾I‘z«ºeL1¬Bw]dpØBš¬^³c\bœ¿¾eËåóbŽ¿/çïÙSöÖ5}Ü´»z ŠÇrƒ¹ ËÅËG–RD"XûhfÝÙTëpöðü’Mh Xpínãvîê6ÓÎy÷¾ÆM¶­RlT¨"ÜT´‰w#V˜uY| Ù‘³M +µPkBIWÉ ÒÆ—¿¿ÐÒt̶ˠoÞÿo6Ú =íVÃÁÿ~ÇA¤zÁ×û_õT"ì­„Y_¯ƒ_Á\s^P˜£¿HK’ÿù ±ÊUÏ%/%ÃòB(/Šþp üa þ.x×Áþ¥ò!šÞDZ_f}t®›RYâ©2¢rqrð 0õì +endstream +endobj +149 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +147 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 149 0 R +>> +endobj +152 0 obj +<< +/Filter[/FlateDecode] +/Length 519 +>> +stream +xÚµV]oÛ }߯@}Âq € ˜J{™šNÛãê==$ªSUª’ª™&çßïòaÇM§n²§ ÷0÷À9 b”1ôˆ|øŠ¾”×wj*—Hsª9"JP-Qyû rŸ)$V2Äõ2D.Xò»üŽ"œSÓ lÖÏ+‹×U&ät;­mÒ‹‘$\j‰-ö"œI†¯–ó§çê᪻@í-ŒÁåö¥º §ý¹zZ¯l»lJ)í?׬í6EFÍê}Lx +"öæsˆ[‹‰…næ“0I—šdnÆ·6{i}Þdüš~">À±:v_$S€È€\ÎÎ!*hH$$0Ï|=wsÒ&"Ì•¹dmœù†C³]¶â•§!—ÅÚ"„úHë0ÝÄÂ&žG¸M¶ ²Åu 5=Á¨Ô‘ÙÈ(,Ê»z\d6Ûî¦ùI"»}Íc_ÿ—Z7N÷GN© รÓYýòZm6 Ö0ÿ¶úS=V¯CJU]¥ò=©êñ¦¥Î1-u((=hZò’¦¥L«aZú­iÁµ¶V“§Â¹”ØyOÚŒÓúÀºŒ£³]ªÈßz`@HAgÞTÜq–',®hoÄ=r1TëyëõžKtk}{RrêI]B.ÅÀ1ãÕ¢ÕrÖϹ¼Z®ïdûÿ†KE ÍZ~3aüfå§fY +endstream +endobj +153 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +151 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 153 0 R +>> +endobj +156 0 obj +<< +/Filter[/FlateDecode] +/Length 492 +>> +stream +xÚ½UÏOƒ0¾ûW4žºŽvm–.ñb†FŠ'ë#è’-›1Ûo·ƒ ìGÔyí{×öû¾×J(ï`knÁu4¸Q@%@”Ɉd N¤¢Ñ3Ä8ìaŸûP¨ÞKt(ÀÜ%*=Ú˜¤ÖÎRk§E2cD•fo‰Ë›3¼²6F+„8Zk¸Ò=„24ÒÐNóanÂ5OßëW¢É¹ËÄ"0‹s³£f=ì +éC§%™ù&¨Í9͘QŸšIl÷¿²&ß• bëãÆ³¶Ã<ºök?:Fe\܃Ñzž m‰p5_$Ëåx–Ùù]ö™¼'‹&Â’¨vÙq$.g“¯DCË¥³v~ƒŒ_VBx™ÆãIòvÙŠWªŠÅSf`Ðåo!¤y_ayÚv$x'¢&gU—s¡ãéFÖÒ[}×üš‹Ý ãÉü£!!ùŒÑÉúhJÙ,—ùÔÈ~ƒ›“Ëç礪·Ê¾Iý¹À·g˳:úàµZ¡£Ü”¶ÎÐ9ûzázqOïõ³sÄ9ü¹ÿ×9n ¶…wüKàÒzëh˜fûes˜Ë`¯1jñóZCT ó˜ô^ù^Eû©.¥YQðþœu¨½½Â=ƒ¿|Ü™/H oŠÁ¶œkÙ £‹ohé; +endstream +endobj +157 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +155 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 157 0 R +>> +endobj +160 0 obj +<< +/Filter[/FlateDecode] +/Length 264 +>> +stream +xÚQËnƒ0¼÷+öRìØ€qé!‡¤¤R ·¦ XB¶äºþ¾ˆ5iUEmO³»3ž±½À(cÐÁ w°­Öû +ZäPµ 9•HžP) º}Œ)c"É,~ªîIRZî8h[Dž°EÌ9-§‡;¼©cd•¦l5®>ŽñEÝ÷a~iø¥$\Hm6\:g–òêäUƒÝ»ö½6XúÙÕnÄæ4]ææ7ëƒu‹–„#µ1ÖcÝצÖ¾¯ÃT¯:7QØŽÊÿùÌŸ±;k¼6¯ÚtÁÜ":U7K\Èmõ (¥ÿþ´ò¼´‰\ïÅyù\äôZÉÒœ&Ù¬NùìPVWŸe~Št +endstream +endobj +161 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +159 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 161 0 R +>> +endobj +164 0 obj +<< +/Filter[/FlateDecode] +/Length 672 +>> +stream +xÚµUÛNã0}߯ˆxÁ¹ØøÛ1/+ÊŠ}d»O5ZªmJ+±)ÐZi?'ãfÓ4”Vb+U¾œñŒçÌ™8 „Òà>¨†oÁ×þÙ• 1*è­ˆ2Vœhô/è:ÄB4†\£—g(‡bãt”aö:.ÊYŠùñuº˜xd2‡·ýïgW¦Ž‰ Ñ,ÀL#ª˜³Q. ±ä_ÀxiÑÚ¢• ÷~ÏŠ—üyaÑ`¾ücÑxP,o+4£(*–Éi±<½`„<Úð6¹‹ïlˆ•±FS"3‘Y¶üÝïõ÷TûƒLô¿L5$ó¹ðÊól²ÚFL´Â¢öyU^ °)`²ë\Ü>§Ëjf¹Jwfœ0ùªÊ +㛊 Ú$ãÀµV0ÎÆ02N»¬oª:‰í:YÄ£UY$Ïxƒ>‹D¹ŽÄý&.­²úò´Ã„X JѪöÒð*½×ÍÇ0ëvÔØÜ˃ ɤ.“Ñò=_X0I1W.íÇŒÝÏÍ9£*yjPâSà›–qªÝ‚ï¿ _ÁÈÏÚ¿~íf>e§>w#ïzËæØ#6\ojµƒíž:6Rá­½Ãk¹ÎxŠúëÇü\ôVÏù|>°¾.ù}þÜå³W«×ƒ\ÓR¶>LÙóÙÃKnáC$’uò™ŠR5K'ãáô!¼s€knL“‹Ÿ…£ÁÖÇBH÷½zu¶ &X‹Šìˆ&OÛM>*¿–P߸ü³v3ÇìCÆ>ØÄRkß#¾Oª–K>àW×üÚ¦d«~«Û0ëjˆ vL…?C¼Ùñš½S]âM¯> +endobj +163 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 165 0 R +>> +endobj +168 0 obj +<< +/Filter[/FlateDecode] +/Length 573 +>> +stream +xÚ­VKoÜ ¾÷Wp´»‹˜á)—ª›ª=¶¾Õ½ÕYEŠâ([U¶”_ x×c;Q÷ÂxðÌ÷#R‚ŽÈ_ЧêêV#]hª;$i!)‚Põùg†ñ÷üWõ „)-ôÊ$$Ûáñ·Ë1— Æ™ÝRÖKŽ%$c9.©‰÷f’ófÝLÏçRÕ™Ôunbëú¥¯³îc·uCïÿÀðׯ›´.Θ¼R¬tΤb<«ú§æÚeº§çætºo]üõñOslžçÒî EÆEVÚ¯ýðk¾üöÎׯÈlu}w}sjþ6uÖþnÊöý~èt;‡‹0+’ÚË"G.L›˜khaMŸwf‹G3‚4o¼ˆ"¡iËâ'×Ò:Ǥ w#ù~žwá«s¿E>«"jbRˆ“y®×é !ÍVöR9ÙÃ;Y~3§êGĺXõABò@Y±T[plPZÈù0ZÉ$ìP&Ùnƒ¼íð™NbøÞƒ‰âFÄüÍ®yo¥ž× ø¦{¡ñ¤ý¶mª &Â+F•rþ\ÂîX…™k&:VÏ-ùÏnU¿ºwâ#ñ¿ÜDs\_´G–…í–]DœÕ¡e¯náüµHAJšÏ](e“JçÈCõá AÑ +endstream +endobj +169 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +167 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 169 0 R +>> +endobj +172 0 obj +<< +/Filter[/FlateDecode] +/Length 657 +>> +stream +xÚ¥V=“Ú0íó+\Úød¤Õ÷ͤÉ—IÊÄ©âtñݤ \3üøÈ’ f‘l˜Ð­Vk½·oWÊhEiöšùásö©^>ÛÌVVeõK¦Y¥YFTZfõÓÏœoÑFË\D¥9/ˆas((Ýœ3Iócg—Y™0 + ݶ_õ׌f„±ÊŽbråb6¹Ø‡m‡&ß7EAu¡Ê`krþtN~¡ŸƒsmäçšæˆŒ¬›ºó'?2;}#Àƒ/‹.õŒé@…w~n>KÉZ– °gð£°êÖ;-ß4Â¥´$þWfì0÷¦‰mï`©gæ–g`š‹Ì'òƒA¸Å@cŠÝœÁ1kœ9Lå 6à÷<ge†ŽºT=ˆÛx2ÈAÄõdv.„Ôù:§úðÖ>Çë?›u“¯öoÛv·sÿƒùËú½}m·UUÅkfÕ#<¥xeY¿ø½_„0n^zp@£ÇÚün9—­;Bð{üÆÝßí{“ö‹Ö‹§nòà°“°2,ıÞn$L£XcIpj}wÔ û„ì¾WðÔw€Žå¡pÖî&Þ›Ü*äy6”Ù3-1:Ñó0à›q@€8$åçÙ +ç»HžXJ:WÅÁé8]{¬ü&ZC9IB§æó¾cH¤‘ÁÎSÈ­gòJ(±¢ã4¥Š¤Ž*Ì~FwAŽ{õ®E`$¦æN£9ÖÍü5çÝæî3ûΫÇ?‘¦©=UCçPçW…Wœæ÷©C D¥™ÑsÕ(ðÃÔÿk¾|6¥+³ª±f4  6~bt&VáËgyz$3©*£Ýýe+cü9xHªþð;§s· +endstream +endobj +173 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +171 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 173 0 R +>> +endobj +176 0 obj +<< +/Filter[/FlateDecode] +/Length 491 +>> +stream +xÚÍVÁNÃ0 ½ó9¶Œt‰“8ÉÁ8¢Þ(Wø…MÚÇcÒ´ÛÜ¥-$vX´Øqü^ží Õ(%>DZžÄ}»ÝE›ˆ¢}^7^ ‰Ðx'Ú‡×JÊ—ZzãTu[¿µÏB ©uόђq#Óg3çs¬¥WAÁ'D2vÝq_K­È]öîºàŽŒ÷áɨµ"««¥Ñ6V†"yï*¬¥¥Ò>Òïaß®ðŒÝÚ!³M¿‘¥j`ßÕ‡®¢ïsOK14Ž+‹GŒÇ×bv×0£·#6¨%àÀÝeVaõ<7­xþ `'@y,âñú«‘±,³¤Á»9b}ø¯¶~NI üTI6Ÿ:±ÊÙ.ÔAL,Ÿ¤$¹”2‰)ý†Ý× Í”`Q_€ª¬Ÿ„lÝ‹Ï6ü‡eRd˜‹Ìæç‡,› æ•Û¡€t¡ÑL›«O*º’Z&R; ¶áÁ²KøIJBÀ\/6×Ìu9ªò5×sd˜K¸ÜF²¨¸®¹‘®@+UÌ>ñ@º`~A]Ófã–ÆÖ0®øØ2?¶&¾Úòp6\Zøí©ÕC^ÉÀ4–&.ÒÕ"YRÈ\ç²ÿm$ +. ñ§9”Ös;öó(M¼nwnüŸ§6Á ± !]bú™õØÞ|/€#l +endstream +endobj +177 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +175 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 177 0 R +>> +endobj +180 0 obj +<< +/Filter[/FlateDecode] +/Length 582 +>> +stream +xÚ­V=oä íó+(í¬pø =Ýå¤k"EîÎi“&RÚ”ŸY ƃWÑîÈ óæ½a l`Œ¼?ü%¿Æ‡GGÜà€Œ¯ÄðÁpBA F“ñ÷ÿŽÒçžjct7u Î=åL³ŽâœÐ6Μæ#²%vê?§î<õÛuS´;ð”‹îrœå§p±x}ÿF(çƒ[¬ ®:UŒÆ"è©äèQ]F<]Tè2*å"Ä$![¡bôÇ߯x~z÷7_&¥Öƒ6h»Lž¨ÿÍi0å'r-„êd%Ã)8‚Åñk»–.€1ÌÄ"LZ@ŠÉ9`9¥/2ËüO_9åµ ¸ö>ö“ƵÁ TH­Hø$ Þ4ßèCP%Á…ú«Ò.ÄRÀ?Ò†sð}5P†ÖÀøBzmÒ*˜ËyJ‘‚ –„Nå4Te¦Búã7Ò"ÀÓÒ¢xJÚIr;Ê­à¨\É˹UaF&š‰8ß‚/æt¹Í¥ Ò¸)‘ȉªyÃpØ^z nŽ®ûWòµŸÛ+Ò š°*‚à­îq}iRÅkÜ9×”¨‡øþñ6í—é%ÖÍg¼Wkd=c¾±XÿØm,³©€a-†¿j,±â¯j, +póªàËW¨UüagY—¨¯âJŒFb%Æ«LxWlé ‡% \«Båpà +j‰®*aF^h~ѱ>¥Q·ç¦dÑ–-£> +endobj +179 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 181 0 R +>> +endobj +184 0 obj +<< +/Filter[/FlateDecode] +/Length 473 +>> +stream +xÚÍV=OÃ0Ýù*§öÅŸ+‚"1¢l„•.H¬EêçâÆib×¶ŠŠD‡V±¯ö»{÷Þ…ð–s²'þç™<ôÛ#®ušôĈÖÂ4´F‘þñ2öÚ0!µst ¬a +`¸È§›ÓŠ–‡¡ù(~¯7†eðôwiÏÁïý ᄠѺå}–Èì‹»ªaÀC»\Ô3"\#“#,±‚¸Qô~¹«—·#é†ùO°:ž®ƒbÎÃpŒª%rñBùd2» +@R‰5Òf¼s<ŠcÍ2Y€æ|ÁÉR-t­`e`°z"ON¿`–Ì  G%/7`ný·ŽÛ)Å]Æ;¡8×Óò¤œÑT`:·cÒ¬S;–:ÒÇaGǬ XlÉ•²™B9YbßvÈ~‡'¼_άŸž¡&ieF‰\°”‚ÿ\ïY#%%OÙá¢Y­ñÿÕO¼lc?Ág œ'ëPñ™¬ŒSf²­–Û›Õì¢u±‡œtVà¬LX*ì¿™3>ãϯý4Ç(êÔ‚ ÉjÙ‚ªõ<|‚ºƒú¯FW©<7÷ÑoÐq2Áºªo%¥äâγe™‘‘¶˜7ŸíNÍïuBéÖÂÀµÖz8ñŸú»„#$ +endstream +endobj +185 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +183 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 185 0 R +>> +endobj +188 0 obj +<< +/Filter[/FlateDecode] +/Length 535 +>> +stream +xÚ­V=Ü íó+(ñ­ðñ5´Qr‘RFîBÚ\sRÚt?>cÖöcŒ÷”ÝÂ^à=æÍ›e²—’½²ôøÆ>Ï/…> ~3§z§˜@Ý;`ן\ˆÁê~ ß™dB©>¬&•–4{és9 zïh຤$ñýJï’^Åo¹ªÄK1Ù‰¸ÚÌ*g¹í„A79ž,9vÂj™žÙ¸­A"醸Ò~ÆvÉGlXb0v#¿Æ.ŒëÕÕý´]VŸ% [Ò39"o]ºoaÔ|zҸƣ<êÌJ{0ù%,Z¬¡G*¸=Ë£l44Wúõ׆+*ƒ¤ ª¾Ð˜tÔÂ\èÅŽxĈä6O‡ ©Õ'Oe=‘ýoŇz§QBE^lõÞ°‚…­{k˜Ãh~«Þ5›DÂi¦P¶ª"½…a|0nݬü1÷ò²¸ÎmOmýcxÀ“(èù–¿ƒ +°÷Ôtè½O‹ŒO}>ý¿k/ +endstream +endobj +189 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +187 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 189 0 R +>> +endobj +192 0 obj +<< +/Filter[/FlateDecode] +/Length 531 +>> +stream +xÚÅV»n¥0ì÷+\š\™øq|l·QRʈ.¤Ý4+m{#åãsð5°14¡±ðsfIY+ù¿ÿï=ïûÏ3uHzÃ"àjþjù¹o*» Y§Ú€!pC{8g¹‹{Inaµc¿­­Ö(%ï9BaDc4áùè#ª ÌÓe g(íÏË!ZSt\7™¹@ÛÜ\â2pBâBœÐÈÛQN¾+I™!H­A¶‡![k+ôÔäˆ5K|Kˆ{€C 7U±$žD|N›“y}ÍæëÜ·]md„$£n8Ý šÃÔ?O®¯ìFpääÜdŒIÕÂý¾æýRÿ€…©Š;Û» }%|2¤vdl~ÈØ@NYû< Úï„ww´ö€[Ñ!Xà߯]D|†W)Ìu.)ÜQÞùhÄܤdäáÀleC+)«¼¢T”…«F”5pf³Îè¡`¤òSiŒïdÚÖíqÉjaE­¬e`2Sõ[1Æ(»!øN‘Â_+Rö[‡dñ±HÁÔ.Š×x'P#™¬_È[Üßù2×êÛìbÖw ûú± Û‰®BÎeÝ ƒªP?þˆ+"½Õ¿4{ü/mŠëí£½þ<*‹­wLèÐz'›7xèþ|E87_ +endstream +endobj +193 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +191 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 193 0 R +>> +endobj +196 0 obj +<< +/Filter[/FlateDecode] +/Length 589 +>> +stream +xÚ½V»ŽÛ0ìó,¥”ùm\€”º(m®9 ­ÜÇgÅ£ÌçRŽˆ Z.¥Ý™¡›#ÏÄ_¾’OËõÉ79M–_ÄðÉpBµ˜ÌL–Ï?J¿”kaÔ G:3z¤J06Ì#•|f·¸.ß#”óÉ¥»…†ìu 'ÔÀ…Ý È`çeÀÕ¶ŽÖþó…µô-`YÜÀg¿YõàJ0"ÜÇøãàò×ZXÈ‘Å@È[Z…ŽU8%DKd°z¡þwé&½†÷t¹®¯Y¡€Éwªì{R3—¶*è¯~ë7¼™íä:®Y%”Ár¢Ý åbƒ1š[’™Tê„m5è¹}€ðʈH6®º7‡m Ì(·*]ad3ö¿Í÷ñå÷óZªÏoñaÙ††>Š·ÑÖ‚Í!¼ ͧˆ¾¥Èô'Ñš—²Ûûè´#0‰Wí´DZ²sÍPÄQ.8$U™ÂS{DüÞ6}áðš²pøoî5á¨B³HõÂiQ(¼˜W&€Â JÉØ†a#<ìiÆ»÷‰d|Î=Ši‰ÑqW¾¥* H£²‰;£ò×èÞí§YÕžO%ÛrhÕsèêÕKÛÄ$|#lhDâÜøñ¤;À±"!oË1 #Ê£G¾ ˆ?¼Ï€Ò³Õ‘Ô,=Æ¡SIÒ”º’¼}N[ôûèÖ íîΔ_O¢Pòr\H¶?9®íÅ=eLRÁÚL%}šoá”;9)C¨p“µ>U1¿ýËòá/†wi +endstream +endobj +197 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +195 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 197 0 R +>> +endobj +200 0 obj +<< +/Filter[/FlateDecode] +/Length 573 +>> +stream +xÚVMÜ ½÷WpL&"À|]«v+õXå¶Ùk÷/ÌJûãB $šiÁ8¶ß{öiœ&òApùC~Î/¯–ØÑ*2ÿ'ššªø¨%™½u”þë) +l'zªÄ4ùUr‰«2\v_¸ïxÿ>ÿ%¡Œ6½L­ð8Aª½ûªheuš¾öB$ì­Iƒ¶ÑædæaV'RLòD`kï3Öϼ 8¬àáÒ¦ÄÃùªH<¯ˆÔ‰š*€-gÎ ljd ÎöQWޝÝÍ=·Y äŠ-È˪jÅÄi$eÞÁ3ä•ðÍ·áΧ-šM[¬Ã•i«.¶$×±¥îUhA~ÝZxŽL×»ÄRÚ2ˆtÚ”Lä3¶¼¼Êø×–I5M(·£1h kÉ~Ï?¾(?W¢ +endstream +endobj +201 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +199 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 201 0 R +>> +endobj +204 0 obj +<< +/Filter[/FlateDecode] +/Length 546 +>> +stream +xÚ½V»RÄ íý +ÊIJ@xZ:®Ž–šÎXî:6ê¨Å:ãÇKy] ÙUG Q¸ÜÇ9œ{ƒHAzDn¹BçÕúÒ S‰ªR´PaÉ +%PuqŸa|›cm˜ÈDŽK*HVæÕ "SZ˜‘‘PJdu†í_ÖºdûSbíWí×݆· r_çŸuf'<ºp§©p¬ñÝÏjÎæ« ÇÆ6r°áÊÖõÌ.á’I{¸šƒ@ÚÄ¥]¹/€¹¼ÁÏÅŸ7+óy¦puFu&9Ìi±bÀD÷Oìz’Œ¨i]pÓG!0 +e ´…ÉD 4D³¥—°® ŸS)_ÈÑÙ®‡†Orké㞾龣ÏÌýšªEj‡|„È š%ÚüKÒ +z˜'J0 vŠ—JJIQ•ËRt61),E2žVã–Õ¼;ÞKnº?pmqA¯Hòfà+´7Ee@Ð"\N±åa]ÿ²¡ÐS%iávM5–>M€;ÛYÝŠtTØig;étBôª¢:$Úo Š\l’³Tû£y4ÍhK”ÿ1mÅN[8J Ä»)Û½NâÇN×`4Îh99M9ôj?‚Žž"YñqC“}#þ6–¤ÒVfÕçëö¬½²Ù¿¾mßߟ^žÛÿ¯Ÿ?¶Û·X&¯¡þ%°²0þìΟ•íú²ëDCãõ¥è¿G©…Vö²)´v·yëpS|ÝÙK@ +endstream +endobj +205 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +203 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 205 0 R +>> +endobj +208 0 obj +<< +/Filter[/FlateDecode] +/Length 649 +>> +stream +xÚ½VÉnÛ0½÷+t”,Sá¾È¥ˆS´ÇV·°‡UŒAœÚA!ùøR¤Ò%¥[€€&93â¼yóÈ&»Ä’÷åÕ­JT¡xR>$%€ãB°¤¼¹Kø¼ÿVÂ3À0K7×nÔéñÇáE§'Ö:[­pŽt–߯šÉM·¼6ÿ¹³«·—}-?%0ªÿÒ‚¥9èþò H¢T·’Oy½f#Sœ.1M× Ü­7¹aß—¾ˆ‰&q‰Íé‚ š‰Ö¯m>n%w!P8½wƒ1;uðY—ægkbÕKb¼=€E“cyz®6.Ķ~>TÇã÷ý“›|z©vÕaÌ}ë,$é61)j7¿´›Ôû‡öÜŽžäTo®ûÇŸ•N£Ö§õß BWÆò ‡XƒcOE© +¨ lÝzR4Ü¡íèsh‚h:ΛÖ~õfk­­ƒ¿b8×úf£”£&ÄøA¨°$‹¤H‘Éi¦g”6Ó#ԃôŽí̈ùDï´p„8œ¥¸ Q»\ú=@þr4œÇP"ÈØ¬"›‚ ô™ÀÉšÍñ¢õ¸ßÍJ£¶}šÀïÍœÎ*dŒõBFò¿¾C¬>'}VTN¦»«ØÍˆ4!HÛx¸B(6£YçÂ?(Ì]vwFÜ$Ú ´Ôâö߀Èr»kvb?£ú¤qÛ?tLبŒ–9’ž…_lêݪ½{Ãïø9½ãxÅ'5ÁX¢ Öl‘&Då ÂÙ‹Æ÷¹Š9 _’y™—´-eðr/¤K™ï3›¢» ¥ÿ¡î³iÝ7l}­G%„-—ñ«[Ö?˜ã…æa¤ +)­1u¥mùîH©f +endstream +endobj +209 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +207 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 209 0 R +>> +endobj +212 0 obj +<< +/Filter[/FlateDecode] +/Length 720 +>> +stream +xÚµWMoÛ0 ½ïWøèÄ“«Š’ +ì2´¶ã–æ +,-vi»¶‡è-ù+²”ÁÖ cR’ùÞ#)·à5çÅ}áͧâãæâÆ®vXlî +#j# +†²6ºØ\ý(ûºú¹ùR(‹µƒ‚{gÅü_å#¬ 1!j7nbÆ]Š)$+WLrçJEÏBóÖjIVŽq0Rñ7'wû>;ÛïiJØ…eû¦Ü5«œ¶²à³·Á¦–TÁ˜zÖ¤ƒôaZB¿SF'Q¼iÞ"§ÈÀ‘HÁ*DÅùÀñ "ðèýdA’…î~Ýq8#®‡µ;„)#ôO2§–ܾƒ÷€´É¾÷\~ˆëH‘‡ã…“Æ#çxÚGI<>§_â]d°@é äiqýóÐSó3ý¶¡+ZKVÂCn)|‘mª7Uiõbµ gÇ’þ¬:J´í” aÊž ø=¤·Ð= cí/ª ºÜ e<Ù¸-Òí0tAu|¸IÙ.Ú쟶—aá÷‡ßMy½{zÞ¾¼Ðïàþüðº½ß>¿¯ë:Ý9×BèƒRÕ®‹}ëb:ØÇ»›äIæm•Â-eÖ]~èÁ¿üy~mÊýn½–•hVÕ횀¯¯Z×{úU…ø$¼Ï´Ír':4d'†@i Äq:z+»[Çdª‹ÐOKƒt°ÑäRÜÄc@»N 4!ø±NðÉ›.YÝY廞Ïíê’o³žŽ·±àÚäÓƒ¯ÅŽà|ÆŸ)¥GÛ¹z™ÀFz €Ù%¦xìÒþGAà„ 1í£ €> +endobj +211 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 213 0 R +>> +endobj +216 0 obj +<< +/Filter[/FlateDecode] +/Length 541 +>> +stream +xÚ½VÁŽÜ ½÷+8’ŽÈ‚1®U»•z¬rkzØËö¶Ò~|Â&)„L¦SíÆ +8ŽŸÏFè^kñK$óU|£ˆ}$1< ozo„"è½ÃçR©ï2H1JÛý¾ -”1}Üî‚öNZzê”'_xEc”—ù–åý·#:-?¶BÇ»•~—C§×ü¹­m4ïŽãkJo +:û›FÐy³ùEk¥ï‚ÖÒek;E–­o!\¦Q‚ÆP$:Ò_K(-^6àËØý%ÿŸÎz[8¤`ZR¶ÈÙûT8Ė޳W¹Ì bË7R+–§C±3AÚ‡‘­“¹æirÜ1¼Š 'ƒ‰Pƒ°ðòvÉ¡³YŸ"O‘cµoš â>9–Z„:OïE޽¢œZ¬œ*}9zrà9Ü­ä€Õ rŒ¥9`þ'9@©})K'rغ‰œ„ d¸”IÃF%3Ü©[Õ)täJ±yX‰J o÷ñhfshÿé˜O°CB—®|ÇÛƒù–†_o儣®;â÷V½3SŽÂU­®tÏòé7O¹©-`CáEx¿R}ÎÑek3Rçl[k­Ð¦ª×“{ßÜãÂûbf×Rt|C«µ¨ë¾YzÒw%Ý"#iÂ"c¹NÜ0Ë–FzÔ.¶ÀÝr6Žúà…‚Ø‡²Â9Ó/Ç?‘¾^` +endstream +endobj +217 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +215 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 217 0 R +>> +endobj +220 0 obj +<< +/Filter[/FlateDecode] +/Length 586 +>> +stream +xÚ½–ÍrÜ Çï} +Žvwp@!®4é±³·º‡\ÒWØÎäá+³xãÅ`o>&{a͇ôÓPf0FýU©ù¡¾ï¢ŠC$u|RÁÁ*M0¯Ž÷¿;­õš#øîÐÿ9þTFik‡¸´ÎvÔkc:Ì-ôÚ‡à廾*F;À“Ø0ÞÈÚË>ä]ua.P1Ë:ûcwûÆÛN{Ù¸ É–é|n]¯‰e•[®¢•Óúì ƒÇóßÙ¹<âùñìz1bq}M ¹ÿ]q•0‰Ëãƒmì*Í\ðã\süj—IµH1N(0È,Ÿ[—½’Pœõf¯ŽæÄ3Ö³ëszW@$äú + +és®Ò2 QR÷`Öïq%hd28™óµe +':ý[sž+›”ÑŒãsY(éIOÍàÁH|z+%àsÕN*tÒr+L¾R¡A.С‰Tb­^uáT+{R»ÁyNÆâT§Ib˜ëW$4ɺ±:1y_Ôßá%ˆúHyîÈî‡JùOͫ㣜 Ù*áÐv\³ìÄH©+Xö‘aSЉd>ŽßŽ¢Í€m„7&¬Ó Ë£ÿãèÔ¤ƒ7ÑY^¾¹‹q¥&o,pB„O€ãv¤³¾~Òaæ:ô´‡>ä\ƒ›à,/ãÖ!&³±€Àn$κ§ ¥|×…ü´ðù~vÛ‡õúb®‰â +¢§†Œ *}éòz¾¤“W®Ó[Ò“ºm™H®â»y][O¥!Ìi2žÏÑïÇ/ÿŽKp¥ +endstream +endobj +221 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +219 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 221 0 R +>> +endobj +224 0 obj +<< +/Filter[/FlateDecode] +/Length 581 +>> +stream +xÚµ–ÁrÛ †ï} +ŽR]X–®$é±£[Õƒ/í+83yø’b²EnǾ0¬½ÿ~»?jPJüyù&¾ŽÏA„! §§…$œããÏNʽtƪîKÿkü.”Z¡Ø$¶{é¥ËÔ]¦¾~®Œ.F›µÃŽòW«—âêœí\Eר\JúóœÕ%~•Š‘§ùÑ(å†uGk õÂóÔ¿ìÈ“>|¨ÄE½ Tg—ÕÄ♸R#jQ"ç’ 5«åª@«„õ`§ŒÇËÍÉÓQ v?y^ìkI‘”o`pÐ@èŽð†$ˆ˜4"Ã`hË:ªb ›’/0äÙY1˜ýäÛÍ‹}Å@ͺ'8D!éaõ£8mˆSýŸ@Å<"Ô!d +“–ãEÊC!¶ªI%ÿÄ”\¥Õæ•÷˜ +_=WùyíKdâ5ðr8Ú¹4rΗÀçLÙÈüiùH>óºd¼[˜é•7éÞÝÓDe4ä>Ëc—Õ,J\K¦ç¦Ëj^xo}'Yðy¶uâ5äƒÚ ++ Y«¸ë—¤¥‹^ÌBi_`y,U¶±¹¹I g‘Fˆ;ÅÍrs²‡8U®™Âœë;f5¸ §hÕ{œè¨°Cœp_`yߜ֡õœCœ“dœÝ“iTè=§Ê=TØw}'¹xSìÄž§#œ²—ÃÛž]Nå´Ú²ßpã8'ò“y‡éáÙ¾ý=×–ï„„0xŸSÀÙÇžÆOï4~Ï +endstream +endobj +225 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +223 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 225 0 R +>> +endobj +228 0 obj +<< +/Filter[/FlateDecode] +/Length 542 +>> +stream +xÚµV±nÜ0 ÝûírDŠ¢¤5HS cá­îÐ¥ý…+¯,ËÁE2}N¹áxGÉ”È÷ÈgeFcÔ•ÍWõ8=in¾;!> ƒ=Nh‡è;5Çš¦q| È™ö«bQ™a x +†Ô’ûµv^hY£î …ZFÏ¢¯Y³ÎÞ¨ý2QZn·e®öà­ºŸ–ª[:Õè!·2u9P(wR¡òKŠÏ¸dçl¹‡$P™'óž2 â°ÄöFÝ(r›W …Ò‘\:’ŠÅ’ ?NìJykv§·½ÊEˆÔ0¸ÑÝw'u¥¬_Ïîõ%Á+q !¡É/Ó§jøQ˜ +endstream +endobj +229 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +227 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 229 0 R +>> +endobj +232 0 obj +<< +/Filter[/FlateDecode] +/Length 615 +>> +stream +xÚ­–=oÜ0 †÷þ +vr$ŠúZ‹6º¼Õº4K®W ?¾”,É’k/D)úøò!uf¢‚½²¸|aûÇ'Ï|ç ë2+;+7ÐYÍúOßÎ_Z®­ÕÍРðæí@7×–K¡Es·Nz({Ð,{¬q“chÿ áû½ÿÊãRv~õõhéÐ¥âôžrsñ6†V¢Á´BÊ]W‚“0žr%}S’É$ ÈlÑe&@y$¸›e™L– BOé‡GŠFµÜ*äÊ ÙÜJœs•mîÊIz_ä4 +|§Bµp9&-äŽ&"f&kJ¢Ì{E!=ɦæÓé0Q2.¤y,F¹óÁ¨’È"à.„‚"¤Œ“D«„â +•òlɦ¬¾Þä\¬Ïá¸ÝðœQ’?©|y~îËþ`T¨;)ÉŒÿƺðäÊ*5c•«T–‰õ[RRÉH‚¡.ècÆÑP'vÔÊ³Ö Ô¡Yº<™¨¡§³ôÞrw…‘”:ªä¦-eƒ©¦°4q\û±²'y«ÁÌ ®¦–ÏõØì xÒñ¦y¨æ+È›ˆÏÐ 5‹ç+º¯ªêce‰Ä^nqäsV§±n3\hÄ=Ñ÷‡ù,Õ\ÚŸ¶[Ø>dB™ƒ¹…‰©0¹‚;›³‰Çõ(bkÇ@?®.ÆõÀLh0­µ 3¤%–‹`°»ª“R ]½•CÝu·ÿ—ºDµ’ZwÓôïð_S³ýõûu(Ob¸7}:Ý 5ª.>þvÐK2èÂoÇ㓞_¤9H씣ÕwÎÅ£ècøçþÃ_Yÿq’ +endstream +endobj +233 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +231 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 233 0 R +>> +endobj +236 0 obj +<< +/Filter[/FlateDecode] +/Length 537 +>> +stream +xÚ½VMoÜ ½÷Wpd³Â1Ÿ×ªI¥+ßêrI.‘ru¤üøŒYŒmX ^U]K‹Ì—ß¼™÷€ðŽsòB|ó“|îqÓdx&FtF¦¡3Š ?þPÆ~Ÿ˜0V:ÚŸ˜2FÍm¯/­¶ èöc§¿Ã/ ¢sÛÅR;GG|Ø ß¹âô|Y£å4žÞGŠÿûqÚwõçâ3~$âôù^#ösiÔô © ߊϑIƒ{Îýß¡º÷HY€°ÆWîÑ¥€Y¤d¿"ë°q‡ *½Ac¹+aÖ`$=3ÿ;W'µë£}{ÁÜ^IÇs‚v»‹P~U!ŸŸ¥òV\ÏùœŸÌhŸ§zé*¼€”~ +سœ®~É•t,@µJ*Hìh@7é±|jJ™“iHàÝvz”Ë-Çïqÿ¨âÝT(ÝYC¸ÎZ¿Jq¿ÓÃðí»UN» +endstream +endobj +237 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +235 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 237 0 R +>> +endobj +240 0 obj +<< +/Filter[/FlateDecode] +/Length 470 +>> +stream +xÚÅV±NÃ0Ýù +•SûlŸíA‘Q6ÂÀB$Ö"õãq‡¦N즥‚.iÎç½wïÎ!¼æœlI¸<’»f½qÄÕIóNŒ¨ ¡6š4÷/”±çŠ àFÓÛêµy"œ0!j7^UÂ(ºbá·*&í+¦ASÈ%IT޶í~çÿsÍéªÏ¹|¡CÒhG«@QU1‰¦{g·ïîp>‰g1úì– +°•8 Š‘Nl«¯–îÚê8ÞÎå–ž^Lw¢pGKœ¤#0å‚ ȈêÜß8!PýøÜ¶;(o‡þ–õ{äsªdCú=Œ§„#{˜Œú«>a !ªQ¡ÚåÌß"ô‰' !÷W†uô¹'в÷ý,Qy)Q <‰ÿ ÜC‘!rf\ÊY8H"Êf)KÈ0Æk; ;»¿\̦¬Ò€'yɧũ)’M¹°´ß1s`Î@þu¼8¸ÇÃóDéʸ†ÊkvmjKs'â*4i§XÜÌ‚¹ñlÐ˜Š‰QÌé[?UZ•ˆê ¤G’º¾ÌòdƳ<;#sÝçÊ<ˆZúˆ±‹U^oôχ£ÐX[C¸ÚÚ¬û.}hn¾5— +endstream +endobj +241 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +239 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 241 0 R +>> +endobj +244 0 obj +<< +/Filter[/FlateDecode] +/Length 589 +>> +stream +xÚ½VË®Ó0Ýó^:TεÇãq¼Ep‘X¢ì 6Ü Û"õã™Øy:q’ +‰VªÛ™±{Ι‡#t­µxqù,>´/¯A„:h +ojo„"¨½íÇoR©¯•2H!HW)­¥­T@§%UÊ^±R@à$TßÛ/B eL–»µã]T•rfáGúrO®dÇ‚ÝIÍ]õ§ë?ÓÏ[Z áƒ034÷.ßx'ß—@ƒfïM¯Ûa܃%Ð,ÑJš£¢^¿~¿u²ë#‹%H³æœB8¨€ÜÆ»ÎÞhÑÕÆ°¯7Þ–ÔàÚÐpЧ€ÿÝ3^-¥•ˆôÜQ‚b‚;II| #/ ‹´- w½+Ó€¦X~wÜ]ÐÖWVƒ‰yFƒC©—°‡H,®³ý˜ÙP¢„Ymn M‰íTüÙ†§ö!…pTµh<ÎßéKʃÏrÕKw•Ì«ö4¥ÈÛEíñ”!«ãT‰)‚)÷³©“š¬`89'ÙGû3‡›qËqRŒ¥Xó¡#A77ÕÐdÏb¸ùlÓ÷ç‘-½ƒ¦‚IHÝÐgH÷D[wIAÌ,+„[zÅQÒ:Îã‹ýqtÖQד)å.O)óu‡x”fýKWSiQ(s&r ÕÉ|nžžñZÀ“©9¶Êm!g•rËŸ ž‡K9\äÌeµ×†ýVD :—5Àÿúìz;o#ô¶%§F:úÉÛu)ô¿Ü¦Æl.Ã<pùv|yuÓS­qT7^(uÓÄ`—0~jßý¡pZ¾ +endstream +endobj +245 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +243 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 245 0 R +>> +endobj +248 0 obj +<< +/Filter[/FlateDecode] +/Length 573 +>> +stream +xÚµV=Ý ìó+(q,||ím”\¤”‘»8Eš»&RÚé~|ÖßÃð°ýN97°ÀìÎ0Àä %{fñ÷•} C@6>1§§˜@=8`ãç\ˆïPV9Ë{¿¾û9~c’ ¥†P½t4pÝ +R’ÿþó<ñiz¹P‡¤v?O²\¥¦XÖ¸L]c•`㤠ZÃ9à®h¤ä¶ÖE`B#ý1ŸÙl=q´œ 8àFž¿SD•¡ŠMx5௄|›ˆÒþ:§¬ í©™8BEyXMH!ý×öš7´f§ü¦7O‘pNÝ¥ÌnAŸ÷im«8ª×ýYåuw†€‰¥’-{XÔd”nPƒòR¥ç +Jˆ"ƒrŠ¢$ÍAR•Ïr1O-¬­©¥Üor†§Ó­8KiGÎô9Î6‡£IM>`ô{Pf\©:¢†Ì`KMâj[Üâ„àQµC ­?6·–4zäÁ1è”߲߳n›+Ä UÁ¦úé¤,î4·gÉûÒusHC^ôZÍmí”:|Ë‹k è[îÜ—r:Òþ­ƒšn¿õˆcÊmg~–ÎÈ~V\%7ŽûæÊÃµß ‰'nŽ~“}Gà¯GºUÁ]G%ÁîöwòƒåëÄ%J]Ú]6Ńv1)[©ÊÛw•ñs_Ȭ–ÝžÌ[•uMÛwËFO€m=ÕẾí•sö.)õoE}‡ê|x„×±¼cB‡Áû Ëíðeüð4¢_ +endstream +endobj +249 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +247 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 249 0 R +>> +endobj +252 0 obj +<< +/Filter[/FlateDecode] +/Length 540 +>> +stream +xÚÅV±’Ü íó”v<øÚLr™I™q§Hs×d&íÞÌ~üa ë5>¸Í6· ƒ°Þ{’X¡F¥Ä³ˆËwñezxôžÅô$,Œ„d­Ó×_”?{ šÉwºÿ=ýJH€Ñ_Ÿ‚1ª{™»ÓÜW\<¡O`©³½$‹¦3aE¥Â×$ë°b-J™p:w€îO/Mˆ<­Æð¸E¤x@åç·(›çþ†o©r½Ô¼8¬lÃÕi}Œ\3ИSK§¢!Üœ à\á¤J ¿äê«Ö…”>×$óápù7ÔÈXÜνDhh›çsÊfÇ:Ô’Ó-–MPw)cWvcéä=†t8î[;o|3ô.Üí²-C6¶!Y»Â‘•傪M‘¡étNÐÆ?Ÿw @U)Ú”_ +˜¤ «Â_!Û³4”V¬0‘b£y(¥JWªº*¡îtØßÃKD÷´^¡ôÂÕ™ºEñ˜éßÏóAõ¥wåÙÍŽd´[Gr¼K]:3ËnšE”š‹–™^4 Sµ!ÑTæùîeˆ¾íq¸¶EmЭMªëü:Q¨¾¨ÆÃüì¦=ÙÜëñÅÆ{1ƒ/ß;rUÈ+ˆù}À|3àø¾˜4¼ÚbfX|x~ žZOíÿ}þб¯!„nÿkÖ6àÅûáÑ\þO‚áÑY!ÑÎÅhCñÆoÓ§Wâ; +endstream +endobj +253 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +251 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 253 0 R +>> +endobj +256 0 obj +<< +/Filter[/FlateDecode] +/Length 556 +>> +stream +xÚÅVÍnÜ ¾÷)8ÚYáÀ\«6‘z¬|«{È¥¹TÊÕ‘òð%l Ævº[u/,0 óý ³„uŒ‘gâ‡Gò¹¿°ÄvIÿ‹hÞiN(B§é¿üh(ýÞRÎcÍÐp0ã4k.-U æiçÚס‡¶ýÙ#ŒPÎ;›f¥ÿùö&W²Q-•Ú%ZŠÆªò¢ÓÕ ðiú³ô²¶á.€¸þá¤1ICpw ¶T V #ø“™›ï'_’*ŒÌHu²·§YüšñlÒ5š=ø0Í‘ÔÄ»EŒ¹Še‰Öz–Á¥ Bô;î}AóıÊúÂášôíuÇOA¹ŸÎUZø)G>VPiãX¿«Aæv/Ô.»Aoáâ=f¿<Í0¼å¯Îj]-vËôN¥]:f.×è§I}®(PžO˜OM6lÔÉâ¿eÃÇ^í>îS,nô°ñ^Võ)B—íÐŽ98šBIÃÝ!|Y3ìºArí_¯X®ÜQרʀ’=MÅ• Èêãí§3]6tBÁŽ»Haõ rC?0fäX?¥ Ðscß1GÅß +èè¶€ÿ~ÑtQ¿Õ<êwò•¯ëçßù÷ÈväËÅit ’l¼ž Hóÿ=:ô9Æ#5‹FvY5¾BËZ)ú›Xödå¯4æx¾ï¥.·ÇmÏÇœéz[ 憎Ý?¨ùO> +endobj +255 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 257 0 R +>> +endobj +260 0 obj +<< +/Filter[/FlateDecode] +/Length 606 +>> +stream +xÚ­W»ŽÛ0ìó,¥”¹|³ î.@Ê@]”"Íåà>>+Š’h>»³ ™»KŠ;3»¤ ›#‰|'ßæë‹#nršÌ¯ÄÀd€PÍ'£Èüôk ôçH)Æ9RÒ |¤Òp5Ø‘jvÆÇŸfü=ÿ ŒP€ÉE«X‰ÁË åm[q¸ŒTa|f°ËøonË›%N¥›Ÿ+ýgûµOì9ßíÇÒå=áßWv(ô®éƒsƒÆ'gÛ˜x´Qǘû72Œk±„]ÇGPò8‰i±BœOön9dz0Ð%$ô£HÀ×›@|*ÕθG–Ѷäƒ^ž!í§Ð듲 ­}šËømbI´-‹t—iÌã´µÐ-…§»’¤/å¶Â%Ô೘ø×öÜ +N¢ó£ÜÔ'>&¸Š®d}èÏë'Ö JÆ‚»˜o»Šuç.´×fCÀvÞR²šLÕËd%D‘¾†xÅû ÅÉ5ÂgBûVNÚ´ 0ëð> +endobj +259 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 261 0 R +>> +endobj +264 0 obj +<< +/Filter[/FlateDecode] +/Length 545 +>> +stream +xÚ¥–Ár¤ †ïy +Žš) 4ÐÀ5•ÍVíqË[Ìa.»¯0[•‡_Dqi4‰ghiøºÿe¢‚ýeñö“=÷O¯žùÎ#ëÿ0+;+Gè¬aýË[Ãùï–[eDsißû_L0.eçWA)˜F·\¡Õ ´Ü@x:ü× ÄÐ"Ⱥés§âßLøw’ Óoù¶Ú’¨ß§W³|äJƒ³Œƒïœ‹YÌÔ¶ýÃ#WÓ +endstream +endobj +265 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +263 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 265 0 R +>> +endobj +268 0 obj +<< +/Filter[/FlateDecode] +/Length 558 +>> +stream +xÚÍW½ŽÜ îó”8+|0 ´Qr‘RFîâ×äšHi/Ò=|0Æ{^›±Ñ]eËš1|?3+t¯µxùñY|î}$1üÞôÞEÐ{'†ß¤R_;åƒwr” =tÊ“O2Úiy™_M¬G(Ü0.Æî÷(ŸÆ®û>|Z(cú¸Ú•BJ»0Ac\Ú„:…Pb~: LöB B%„ÀÓ¡ŸÎЧ$-߯ƒ´Âc§-Tþq sÎsÁw$Ñ8>oQ3éY#^Q¢~Z!Ñt…-@<ÃÄù¬¬ZäÚÕA‰€ÆPTªj‰»p’ùPì7sœ7Äxø¨#ÐB=bKS¼†µ³MÄxõyø‘sÂ_q,-9•ÜÜÜ®d7Š'¢³ ÷_P#k{½¡ÝÁ$êp¤ÚÏ_ãÔôÒ¦óoÌ),n #$ê¾TÕªºòÐáæAŒmmcµ¿6÷¦ºÒÆõoèjà‰!ñ²&m +óJ!i +Yðy‡ÛW,ÖÂ2…gňY¹p¯¾lH +éË–ôüxuÎÒý$d-åçĺ¥`5rÃ?üžâ±§[ç^üAâ®ÆSk_å)µ¶©=¦u~R¦M-1­íéXjÉ»Ká˜;ßr[ãV·>¶³¥VæH1–ÓÏ­N¿ø‹"kÎÔä3{:OLç²w3Ø™œ_+S‹©ü³š¸»w׿%ÆQ¼Pûr² yOû?ü%³¸ +endstream +endobj +269 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +267 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 269 0 R +>> +endobj +272 0 obj +<< +/Filter[/FlateDecode] +/Length 565 +>> +stream +xÚÍWËnÜ0 ¼÷+t´³£EQ× M ßêzI!òñ•Uù¹¢ì4Û¢{1´”h‡äÈBuJ‰"=>‰‡þþ)ˆÐý³ðºóZH4w¢üÚHù¥•Z;§ÓJg\­4h`Zšö[ÿY(7uau&ï‹ßïz‰NTôqɇæ¿Ë‡½{ï8Ï0:’éw©íy-DˆË +Ñ8 ¯»Ø4ã)¹÷i£"\=@h0yRcªÀ§Æ”¹Æsp)£€Êù¸L‚5kK|{¶X‚Å0>†öçм íi|¸Ç—)–aZú¸4j®×J‹Ëf›±c»Ìp®S ÙÈ] +`oy +ÞL±«Ãä‰$ C>!”)öHÇøðMøÞC1œ¢Ø*oÊD¢([,沸¢Øyü×Ûƒ.Þu$O䪋‰¨L18üŸ(6§(ŽzÁPl¬b(Öо%ÅIÊ(Q +#ʼnZX÷›­“à™œgð›i³fwÓ¦›‚pÈ4¶a§ÕÔ.\& Èk=CÑÕ¦ 4„¥ *ôË -ÖAT©Ùîj7‚,ú{ÝÇݶ¨ûF' øQø§œžQÿT&õ¾òyn¸ Åæ7ÑŸª~aR^Ê ¶TÎR7´¸0VÈr;> +endobj +271 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 273 0 R +>> +endobj +276 0 obj +<< +/Filter[/FlateDecode] +/Length 592 +>> +stream +xÚÍ—±ŽÛ0 †÷>…F»†|EQÔZ´W cá­îÐåú +-p_Y–;•ôz.C…òãÏ0ʌƨŸ*/ŸÕ‡éá1ª8FRÓ“ +v Vi‚1x5}üÖiýµ×Ä໡ÿ>}QFikǸ3Z0Áw¡×0v~Y½é\¯ƒK+ +§§Cs‡ø#é~%W&Ö-9Gu ¸p°¤[‹Å:Ø sÿ{^Þ…ëïˆVOÜk´1n[J[0fÛb¯õ§mZ€Òêöžé*j]žÆó÷-!‹#äºÅ:Z-xiÙ'eYþ=;¦rTë)h3µ`r–EÚŒu¤Ž_Lt—wkýR"ê(àŽhÚz™hö +wߎ}ãÇXÇçÕ [ή°Z°æÝ–>!­ñ|ÛKª y2ÇZ¾ŒXÔhíÞÜ#ÞKž—Æ1èüZÏ> +endobj +275 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 277 0 R +>> +endobj +280 0 obj +<< +/Filter[/FlateDecode] +/Length 559 +>> +stream +xÚµ–=oÜ0 †÷þ +¾^åHEIk‘¤@ÇÂ[Ýá–d 5òã«ÓIgŸ-ÊnÑÞ¢³©>$_ÑBõJ‰g‘†oâëp÷Dè‰áI8Ý;-$Aï¬îvRþ8H£­ê>~ ß…Rë>ÌŒ¢ñ cD¶{O“º±{õyõÅ@qÕqn¤É¨-v”ÏÇ|Ägçl|_ß2wvD^<Ò +ðtùûwTq£b±†’—먾ÄÀi<¼7 ¥K»—÷ñ¯WÎQXçñÄ„}•‡öò …pæIKž8"(•ìçqûë¤p žÑ-ÓÈ…£¼ÿ›ì©ëL”“cÕóOÌÎÎ4´02ýŽ­9¹LZlãøQ|:f_™éä[Âi]JWèl.x“I8á:Ÿ +¡¢Øì (ôu‹}S6ñÔb ×doHwMd÷áÑZ³Ù;£0Dþ6 +xß"¢½DÚÆÓfDI¼…¨ˆ×åѶ ת-ñΫ[È3|Z­ùnƒÆíˆòmÇ#îtÎhƒÓ0ÕGµsiÑ>ÿ·~ÜËëóXñÍ=Ãk Õ«j£íË·+d;¶\;Æ?oÇ +PÙHÒFBy´¹îóc”…¡KOKJ® ‹*0z ÜåVÚ÷ZðoŸºµŸ„ÒHWOi…†æ}¬r{Éé¦.¥ÏnâEÛÑZ¼"ŠÙ l·ç»G{ýÞÕ–zï„„Ð{Ÿ&Ó¥©= Ÿ~qªYû +endstream +endobj +281 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +279 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 281 0 R +>> +endobj +284 0 obj +<< +/Filter[/FlateDecode] +/Length 572 +>> +stream +xÚµ–ÉnÜ0 †ï} +ír´P”t-Úè±ð­îa.é+¸@¾Z¬x¥â sÓ¤d‘úøKLôB°¿,ýý`_‡çÏ|ï‘ ¯ÌÊÞJÆQõÖ°áÛï†ó_-—€Þ7ªý3üd‚q){¿òzoMÃ[n”i¤Uî–§0NQ<ÚÁŸ ¼@¸Z†=N)ELxÎc3í:—t!¢«N®òmËA¦¼“i‚©„(¦n¹F›‚µ ë5T2. J€]aºlz%ñÜ£Ál<à‹GzUc{L×\M7í«› ùkcm³mÒD³­‰Š®÷PPû/¬*YXhu˵{e•Gbj7Õ€¨ç‰kD^Æâ–kí®s{ôà>®Íçpy.\ë:×J ¸Fïâ‘»\¸¶c5¬#Æ—°¾[Ö¤4{¬#ŽçÁ±X‡W ˆ™5>Jµ´p‰j²ý‚$íÄúFÔú‚V«Ob:¬W¬˜j +¦ Ä3Ó +s¤õºÙ;ÁVN“™qyØü£ oVó ¼“9™Ò7ÜC³þîçœIÉC샹ыTŠQ Ü¡à|ñI7ªOu’¢hOíúTÕŽ§_WƒômF»ÆÚ8¾í·˜OÜtµKºÒ.z£ßá#²´6¡AU(É+ļ'¡¹™ÜöøÀíñ˵(W;wž­']ôHP-àŽ­VÆ8$ÉËå‚fÊ/>8S– +<¿˜÷±4Ø;˸ò½s)3B߇/ÿ-²\« +endstream +endobj +285 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +283 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 285 0 R +>> +endobj +288 0 obj +<< +/Filter[/FlateDecode] +/Length 607 +>> +stream +xÚµ–½nÜ0 Ç÷>…F;;ERÒ¤)б¸­îÐ¥}…+‡/-KñÇ™ÎåÐÞbðDQ"õã_2¶·Öü6ùóÅ<_’I}bsþe‚ëƒ3CÈœŸ¿7]÷­íœ#²Mj;t)5±íÄbƒµ ‹5Tllœ¿kdZŸQB'oüÌš‹¶ç4™`1nþJâÒS!vã,Ã^ xQvÅQNÊà”¸/‰ÃQbÄû«;p¼ÝP´³/å È^ÕŽç%rÁ”õc’|”ߟ¡¹ ­âá )In0m2f_¬&—ó.&®Mù'¥e4"34]‰å7Õëjõ Æý¡‰•IŽ&°xhï¯Á5þãÞïÂÙÆ}JÆÆ¸'xÞç?p¼âß%¯ÈÞóíüó}ü»%ӫűûÖÉ.E`ÁÒ(~Ÿü‡ü³ÎÿT…ϳsåßk­øoþwˆ©s‚Wð¯BøŸèߊÿhßD¿Ûèù^ÚÒ¢ñûð‹ lá÷ •ÈàÚ}þ¨öË©â1û•΋[ôÓ¾òûûɇ‘Ï·*?’]_ªPÉ_¢>’ïh©üyéTþŽ7u€ sÒDž@™ +ýsÁewšVª/…Ãjå“¥.\.J*v½ý[¡îD@MGùJò“ÖN~ÝM²• \;Û7—ßÁSg,§óp„î©«¿Ó‘Û«È¥³V](^ëI®²UÊ™õWmo°ÓIIuR>¡0±[.÷ƒvä­ JÃ;Ò.a +Ê].býŽ>Ï:õøBoouGÜÇ`:H}ŒÙ™§ËæóùÓ_„Òz$ +endstream +endobj +289 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +287 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 289 0 R +>> +endobj +292 0 obj +<< +/Filter[/FlateDecode] +/Length 536 +>> +stream +xÚ½V±nÜ0 ÝûíäP”DIkѦ@ÇÂ[Ýá–d)Ðõäã#ÉR‘Ø¢â^½Å'“²Þ#I ˜Ä£È¯âÓ|wD˜‰ùA859%$á䬘?ÿ¤ü>J…àì@£´hÂ`ÒÓ€ñéâ{;þœ¿ R©)¼Úå|4.‚ñç¼e¸ÄOAÜyZ—¶-JÙ7–xj±9/ãÓ2\–‘9–|t;1Æã¢we¢ûL*bðz4m yÓ&¢}“%¢l<„2óŠHŸ@`âžI‘Ïäá½4d‰|äðèt„Ì¿C?û<|½\/Ëó5ãžcÄG¢ÕiØÂ@ Ž£érde ×NÅÒ¨‚ºg¯ªj)é2)Ì]©ü1{ˆß@`à£ÑضèR ±ÛdLË}¾2†Ë2ú›d,~2In-n[¼ +ï½ßA³¤Õ¨õƒ_¿—fÁ¿Î#Eê„=„Îlýè7*¿b³š™Ö1†(¼¿® ÚðÀõSID*„ºLZB€ºŒµ¢iuÎ9ô‡$Æ—<)¶24®ÿùÛ4› ¬t]iTøÖæ`ʺ;éù{Ijƒ›WÞ3áS˜6ÎÎpƒ6u›ËõîàGàî-±'\Ö• œ¯™ç>d©uà_ŸØ­šSK<¦f:¤fÏvL…û{Q-Æ‚¶Ù5ïîíŸK¶²4y'$†Éû ‹L†úeþð¨×s… +endstream +endobj +293 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +291 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 293 0 R +>> +endobj +296 0 obj +<< +/Filter[/FlateDecode] +/Length 597 +>> +stream +xÚ­–½nÜ0 Ç÷>…F;9%QÒ¤)бðÖë¥}ÈÃW’iÇö™¾ôMêãOþDKA þ¨úø¦^úç·¤R—Hõ¿U0]0JvÁ«þõg£õV»€¾9µ¿úï +”6¦K §1ÞCs”I© ­ö!ø†²gÛ±m…YB,ƒŒsïy@^mÈCž÷4šm^åX€e´K“+š„Ûhp$ÍÉ Â¶(^UŽK/m¡u°¿j 8ŒÿøÑ»°NöBó$8cÊcýÑöÿž›áÜ +—¥]HH©HàýrÙô\O6m«-ÁÖäÝ:IJaáÜèÏÌo²Ãž€‰ö=¬à1«Ã¹wŠ>乤É3V7ðlÉÅýꣳ[BC·óè*8«hÆã Ôó^š·z gÈÓšf“§ÙÞG3ÝXØä<È4OøN4›1˜Ÿ·ÐœO´æDæ…'S PîþÊPºaç–(W±žG;¶-Û‡ Í·Œ ÇÞ·‚ÿ"+°VÓ.| iW×´>ÄêõæZáyÒYç>éú;­ÿÁHp>lÓ$„#$§¿ÊI.ÖÔê2Áæg„TxæS‘z:‚“©§§™‹+áPW-î¸þrѺ¸u'@ž8Jµ—ëÉ>¿q¡àòÚ!^ >åq·ôEuÊÄ¥v£ÊÈM+pˆíés~øÝæšX(Wx[ÀŒìG{ƒ05†¹Sæó.´JDñ–vÜkì\æõüæç¯ñÔÅ 4¦.Æ:ŠÆÛÔ×þË?å(Us +endstream +endobj +297 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +295 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 297 0 R +>> +endobj +300 0 obj +<< +/Filter[/FlateDecode] +/Length 547 +>> +stream +xÚµV;’Û0 ís +–R<’IÀ6³»™I™Q§H³¹‚sûÐ2mÑ!+šM%áCŸ÷@Û[k~›éóÕ|oÁ„>ß »žézöf|ùÑtÝ÷¶ó̾éâ|ƒBøëú{n;g½½Y8*Tžiö½|’ž°ý9~3ÖtÎõ!;ipqñgÅH—²bDŽÆ?§æ|j èqÈTì ×è$í–DŠ¢ á&bÁÚ›icÒ2¢X»S#.@Q¶C* ‚uS`e‘ŠÊžÚL>3^v¶MHyJj8§2P’}J\ë]Žr¨ m(Qâ8ž£`ÊÚI‡á®# TwD9+žrY¯Àpïô– ½à%Dª

> +endobj +299 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 301 0 R +>> +endobj +304 0 obj +<< +/Filter[/FlateDecode] +/Length 580 +>> +stream +xÚ­VKOÜ0¾÷Wø˜9ø9csD,U{¬rk8.¨Š€Cøñu¼›õ# ]re2cóøfBXËy ^|'×Ýå­%¶µ@º{‚¼EN(ˆ5én~W”þª)çLè +jª¸µ•ª©Ô•¨©šRr'!H¤¨ïºŸ„çÞÚÙihœs_q®ÅàÎfδñGU…‰T b„¾~ë«¡¯G½²GËÈÐBâ)J}X%ør<€ú§Y²yÏ\G0îcß¿Ç9(©Ð},Ýg­K)†úh'c•twH6Ö¥%ú:Г3TŠS8Y))"•4jø¨ÈVì°»Ú„]2ŒQW* +I„áóØ·æ}â¾èð.7Å4§Ç”|É☸„8&Ág1æäàí(3y‹Øã‚s"_7ËŃIxâÍOgåyá+àˆrÒ +[¬Um6Í|Õ¦i†…pWÙ’iÂL AÝo9äèûkK_eHáJ®Õ„9›æ¥¤o£Dnø¤œÎPᬤ«°ÜÕlùmLFe&NÊ×8Ó+pSêAžzk¼[Z‚í†/`œßuŠ®CLs²Ä8Ÿçþ„jMÚÃMÚÍæÅôÿ Kd  3 ·1Be’ŸtÍûiÐñ˜*–A?ßH£”K7õ¹Üf c’:éd…/ýœ³ÐSÿÓŸ<7bײƒF¨ª{{Ú_\vÃÓóþååÏßÇÃûÇ×ýÃþ9ç¾ •ò޼Õ¿Å\CkPa[c¼1ºv×}û +}dû +endstream +endobj +305 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +303 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 305 0 R +>> +endobj +308 0 obj +<< +/Filter[/FlateDecode] +/Length 510 +>> +stream +xÚ½VÝo›0ß_aõÉ|ØÅUÚËÔtÚWö4OS´’.R²PMDê?ƒÁ³JC +ÇÏöÝïî~ +Hp’€GЊ÷à]~}§€ÂŠƒ|Á‚$2,@~û"t F”ÜÊrc%¡Ið5ÿ€ÁŠuޟʇ"M…õ¹yk¥†ÕÏ㓆' k„!jóÒAÔh·½=6?d?gO>käΈ˜ FÈ=Ñüfë÷ J’Ò?2å"ƒñÂ&ÂD““d&PD–Eëç.tk‰læuçÝ«:8õ´¾Í'²ââÌ’f0?Š{Ī>‹ªÚ–{«Ø?Åq£•«j·HS¬&~¯ÊݯBC[øøûdÁϤÖCÌ W›õvW<\-bA•bñyo`Ðn[Œ1žkå²]FB¾ˆõ¾œö~×õ #00!k +«­ |½;üX›ø¶0O›N ë°Ûþ½¬Ü¦éT™»n÷=}Ò\ÈÃÛ_=¼}ñÅÒY¯ïL˜ÁèD¤¦TKóNù Ž~ƒÞ{wNÈ9µ‹ÁÎ ÐzH㚎˜ãšèâšÇÚ’­ß ’„Ñ”/ XûA7†ào¤ü>ßÿDŸSÒCÒ ÖP—ó§ôäOß’ÿ?U³x}ÇÜ_ Â8– Œ`™¶ÎܵÊßü § +endstream +endobj +309 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +307 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 309 0 R +>> +endobj +312 0 obj +<< +/Filter[/FlateDecode] +/Length 603 +>> +stream +xÚ½V[oÛ ~߯@}ò%`ÀL¥½LM§íqóžFUE*©*UI—TS"õÇŒëøŽWu‹àÜ8ßá| Àcpjñ|ª²k $’Tk @N‘` ºúAø=†Œ²Hb'·k' ÅñMõ` AòÕúÛöNç¹t6—TÑ!ÙÿÚ=[™Ðôh¤ŠíЍ6»¡NÅF\©È,ÌÞzÆç7vá4O¼s‡ü”™0a«+e(,¨¹[ +{ŸÔ8r*ŠñùDŒ—Rb$=IN¥ŒòÓ>' G ¹0·ÛûƒSî¤Ô‹CÆ\›8©kÝ¡¿%ͺm϶'•Ší°†vÙóJ[ÈSÚ¿mJK^šp¯˜äS˜øÊVp%-¢êø¤/áòð´ÓûýÃvãö_6Ïú^ï|îËvÚ%Í‘$ƒQ$óFq¿}ü­Uä&rq´3ô¶ÏF/^⌋õêáQß]ºA…}¥0~l ªu[ „ü÷Z¶Õv  Aç“R‡¤¤‰å„t¥âLEÍjÀ‰±È3³H5µÆÐßJ­ç®Ž'"h­1 +±[U“Y—Ìfä·G@‚´çøÍr7¦†£ +Ñ™;ÚpZ²R[ˆ¦½!lænå„6Åø¸£ãÔ=®½Š‘vóLÂP“¨ •”"g£ß€sœ_ûx8ß¼†"Èå·YDNW½B[Œü ©»—¾_¯™¯×Ä#= ôš„»YLjÙù„ÿ´×ü?ôÎîu'pý/"™ª}a•Ù5kÿ5ÆQ) AKT–µ1—u€eõáÙÛS +endstream +endobj +313 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +311 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 313 0 R +>> +endobj +316 0 obj +<< +/Filter[/FlateDecode] +/Length 586 +>> +stream +xÚÕ–AoÛ Çïû¨Ò$;0©—©é´;ï4賓ªT%Q3M¶Ô? †×®ß–žáÁ3ï÷çFƒ'`ÌWð¥XÝK ‘Ì@±‚ AÌ(w¿"bÈåQC®MUeÿ.¾ !HžÇõvBšéYÉSä”E ìý MÊ¥Ž˜6Ëa2¢1)Ç5Ë|ÓA 6mg¹\Û Xv–f¢I +Úìµ¶¶iB‚uèÄeÞTµþ¶›nß¹Óz½³Œmpý/ßÞ¿‡ù°ÉeØ6\âÂý?´ù m2…6¹¤ÝÁ¸{h“É´ádÚÁæ13Wƒ´©”×ÒÎRM‘iPÄR6zZË¿¨Ç›9m‰0~î5‡ÒO["„ú×µñÙ(:$Ø4A{ +­oý-¹PÕÑU'¦ew®»–\³ 7z”^6‚ÔœÖnšCÃí¾¥ÞÙDÓsNsžW#ʤ^™Òí×ÏÊß:¾ÝáC¸·»Sìtï5Ÿ3ê ëˆÏ>ŸO¿®Ö·a)‰¥0¦[–÷â$i˜—¦šCRŠY_- p=—ÖêžûïGÂ3” T¢<7±…å¶)>ýªXK +endstream +endobj +317 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +315 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 317 0 R +>> +endobj +320 0 obj +<< +/Filter[/FlateDecode] +/Length 603 +>> +stream +xÚ½VMoœ0½÷WøR v±cÀJ¹T!U{lé©ôV²ª-Q¶ªàß×xŒùf©•‹ÍÌxÆ~~oQB):#;|Dò»Ç¥$U(BšÍVœh‰ò‡ïÆYˆ%—A*ÃùgDæ1Iï«ó)«'§]0c$í2}©~–±`eýò +q§{‹ >k4uíÌLŠððК"o´îÆÅšùb‘¡Q-ûH̤n«§r+W,$aÌøZc…±Ð\µõc0M.8¥7E¨¤~]¬LÅÚ£öø"õN©Áٵؼ/CÌ•™ábuùD6´h]^>0[äÃÆ_ÝÁbä,è·'qN6ÝÙ® 8®8MFê±ò20¶åx£N´˜ÅvxBì&`\¦§.ˆÝDÎg¡2Ì+:‡­ŽÒï'5æ:1¹òæ¥<ÁòÌh«¼^Uxÿtù]žË×¥œ™×õ?èš5]Š vJ=¸S†GÜ›ŒÊÛˆVéÖbÕîãÙ›I\­! Œê¨TUæ8ÐùðH]È”CŸŠéʲÍÍÆ6Ú^бe`·Ýeƒ„ñL¨K™z¯ih=aÿ7õ“}lêÓýµzþSÐ1j¢·øD¨d~å®÷˜ö"v]«Å6‘[¶yÞ8ÀŸ«óðšDÇ~ƒÔÚ'·žµL\Q:nê+÷̘4uÖ?<œš/Ù€ß.†Å"BÈ2^™¿÷uN¤›œPã¾4ÿß÷¦zÜ—êQO‚¿s[rg/JàäwÒÿx1©H¢ÍaS’$v…†zYþî/E³>e +endstream +endobj +321 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +319 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 321 0 R +>> +endobj +324 0 obj +<< +/Filter[/FlateDecode] +/Length 500 +>> +stream +xÚÅVMoÂ0 ½ïWä2©Râ|¤]&`ÚŽ[oën+hÒv(ÿ~iÒ"ZšÒI !AÓÚŽß³ýB)E+ä.Oè1/ 2±Q(Y" ±D‹µDÉì="äÍ%8& µŒrL$“Ñ!òû5Ä){-\¨0Ñ¡ýs5aäQDbs’Jj›"L’F÷&lþ"¨] ½IU.øPùww.âdŸCÓ(­)Åõí[µÃtô†#Hf“72»ÕX«3Ö¼ŒùÞ¬ÎñrûÀ¡UZ6kpJxîÖԎαŒjWÑÉ&©ŽòË l-¹ OÀ¦Ì»ö'½>rƒPÆôâ\Ùy¶Ð:Æ hu- É­5u>]êrKDM©°¦Ôkêü$a]šb-šaM‰þš:)¿1ú:š"ÕAî#é–ÖðzÒª‹ëB§ž,¦º|ÔUÄåBû@pæp%w…s¨Ò0]Ì@rØfS¿×<ßî²ýþk³ö÷ÏëŸl•íÚÂçå?™©ŒŒÇ¦´½yPê›eù€ÑVœ›ÏŒ î}¦Õ„¹ òìR<´¿ƒYu?²_xè„Ë&ÿ:`ŽÞÀT“sÞvn•’€öîܬ)Eá­u¼Ç—+*žhDÄî¼µ?¼æÉÝ/9‹"¸ +endstream +endobj +325 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +323 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 325 0 R +>> +endobj +328 0 obj +<< +/Filter[/FlateDecode] +/Length 512 +>> +stream +xÚ­–KoÛ0 €ïûº ãHÕÓ²ô24-ºãæªÝæЏh†Áþ÷Ó«±“ZNÜ&A`‰¢(“ILØÿ¸ߪ«[ 4Ö¨¢XQ€ +†•ÕÍDèg†$“Íc0’ý®¾¥X¿©ÿèÚÕõ®yþWØü©¹àËnÙšlTw†). DáìÎ@g•\ë#Ù`sÑo¦RIh¬Äm£¤7õµÎ§vþÜlL4âtÜZTiš…µ“‡ùúÉžr1F„†U÷R¯‚þ¯íS³5pݾ¼Ö»ñýöo½©_—ãq[ëžE\eëcPlÔ>*Nmß!è­®ÃÓÄPXrû[ܸ±Cˆè§!î9Ðd°¤Rò Îâ2C‚rVxvÆ~§çï‘;M“uoÁi²C uæD‚Ù\„‹T®—gÅ`|³÷Ó»öÉc)ž<֣ͱ·ÞoQÚ s EîȾD8‹ç´Çs GUÑ'Šé,ܪ´&- Qû“UφUOËžŸ×Ÿ}Ù‹ñ’ÊÙ¢E4–¾—ùòg‹)sº@Á”°xOôj¶Ï3’µ°èH6ûý/ÃOr»WÅ…îÕa‰¥„ò Z¼¿Y>‰ƒKa;àtQ_üÞnõêVîÿðPYàRY2—¥×VÖºúòbï ) +endstream +endobj +329 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +327 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 329 0 R +>> +endobj +332 0 obj +<< +/Filter[/FlateDecode] +/Length 526 +>> +stream +xÚ­VÁŽÛ ½÷+8bÇÀL¤½T›­Úcë=Õ½ÕUZÅ«MUá¿ï;vŒHë f†yóæA£Œ¡rÃô¹Ø>d¨Q¨xAšSÍÑ’jT<þÄ„üˆH&2ÌYæÔ/Ý‚`ѯâbˆpNMÖ™¯W©”•}{÷v»?–øµ>”¸±e´±%¼ŒâÇvžÀ +qcgí.ª~‘ðL·çp&ËhÞL„8‰H.Ãħæ+1$Žn©Û¤HªÜQåœï¦÷½ x›s%ìô˜sL¾ ¡…1Ýá!å +ÖK,  h’5¨×€Âà%ØBËô%–v´=[ŒÍ¨ …]B ½MeØ”º ¨‘+àr‰u-U4oÕÎç·‡Þ¯N§?õÑÏ¿ÿV‡ê}Î}?ˆ«Û)5Så©;”—Ugcà-¶q s âQ]7gºùY‰WhÕÍj¼¨‹Êáü4"Æhl®^²YK²£ih´µF°ë’ºçúø"Õ‘ú6"»{8Õ¯ÿª{N“&¹K€‘î<»à~T-Þa> #k·æÄرz‹v‡nP½YÿBÁ¤2&¨kžªöî ÝïB0ؾè…ç#´Aj‰„R:j?p¿Ðùbc¨±Â¯ßÖK•Ûxxg?ê£H{¼Û§¬ÿóÀ3Es  Ís碥 ³/>ýéq÷\ +endstream +endobj +333 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +331 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 333 0 R +>> +endobj +336 0 obj +<< +/Filter[/FlateDecode] +/Length 563 +>> +stream +xÚµV[o›0~߯°úd.&¶Á6®´—©é´=n¼©ŠTUŠJÕLSø÷ó¨aØ$•šìsù8ç;ŸMÎ0`_Á—js/Ì$Õ’ §™` ºûú¡RRY„(Áæ*- UOªöŽr—÷{å9ÃÎþwõ`€ɤ.JÁ`qŽSÉ] Ïud×ÇöP÷m"X%ÖUCdt–÷T@¾€YG3Tm챦áËÅòRE$¡Nè%0*ÃØurF³–† +è¼oXNVs[«þm˜"/¤»7æžš™#Ì’™:ü‚$ædN¢¯jx+œ}€\zYù‹¢™ˆ”«7³0¸hý7Eqx'œŠÂÛaTw}ö¸ÍqMBUc—R½ ÇïÊV ͹Ð2Rêׂ²L¤íM¯RÕ{EåaY§oB2¤!нü -ʪ{inmiÛóËks:=µÏvÿíùOsh^—Ò·6‚àrðÒ<“¤÷þ¼Ò.Ú}o x±–ö±É ncn?÷Æ·±áùL'vv±vÞ a©¶=øÎ£¾Ôz¸ªÌ9(²‹Ä€^q©y&ÆŒð=ÞH¤´œ™nªÏR‰W&YÃÿ•<±„eèÈy7 è~·€´úÞîêOƒ!,ñ°izÔó‘ú–®¾gò&8(ﱃS{üÛÔЪ<íÒw+Œ-(LŽÌÍ~÷tlotÆæžªãY)T2+Kƒ ˜AÝVŸþôÈ.¿ +endstream +endobj +337 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +335 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 337 0 R +>> +endobj +340 0 obj +<< +/Filter[/FlateDecode] +/Length 601 +>> +stream +xÚ­V]o›0}߯°úMplã/"õej:m-{{˜VREª’ªLSø÷3×Lböaß{¹>ÇçØLzAðø‚>竇 e8“(ß"E±¢(‘ +òûQ’<Æ S,Ë¢¼~+×q"˜ˆ¾ïw‡}Ýlí^Ëç›%ƸˆãŸù7DPB)κ—7¶žRÒeYг6ùÔ%©¶m€_¯ÇÃs™rekÖwöy_Du‹xi~·EDÕn3…aÝο M »DB‡Øå‰¸„?˜P©Ì-CY¡DT4Û`–J(ÄÌ: –È¢å^ÄÔµ _vlTl*VLÒ®ÒšqWéÍñí½¬*#·Ýÿ)_Ê÷Q­é˜ÖlžÖõq}W^ÿ–Ede_ÖËãÿЩS‚†6ÆL‰Æì€7©!à/ +:¶›ÎO»nenú; +ñVì¾|ÑÉ}ùžÛŽJ·?U;ýü`¹ùÅoV ã<¯bh˜RóæíС·ý…LŽ0RÚ`$ætò“’¦N˜ÅÓ2ÙSˆ_)¬ ˼ý䤰—Ûà$uf’)HÈ{ölŒý”¡] 3ð+8:jnŒÉÁëa³ñûaXÉÉj‡ä=V$XQ€¼ ¬Q‡%ƽ2×Ð6.Ân<'¼ðÝ/ýŸñS–3}ÇÑõ!0Б jœñAŸ{„T*Z½ÑSL]qò‚‚©þ±€&q=ßW“uÌâl¦Y`õ N¡TH¬•ù|Ȱְ ’b“úÈÙ{y +endstream +endobj +341 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +339 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 341 0 R +>> +endobj +344 0 obj +<< +/Filter[/FlateDecode] +/Length 535 +>> +stream +xÚ­VMSÛ0½÷Wè(ãHH²>™é¥C`àHÝSÝSk. CzHþ}×’N—ääõÓZzowõƈQÆÐò[ô­½¼qÈQ§Qûˆ §†#¢5 +µ×?1!‚I‡ÛÝKU%þ±z^¯:¼Ü¾¼ö› ľ[ýíŸú×¥´«ª_í=bˆpN]Ükò8qU4Ô‹ßãb‚õã–Úëaý§o¤éCÈ»úž×ÞmÛ®ºè0¯7Ï@^àÕ‡;ˆëßë!ÇHø>gý¦?ux$\…»A`ºCJÃ…Ä΀­Ì¤ëw"A“ŒŒá3¦X„í;<¼Æä®ŠªÓ‚ˆ¶V M0@a *Í)DEotR×i j¶ ûA‚È”c_i®Ò¦qÍ’„<·Óˆ¹mÈj`\ï òc›?¥,Ü€B3ŽÈ˜âÓÁÏk _䨸ÑX”„ãmdÎ*¨Oë’¦TkÃjÒl®€óS¹3ҊΗa.2n¡ôñü‰${¢¢ñ* [º´¢Ãe:$ÿOæd +çúÊᆿ‹qb3»”Á·Sí„ µ®dtCe"éÜíWéqTé«uy£Þþ¹ÒÔøisÔZª1žÉ²ýò7áaí +endstream +endobj +345 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +343 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 345 0 R +>> +endobj +348 0 obj +<< +/Filter[/FlateDecode] +/Length 474 +>> +stream +xÚ½–?OÃ0Åw>…G§•SÛñùÏŠ HŒ(aB±Àо=Žã6nñ9I[1µ½¸—ß{÷b‡ðšsòNÂǹm7[G\í4i߈µ„iY íÝ3eì©bÊH ëê¥}$œ0!j—\8§MÅÀEeÅœ‚þw~µ_´£‚¿~í:úÝUCß¿‰Dêãú®Ú}|+òw˜«"lyöÐ2ý—ž Ý,¬_KŒs ¢1GMÅÀ2ÿ›…ó‚ &Æ[ç/ê¾¥rQ))•§S;U:‡ f^ý¨'ŒåC5ÏÕßaU²Ã[†åWiçú¼ +Á% bÞQ•ç¶c‚û½ÁTMÎ*<$ëI4m9>•=šE¬ÖY6›°uX"°NÉX”UIsh÷xnš’9üU_|P0«¼7£ÐTÒÑ0SQ“S+ƒI†ÁìATahšÌ¢ék %Ë`¢,y‡F>Eœ~±«> +endobj +347 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 349 0 R +>> +endobj +352 0 obj +<< +/Filter[/FlateDecode] +/Length 499 +>> +stream +xÚµ–½RÃ0 €wžÂ£ —Tv,Ù^9(wŒ\6ÂÄ ,ðö¸® njÙä +SSE‘>ýX²€@<‹øs#.ÇõÆ ß{ã“°ª·Jt¤{‹b¼º—]w·ê”‹rXu¨—zõ0Þ +R½Ï´œæñí}’Ó*|òbûJ*‹3ííß$UŒMQ§ürÇHÁ‚µ&0vÎmd´ƒʽó÷—×Û$±Köeæ…~¼[&!&5{|˜ð$”™4ê°‹‹`M‚Ïz`âo@FŽ\ð7Áxo·±‹Å$ÌyLº^&߃N C=©n4¯ÛþT`Â?޹lš\< ",KA¹Ú†mÝì˜q¥ÐAû¼Æ~J—ÄùAiæ•2§ç]BÌ|™•|Y:9ù™@˜ÄßÒrPƒª¤,¦#àf€!¿þAšoš]ËMÜ&p…‘Nas–ÆCyÑD#ÐDsLª©Èæò ‘­©";×­ Â$ÆÍ}ÖO‚æÉÉg€ÂðãChS[ßÜ*,/jÓNÇ`+›b±ØP›¸+„ÒE4j6Ô/вå¼K¢®#š6â/ÐOÎ*¤A¥cRëƒ*‘7¯gÍËœá.sÍhâ¬\sÑü[óâ!Øzƒß·`…Ô;+:í{ç¢ë£ãëñì Ì‘8 +endstream +endobj +353 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +351 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 353 0 R +>> +endobj +356 0 obj +<< +/Filter[/FlateDecode] +/Length 515 +>> +stream +xÚµ—=sÜ †ûü +JÉt ì.¨ÍÄÎLÊŒº(Ufìq“nòóƒ8|Æ«‘SöVï³_p +õ¨ÒÇgõq:ÝjFVÓƒòfðFi¶ƒ'5}úÖiýµ×Þt·ý÷é‹¥ÆbÓXèìò;'˜ŒVsÇ?~=ÏÝï¹ö¼j²Ô™b}ùþ² sÿüôó¼Q÷{…6ù(-k¤øP˜óF# +C}ÝâÒ¾HÅÅŽ™Û´±çºÔÐB†RV¨+×/Æ×ÒòšÖeZ»'¤G¨,!9 ,'!#–÷ôšƒMÕÆ%‚µã¤ßFæ5l¥ÄùÅŒVzEV/(¾Rþˆô¦ÒwÜSf ®Ì +Š íK¦ɘ%-QŽHGa$TxŸ,äš9#aFZ£Ù«Ð„à;€‰ß5‰œ‰)“nÉë±D_6ˆ ÚMÕŒeÿIy1ÑúFØLGèƒOc'ÆZíßJf7|ÔUi]pS;ʹ¿˜žíqÎ&pcèLÎîõªAû³KµT=XžÍÞÛmµ”' ë–tÄmn,N_’FÖË–/´[8¦=je\Wn]Û¡Fu©N@à6´J ¯./òØÞ%.]ÐŒmuÈÇR™ZòlÙ¦4þètO—¿ †x^i;!$'’ã»éÃ@ÒÑü +endstream +endobj +357 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +355 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 357 0 R +>> +endobj +360 0 obj +<< +/Filter[/FlateDecode] +/Length 513 +>> +stream +xÚ½VMoÜ ¼÷Wpİ€ ˜•r©²©ÚcëžêžZ'ŠT­£8ªð¿/6ÆkoÀë­ÒV†Çã™™ÙyLxÃãx_îîPX PÞI±¤ †%åí7ˆÐçeBrø£i+¨«(B”p“qÆ!÷‡)¹.>+ÓO]vô½ü@”b5;“ËaÙ=Õ{›xÐOÏuÛ>6G;ÿx|©êgßöÃXšfn•eX‹_ÜbnÍý`d^K¸£4?ë,/lÎþÆ> Œx@Ó €ª(iã0¾uáÔü;Œv›è¶ù±o"*3ÃRZå²?«áaÒ¼ØBX¡È J7¡õ¥x7ÛऴÐ)x¾&8ß&x§÷7móëw]A«}Ú¥ú-´rjä“zN‘sŒäjÎÜ×£!­ +˜bŒýµ'¦f4ÒsÅ*|iœÚ"dýÚ8ÚšFŸæ¯x˜J1à:i‚‡—&ES‡@f’(7 +†l<´æj‹uõf_„§}~Þ ÂŒoF ñ([÷0M…Tj º÷]º&uNãåV9²¦»:K]’|¢7x;ˆ-Í%YƒÅ–R^ê)oÑÅj‘W´µl!zyÉšfñâæ»¾g°XÇ3*ûš.âEjðÿ¼»ãÓåÒÀP¸(†¤Â~¶ÊwžZO; +endstream +endobj +361 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +359 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 361 0 R +>> +endobj +364 0 obj +<< +/Filter[/FlateDecode] +/Length 438 +>> +stream +xÚ½TMoƒ0 ½ïWD=AGÒ$%„TÚej;mÇŽ–¶–VHªRMåß0_]¡T;ìdòb;öó3ˆJÑæ =z“¥BŠ(y[$‘ a‡)770^™Þ ¢3FTbצÔHµqÒ¦‰Ô°Lì¸Ü®AgÚxtç`B +CŒ9u’“‰Æ:>êÌcm¦€”IóÏ{0¼ôM‚¨òƒ§[™zªP6¼«”´s+ݬªS3—y‹^º÷gðÊâ´?øIÄœŸ££¿óíp§ _€c²ºåS¢ÊË×êÒ…x[œv–’Äá·¯xãOme¥V/Ë…¬†æ!ëyŒ¶ŸAèoF½tp¥Út¼Eº³!Ý…-š~[d°ßl¨ÛØÈi|f`纔@ÎÍx'ÕY›¸8åp!ž +9>Ú’œÃb3£™nøñnMüY½—;€«=>Ϋ† ¸µ] ©á/R¿˜®º"uN¯×麠7J]Ü*uõRoÚ› +âB{Ùèöq^†i3 ’}5÷¯Ô‡Ü“¥¨ÿÖL8Ä•Y­ˆ]¹ °…w÷"i‹ +endstream +endobj +365 0 obj +<< +/F9 47 0 R +/F5 22 0 R +>> +endobj +363 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 365 0 R +>> +endobj +370 0 obj +<< +/Encoding 7 0 R +/Type/Font +/Subtype/Type1 +/Name/F10 +/FontDescriptor 369 0 R +/BaseFont/NXNDGO+CMBX10 +/FirstChar 33 +/LastChar 196 +/Widths[350 602.8 958.3 575 958.3 894.4 319.4 447.2 447.2 575 894.4 319.4 383.3 319.4 +575 575 575 575 575 575 575 575 575 575 575 319.4 319.4 350 894.4 543.1 543.1 894.4 +869.4 818.1 830.6 881.9 755.6 723.6 904.2 900 436.1 594.4 901.4 691.7 1091.7 900 +863.9 786.1 863.9 862.5 638.9 800 884.7 869.4 1188.9 869.4 869.4 702.8 319.4 602.8 +319.4 575 319.4 319.4 559 638.9 511.1 638.9 527.1 351.4 575 638.9 319.4 351.4 606.9 +319.4 958.3 638.9 575 638.9 606.9 473.6 453.6 447.2 638.9 606.9 830.6 606.9 606.9 +511.1 575 1150 575 575 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 691.7 958.3 894.4 805.6 766.7 900 830.6 894.4 830.6 894.4 0 0 830.6 670.8 +638.9 638.9 958.3 958.3 319.4 351.4 575 575 575 575 575 869.4 511.1 597.2 830.6 894.4 +575 1041.7 1169.4 894.4 319.4 575] +>> +endobj +371 0 obj +<< +/Filter[/FlateDecode] +/Length 192 +>> +stream +xÚeޱ‚0†wŸâF¸öJ[©£QLM7€Xt@1€aóÙ¥`4ÑåþKîË÷päÎ0ÅÖ–¥Hb,ÁV  — +"-|ØM\åZw+]ævÏRö¨D“@$šÈŒò!þaH¡4À§û%Œ)èûûбa°ìðÆ"ü(z×ÖMDƒeÁ~»HŽé·èùW#¾-®UmqdÞ&‚“ë祩;œ?¸Öv$‚HI…fr$±'`k/yœJë +endstream +endobj +372 0 obj +<< +/F6 31 0 R +/F5 22 0 R +/F10 370 0 R +>> +endobj +367 0 obj +<< +/ProcSet[/PDF/Text/ImageC] +/Font 372 0 R +>> +endobj +9 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-33 -250 945 749] +/FontName/UVGUYE+CMR17 +/ItalicAngle 0 +/StemV 53 +/FontFile 8 0 R +/Flags 4 +>> +endobj +8 0 obj +<< +/Filter[/FlateDecode] +/Length1 714 +/Length2 4182 +/Length3 533 +/Length 4735 +>> +stream +xÚí’gX“Ûš†C‡Ò«Aé„H/¡JïEH€P†€t¤ +JW„ M‘"‘Þ{S: +"*½I•vØ{Ï9sÍ>óg®ù7×|ëÏ÷>ﳞu¯÷ûx¹LEa/G¤¦+*)&)RÓ7‘”IŠIyyÕ0H8å…V‡c‘r IYYIÌ×–IÞ–ƒÈÈ¥€@^š—wå⊠¨ þá’Á<‘” Ò‡c]‘žW!Np©— +‰ ` “?¶ø€L>HŒ!JJ‚(',Èé‚BÅÿ`ÒF;{¤ÿ’¾Þÿlù!1>W\ +NAÐ% íB â^W§!¯XþÇXÿ ÕßÃ5}=< àžÄÿ1§kÃ=QÿaðòôöÅ"1 }/ƒþ»Õù›>òõü{W ÷@9ÁÐ.HÄ_ÊGåD¡°N® g¸‡òO‰Füâjn"ˆ›[h™ßÕþë“þÕ4‚£ÐX³ïÅþáþ³–üÏúj<”?ÈFBLBBòÊxµþùfû·Ã4ÐN^ÚdŠ…£p â_¿C©ªzù‰B Q0T$+IKɆüWŸ9uß©­‚JHHHËBÿT|1$ûç_pußÖΨ«é ‘þH'`V6ŠÀ^„CøÀa¿mò¦eÃð”°ùÕæsèa.ó‡¾J±i·GÑîFû3Կמ p)ÇV‡êË'µÚu°—Í1 96Ù|;+Oü):ÊPkM(Þº…L¨··©Î…Ù‘Ð|ÙCäb½[v»¹Ùð§“½¡-ŸeÖÂ-ý35Ë¿7äœ&5è¦ãì«HÑ#jkÖ€*0Cˆg$úÂü—ЍyØø»;îKÙrÉÛ,ãt‘ÕËq»¿Í_8§ž~!ž8Z}33<À0Q’½.UD^yóGöÈÎwâÎLo_hôæ!%B«ïãË*]´âlIÈ«8ú˜†›E髟’Î-*Åï C²S’=2Ðéd!/©ƒMû…âIŒu`fŸäCÁ¡q"?#[æ’â·D SÐkºlªz× ¾{iYí)^ŽÜ¼â3àOnyUád¦ýñîÒ‘|yšŠ„Ã%U°íý\\°;ãÓD£¢,9?žQNÚ—¼À=;T i¦Ï騔uLNè½fe¶ÆlÛÔÿ¶Æ^IñL¨ÿu\~±#er­²»QJ¬æà¨r@ÛB'3cý¬»1r†L´ï!íYm¼CéĉF,Ž|zD³ ÷ZrsR¼°@_.=ADúœ#mÅ,Å!þe©ŠÓF{»®Þ‹Y=TÛî“;åyÇÉÛtÃBêñ³+o¨¿¾ºíI›J­ä:`ºŒá:àVÖó7‘Ë¥!õé+`¾©BEz¹ítnéùKh†®ÙÏð ‡6 L;më{|Iñ‚f;û¢— Ü:HéRgO^™lõÙ +guÊÖvéûÂÃCq= £åçшxα¬SWˆ*n CØÖQÄñÂôâ®OpÆýì]Üy_èÝ̺˜<ën «â±Cè‡R»µ‹O{ñò³s|ÇøÀúµGÄÜ3Ÿvæ<ØŸÓê 3×¥‘x£žd¾¿Nš!Õ5™4¾w{/0ï°Z'«oÿ§ íÉL%N´,½œ!ùD\Æ„ÀY÷\06°ë‡¼óªvOxÎáïTü¼ö®Å†u$Mt®•É®,4¡°E_­d61¼úé·‹^ +ó½œò"Gg¡Ñ]¥IÙ»Ílïà¡ya;ù÷ sL%Cš‡ÞûQ‡zÌŸµ5û(Mn·74†ïçTÌž®z¦;V6E6R:M04, 7ŠˆP4¼pÁ˘Uo]MؤʌÓSÒÇd¿vU) .Vz½Þ%àáîRì³Áã ô((IxÎC*…„ÙžñqèÓ3ám_X@íí³½åí!’E6(ª‰FI §®®`R?ø=„mèËÞ¡W8©`MC~ áÌpÍœªZ†¢û$ºƒé¼­¶´uù¦„púv2 ¡ëp¡ÆXÝS‚â9É‚ò«$…9ï T, +gù÷yš(ýHþe'¹©ÿ;«ûU"Ãý$(Rd¡ý<$lñp»é¤‚|òü«þáóÀY¢_ª`Ýu.UsÊkôÒ‡¨®˜ªãN&IĈۦa$³f³@ñkÊ "¾é atv×Sr™¬¥’ëí›;„j^‰í G_àÒF¸¦«ßWzÞB«>9µŸÇÓZ3KB?|6c¸ãüñúB€÷À‘wdëIßI× +†˜À,ÿCEHLqÑ+€íS/[§HO4ÜKfw–™û±4#ZO7öF)›MR[NÑt'”ê8Y fZöùù¼*\x"øày3¥Ùû¶åèó»­»Û‘œLtòe²“gGö6ÅÊel–ì›A9—€Ó{‹üv^% LÏ3+ +çë}øËª „DÔó7\ R5P¦!ñ e!ôÞ®Qf$èüàáÁY4êŸ|)#ÿt¡¶÷2wÒL×íËà{Aѵ£–¹ÓP=›îb»gäË+­Óî»ß,ªS¡±Ä‚Ô‘.ã…ÉóÜEfçö\XË3qD¢¨ÏOï~LþAÙ .öz5'{ö²žÛÓ\ÊÇI‡XÞëØJ›†–¯3C¹} ŸÊ}¸æ}_èjzÃï¬9™† +ŒŸyê‰mWc¯ç õo¾¡r>Ê}p^¹0V£ñýñb…ú#7ÔÑÈcºŽoêÞ¢5áÝ`¼Uøû¨ŸœÊD¦ÏÎ>˜>5Ñ«àšh¼!U Ø=æÎ£=ŒÔfÚC„ó„x,Æ~ ßšñ›Qᔨbä¨\ =?÷¦¡uïhFõk_B¿«Û8x†7éŠ¾Íø¬âÌïŦÄùÖ÷H(HNd( ”( ¢Œ4)˜[ÍLœ–¸:NiçÌm8ϦMp+Ú‚£/¹oͲ´ ¯åHìSØóI%x9à·ªbÄ_VÑ2úĪç´ì‚´u†Þ¤&»-¥·MÇûv¸S£/IéŽküO/c½ÍÄrIo¹Ï˜íøEäëâYÞŒøI[Îæ¼oqƒãb9¹ü¤‘„B¦,P&n:â³²­À…©ì4Çh-ã_ÔÆ…®é…Üœ‹ŒÚR¸Ÿ€Sº¡R³Æ¢›íéjÓõP[ëZ¸CöÊ"ð²¯%ŽÎ€.Û[%Ëe\SŠ5þ…s½Ù‹'×ï2k€›nÝI“|Tš7gQhe7$–ø³ûIk^]qÍmþ¾~¶]©ìŒ'¬_T Œµ^$E»¤Y¬Ž—£Àb§³¬—5>¯”ºî­tÜZ(ðm¸¹ï;p}½ ,Ù2DEÁu"U^E-@CJ½“yCÇpÔj+´š>XwŸÙ” ÀËqa‘MwÑ} +=OølDÝÎ'T­fè³Ðϱõ¼VÝÇ?&8ë6Ž<ÑcÀ·›+ÔÍÓæ¿¿ˆ"d ú\~n·4U« 6"}¸¢ÿbL–®ÁuýÛiÛÙ¯³Ù“d¿M9ÿ´L{\ ¯q:Y]/‘ßÂ<;¾ÄÇ€RÒ´½.“ V!5ihÇ”s¡îñ¤‘K?𫟲šjt#§à‚•AS²p$sµb{%¢È… 8ø¥\mÜ ºq›ìYíxÅ0D`¬¸óVkg;_þ+OY¿2ì)ï‹`®‡f½•q¥ pmJÚœÉOZÀäãŒýÛÚÔ3iÓǵÔA®FùÆ_õ£|±Š3BÆ—†_FÓIÒ† ‰8;ŒÙ€å\Ìuîí­›ZÒ NZr‰ï +9;è¡o¿„Çòðè=¸ ”õÖ0\ògßO–¾Éø§]ÞýÆ—ËÑ–è¤S7U`Ü<ܺ¯¹ÓU¹¸š‰v™LïàòÐÚ¾ >/y`¶6bºãµ ±”[£·Ê1#; ]¹ö>(’ÊæE¯¿A6.býAÈaɈ­~ðF }æV“J@o!wÇxîÁ°êD2•yEhû£A¾]Tq«j ¡×”è]ù\ú¦*þô§—”`þë2ˆ…íåöÓj) ªîû¸™ ¥ä«¥O¢/ô5Õ&EüW™]4ô> QÏÝ}4dš­`8<ú]='e>£ QbÊÎNúI„¡ëʧðôÑ)ß¶ 'DSÔSDöu¿¡-ÑS WÒ7Q¶gçÜ‹É7fýA¦X ÈÜõ@~gü{¿ýV”|ƒHÆÿ·´q»Òô"1y¨÷ÊëCœl­:zÑ{¦ù¢ÃpÄç!ÃS¸ÑÈÑ÷º—Öàú¹XŽu°“ZyóC爙£r¯'9Û«kþ¹-oã…°ÜnØÈ7I½Äa›štøXÅQ1À¬ aŽ&`z¬I…ë)N/bJ}®mPr¬u…qÂ?ŸV$cÂJƒKǹ ³RB 8Šå xÏ(ôßxxL´QÔýPx)‡æ’+jOKÞ.0y”¤ðã“=iFÂz:Â=äq?+L•¹¼¥¥²M…&Œ½+îPrwYFgøÑ3Ç•x`˜½ÝÀ›l­¢ÄRÎÁ›Jöû–pd=@ãøwOªà»q‰=j¹nÿ• FÆ^y‡ˆS†;›•ÙBù€e ‰}Kß{ê©»_'újIÕ¹^ÅÀ9ß=s•µªYTÂb{ÂïÒlßóWgÎXµÃrØzS…i>ùaœ¾—ÕO6k„¯l࿱áVÔM(óI{·dÿa›Ààˆà* ¬2nkÒ{zû;}ÜÛØ‚qzž»_·Eßž ŠE^¬l™“Ý1ä‘¢8tß•šs½¿ÉüÔÊ™E1:nÅ`Cs-LÕÚñ& µ?IÛ±ýM¥\æ8­‘üusÉþ¤,_Ø”g_ñëÒúZz‡y®GG}ncg‘YŒ?Bì!M²¶[–{Ì]©}@byýšF÷„7=\î|´où ¸CAÎ#Å~§çïÌçkCcœ4M*u™Æ?’¥Î2ÇÛŸîæ!D=ú©™ZÊ}<»öðVü>[ëÙ¼›çA§Rüxw¦ä8_,Ïäcyµ}ƒc9Ž7SeÌ_òÄù4ûòü²Ø?Ë„UtÇfŒCu5£ð ÒÆõƒ£¦ŽÖküï¹7æ}úü©²¢`wˆ*)˜Hò%ïòzn^þ êy˜Áj“HUÙÂEœn!6 Ž˜é¢Ø³k}-þ®6>BSjIu帒X¾ çá¿}œ;F»ÝF sn<¶¨*²x§Ýá+[så[õ—5j‘P^ˆ>Ñ> dVÿªÞ·ÆÆrAÐrFà(ƒY«kS“–jï“Ó~c7–ÊÇ|"‡jJì®'¶.ÇŽ1ì=,;žÈ=øÚb°¸Úf~ã»Å³.*‰ÿåüÿ€ÿNH8ëå Ǹÿ¸‹< +endstream +endobj +12 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-34 -251 988 750] +/FontName/HGRDUJ+CMR12 +/ItalicAngle 0 +/StemV 65 +/FontFile 11 0 R +/Flags 4 +>> +endobj +11 0 obj +<< +/Filter[/FlateDecode] +/Length1 714 +/Length2 3898 +/Length3 533 +/Length 4444 +>> +stream +xÚí’gX“Ûš†A‘‘:„Þ6%ÒT:H¯¤‡$@ bh¡KUŠ… Mé¤J€J—‚ˆ‚(Dƒ{Ï9sÍ>óg®ù7×|ëÏ÷>ﳞu¯÷û„øL-$ÕáX„ƒ—K•AšFæ`YXJ $¤‰C@ñH,F ŠG(ƒÀJJ`ºHV¾®|MQYFib½pH7wÂdYäNpKì;zà·n~3i +h+Ü|, |GÚ¢E]’zïåiº7Ew¼ašq$Ê«SM0RIzuàØÀQ6wlµ[ÞW.°&9ÂTo{Aºã"ᥓ]­D®| ã¥+ó;ð\¼Wûv/{Ãω~Bû4¼ÌV¢ýõTíǸÕ2eØ„¶ŸAŠD¶ÓA%æ­&Ü–‰- J–)~-겫& «»ínSSPŸ;$Ź·\»vûö •wƒz…ÊéAe^Åùv1õš,ìÜu”ö÷4Å¢%xn–«àÊa]Éñ[«6θ¤oN©vdtiűð6¶à&}U4H23T½I ”µ­V ò½ÇaC +¸°e‰)TÓR;FgXGt½a-ñÐÁÌ·¹÷qS:%Í^°¢CÛY~êÁûë²EmÙôˆûWe‘Äñí骨9ÉCr9T6uôM˜R'®Ýâ¯Y·9¥4ïìn{§¤ §Ï~j¹\œh_š&—Æ*Α£6±û0EP³}>ýÀ Ä¡?2õT~¯ôñòAÂ5×ï¶§ lÓ$í)êñ£%Âs`[žw©†Ïë[ÍÓÆï:aŠFyÇݵL*l­¡ÔRÏ£ïàÍbv\k¹/¸aªÀÍÔ%k>lͰ-}ΡÊu§|B£cE=¨¦Ã´´eC¥¼E¶Úvü³#;÷ÕÄ+q9Ý7ûð°$9a{á1p™jTÛ`/ÏÍE "ÑÜâhM#|rËâýHDë:«£c«Û(GÎ:±e·…ɦŸ©ØF³6Y"Á˜ádqÆ?2§²xï keÞ ŸUC_¸z-÷Í‹jc´•ÄN¢ÏK›Ö5§‹ƒ—Oÿ¨¸(R2ÞpQTß,HxÁ§©ï äÅB»þWê8Úߟ¬lVË®Þa°K ð¬Ô&W)ë!‡.Í·O䂲d–ÑEÄÒŸõ‚н«/’âÑÊR¤‚¿l@Y¦YR‰&jJQôô[׺h‚p%àS\·6‡g5é1ÑL2×urÎåöÎŒŠÿ0×Å壺v!¯§8åãí6\üý]Þï ƒ­ùVG´A™¶ƒ‰fÖž ¹ÅäŲ02¡çš˜üÁn±b¡¶˜„’³ùÖL»Oô$1Ú‡­ùÖõ-–̺5tzà/o£ƒÝ IÕñ?NÃ6çÅz¾qåd7çi!šˆ.éÁhÖ“‹ä³)>Í„4>Ä\“—Ú„›ÀAÊÆPßÏt«Ì»fí(WJjqVó©u›“rNÿ®—¯>4¡<5 Ч1m³,ÒÈ[š_B>Oî¼ÆæS°Ï;›ƒ\ÊÚï«®Õí裃çY ’1\ïš9ÐM›¾ÖwJûÑ å&zjð¦Ù'мQu6«îµëgù\ðè*ñt-ªlx¸8±ÃçöÁÕfĽqU*6AI@‰ð¶P’•ÄwF/ Ó·ïùžQo]ô^àpBëS#Ea?¦~F·¤ ±³A_mZh!Éy̰-£öBˆ£Ôõú^ÁfêJ®i…+³]°i«G ðÚçû‘b¨Šéüœî=1*Ì 9r-ë¦L¨Ð-Á±¾“å?‡_×öqS¯ÌJûÛr«8Ò Å}à÷m¸•P³^{©‰!Ž&šEßqQ9"ëàê (®–k_êÊbHýÀ"È•c´%H¾Z}±ëôÞÌã‰i5ëïÝÔÍ–¾m?I„õ‰èËú‘YÉh× +1úc“Ãbuÿ`Wjt¬H%{Û’1¨?o;8AÅY¯Ûz§7nð½¬`ê#¦I™é°·9Ó̰ž ›×Ù¾‘Q¤rðÖR¸õ2^³9%|¸´–[ÿfÁ%m +DÑìW•pvAWa¼IÊ`6³¾S4Wvè,Ê-Ú^=‹Š¥Æò¹7¬K¬›Û²ï7|"Þ¼~wän»ßõçÛä i£3q0wsI¡˜Ø/Ù=§æisì«q +<å2ªÍZâ|ü¯ÚbñÔzšL'92<!˜>=“'ê±t¥gS~NŸlL)%ÒRp{(ç -êû,Á—^d¢ëÃëFÖ‘dÀ+AÞ>…ø$ýb…ëœ>2ùÌÛOæ'Zfv»ŒKƒ½†?WèqÆQŠtq6½‚žÎAçó8oMÉ“‘ÂË•3oO¯ý!@£yiŽ¿ùÚŸ7m!aµ˜VhlÅIÞE„rmxIÍlÐwÀµœ…™àö9dâÍZa¸Cg;ôÓSMR¿ßÒCbåºRºzXlݶLÌÒÞûŽ÷‡3í8†Æ?,¥ËŽ:‚g´>6Ö{ÖJ æ)\6 æW+qQ½ºBK¶ Õ*ÐE6 E?ÚlÍÌÞtsͺò†ÛØê|‰­p+¥Kidú(¼MoyÁf"âY§LH2{jQ)ˆg/ $z•-·ñÐG•ž”XžÖö¯—×ÛY +¶¯røÑCª‘š²sCðH¶ñ㜨"ͱ—xäa¢ýåoU¯d´›ž +ë?—ê‚G@¿ù)ª†4HÓ»÷¡°‹Cnr‚†yÓ±P: ”uC}ùm޽ìt)öþKÿõJ6D©š†àö©Ü5¹XAwíøƒ_ëÊŒòÓ­5‡áJï<?¹#KgQI o–Φ‡³Õ« 6Ss° –öm/ØS•Äœ(f'‡ÖuÖûx벆lW$Î4­"¦ú{RiAùuÉ›0»Co›†¶]hÖª3ºbTC%= ×ͪû–# Ì’ë?ë™`_¿läòZ¨”±²ˆùõ”™ò“A¾in¦ H ªR0—ÊÓ¹ êñI "ÊéEòÉþ4 ˜Æd,ª‡L«ÆÂÓš¤à §9U-©‘(ûœÈ>#§PóõdÔªÂÍwÒ¼)53ûŒ9Qc«'iLÜüie,:ä¿Õz¼º{Œ)¤Ð^—»5nЙÒTao*{´r¹+©œ.’‰ñÉ3® ùžd÷—©ƒ¶ŽîY*Ÿ–E„j +å~{ÆïÝAÑ‘³‰;cšKæŒïì‰zêìf4)6¨Déµô‰õK„…²MÕàI¿ Ç”7#G‹Á#ÄE9óI~²nNÁz OÝ’¾Pê_.­'76ž„ˆsïxÆ]Ó9=:µÿÉh»$£ºœ‘UN¿’Ù–ú0ùp­(6b ¤ÿyfÕ¾æn¤ÓP‹^ S ±“‡>©QÐê¼ÁÚ[f4ÈheÄÖ”÷ÎËÛГÐdÍÐñfϽ«WE|Ý>ž”z¦ß!ô>æá¬Úgœ;˜î.ú©nGE§Ö1û(è»Ó,9Ð׺shq á÷yòX1Uæé\·¨b¤qé!ëeJïž-=é +¯v;‰Û±*“…Ø×ü/ŽEdóy¼5þ²”Ñdµá¨VoÈpù_©Oò:¥¿ä^r€;kN&a¾¶îHÍ mýs4°8÷ˆ`x*ÀŽ6¿¤rÔÜ ãð-Œÿ°ýU³UØrÉeÂÀÅ) õ<ý9•^ pïʶãu»±K}ÚÒ_= ðÓÄK/´)OÕÖÉÙ_r+ ®Û‘Š1\± ½†:euH¥K{fQÖ!¼JTñÉ ’¡ßœ•#Ì_šuO_²~'¶Æ¹áîqÖµ˜€%Ã<Ú>p Yuøç¥Ç×VêrÕ£æCyºö¢ÆQ­t¯ÃhؼOÈ ð‰ˆ'egJiŠSPIÿó±Žýw5,|úÚù]i -ÃjùaÛ¸©Í"¦ Awœjíñá:·̎•&Ì9ͪ¨˜kÃÙýIlÒcBB`}ˆ*vWÌû&Ë|rôÝ5a^ØüÉHµ\` >2òbÍèç}tüJ&"còÍ×zø^B·è•oVa7 ‚yÞNó\†Œñ!ŠVÔµ7ÒS<ºë¾wÀEÂJj‹y‘D\QSqï³Ý¥_ˆ9ÔHdÂÃq±†Ð/ö{#‡/kÅéÑ–K’åL'|ûÚ(š±lÎ\Z»—÷§¼h™Ôš¬oa^ư²™Ùow2QG¡#Ûëñijt¯ò±ŒÔEvrõ[ÙšÛŸTkºM½¯»ŠBŠ'Ü."w±­c p¥{:·\´ÛtÑ[[ °â÷±›k¿¯s´jëö¾­–À=* ó1{wzH©;k·mvëCd ëcîªÀgyfƤyl’²+ o…ß„ ¶S ÉC +³Íë˺`œt™ÅT×x-Î5Ü{3ü–èX£‰5•©ÆRNíò¹§ÕôÐZ‚³Ýt±Ða¦Ù3Á×Éͼ–ô'ê1<ÎíÈ‘­€%«×Ò§×™{o‹øÇQ n +'zwÔ芈ï[ÚtŽP›„=)sË$fÌvO:ŒEÔMc6"²Óc¼ÒŒ^ôu°åt,g²¨?–ócË´zqßó ›%YÙÆû[«ã &hð<-K©=Y©‹#ÔÞ.“ÙXš5!Þ%Ž#K­§Ò°ùÅÁ›;ñ-iûć,’µV¼/\cW´÷qÎìùòr±²Bdª1ýzJÜðô††R廌zê„øðú/±;Sî¿]L 5Á5¿~¼`Òçÿ¬¶ED÷²fÞŒO®ºe¡Wô¤Ó¸øe’÷BoºJX|EÙÔHóIn,[X%2Ó»Uô{Z²(\úèìÙÊׯæÏp0+?â ßÐÁ¼½ÈX£Ô,ÖYh1¥ƒpOIçqNÅN­ßw®¾5\þíâÆåž&#J™š‹ô<2ÿËðÿÿ'`(‡Ç¢¡8Oàü ݉ +endstream +endobj +15 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-58 -250 1195 750] +/FontName/ZMUMXI+CMBX9 +/ItalicAngle 0 +/StemV 117 +/FontFile 14 0 R +/Flags 4 +>> +endobj +14 0 obj +<< +/Filter[/FlateDecode] +/Length1 713 +/Length2 2095 +/Length3 533 +/Length 2631 +>> +stream +xÚí’gXùÆC@ƒJ¥¨ à†Þ¢”Pš! 0$ JÑ•b*®T K¤ŠR +JUé("TaP@ˆ(‹zwïsÝûå>÷Û}îÌ—9ïyç=¿9óWسW1$Ó ÿf‰ö4d°TÀ‚»¯¯v`Hɪp8 +)$à zS¨pµ¯LXª Ðü.“™¶‚AzÐ&ph“ó0°II¦Q!@½àjÖ´Íià&ËŒõo¨~ 7cB5Ñÿkü×=ý­Mô§@¬hþLH¬hdNýÑê~g3¢A›‚e! +Éê ò»D 2£„‚d…Aò¼ˆPøM©ä6·ö @`…·rÆ*ÿ¡ß›8"…Êp`üûÕý­Fý³Þ\ +¸ U‘HÔ¦qóþóÉí‡a¦TL¡zö "•L¤“ÿþedD =£‚ÖTÔÑ›¥4ÑÈð5â©”@&ˆ5ÐH$RSCó›JbÒé •ñíl~ðŸµes=  +’à™Y»)[<ŽH+/ŸZjî?àTß5€ƒ7俽‚^ÉòxAÚ¦:èí‡[ÚÁÃÅg¬’Õ¿Pa¥“ܼâÞÂbí-Wòê¸ïòzSš0­ò QMàUkzÆßõp©TÎCŸqß&üò=9иøp¿dͧþGÃä‚rcÛPåDÜä= ©ß4äÄ%ål•r~j·1™€`•«#Âý>ýÿÁ@Ù[eá7,úl¹©ÌUÖœ:µà^ÑÓ>§ø‹sEšhFå®õHݤ>ÁÁÝCÏ¥»LOì±>½7£:w:`*„×6;;Sn`os”|¿GßËëØ' Õ~¹˜7OG÷»òæ+ù= +ÄoøÅ×»ýn Ž?Œëáéá:åPugüü w‡„‹ß¬u—ˆ 2‰òb/s9—ß=«îåL4£.ËR×9©üN“?ajï/ÌÄÂwìµáv@•Ÿž[H©uD$KV½ª¾]Pi¥+uÏ ŒÑM-§b•K-<®ói[9õ½S)¸A1Öšk÷ã ô)cB%cåÆtâ®ã&ˆxÑÆ¥àÃÁPLŸH –÷ЇHd¯.ÖSÏ õÚ÷”)Ylò5‚ký>ÙýpÜ9&ïJø!k¢ˆÝPgߟVy#´†¼ýÅe ãù¥áBŸ[ˆšŸ2Æ…Yú˜y¦+¸sg “3Žˆ¹¼_%wöL_õY×"芟Zïï¾v•;ÖTÉO"µë)øpJLO䶨͙èåuLaµvVfÑ®ç‹e[dú|‘hÀŠÙï²}Õ À•V]¢ïf«ù…ùg @UÚ(ÍܵPµß~Ëd™]‘ïÀn¥¸¨[=¿.Ôû~h XcN>¥zµ:x;¿0"ä¤í9¦yBýhФ#ÃüZ4§gÖ~A%5¸¨ÅG=áé  ý6™ i³âå<á⟢Õ5# Š1Â'Ù®Ó¯›Ü64§—Þ|;ÔÆ+ÏP—AŒrè¼Íºm…!ÒôZîuí|}ÕN/ž +›O´£¸%·´ªZ°q}ŸSjÎòßq8h<,$•U“>„”t þD»|YÚO¨YÌჳÄŽº¯++ËŸÐd÷%É…1¨—j#æ}R~'Qâ ýàð›ï2.¸I^Kyû>N“sb묘 vËÝU!gý?ÚÂ2ë'»áËâcé¡a¦W›2¶™ñõNuðÈ€Iu´ñ¡‚†ÇÅ¢åEëx%„'ž‡5v-¥@øœÃž…VžOéZHî¤ &KƒùÄ D‡­ qU³8”Åñ°à|á’hµõ&keˆQwåÛõH{äÙ©Ó}£kWé}ÉDÌXýáÙXËXwüÅUŽ“â:0ÂvQ¸ÕMzƒ™B±Ëö9Ÿ©{࢑Ë/ÖJøÒ)àîu)lÝ +Ÿ‡“\K¸‰‰÷~ÄzÍ­SÔä§—r“Ú€Ic¥¡?Ëo5ÖôZu)™ðÕ‹ì áEFjbWÎ%à skg™YÑnEÄt%¯æ‡‘;“'æB„èIG±½ +}Fm{œ +‚IŸmá­ÇÊ o¯}|ƒYùýùì(_ÊÑf}"T+]7r]?*tôeOHe':‰~(%çìñ{ å™Öñ¤ßæW§cgæBŸ„³ó¥„‚,ídáaPÀü—­z¿ÂÛœÛÇŽîÖ¥_²íZ —]âK$í0‰o¤os,#tûÝÄ÷ñåm×Z|¡?ç[ß{âã>óî7m!Ç[…bØr]°%¿z˜ûåµW'v©›~¸',x'3°rÏLGíÊ)qIÙ†+xOg6\‹f©[ž¶QUÁó`Jðü¼ÒzJ<ö¨¶DEÖÄ1¾_eU7ì'íµØ[М½ ˜ÁªéøIj®Þ²!ao³.d¸è*bvÚÙ õR kåbÉ?ùdˆÙ˜˜D37YC >ÔL¿ÕIÔ;²„oåòÏ%‰/ëŇ·X¡£¡ó¶¹Òo1÷æk¡Æ÷3ikžólcd]NƒmÔ§6Âyã3ï ]ö¥¥ÇªBddƒš÷+;>vxh¾×t#>ó´ÿ#§}Ûb S¹W³_ÁÜËÌ3e^Ã.š6Ló=°t“*Ø(ÔyÁH +ë¿ê#ŒCXñŠw{äòJÓ›˜¼/–}:âTºŒ¼ý­»²Yõńѹi¨¢g}I&½÷vQs/­oGC'ñ$tC²àªyÂuÑ£‹šøµ§`~PtÜOdŽn={6ã}M3LBÇ|WVQŽŠuÓÈ3Mª}õX…Ái^ä­ÕÄXNSœl`Ê–Û’"8˜3ÞtÛðÂGU¦íž–ÚöK#ÃD}›ä/¦¿ÑÓ7nÇáNí7›ïz7ùö~ô1žåRk¸4SÜ­fÍ!&h˅‡-]‰¸¬#QÕ=וZ󥟳=åÏPífôˆ‚OZ©Ç·X <{ÿåÿÀÿD ‰tÍŸH÷ƒÃÿ…Rá +endstream +endobj +18 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-39 -250 1036 750] +/FontName/TPWNPF+CMR9 +/ItalicAngle 0 +/StemV 74 +/FontFile 17 0 R +/Flags 4 +>> +endobj +17 0 obj +<< +/Filter[/FlateDecode] +/Length1 712 +/Length2 7700 +/Length3 533 +/Length 8251 +>> +stream +xÚí–UTѶ¦ƒw× Á nÁÝÝÝÙÀÆeãA‚»»»»»»»Cà®`7眾·GŸÛ/=ú­GW½Ôüç_ÿújÖzX”dJª Âfö&@ {;0 # @T^…ÀÂÈŒ@I)ê4ƒìíÄŒÁ@ 77 @ØÅÀÊ `áäaãæáàF@ ˆÚ;x8,,ÁQÚ¸¸Â¶@'©±@Þl ´ýbjlPµ7ÁŒ€° @å¯8T€Î@'W # À d +˜-@vLÿ@’¶3·pýK6sqøÏ–+ÐÉù/€æ/'-à/¥™½À hŽÀ¤`ÿw5à_–ÿc¬ÿ Õ¿‡K¸ØØ(Ûþ#þï˜þ[רdãñ?úö¶.` @ÞÞ èd÷ïVMà¿Ðäf ÛïJƒm@¦Âv6@ó¿$³Èh¦›ZÌmœÿÔvfÿñwlÿD`RSÒTP’ ÿçýWOÉdVópø¯Ô˜ÿY³üÏúïpœ@î]fFff–¿Æ¿÷>éÿÛZâv¦öf ; €*ØØÎÌØÉì¿„ÿÎ$"bïîÅÀÆ ``åø»˜Ù8\ÌÞÿ«QÝäè”p033sq³þS5uqrÚÿ¹ þ~ïÖæ ¿Óݦ™Ø ïÄôF÷½KäšíSËJ]E©¹83£×ˆ60Œ+V!AÖJ÷«ÈΔ"SžhHCë|äyc{ <<*7qèÌ':u÷xª¢Žæ0›t ™z.‘m†º ô¹^0¨[·f¹`‡î›!2üæ—¥Ÿî5³Júî±Õ†_áŸxL—ÄÝdãé³ kaí¦EÍt0ñˆôèóôÏܹ’»Jz¸ÀH4(ÔjÖ[ðÛ訛,²ì@`Þœƒåfm¿¦žÓ¦™«QFUúWJ+QÊÂWfÕ‘&ŽßcåJ˜†ÌälF˜z âëæ3 è +ÃÞƒQwK= ÊnáÃãGÅ;•È¡+ ‹w#eöÐop¿± ¡½g=Ÿ½½ï¼bÀ +ÆHÝ‚Ôür¢¯³z\°G.9‰Ž¤h´pUfq2»x‚>'„h$)û[©úÆ8ÛÐ Á£Y‰%ârÄW’¯x©ã8œØ»·`‹¸³?° ˆß²UüÂæ™Qý<5Üõò Úyío‰qÊOŽ°Ë Äë4°Ù7~ó~Ô‰Q\ óë,ê#»ð.t?ËjÌr®ù­‹•¬lQ=ÛVD«' ¢[8V³$}¡lõØ.*æ‚$ÖÇIM~‡¨—Â逯dë—ä§VW7ϾüˆbW,Œ~茛g ŸxFñ®vÉä÷ô%çŽë΄Û_m›üÂÎû*WÜü9KSÕÒNÕ°F´Õ«”Iت»ë{)S¦*¿õ¸ªŸ#ãýRwu„˜ÅùóºéÿÒ(gµHQƼ›–¡êסýÆQ¤ð †ó™ûGøì͆ÚN:ËRÉÇL&ŠZysÙ+Â>M*A~YAåªÑgÿ¹Z¤Î5coÄRÑf”rHLŠvÇœ"µ9ƒü#ý4ÁžÒ¯dë¤:ȲË1 +WÏôcõsÞ³§£écïõO..ŠØö_óŽ3¦³Æ ÛOrb6;¼H¢Gü-]gÛk³ßKŽ .VWíFÊ”ÛàKNwê Þ¿¹Òf¦A„¬ñcK + ,H§}%±³öã*¾ó’¿R·tÇñ7yí–tüˆ ½8â‡$Š"ï÷ÝAÁÆ©‹”ù9¼Ð+}Å ÷ò%¾ð­»i¡Ø`€olŽU Œ¨}¢vpvÜM>)DÉpzF]n-m:ÂaL­òUwyØ'z#7û‘£–ÇË£zT*ñ¿w¡BÍ/ˆÍÌ “Ö¥Fgø@Mž³ŸceÄö4‹kéuÍ1ž“h¸ôQˆI‚VΑ‡%Kã+ëðE©é'ð0f½á2×L±m$¡±ø‡âŸZ¸"?…ÅðµÃanÍ…îžJ·§,‡žŽË“Úþún>›g¶EÔ&èÔ=ˆ¶aØVmæ—éyƒy&m„HsØÔ¹•X²PÒ~V 2³<¦›6ÈKóáoîc ¦{xÁî<$¼M¬nè£qï‰\OÿYµW•NödJån{\òåù©Ãß‚¾¸ˆnÕÕó>Îö¼ãô Q[½‡Hfj?L‘º}RÁ–„ù-ˆºañTR&Õ<ê‡\ER0y°éƒª½0É(`ú3ðÉy—k;bÑ^'4I“Ó™I‘_{Ëõ‰k¤ÆzÍ©î£Èr"Z©æØÁ¾ßwíFG3XÂáî’fæÄ?YŽÈ£?tË¿bÖ04~o…nsV ùOÎLZ}ÆÙ fKÊœMS‹L¹¿å ‡’˜ y`…ù„ðb{^Jøfú[oËÞ,>4wRî!)B"£lÃÇúíÛú~Û½·ç‡–üœº>0RÈ‘²4®Õ⥒ëÀýOøò­ÓjÇAN¤x嬶ÞrvQ2'”Ÿ‘ùºK]ö¿¼[¶ŽJKt)62ó¢,1ïð«±æÆ ++*—\ˆìI²¸ñl`k#6Þ&g$)¹t‡6J“ƒ-Ö0$AŠ/-XÀÔÊkä¢eé2_âTÁ¸V« s±?ÑÄÓîùW)X„ÆC’£w1‹nIm{#hõºjió+ÖWïŸ%M +¬¼Ó:ÅìqˆÕdlM»yÓT¢ã©Jãôá¹lÊ¿y[ +mx«E-)™9E™$Hé7âàKìÞ'¨x“NàŒ½s3ÌeºúÞˆËê©çMH#ê$'j'´¼ÏÖú)ÌùxÇg÷ê¹Îˆ¹µ!4€d¤öU=t…ÉTÄ9ÜçXÞÔgšzF.ŽïÈ"¨ž‹é»q»xA„½6TJY÷³pvòâoü/Û£yÁ‡ë¯XuºÖœü¶ñm²o;ñ%BýÊ\‚}¢zÖÚ +ÎdóÎn4º¬œ–üÁ%F™ˆØ+ô¨¨>d?§˜/W„úi‰lyþÈ µ1{?¬• ÇçI´øÂ´(pdf¯„¶¸Ç¨Ž|~’'0ý2u–,±. #¼èß?˶°äm5™À½á_§aÿA>Pè}ùN±„²±YH`Ÿ§ŸûôÃ’DïÜuZÅ/§¥†•P5#´,bªž*w*›¸µ“ ‚ìŸÒ]*Dj­)©ÏÁبà>ùõÒÉÒb´3’Âø"?JtÔ^† + çÝzÅBÖù+uc­üŒDgüÒ0+6b_¥¶ $óAë½ OÉX1­¦;GÌ9Wùî»é½jõÜ™›È.W !±Ý; ÏÞ®mÿ Ê+#6–,;N_ƒ«"TšyÓx fæÒi‡/Ez4kƵ꽊|Zžh{‚$Ïàq„ÛV¤]*ÅÜSe K¬§‰Aõg-°£Xàøæ¾xñÊïEk³Øöc â çv¨i‡¸øzÍ¢7¾¥U ë]¶“ãî0ÿ²îAº¹—ôÀ#Y,áPÜö"ûvemZ1ÚÒ´Ïâm­ÌÕ(†¯®yæÄËK$®ïLÒèš}\…¹é=TÛµOšºË`cSëpc4”Å™QŒ2LÐN;ÐÏ~gÐÍ¢Ï3‹%†¹…d +þçˆ÷ó>es Ò ú>ܵZij䯢>ÚŽ”b€îZ€v.—æ]~o×çí£%ÙU:‰¬â(K²w¶ ¥ö£Àhœ‚“ÄÏ4tÇ–,„y3;Ñ5œR¡_‘„ÅÍ“ó'McÉ]‰üæ­ .¾|Ë·6¨ÈÖa®ÅÖÚ£c©k¦®E³IÉÔ¦g0ž„§Ý¾5BÈSü|85Ö·È­[³Š/(Éq |€ +GÚ°B—Š ÍKéh…áHuåí; ÍÕr–Ðw»CÒÀQÊN Ødˆ‹i²ºÿ’ ÑK^F72©Bw`¿¹–ç—¯mW$§ëM¿–z¶DžKf×ìYÌ…Wå”daµZØ¡…4~­ïÊ/ðJZ=¿ÿtÕ ÈyãjTS;¬;œê¢l $C +“Z« úü†qþe¡÷Õ²—íPòþ¶E¯\~ÿæZ Gè†âMV®K¸o£«é„dܸZ«}s"õ¹ç’™­ Á<ˆ4÷%ÉF–½<];¹š­¹xÓ]Þ팥óx»çLãn©'êg)¨ÁZA¯ªc+}< “Alœ3O1V]ßòœQ®nŸ8º±—o°ZîCm¿¾–L \‘¶Qa»¡|‰Ç6q’™ësRo¯Fl•åçì¥ýúVIÓ_öƒMΗß1QµÇéü¬µõN¸ ;«µFYøXõ-&ã¶Ï²‰Ä¶K•¤‹U ~Ù<õ¶´Z/^ë—KMÿT¥8p‹GüŒ ©ÁR{m9—Ç4㜺ËeÐ$]uòÙù{¼7-5Xæ °>»0ÕÉr8Â5Œ¬!º•¯ç¨àBRî= ^,“¸'äFÞš[Ù,•NÊDT)F¶5F&ôÀ5EÔÅ•RÇog4¢A\êäE½>ÉaæšÖØ$;í‹ +sY­@~!íJ4©žºQ©0<>èß²¯¤Í™£§•ÜaEX½ðMØòd<ý—×ått,]Àˆ¢2ìuRžHÏaTAÄ=Rô´ìæxPéÔÒ<ý©‰(8ÞW*5`–¹ÔÒxÓù*¹`vÎöÎCØb +Agôìn[QÃó¿;ó¦j‘yÌyát‡ì¡ÅBU ìéËŸåiÑU1GÀvˆå¢¢ÞÕÑ¿ÖW=‚n¦§ç4w½(1t*ÂL±1UU YçssmÆ|L…¶³r”.-Q w\“­FKQ*hƬ)·?뤼oX §Ö2KY3âÇS„y¼ß¯åÖ +ð8Jœÿ™óFX~`Ãñ2wN&Ì;'[Ÿi²Üð“{ÖQÄvõŒw-\1ó穉ÒQ*à;'çæ:3¾Ù4‡!™£9þ-2#—º²Çnß]…á×ñíS%|•ßñ¤ÄiBN- å í³"¾)ŽrsîĦâ`¼ÉÎ{ã(á@õ/²p3Åjyi* I™ [šoüHAA!û{Éšòü5FÒ­ó¡cÜÃ]u½Q±¹Ò¹9 …á|ã$‹:ÄH$§Û¢'Ôxý¦ÅÐW™¨…9††_F»œTe=ß"P8‡˜ñÎÖ"´°Ø›¬«[œ2Y%Î>9ê ÐWÃÿ’>\ŠCZ¡\ÇŽ "„-Üžœ9ðÍ¥vi\# ü8•9ÿ,ÕÓq£S¦=‚3¹¨Œ2‘zµÇ6ƒ+ì•­b Ôj¶åÆTCgŽdXíÑ@& Òp½Inj‘ãå_ÕXë¿’sw ûVä)Ù¼RŒõós?Ý2ÆåïVÇžz­:Ÿd ƒ\–Cxu»ëŒùQÉðWÀ OîŸüoìTÖÕc‰•»½gúƒžÓ£u8þ’ E¿GÒ4c­3Ð_|9–©žÕa®”7Â[ñ“CŠ÷x2C?rÔŠÅxµ”åý½ù{" ò™=Ñ~ [&¨\ŸlϿϖGrÅÉlÀÛì)Oƒˆ¤¤³ˆ›1jJz›îü$¸Oã íP˜íe*äºTîDóFÈü$ª½ôÊ +7dž>!ƒ8Ë×ftòSOµœrfEÈðv§ò2öû}t ~-áRó)Ýl衤Ϫ/G@d†ï£ÇY_['©„ô‘uµÀÜóÌÐX­’ °Û5^#ã.Ä8MD&þÐÂ?íï{G¯l;n7’´bâæ8> Ešû^ÝVî¼…´ÇG¾¾šÁIx¬}ÅÂÖ󣉦#ÆÀ|‘µX¡ ‘Ö‡$KHÔhi\ÔGŠoý‚žøYÊÊ¥²{Ï( +Ïôqt¿EéþÓÂLÖ2 +µ»}3—ö`%¾ñįe¥<ªfSÅ%9ÆZÜòÈ“EH·u¯ö}OêIpt qÉݹ:"RWStÓ–ÅËt¨êÕ± pTÚñXf„Ø MÞ°ryçö™Ôð¦ÜáALS½·uÆá@ì¹Ñ9V³ÔHÖÄ2¬)Óã°Ê¹Ÿ`¬= OLià°©Ó¨"bŸªh?6½„\»“ÕUJÄw8²a~X¢óOûC„”ݼš÷eûµ—}tR›ýðò&ÜÐÎ;¡!ƒda}TNƘPdŽpð¥caªˆ0}¶Zoe¤kS~]\Èö! z$w§ug™SŽa=Ü/8ƒl®=«94s¨>†Z«åÝ ¿ ²4t=(øv~iÍ›+Ij8 £”. a›ë®ÁÅŒe•U‹£Ë{¼!A2h—@i;1èZ=œ±±Ò,'ŠKž¦øG's”µ|†|­¬S ù.R¦ø÷_…öa=ÖJ*×`¸‘;ˆaÓ7þv;CB*x é –˜cOæµ­¸s¼jzE»ö5_…¹xbæM¡ûù=²]N±clûG/o’µ´ÈaXÞMáOºkÎöÚï{Qâ{ÔœSŸ·=iyX½ÕþÍôË_!–[}2lÊ@8ÿÖ(E–ªwåqO¯Š1æÔx͘Ÿ‡t{E”zŽÇß¿Ìe‡x™û‰]6rÈ”4— ™(çÕeíás%ŠpAŸ$òžaî0ÒÒL… VïTW\ŸïvA˜È¥pÿ¹fð@ \ÝáÇTEï¹Ä¸=M½úöe Ú*bIò1ÕøúU% w›˜tØ_oI[ç9ÎtžÜ#…â·†óL±oâÒd*¿ ξðÏ£t¿ÖœhÄ(ú´’ÇI‹Â{¡Ú¯îJoqÆmæùÄ?*ë\õÅ’½™Ò³ ¹¯Zt¦ +(Ï?2‚;—–ï¼¢ÙóÝËC´3B˜\ä„NO>_¿™èÀ ÛÅÛÜ.ŠS8Ü=|OºõÜôQjJ iÂPØaï\µ¬zËü]öxÝшšeé©'òuM¸>ûïu"‘o$z&Á½ŒN3qµ”ìõTA2„è¿¡…&°s¶ÀÈì($^¹qµd ªŸ|{‰}Âò…¿sYW¯E꼤¿·}ø©-³I±€|ÆQ¨´àÏ8¯%µ Y;ÑEK×jÉj¯ËçÆ'‚C#¹¯üïUª°ýx5Íê VÆHîõ„8×»#2_”:9}we©mw!$¢á3„U#x9#³mMœçïljKÓ±°&™ + ¨ÊþgÂuû4ξB_çžËr¸ÛÂ_xin yëp¸ÉR2XòWM¶}Žùõ¨ÂK¦$/x +Üß2»«[íŽ;ä®<η ß¿»D©²´‘û/ ‰(Ѩ1ÿ_^ÿ?àÿ‰S ±ØÞÖØÉá?ÕvÜ +endstream +endobj +21 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-251 -250 1009 969] +/FontName/VQQJAA+CMR10 +/ItalicAngle 0 +/StemV 69 +/FontFile 20 0 R +/Flags 4 +>> +endobj +20 0 obj +<< +/Filter[/FlateDecode] +/Length1 720 +/Length2 6420 +/Length3 533 +/Length 6975 +>> +stream +xÚí”eP\[·®qî¬q‡Æ=¸Ó¸o ‘ÝH‚Kpw'  îî h'NöÞ÷;·îwîŸSçß­»æªUsŒñ®w>s¬Y‹…AGŸGÎfQ†Aá<ü¼ü?ÀÏ Êc³°(x@Àp'T ‡HøÅÅÊ›?“?·„°„°66 @ææëáäà°+pü¥ȹB<œlÁP w„¸þ1±»ôa¶N¸// çâÐûëO€ÄâñbÇ‹Íϰs²…l NPl¾¿¨Ô ö0€è?i;/·•^C<<ÿpØÿ&åüá´ƒA]|v{l>-ØŸõ hþÛ`ÿ®7WörqÑ»þeÿW¯þKìêäâû¿0W7/8Ä‚ÙA< ÿ.5†üÂØ9y¹þ{U vq²•ƒ:¸@ÀRNžÊN>;'¸­#Àìâ ù;Úý;ÄŸÎýÀg¤««.'ÇõÏgý§¨v‚ |ÝþÓö/õß1ÿÿŽÿ´ÇÃÉ`üÓ_þ?Â?ã_3‹[L j ³s‚:ôá`¨ØÃî?ÿJ^æãÏ# Ìøóøs΀@q€¸ˆxàÿ©4„:¹{AÔÂ@ PT\ðשּׂ—‡ +ÿû$üÙñ¿b{§?ý@| ¶ØoôuAìÇì«ä@r«jVöй‡ŠèP)CÑß.Ò« {­™Ûõl×C2kÍÎØ,ÂÄÍV‡W5÷OãÁêb<¡Ùã‰sRµÕÎÑ”p¿s#Y­ŸDBõW+ÙBù8ZÖ¢¶©V£^™ôD)S¾.ü[“@zcxTž€–îC#{t‹63™Î’,][ÒüUÅ[Ý,yưўOŠ®kc+dk¹OÑáZ>šÎ?ŲPW”pp¼^!{b(ÙôÌ:]at +¡ìØo>HZÆÆó™ÿvÝöLþª]«nM¹¾“ÕèÄÅq‰"€o¿™°lNzq«Æà ¬[q¨9°ÂKp + +™ +îˆßãáõov—GO½ûÇoúy3¾CÝ“7|[~®kÌ8Ÿx"¶4@)ÇÒ9XÏé:ɧº´KY®øy<ŽyKS—ÍËà“ÌWF:+ù¡DÚŠ¹yÅšZ#ÆnŒé¥9©g©7”Ù­Œú”¾ž=Ôý]‘­Ê_ŒÆ.1Àjéá^‹ÐOy·O š_y] ¥U/Ê8~gtÙ²+´}êHþDfò<Ë¢Ù™yÔúÔi4eÊ+ôxŸwuncYX(šQ–Çþ$‘s:ø‰Ð˜)׳šøý騋û¹§êÒÝ"£ý2u[¯'k¼ÜôI!RG‡ŠôA +çÆ+"O:^EÛØLò ÞJ;-~yo-GBp@yk˜ êzXý +$[Aâ_âu•ó»dg-Ô¨¶uñnõhYPâ¼ÓÀ]¬¥Y§ú¤ìœ,ò[š§@ºåêúãææ’^lÝtÿŒ~ý“–Õ½Ée®©‰[Å‚¶H´á ¦‹SW 2'‚ªž¹\ß]ßjÔç˜dei!ó¿Ëg:æj>Ž=kí)ýÈX ö—.›ÏˆxTg(þmI&G.Ñ´ýRyQ*(ë ­·²Š‚÷dê-)Ú•1öýÂÚooãHôd¿6'Û¬ èLö/£ã:;Fã,=£à¤ñ¤Ý3W˜ûLD¨ÀÀ{‡9VÔü½”1—L&·nÈL¤ÂäZR~øÔkwxÓ—ác§nºÂ¯C'™ÇË>Ðêðh9ãã`*ÏO†Öç·¢ÕFÍ*ó¾)rüxö)ɉS±Ê”9>‹¶±µ•y¢àÇž3á˜ôMõPÁ ¡Ë>Øví£Iþ÷AÒÂÃË6}Á8Ïð1Ç +_blÇîœlé8T’¬ ¶W¼UÜDSËbûUªï \7¯~m×ûteF‘¢¸¾ÊØñ0»¨U¾×KAòD6¨$0ДV»x-¾ÖP.mA%ûíÒíç«FD• LrÙ±aªQÆ{á‹ÙŸåÔUfüJ©V”º Ç;aýìx¤Ù+Õs“ñ–@*(QûËÀèôÏRƒ;Cv¿)æý<ŸÇÊn]/vŠÄÉŽóü¸SÌZX5øh +¡ºc ¿dƒj] MS|5/«ôœ†ÈpÊÃKš3o²˜QW€žcÎF¹5wEò(Ìè9ñs'±•‡¹lÑWõ>ïŸú)ôpÒ!=ž=¢â¢ò†lòËc|9ÙîÈ7²“í8–·æ0GL,hLïX9ç/ÿê§W’÷¤ðÞÞ¯ù úž"ž¨‹údÑ‘’ìjá4ž'à¨A{êÃŒuížl"mÔ~»†¶ÿNõqf‡ê’X%ªäÝÊZÇf—òÖî²Ð³=E €Fš…–H,—ÇÔ®©Kkɺ[2À÷¡—_ËŒç0/¼uõ9—ðm9ÑÞI—c>¼úÉÏڅ̶ìÿÈú#æÉ¦\Š*ò-vÉÎ`žkû•µ5!±xƒX»m¤ZñóvƒŸI´ k^ŒØãá¬ÞÒxüì­‚-ÄäUC‘$×Ųþ¯·\§%æÕƒÏ²¦@bsd4ÆD²Š3F¾»^Ží弌ˆÝ!F¥ÉYºoë;<ÚßTZÕ£—¸³óù¿Ànú0EÙæÐÎGô…&¿¯ÿ‘_h ô«3LÓë8ËÀ¾ÿ=<˜Ôk„Î"ì]·—ªè*ÊÝ¡ãw¼%hÿÍ[ºášQÏí±\¹”vì™4ö> ­Ä‰dÁÓ‘n(‡cþ‚v™`›«Èýr€EHÿ¥yT˜N¾•¼Ñ_„yfY<å&t{> @ð¨–1h ååïzw…nñZVùtîƉa%;–¦±'yl[ÄfÅÄëìäÙý­è±Ôy Õd%T†M|jž®t­¤mF‰’4ú×]GlULÀœY^Â;¡\—Úƒ¢¤™Ü4kYóÍÖÜ °?7‡ßµMš “u\úu‡"Ï÷&Pù,Ñ‘½õdùLNx•Á.BØp@zýXs¶Î\EŸþbò’ÿ°ìð FÜxÞ7M¶ä ›€"¸—¸íì^fšš«aÝìQñØXÛŸœÊ³POù¾Šªq&åAµ•é€Á€i3Ðþ«R|³;» Ðq¯_³^Yy 'F´:«þ`à¥4åm»Ša—‘eëÝu6j^ð•ñ˜d¦ +¦*¥Ž½ñ[Ü*Lä¿Çnù +¨ÿ¾Òú$樓íÃXg‰$OÖë÷ËSãÙI [¯§Â¢H±ÜE]trÓdã>ô¤›aX-¼D”©ç‚áÑ'Ó—·ˆsOÖîÌ>øËã˜[bšŒ2Ké†Ai•xl×òëý05±3š2êd–÷|lðo£GIù] § H/ØZ5š +wTZ·ÓÅì™]ôK”EÌr¹HÖ'–vAÙË.v,†QW^}$ÕF¿ÅO!Tè ‰‘¼ök{ÓÑŽu§’ÆPZƒ¯‹„I{ëØ™¿Ïð4­3kw°ª©¹äœë4½x½ÐžHõº½ÀwY±‡Ñ-¥M]Ë}ó6Øœ%«¸+À¤£Ö#»þ侺]³—¼Z œ,†ŒEÏ©Àž- +vŠæƒd Ø{cSꉫ©¹"|âOçx…¬÷þ/ Ú*°;:y†K8ÞÉæá±})ùr$î~çF†‚“5îtŸÎ[˜¾¨v¢ÀÀ½á¯Þ¨Ò° W ÄPßUŸÕ®œ@ ké¬ùÆ;6Ñ5[ã é½ß÷°ÜOûz×ÖÒ oY'ž‘ó¦çtrøƒ +±Aô¾9ã?É 2H“iI$du¨­!¾ß‰W—”«;÷Ø8Ò¹û¤ï.PË +¼| ¯<1ìè zx™†Ô5À? ë„’¯s"®P ²ÔÌ䀟ÆÅΖ¼ˆ^á&¾œö¢ü*sS°°P½-#æ}¼~ž·ôàžNUÐÓÛõ~ìMVÃÔE醴‘âÙ¯}­Þ]_³·MfU0‹&Ø›¶Uáò(*/ÓÌX—= ä‰4H±,RŽ¿é¼£÷-+íqRÿÍG‹V5hùkæ+£ô½´C× „&åÝèVÜ®í\TO!XŠF¬AïÂöž#èLy¯Ÿücs=ŸE:qÔÔ >{™Í|ÐÆ¯LQÂ]³õ-Ž­5ênÚÄþIëTÓMÿ_g1–ÓëÀnYæ9ISg êXîNœW„²øZ"U=“š€V ÜéÉß_ =vê3òÛŽÀHÏÓ›yµ`ko¥É†UÓ3Q/=@¿÷db:™²’Og¿/Α˜AO?o¸u³øò …ÞGKÔ¡Ø dÀ‰ EÒå¥4 5’4/Ž&Ý™Ý4‚B¹TÒ¥…*‘éº;<“‘Çl×wZê0äϺü¸ ˜MQÜ3pš¼ÓÃp†qÖwœföduÝŸÅYçGé|wà…ÓXÓ6ƒhÇR=›áfÔêî,çè,:¥ +ȵ7÷Ô1X¢‘ll>ŸÏW)-ߢ3¯›•Û0!YÓ/ì š<Ü^D›ÿŒ«Òh¡•‘Š6K1¦žÞ,UBT?Ö÷yöÕwR?OòSC[1 w&Ö˜6<Š·×’«5-Øêíî¸3©¨fí(¼ãáªqKG(¨ÜFš”·»f7<|6¶6¨ Ø€ ŽÏSÕØ uù¬•:>Ãz“LÛ]!­O‹fJ4!ºåJûÐy‰‡áe‘/øϾ }ÞX[ÂjRÈœIÃ`·§ ÕÓËö—é’ûdQªµqªÇ•$ì›#ǯ;pÆ»*».tQ¥Ž…OÏœ'wö,8!ÁÆÚop|YZžnH •º] %á½C4Åᕱðï¹x´¦Aú Ã7³«Jx:!¦ßR¨)eXš&Ëi›œD«& Uf}(¨WÍÆ2Ä©ÏÃv&|+û~Óóë†hŠ¢õJ莪áDËOáókï^óžvPµØóÊHF²ÓaÌcÒ"—§x˼@q/Ó®4<-r³€Çf<./»dôß’õãã/RÑÝù%Õ[Ô19ï;5á#tÞµð·›dΰO¬&1m]·¿bÌÁ("©= +³3»åNRcíaêã`fvO‡ˆå"ẇ„Öò³Xt¬®o_zmÔõ«ÕÞ ³ƒ®:ˆÂ:r­|ÁL0¨¶¶2댔¥qL_ž5͆v +Áhà¡å?¶áVxà*±ìá:ÛÉ)÷&½ˆy=»_l‰GÍ“òõÅ­ ñëÔ<­(zWùÍ(I u]¼Ý·/¶b‹›èi}S0$§ù\›€Á¯°–;Âóß[mšÑþˆÒo•ʲÈ&¿¢hžÇÓÅH¢¯<§«IÞyE÷Å>w)^ꌩ<è€ý|AœSK»â«eÂʧ©(ŠK%Ç59Å“_nßú;ªÝMðA#V¿Jv÷ei£<€÷U¸åŸõ¼–!ÒøãÑ=IËØç^_Ç›#Ùkñ‚¯kÉa^l5VF÷øÏ‘õXE†ð;(­xLÑÜÌ‹újã,G8 FƉoˆ‚£™ªÆÙ ) Eõô >ä üvÔçׇ8Š« þîv1ò° ·Ï7XÄðÀµ,·aÁžk©1½o-ªþ;rŸOËXKruÄgÖ¢+CdVÑ®gTï×MTåCÄ×r×üׯé’ì'âÖFÉÅÓ‹ú’ÞR^â…·Mq;ˆKâö'¹ õ©_ÒÂŒ¢»íØÉXuåEr8ôĪÜ#fqóHD¾·ÊòãR‹ËÐt¿X^Z·3³S~1I½ãeNåÞu8±š§ÒûæÆ„Ýü¡‡?–auÝú¸ýÚ&k·!J–Äæ*_ûD¹š¬±©_ZÀvµÕÆwÎH{¥L &«|ºûr™)^šµ·¤x¶Qe9´I>Câ«§“Ù˜A”êúÀ™|ÑÎfôäR1øaÁÒšus(ãûUŠ6¾º<ôF8ú§o¹÷ý¯‚à˜«*öÝ‹‰‡]¥Ã”m¿Ó§Õ¯ðL=Såù0BÎ:x0l&‚1£ß¨áD +r`g‹R•ç§¿lE§C’#—xªõ]û—æ‡(Gáô4¹œhµ›„×½k jëeÞXiŸÐÔŒ*Øz8¬º(Kš5®ß¡&H(ùFìþýR¸ŒM‘=’ÓcˆûêJË1¼had·O¿¡š>Ü‚t’¸.¢+2×OzJËÜã½P;|É„lÔ«–Ȇ¸hR»[®µ`ÑøÙÎP +W–¯Ø Ho$ž¯ˆÍÑàx—äðÕ"iö–ñÃÖ3:’àå~øÎ®ÓüÕR¶KP‰ØWmÚ-ѱ½L»Ž†<ßíhžì¹ ¬ß¶3ë|¸%ù0/¨C¯7‹Àr2çFüNiE鿳¬EÓw/´qâ)UlÅjM¤úï˜Ð!Ï:Ú{£Æý€Nð0ç'rHV&Š$yPŒïÐg¤‡Åk¹Ûãùüã!Sî@eŸRŽo uƒ°ƒá¾±>óÁ:¦D‡”I¨¸{”ŰÃ÷c¼V÷%Þ½OkÂ+2·ßŸ°É¸)£¸æSô’xª›V§k~ ŸEñmö¹Q +9¬iw¿ç‘ê@l8ñ¬¦e]P¶+Þ«H ÿ˜â§€Ù à’ Ò<–çžÆ×" êÀ‚RÓUpÏñ_ÖEÐêþ¦Ð:1cNž%OËc=÷Îïžs%3Q¹"rçN+Ÿ+Õá•Gð´„±‡–ŠãfKËNdå䜻^•ø\$Z¤€ž¯Ìå¾,›T}Q6›Ô5ÙÝ/—ÞÈÔ,®n™u•K_×âJ¨‘o2F0SpDTC…e#.NÛ‚ë]%jTLËJr:#‰ÂýK?èL8KÆñ»Í‘Åñæ¯wêdZã+ UãÞ~ªÚöS–Ü)ðåçEuÐÎÖ§ÑÎÓÒ¯´ÙªøYÑ¿ÙpaÒiªôZ¨ ÓnSV&@ß<3ÒŒÝû'äg ¶Ï8÷§**eÜî2.}F~QC½KÃ÷åióÝçv¿†î5D·t‡;w…dÞ@´ÊD•/Zv,‰IÍ÷ùœƒ¥Ÿâ hU†I/1Ý™ž{9çêvÍ³ï æå‰±k˱pÎëV‰1$™Ëï"Å\3«à±ÄQÞV…l¨–Y³V¼BI‰þHCiZì ýí¼bT{RPŠž¬ÛÀ‡Á{\èbîшÀO>£ Rî0ˆšYdƒNT§z®%Ä!TtvE‡ÑíÃ0©¿”Ì[×s EþÖ®¶x¦lN»òé:2ð*„nÁÕþ¥9“çŒhLï9Ò¼½šýÜo{{Àp.¡¯oDX“),¨é’ +f«eÎ4nUÛ UóϪ¨4êœ+ˆyè(âr6º¿M_û0)G¦béC°¯ïÏËi,Uö X«¦Á| @¥˜@WC\‡£Mjx«Vµ`á-yq$T p Å™÷,VqM®&îʺZ[–‹omô·‚Cy$Èy•8 %–¤]•» »JêpáúLox1©S$¸ˆDæe”1 Ç(„x=IÁ]¸¾‹8˜e/X +@«TEêH¥©„Ÿ±v8xx¾¹…±–ßr}2bÈ|—4St:qoŽoÉ(s)2–»‚æ»Ñm§˜j¯ßDV ÍÊ“ªFM½èj´¬Ù³{r§¿ÊdÁ[2Þ³VùÌ”ÖzY«C‚ࡹº¡À´çÑæ"€Ð­o<1Qƒ\R¢Ú©>þ>Ϋ…jŶfÚûB'U‘9š=}”\SõôŒ“¾Ší—iÐcÉ…Æ`τ纫­$eãû*P¯4¨}€,€!ÓyÎà™ÜTî ¥¬\˜·&¦˜‡=Ç¡lGjx‘.Nb]½a J˜Ÿ™.YŠ–Ï**èÍ’ôt°­ºF!B;ßÝœY’ß–ç‘ñ†1'gŽ#£°`fµwÞ3Ø)üöŒ&¯WƒDã³Çv†Z†b4®*io–êI`TŸ¦sså{ë§_Äèk¼ÆY¨?­ä£¥hŽÀS-òà¬Ñ”Óð-ŒOJ|<‡J;H©9×» Ï–oxß9,ÿ‡öÿ7øÂÀÖö€Ã\ÁÎØØÿå³9 +endstream +endobj +30 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-53 -251 1139 750] +/FontName/OXXWTX+CMBX12 +/ItalicAngle 0 +/StemV 109 +/FontFile 29 0 R +/Flags 4 +>> +endobj +29 0 obj +<< +/Filter[/FlateDecode] +/Length1 716 +/Length2 2541 +/Length3 533 +/Length 3078 +>> +stream +xÚí’yà$`EØZÛ•3ööv6ö +|ÒŸ] 4Ž@±¡’þÊýnÿQÃÿYo­‡Œ aÊ0|˸uÿù„úešCÄâî€5MÀ¢ÉØ¿„¿Séê•Ô€’ª€ÃHà˜,è_¶œ·/h¬¨Á`°cG‘?TŒ/™ (?~ƒ­7þ³vÃmí@ $#S·ÝYQLaÑåK}·¤]õ«·Ú‚Ï7Õ–rÛ_ÌîÂs*÷\ˆ ÷´øÂÚ½:e}cYVüøÕÒËfšñõKNϨT‘û‚òn-LÇáE☠¥¾ +6•'Ó`ôcgÇ2…\µ@'Î½ïæ±¹RÝ\£„påZwóåº^ì}…º—¬²Ñ¨±šm˜nÓD…,ç¥.B›ÖOˆZ¢Êä†ÿf»pBÉ6¸³ÜÈs"ž·cñ ã¼ø)Âø¬Sé›ß¦dÒìK“­xo”í_oëŠÖŠ«eßÕ#ÀÚì{e`zÀü¢ÈŠœ Ò¸?›eVVô­H=MªÛVJ>:7Ú˜±°-•ö8­0sˆƒá¹1ýbˆðÖW¡KmÂ/…;ë¥ù”%›R_´ž ö¾öz%6x·sŠ“’T–Øn ñh=[ÂŽ|àa”º©Èæ-òq¹µ‹ «ÇxO¤ éŒa%sjl|'[K[·[(N£¼•먔,m_·—Ûo䛺£—×¢…Ër?7i ‡¢95£¿ÄH\mkô³O˼>+î‚pá@ºÖãœD«‚¸÷ìí»fv@”Û®Œ™¨1gï*¦ÒŒ*ç>*ÊbÓ$Gk§Ev¶~¢P£õ)7BÔDj/6{lnJÕÄäóÇQL³8¥Þ¶„…J¬ZQn sÌå‚ ÇË ?Ú²ê`Ò~VmCj®QŸY²šoD¯ó‡K±nÞ€¼ÈѱÑy—=.ÑØ¦õ¶¿]³ÓíåUÞÐÔ©EѲ~À€s]›»‹$ÒÌžg–Xóíp-…· CEÐ?ÐÙž‰KLh7* 4bví'5ùäÇK*qˆ¸ Ëì¯óR¼šGzÊÏOã›îÝpwŠÅm—$|¶Ø:Ú Q`)ºú¦|³ªÎ×2âòœøùy3 V€¯ÚÏŒ‰^Cïô…ò„QE dÝš³ŽQ’ë6ƒEõOò2ó×ÖÈÔU9õÕŒá÷~*@)TË|ˆ]Ï;Ty-'r»ì£ÜŒÑYqqÚûD%¼[ÏÒfj~"â!Ò+S¸Ê‘Oe¼¦Ñ™'Öu·.ö©ûãñâC: FÈ÷cÝo*_™,LQGÌ ËÃàgT‡kÓ}ãäkéûü„¦—#æœÓmr#¹2Á\…dïÉ•-zÀ𽩣Ãǽ"‘ï¾f¼|€/ã&Fö`—Eï,#å-ùÂÞ—D¤˜É›ûÙÇ6÷#· nzÓ^»ùEìÙ8²iy@O<$T™N¯KGõ26C$;ª'&Ù_–aéᎈ8aÙƒFâ6|§._´£Æß;Ð:9×@¿IL[¶Ò‚ævUjÂR抻—ÄàŸ ÄGVëÊOiLjWi Ø9]¨Z]$ú©iå.öÔÏ,ܲŒnxÁÅSô¬ çz{T°V\#¸ªS{*¡¢`£»qÎ0r¡<§H @6½Æ#´âõv‹Wpù jظ·8ÃS]=&åýÉ©3Óßt9ÏMKœ˜!¾:Qy¦C>km*½]½È§0-Áj(4â¶ÚÉáÎpÍ deî:šGJt–Ÿüš~aàNtRBr¨š°ÊIx¬é2Ý~ÍóèHU_mæ“y)*Nûzoˆázâzì­ß¤.«í¼4üå’,Kô3}ÎÂÓÖøiþBÈî*ƶ‘À©4“æYˆÍv/ ³ `!3¹þßÁ œG—¤¶×©\ ¸ðéˤ{C:7Ñ…o3?¥¶„´iÔ}G' H'îµ`I KÎ¥€ +SOÅûiº+n‹„ƒÔWJ#ú`~ªÇ‘M“¬Ð}Âö Š ì<þ°Ì¸I0Üp8º;¦ Gÿ6’¸Ð~§çÙãÊÐm›I+V³a …oÝ A +Ä—ÀÅcy”sKƒƒ7T«-ž]ÝÓva¨—Sm?°( ä\'/w¼®ô}ï€{½ +”jêœÙ}ÁÒKqõ]PI w:Û1ƒ”Õy~>íô»éŠúÚÖ|6ûI|äÍÌ;°Œ}üUD…½í<ò‰õͧæ+12íYÕ(FïNK^o˜_ö¢ëÛùÚ*®Ç>SÒÞÒŸv)6©Rš¤_ú ò5søÓÜ\òä™uŠ÷ç¶ê®ãO˜§²ÀЧÉÇØvÕ®5ê7žѸMì»Fžcšn8ŒÜ–8+ãP@L¶9pv ºR¥2‡Q|šb¨&—î¶D“PõfiKåÕeZHehÔ/‰É¦§ ?-¶eeŸà%Í} œGqr,d"¡ºÙÔ]gËûàå73‡ï(Ú&—'}ÌØfÇ&²Ûž;$ã£úÖê9ÖZ§ý¬Ì•¤jwæšÁ½Õ¬þ]½´Â‡´7»Lš“…”%µH‹°)šàÜ55¸¡¡PoFªÿÞ IÓEоÚ,ðœÂp~\ô,åy®(žr)û3쿼 ÿøŸÀàA4™BôB“=!†TF« +endstream +endobj +38 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-29 -960 1116 775] +/FontName/AAGTGA+CMSY10 +/ItalicAngle -14.035 +/StemV 85 +/FontFile 37 0 R +/Flags 68 +>> +endobj +37 0 obj +<< +/Filter[/FlateDecode] +/Length1 724 +/Length2 924 +/Length3 533 +/Length 1450 +>> +stream +xÚí’iPgÇ ¥r( V* ‚Èv! —ÕÈ}LÌ.a!ل͈Ö:¨U‡Ó⢀\RDEAŽEJÃ!õ«Ñq°Ž +È¥ÀHhÒ~éô[§»_öyþÿý¿¿÷y_ Ó€`;&,Üø1¢@ ÀÓ78ˆ’-,šýE !bOB` +™ AŒr `ÂC1²ý,Ôf,VÐçÛ°DôAJBp±Š X§â´T”°ãK‰%Ûû U«!*–Œõ7T Ã}$|¾G0?7¨¿èÊ—¾w" à€¯Fpl¡5™‡óE`T"X¨n&8|”ËÄx|°ƒ) m^@Å>h + 7ˆåðÅÈ\Áà…(ªñÍØ3™›B61mÞí¼ÀA1"D*Bð£}®†>Öª1áh +R@RUè«yc\!Œb< ˜à`0‡ÿhü•ÊÃC˜²ËŽê Ø9;©®9t:m÷Ÿ¡š(A6{4×Sç)¹G0bî:¨vü¡ŽEUSB„KÎ;iˆ’¶Û~a3Æm¹cÞÐÞÕþ„eäh¥_÷Þœ ½B¿cÑ]]7mlGN§—+Lúi=§R]>å·Õ»>ò_s¥ì³Z“ãI•Tîš;·îW©VŒ¹¾š·#G‹ea%L[­êIeâ®!EÁÔÎýìæM‘¼çoº†ë{÷¬=‚'k€ESƒmí㢠”lÞ'WcŽ8Ôê0ÑgôÑî«÷èëç{¸œ¶Üð:Rºå;k/÷N¯‰Ö²wÎaç+V§l©j›~œU¥tÿÙ­!üŠl‡Cÿó¡Ö!]y‚m|^c$ý×G3~ïZw-ù ËE®O5é{,ŽêŒ¾ÜW›Gª”9w©„™åÁÉ…©9îƒ.õ:6§fÎL„òj&}ÅyÉöY<¿0‰cÛ«ÃÝœ`¼ ¨ÙOT|Õ”i*h|”*'¸Üe–zb+v ¹.èˆÜùV-¦Tî÷‹´åll¶ÿ ÖžÈüKC-i©Ùr%k㋌ÞÜU¯ØÄå­žKNXœi±4·Œwk¼N"Éô”Zô¾Ê˜òñúç«uÅ) +¤?¼d¼éh³K Ø:ÃÀʲ|ÃÆÔï“®Fè½›ŠÒ}uq¯a(šÞÁXIÿ9”Òì`°H!Ë5W(¼ûÜOêøzýÅ ¼"·æsãåÓžF>:ñ|—èè´ +Çã°ßÅÕ6`ÄnW7¥1.zPXÃÍ®É]fÖ6¸~»¶6U#ßN­Ns£•õŒºûFªkrlEeÆvád5Hú-·øÆ]Þ­1YžŽ4Ýö꘩.+§P×Xnô“{ònQMu`ˆqš|iù‚{JðaOFÀ:V]YŽoP§všwo¡µ'Už¨¨s ¨ç¦×Fù*ÕíBVÈHFx+ÍP{ú›eÅ· ¤úi•…Z‘SŠè‡ãMK©åxgkÑŒò\ÉÐYkÍü{™ Œð̶}¢¹Ö˜»7%û6kÚº É8Y¯2°`XÛLj¥Àó¥!7ËL]ÔUC/­•O/²]›OÔ9-’"Ûv•G}Ù?Ñvp¥™ãê5añÝc2ŠG`òaǹgš˜Ñ—òÔçÉ·××fõÖ°ø‡j. "ÆÙ¹e¥÷-·M¸&¼y¥°UkLÖb]£/~ÅbWÉ\½=Ú'IWöÙ3.´vŠ$V$Ä¿q_ 8ðyo)j·¼¡~ì™nÙª„ËZÛz²ŒÁgÅFNâ6swSød㊬8{û„[ú‡vö‚ÿò!ÿðŸàòN> +endobj +41 0 obj +<< +/Filter[/FlateDecode] +/Length1 728 +/Length2 1814 +/Length3 533 +/Length 2357 +>> +stream +xÚí’{8TûÇ%¡)tÁ¶r2cˆ\" 1ÂHEʘµf,æÂ̘h¦˜"[¨\ÂDîD"*¥Ú•Û.e"EÛD”â‘B)—3iﳟÓ>ÿœçüwž³Öúã÷~ßïzŸõ]?M‚‘=È„p :ÛƒÂXX¼· ÆÀ Œ::X&Ddà º#‘ YKKŠâÇÊÌÜ +cŽ@èXFh$¦±},ò›k+`Oƒ˜0‰HðDvD!©A‚!v$ +ì©TÀëÛ+,À bAL¢ a„(0þ†åB'3€­ße0<ôÏb²Ä\€þ)s‚ :5!2íÎï‰iþc°Ãõãp\8•êN¤}¿ÖßúDLüÃÁ …†³!&€g€“þ£uôp8íÇ® ›H…Iöt +Œ0[PÆ[¾ë0 G@ Ì&d"•-éü‘Dœß‡ópðÞeøÇßýÞõ Ât¶wd(ÿe_ª1Õ┘pàg,Ž#6Šï?Wþ?ìæD'1@˜Nl"$2Á +§rp`Dp0榀‘‰™ø¸a¶˜–æ–GþÕ¹›‡…C.Ž€™±±±…‰Å’J +g2!:{é@ˆ?ùÏš ‹S‚ ˆ„ˆ&xâõÇôŸ++,×Õ?&\ìZ®›Æ]Yۚѡғq ™‘*%qgWéÎìè%Lâ3m?)m×0*};눺©<}}\:ãÏôåP°õT€ÐíÕAeLÜšŒ©ÉSñnS—”,Þmp^¿¶k×ÐmîÛ¢B–|‚3fa_ϳ‡(ÜÚÀlnÁìCÛŽ‚)ëæÀâ¼CíjúÇŠ æþ:uÃÏŸ$ª?åßæµ‡C;UD©È¾5ÅQˆ þm<(æjÉéж»¢ç%Æ“-_OE÷[q.3+²°öq¬U• nÃ-ãí—7¥H͇¯MEùnÓ»K8R?ÏOª»nê[ûbþ¾Lº:Or¯é‹ôy¬uþ!)IS§Ã\uö§DÏù»½ž²4ls¹ÅhÂüÄÁE+Ù*õúªÐ[ΩŸœZøçÙ˜õ’?’Øk]{éð"þ#ÅsjÒàâ[C3 éœîh\›”„­Œö‘ú»¥¯ÞìêäÚ Û§÷³7×ÙUÈUK¹E“Z%Û¹üŸÓü¾ÀdÍø‡xÙ4°ëí³™ñ€~•½b÷“·õŠ9fJîY1à‡¼•ç±jÔNƒÂ®«P1%}e8ã7)²1Õ z±&$×[õÍÈɦ:–à%ïšÇ¾¢d„pÏò›ÓlÌëÆ ò¡a•Å&ï·Ëœ^§‡Ú禈¬;Æ>îÆ“•Òg>ä¬ûIV걯Ž\rÔÂáúébãϸŠï9¨}=199¼8r½ÚÂ[!qèèWzNV@ªoö5§]O[fÑè´­JéqåûÌn⊓/°²S`ÑäWçj$_ýØøÕŸÔïjÒybr_îÛeÌÑcê÷ä-Ððsµ­<µQ»¨_ +.k–1”¼=ýUšÔ=$’VÙ¯Ñ*ÉDYíÓ~ 7ö ••R6?c}MAò˜=G˜HÝ©°Ýj³ëžl=.?]Ý q[?å@k™Øk½j§°²­±ýý'd¥ÞÆåÀ†ê×ºÑØyM¿á3³›ž+–)(¿ÜQ*Að÷1¹ã¼±^­WË=Þë÷:žSzÁÖaßf¬ÊJŸö¶c¡®Úª»å³ÝeÓV¿ŽÄ¥Æ E91ÓÏôµôPðaC÷{¨ûxÊi—îòõ¼5¾8.oוA-¢›ê{Fñ  -iTAø 42Øn’Qy¼Çkâ<íL>~½8³åB 6lm¼j×E¿ˆÅ­\ˆo^œ³‰æ×’ÍŽÕ¦&òx>Ãá6Úýè‰ýVy䧈†~ÁØÜ]·4¯eùY'ç©™ ­Gƒ#%f£ßJó-õ‹‚= Ñ“>nVp„‰–þî¼â¬¤Y³(á‚RmŠJè]ÿ¡ƒ¤¾ 3órþÎÎÊ…GÚÞ®T¸šØÛ­úº„ Ñ)J0cß×ìPÍ=Õ÷ÙµjK¡`fJ;,ìŽ0©Œ"3øüJÜ{ÒîÕ %ZÂr"':—n–¯ Îæ]Þhq>§UÇ”Qµx [/úøË bì5“ÑúØ +{« «»gÌ:ï UoÁ\BìïMB'&÷žÇ:bðªk¬Yä«\cQFö"9ö×EuîFͨVwz”åûìØý\ü¿yslÀ2ß¹wwš"àbï§¢µDEÉÆÏå¶Ír² ´¶š£R¼/¯“2i÷ÛXŒÐÃJ%q¢ OøñE©–N_y¡UñŠÁÈy÷|6'LdâtæV‡ÔoR1œ<¶'ßÞu½ÉmÛ~Ÿž!ïδ槩e·E ¾«8®uæ ý¶/¬Y¤ZÞ£ú±³! +JsÈ/\;«‡¤sO`s»œp^Mš*6¦Ð»ÚB’‘éÉØ.ÃFÁ“ÁàÏÓ£OÀ¶ÎM_÷L?JNÌqOieýòcÛMØ,?˜ø>‘“SyŽ'âªt·»¶‘‘IIÑAWK£dZëÑ®­þeþ¾ºäÆ(•9M¥r7r™Ð³ÂÔiY>ëU Ã'Ýs§³kŲ߼á+i:ˆ/lœ­q™nQ«œ¶+ƒ_õåœÛ9»Üã´“*/4Ä´þ¿š¨,ÙvÅšµèX×¼!¥ì•›¡só£¤3?Ò‚F\vô$‹Ü5±ö†HÊü`À¯z÷u]·ÝËdzÝYéÐ%OÞÚwÈ«¸Š2áÙõÃ-•kªn:zÔ¬¾k®ýFf‡fdoú~­Ü«ŒGXsÆaë|u9ºYæ³6=žSNH¥¨èÞIÖM_—´¶:çË=Ò‹ï#üÀ´Áp‹Ç#ÛGÓG>½ýlºy|Å¥kvn~3Ú³}ïäû§«Ùú¼ãZVrã®Éo ‘uÎ|ÊMmW (]~Ÿß¾‡ü¾„ÖÔµ 9´ +äȬû¹ÿÖC.L†…Ø]áÿ—âÿþ'¨‘ÉfЈÌâµÒãÈ +endstream +endobj +46 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-4 -235 731 800] +/FontName/JNEICV+CMTT10 +/ItalicAngle 0 +/StemV 69 +/FontFile 45 0 R +/Flags 4 +>> +endobj +45 0 obj +<< +/Filter[/FlateDecode] +/Length1 719 +/Length2 10701 +/Length3 533 +/Length 11261 +>> +stream +xÚí—UTá¶¥q.tãîîîÁÝÙÀ6ÎÆÝÜ‚ww—àî.ÁÎ9çÞÛ£Ïí—ýÖ£«ê¡ÖZ³æÿÕ¬zù©ÈTÔ™ÄÌLAÒö.LlÌlü E 6V3+«82•t;ØK]@ü6>>v€˜#ÀÎ `cåçdÿ{!#S$=!`K+­Ý?T<1;l´(]¬@vMÌ€¶u30ÈÅ“³µ¨ýãg€Èq™3##³±ÌÁf.S%Ø™åXröžµÍ]ÿsä‚8ÿåÐþ“”ð—ÓÜÁÞÖ`²@fQrø»è/Íÿ1Øÿ†ëßÍ¥]mm•€vÿ°ÿgXÿm´Ûzþ‡ÂÁÎÑÕ(:˜ƒ öÿ.Õý Ndvµû÷©œ Ðl&foi °þ«v–{€ÌUÀ.fVˆ+èŸm½ù¿3üMîŸ,òJRrZ ÿñ]ÿ5U‚í]4<ÿËöòÖlÿ³þ›ìÐgý0Û_áßó?ï ÿm5){3s°½%@Ýho„˜ÿWã¿S‰‹;xx3q˜Ø9¸<l^VVßÿU¦ivrÉI¸XYYy9ØÿÙ5s…@@ö.ÿüþ¾ïÖà¿á€@ 3äuUEÚSÚU‘äo‚z,]è:¾¤Ú.áYìJª/u´ÍÊ”¸*K¢$­qó×%ÕfªiâäÁc½M?%íÖÆWp×2ß#B”<¾ØÜó¦Á®H¡ ’¹ZC;#H3j ©ž^üø‰˜Êþ‡‘ŽÍH!…â»+£q TX6Z< +µd„ϱk­–[O_6)Z?TPy™‚h:JÐ3A¸_€jŒìI.ój~’ÒÞ2’RWÕ©¾p¡ç4ɉԗÓrþYIÁšH—–ó>lõlÒ‹o=ñ/ó½[[JXAß+j-I£!~b­äb8’üVIğ̓fZ°E¯p~öëUuÓ«¶9è‰) ò:‡¯½Úᬠš&Å»s¿¬ÜaÏYý™ö´ÿ”-ÑŒŒÊFå½mÝ„„’˜ÀÆžÆî*WZDU0YF‘ç–ú¨gþ4¶Ó× -†^ÝõÚ©/¯AQU:˜Ûv¥¿>²Ž5d{›S(¸dYƒŠ¨…(Éœå×&<Ý.¤›%‡ë8¨Žý<{÷åŽ qkôÄûÇ¥j†Ë~Y”Õz켋«k×ê†í-–A]ŸÄ{¢¢ê0‚§Ïìo2ßX2½ÖÀ‹±zŽÇŠBúËjlµàÄ;£gž¼RŠK – +Ñ<çu½RNÿlV«b ƒešh´Ú€œ¨G‹/Œi™¹xá‚PIrM´ +¡«ŠçX£ÖðmÁt,èk+Œw.?+Œ-Þûý"ŠMd7Ïà¹@Fw-}Wwì‰ì’Ìß•q¦aåÍT +ÂĽâ©Ëú¬a?xS +1kAyU·Í0œÍ:ýøµƒ²–ÿ²1£{uXü‚%"àxÂ=©Ç[¼Й´LаzÛ)>²ßÖ"ߦ?‡R²ûòQÿòÝ4þݘ%˜›ðg«lFºˆ{dÓ†eú†69ó!Ñ1!j*t·šÆ_}o²_ÑV!fájž®¹j2:°:'—Ã\£8C¿Ô|6ߙө ô˜ŠI\ߌ¹C+šs´RÐ]Ÿea…wïž +Ïq­u²=G © mì1z8„¼E¥¹¥‰ +.ÍcxÊÔª©íGahÔOúãº{&šû? °)æÚkÐ| .œð;ùMÕ­›'¢ï,<Á5O$CÏ?®æ„©œ"-O‘u6—ÐS¨'±tåÍ4ùýÜ,Ö{8øþ¤nI¿`¬½Ù +~Öjäz'^TøþQ]qùgˆHãyñ©¿á5óEs‹ž'«ó#ÌüÆr½ ñÜÑ•™¢cmŽš¼ÅV¿àª9Ü™3ž~(ïëXæ;Hžo5/,y"³Âp’Œ ¤©;}ÇËäÅÀy1 >Ù]A•h3d<õHebÿAÈàŠf;ÂÉçüÜšÊb‰<868Ýx`°Mö˜”8IWב7î +]Säûô{dÚNàÕ92¾/¯e'8l©øé!÷d ò#=!úqDÈÉSx y9>jÓ´ÂÐF£­ž(íy+¥¸†cª2Ýû`f³ gÊC`âA e»×øëZñÃS·K¶0¤‡#Ý D”è¶_~Ëq‰‰rEÙç9§ªê¶µ`Ë®/ä%ü†rñ ÎÑXrNM¥ý èª è÷Ajma]·Áæ0Ä—´kÃÑ3{€ Z6„x÷ï!©rá„ðO®šfÔƒâ~Sb ÚÃÇM7™W1lÝEí´ûÁö +ŒO„»X¦J©l‘É×á!yÄeC•}:B‘0ˆ Ÿm´QÆueÒ‹êùì·–Cpÿ¡à˜[_±ïä³öåþû$BÞ‰ŒÍL&£•)®­ zŸî»Rä¿øòÖ¾H +¶OT¬ßÛ=åôgÚ¾ÉӆҢƢ]=úêDòØ_xJÚŽ‰+5énáÜ׺ƒ<ÃW9˜É`S[–“†[ºJë&ô*™'ûh/;!p×¼˜*&/²ðþ½.Õéîú´âG•×÷âã®tú(ç†b¨¡8ÖžÛë£@Ây&ÍÑÑ=v×Ìß`œ:^ç©;‡´5—»xC3<¦q¯ ÂÒvƒü©-ê?*±?ŠÝU:cýœ¢wxG =UqZFótä—ïI‹¬ã³¸¦+¯ŒHêÔiÖÑ´Ñw½ªÂ¡Ž)bs>HH¡Vþžœgî÷$þhꕉ¿_Y˸5•](—Dî½n}ηSSŠáFæFñ ë¡"ÈŸ?"a2|(Þ&ÍDZ8¦(¡)b­àÒ |*}PÖçJ³_©D¤×=…c$|ê2؆ä•©Øa‡1„óQbj­²zñÒJÔËRõ¦âòÌhÒJ;šž–ñ^4Ê©¼w&Yã"« pð–f´£_|åÁUy:÷V¸-/zŽ]\zØ2‹{'Í´ò¡Ê_1Âôu¿.WÁ*U(›† 2àQ¸µÁÕ+80m÷yÀFAÅF[×x2Dì4”< ˜çÚV¬èr”‘å<µi[ j³ÕGpT¹²3»ùl­ŠK‰šaóp“Þq`cøí í¢ëo’SÌ ŽïÉB7XÛ2§)¦$Þ\«4 š!Ó‹†šã8§«*ù.Á¥‚/vÆ°Š½­`Z$É(gß®p¬ÏÃÃØŽ +*Çï¡ñJ$r²J“)ö.0³ˆS?©’[þDct#hþ@€¨ý‚3f‹¼Y5EBýóÎá=‡ÚD•ð}Ž0ùûÒº±žýS€'¸I ׸c\…Ù€ôéFo1O)! V1ݽQÆí±-yUà.Ž.ÛW—ÒŠsëyP“l‡Ê„ÊRÒäÓZ·oølu¯ñ¨ü‡7õÅòx®zR2h\ÿ½‹ŸË99åÛ¸g¡ÕžeÑ%—Ÿ-ïÊ™¿…]çÒöcÑ)e·DPè-§³ o\À\ÿTjÉ£íñaÕPzLøÓo:•ܨËf'÷½Þ®Fà31„‡{ØPr Z\69ÜUóA[ëÎÇÕ)oU£ù:ð+7¥~¨81ØÌi¹b³©*cdHS¬+¦ürå<“ÆÏ—]çO3ñ¶J@E{Ðo±›A‡Œ7ÈÖ· ÜУ×÷_ÜJÑv„"0þêS)IŸ?Tæ¥]ήq­¸ÜÍ[¢X]PÅUØjãÓ7™ +t¥„ ©¨™ø(ååuœÊg¡™TëáÅç¥ÔISõéi ©r®œ=ÙùÜ5 ó±_”z½‰ ˜#üšð~WbŽ',ácoˆÚ?*q©´—W\ÓC{é±'6›˜ªÐ”Õl}Ÿ PÕÉܳ÷óLQúœðíþVzÓ†ý¤Å=…ø3¦ÿSv¿»p†ªÍ²;¶™ƒÄ±2œ'•Ç2ÁżkV/ :-Zßï’†ïYmŸŠ‘¼6¬Ð’œ$OB‘cÊ´7|l½9¢az°\àxáòÒávËzó2š-ð)ÖOéÏ®Öê:âÞ_Jö’(–5û§DÊñ'„y°Öl²?K²ó}˜²2ß;h7@7Ñš3隸ÉH„=ŽêH½×¡Ç ho‰“+ž zóÓrÀbAå»c\bïrRqÀ,ÂtYWŠv¿Ìlt¬Gü h&w䮵C9ša¨ù1þ ÈoÃÍC_–P…oìë-£»€züqO‰F,nƒÅªÄ8õª³D03ì$‰ÎUuVy~‡ÊÖ›‡ðËùF=SEeA:Çí×§Ü–2!OÏÇeõÔÍ\ïó QÙ1H +h)ûõ›ë_Ï*úI‚ˆTz)ÄI¢å¶nÖ&‹fÈG§Í¦:ŠáV®w3ý<Îï"[¡È´Ôµå¤Áúk}ËþÚ*=”Iþ;‡Ì¾Y»Û~cFN…3íý^ãzXçûáx›K³bãšdüÞþ±¦DU¨Ô_©_ÔÖM¼u’³ 9[(æ¼µ{€Då¤{Ò(øü“78Ùlp;:Ðz…i˜Bø®)3€2Ï»ÌÁÌCJŽF²–V›¬Ä=—yWci?5ä‘ì!ék†,õ‹¼Ô1aZL§H»b¿ãn1¿{£”íg‘+ «Ó\8ãÍ‚.Bú@øìõÝ\N2ò²†%äw‘ÔKÃW•í÷k88¢±È7Z ,)¿$Ãe³aR/ãôªdëdŽ|/ÿ0Ó€ôfÌû‚ßà®yM‘èþD½+µ”—jæbY.0ÀahÎ)T/³— +Äåéo©/§Ûu«+SmŠR£ ¬-ÈàûÏï¹æi?îožQŸY×®;µi™MÝ'J"ÌR%gÚ!?ûHú`d¢™IšÊÒ"”ùpîQ¯?Ûæ¹X(±w·ðm¯cqlè¹w>gŠnGÒ•2ò(ϯÑEV­jgÉ娸gß7=˜;BÜ–óQ™[t+å °Céõ›Pó&¶RA„vü×6Ë/§ÉoXóæ³+õÑ ¬¢¤;gp³p/ߦ®oÞ9¦èý ß0-…›:¬.ýõ>*AP#¿pzûÀ)è˜'#ü!M·Î*±@æl[ÜÆ1'íÛ¹dÀÅx绲*¥ÒE+&-<š1R÷}FÇqµ…ìh?ó9DžWHÿ±Ÿ÷‘âíÞÑio.°;&µdî¿ýbUÙ°K¿qVÉ^qݶ{•¶I‘û^ú V:ªíƒÍ.ÚýÑòhÎ ?6Áü 5º—oG ®©GÄÄEy½½«FX•Åu´.‡g­‘ÛV,;¦‚#²-FYcÓ_v‰³cGÇ:&÷»yÎ^Çüt'.8k¹ˆû î¤ï4ñÈœ¨ügöPfH%=ý³ÊPIhæ·_EÝÊíŽ1±úG–î¶ÒÀ"0V²|í?/ú>N–¡ªô¹Ã} f-÷Àµ±Ä+AÙÝpµ"jÖ2g"«ø(޶ß›ÊüËÒeví¿d2˜7]}–2*ŠÑÇô†ˆ´É¥u¡z÷ÏñÇ—t¿º;øÒ\ôt¤¶5c/~ÜNR4O0ó€!ê­ÿn`4v«¤åÑzü6S+©Ý·AHÓä/4$Iµüá ++Éó®eÙô‚ ±ŒÊ“€ñvžf{c•õ7©üEg6Y›Ìs]ÿEmãÁÆþ+cMõØÊM¼ÚðC‚\ƒW + Š–®aV +åÃÖ×£\úvì¹2«†Rû[íìò¾_µAQ­|…Vï@c9ZS,s¾A¿Ô±M8zÝŽö*T– –éNŠ>¹QŽ´äAÛ5¸ÝÐÑ}›e›3¯åt„ó$MYt±—çgµ«ü]ŒîYÕòI’¶{Wáñ·ŽòØÚÌñÇÉ—»èˆo[¡ËÂ9HÔßßdÐÂæ±ŸÆ"‰0äJ…6'öm6ÉÝuˆü´^ ¢Ï,m²¼âÜ™€Û2jY’4²\–‹aHW[6iËR&=Zžh`GQÛ ª×…Û•ÖðgN5”* +øÀ£K'jõFo›.´å>·J"yÎÁX޾vxè¥,•Cjz#e}¥2HÔ +›n‚Ù&„[á24_±Å6¢9X ö•xÌÕ牙ӠÁa§ üDyrÔ›Œ‹Ùóę̀ºµ~ØA²u¨[¤#rƒšt-ç°x¯Óýí=‡‡ÙFD$»G g5J,bsßpBžän:_ý]|#µS*ž4I‹–ñZìmÈ9¹6o4HPëk'!îøùD5½sŸÕüê«kêcs0óÓ.å÷ª¾×–-ßÙy…åÙlmÜÒãM…šì +ѺR-6Õpu?$8O ‹V¾ŽqúÚ¡£UF*`}=Íá{޹ª5ÀÖ»ëÀª:ASQæF{¡4ƒSrÄ©"®dæÄ§ÉgA{¬·OÙ>ç‹ ûÝÝc‚Ìì±Ð\ÚŒ[50’z°Z÷Ú0'Ú`4]@ëÍ>àúzäo©ïÑS?Æß@HÎË‚gëi9±ìÑ…‘Þ&ØÏª½Å ƒÖã« , Ñ¡:såOª³Û¨–¸@Z=Ç*”9ÉÛBþÍpÉMy}ÆD¨l¦X1œ,ßnsá§VN Žï—'Í8…Ø Ö;Á» GÅy%çÔîŠÖzE+ÂÑNŒHÓ±ÍC’e¬~q.Y‹|{g€6ó¥~Ì%«Xãf»¹çq·­Oõ&«ä‹_aŽõ1£™÷d‰™p|>±'4²ví ×Ã)…8~´ 0È=*0ä¸êÉ¿™öôŠïòë sà¯W/¢»x!÷˜-_…눞v$“¢' n¼µGý>ìláÏO[÷,k¡Ÿ3úFž¨È¨ص' ®Q«¾ø½¾D.žÿìtFNB—‹ÁêÐ +íV<Åï q¾]ìPy§Òxü{bu]ÖÝÂCs€maÐi]ŸÕ®¹#¹‘ÏЀ²‹‰éšê¼ùਠѲ1ÈÁ²¿·lH¢Sì¯4ì}*ù­ë‰ôxÜAœL:~‘´ýY^µú"‡ Ìy/Ÿäý’áW㘿÷ã™ÞOòȽñCR~у‰£ËKž@¡°îÝbà ª°õU+kå"‚ñYæÅeÉÎoëMˆ1Mn;ßœåùM!Žn1œÙ‘WÖt:|e æà î©O7€ƒë·”Ü)IMÁú̘çØ.÷¸íwi°l-°yÁĨF~¡u’HÃ#®LìáŽc>'S³TqŸó +ÊQZ@`«‡}½ÔÃå4, £Zs!-ÿvŸp_¹p˜9µQ¯¾áIŽ% >i9Çf.Xþ‚_úÂRk4á:êŸ6]ºãE>tû]©<%!¯ÚÉÅ­ä\µ ÊqÀY¿áx…Kиڂ6±¦ñOð’ÿ.^èM]«[Œ/Ÿ:RêæÌ¶2X¡Ü0­’9cËJ½‡%í’#2ƒ¾&­FÏÃV»¶[¤ëzDÈCÊY?>Ò'ƒ›á‘]Ÿ•¿ãô,¼ËYÜx1X<¼@î|†ëæ5ßΤêÒyG B³á,Zw°“Áuïš]àžF=ÕŽN>›šV!¨Õ ‚)ȹŠC‰ŽÜB‡ã—'›Õ¿½ò“%1§ +ãpŽ­!Yê—1¶3ÛD¬€Ò·ÝaÊ%†Ž4k)ÿã½En ¿ÝsW­¨“k®5Ìú€5½I£7áN¨}〆–V9e—8~ÀzïƒIÇLxëÛ¡ÜT¡QP  ´& Öí›î/->s¾ß‡Ü¥ëqÃØ‰ú [ÅP Ò-,n Â´íw{FØ,’Ç®iþg¾ r‚ß>f¤q‰¬ÝU^¤â²82wºœµg£~¨Á¼j¶Ký÷HM¤R¸ˆø7DÝþŸêhÆt_àÂY3ÕÒþ¾¿­’¾™…“1!?ø*æßúOî¦+b’8…³ÁôÉõäݼÜX±ö…jE°OVJÕ<ÀÇš«Õ†z°ç¦ã釔_@|%y›÷(²÷z3j×öŸg–f^¦é¢K¯fqöñl°];U¢‡ÓÅ—ýÙ(“I’ªj49¤ A«P‚ZéÀxo„#K Bœ8›…÷ìbôÖ¾àd»2ÔÊ%YúÑb¢zˆM” +Bw^%6çbEYªË‰§ºç)Áeh4E«®º¿×çG-ÕßcÖ$DÍ¢sNüšh²æKZmíÐS!Xg6ß] >ÑÃÈét!a\·„ ÷*ßNä×MÓ¬P­ýàãÂ}è¯ø.ãŠØo^ÖöÆú‘LÎì*¼n-xJgꯖ+Ñù›µö±\Òí9H£o–VK€Ííx÷É ‰¯æCuQ7E&Ñ&Á²ëÏg6ÙžÕ(¿l§ˆ¤ +aÖb³éõìïŒæõ£fÉË|YO–´íÞ9›Vr:7ÎÐ$WÔ嬯?Sp³œ^…&-Ý Ô-2•[«·>JüéãXÐpis ß4vÓij*ÏQžOikhŠÆðA²YMMn¿ª@Eåÿ%/VÊ„Åé³rJŸoc^d¡ ØLkc7Ää‚°bœÌ,¾ˆâi hk™¦  ¬˜ëûr@߆„§â;ØØÁ?¡ÐYžÎ€Ïo‡I{x‡OÕB«¢–yc'e]“®û&Z4ùr¡¦¿þÈÎx¶±ë%{÷þ<­näÝQû»‹µp ꈹùY ++ÎÔ~<¢ú2©XÅ=Ýýu"W¯ûBà…÷ÝõG!o3Ê8¥Ô? ÿŠÕêwaw&þ×@¨¥6qnH(rJaã•î¾S‰19ag8öp‡;“¡£öù¨Yñ`Zçä.@ùònµpVá4í/6õ@GÀ µ–Ý/¶©‹Àԇ辧.‡°ŠþÄuŽu” Q]A÷›ø;-šZãZrŸoî\‹Ã‚QK« ³Ì“(ìæ³W&hsÓ$ˆ™îG;„!¿³¾‡"È%Ê1®å»œC(ŠäÀn4~±=´.$÷È¢(ìC&~WÀbò±é- ï1‹Y†%Ö…ðùl A«±ËÞß¿;»ñb*?ÂcLVd,3³BkÇg„X–™WÄÕñÚÀæÆ&£ï¤qñäFø:›£`hÐÇè·Gt*%Á•ÒbðaÜ«+þ&75œ#­ëYs«Í¤^¶‚÷¬Ã½éSÈÛW ž#J*vðÚŸÃ¥¬ü(”±#þ¬3^Ï8¾!ä/‹Ð˵žÁ©éºÑʯ÷87¨¼º|Tê¸ÙVlãÃÙŽ|­bdd­ç +`ÅW©VùÍ=/׿hGÆðéPw ›Óê3¯$Õçp¢z˜Iƒ‹®Žd‚ׯH#é3z§ÖIþåÖSãX…­ É„Y¬áÊL´$Ï=SëÅé›9d dßDry€(P8ÆÐ§á×Rãêúƒ­aÁ²à÷k…A˜í“WËCµø +¨(ËÛä¡Àº:uI,22ây=¾¿›+½#Søº¾M þ®±ï@ç˯àÒÜ‹îP8ϯz-g^:ŸmŽVì&@LÜj“ce\µ\D_\Mkœ‰‘‚I./¾d¬E¢…϶ÁÉG8ij?f}]G½Éqnih£+жÌ,%R!« ëë‰Gýú'iy”-Tø:U%5ôÓÞ9×Âý*ê¸'Ü rÞéºäéOÙ€ûЧ“¯?ÒQûF +®ôͨØà>bÔ¿ý¾h‰ÏmÙØÛmæO›gè)©ü8·ý9x>ã#Ów4*2@µ‚ëµáLó]0Û:¨ÉŠ*}..ý±¡îã¢XnpÇïT™Åë²Bž‰jzWìoçDÙyIÍvryõÝí½6~jô°z轇R…¹Ht¨Šc¶æÄÕñÏPMò{7Ë6L¨zâ¶C9«ïÏưì âê¶ý”:ä’«' q¬(ˆÒƒ LáÙÁ “äFþ`ǯ‹2ÔrН»fõC+øû¸¬r¶GTz€öEŽ' ‹©Üy€¸ƒ,ªCŒt =¬£Ù‰ +*f–2m‡77Y€$3‰ÕÑú +zÅ•^†Aås)éù§ñû4¹•¶³.‰ˆ ¿w-Ò¸èÞ©á{_Ô|ÚíÊ­ÑÓh.QmWµˆœ2 +Z@ +oUüñ¡³ùN$?4ò´ Òa v{YãÏ¡©ÁÇøÛ¥HÉ‘Ÿj‚ôSD'‹ž”‡ÈIëGóŸ3r«žðN˜Sº$ô/ÑÃW X0êݱŠB˜ä{,û+F¸ôÈ’‘Ûs*èˆÖâ®$ù0w'½çhS/ÕPÕ ÊÙ\Ý<ŠGd(ε0>ìÕÒȇï鬼~;Ùc1ž\zÅÒÝ~$P÷[LÈØøHÍŠù½?KZЦx2É ŽLóTùè¶ %FobvŠUíƒqÌÅéþòˆË1ã#ì*0|#s&”ù`šÿÃoáÏs~Ð4¾b†ån†eëLÿvDHžT'ïžLÂQ*Ž·¹þ>±—&.AܤׯqžâƒüŸAlªƒ/­›û‰Ðq6DDÚ{땊%§OX[Õ$­BÑþ+TM­ˆZYI;õ!•…Å­•5¢ù1• D/­«x”Å¡EJéëçÖ¥4ü¢G„º«é{ôN’«×âñ¬U ±¹ü¡3á^£çÇ]¢>ö°ÓF ¯±5¹må\š»†jz…Ù8Ri:}¥ÂÿŽ­ ¤±d™#gx×àª^Ⱦ™œ€ô‚²ª?Þ0Põì…¦=§63`íðÐÔ›fø1&¹Káæ2óÅüú]—â½Çå”Ù„w<Ý€;p…(Quïø_+Z¾m‡¶¾²Ä8ƾ“¡RkˆŽ1Q¾ïùÜ£[Òm¥—ò d [²æ3ñé=>‡´²¢Ô¤Ê’O­^ü˜.ɸó‹Î# +ÙL,-óÔ};øN‰Oª•dÃ!ð¥_$Ê~+ýqÀüÉgൎEyYö‡ïîÃ#\MDÿ+>UC??Ì—R1k]ȶMQìü,BÁý”ëŠoO$µÑ•eQ™êˆÚ: ;Žl„Íê·nÑÒUUëœú?Ö—}œKGe±»—Vg¨¹Mu:SΑÏÀ£õæ üm#*ØÜ7œøFBÒ´â-²)¶•œž¿ÜR\ba›ÑØ–Äï N¦Ön¤½°ï°œïô8rh«W)ªs»ñ¥¦Úƒ…%¹(a¶AË5½ÈîJ8û @•P2`Æ +£ïÈ#ž3´cÔìŒqŽÇ×ã)¸V*aä™÷Êd]&|I”]<Ÿ˜•ãÁ“4f¼Û~jÊU¡¯ݘ7Fgc§LÁŽØÞCÂ!*©\…% å‹[U€Fù+†¥JÚIfΓ3K¦û<…1¹;BL…ÏqØ´XûîÉ£ûO‚p?Ò¬h"|qBDäÜñ6ýðˆ$ÂX­z¸¯é +é­'¬&óÉ~ìêj1p”áYÒœn5§Rå9¦7|†JÕÃ675õ@¸þŠà£K“æë)0f"Je¿ö¡½háHƒ~ßCE‚&e¸0DιT ô-AaZ©#rí3fýÙfËùú:¬’Âôy`=yÏF¬x€îͯZ‰ZH*3Ð=kã3èÂJ#¡ý=K¯MÔë Ñf!DêºêÍ@ôôkMÛŽË’w±á4Q霌–¤è¤á©z?)Â0~ û÷ÏçƒãK}q²9úDav)w”I´âH­¿É‡æ\IæIóG/~OɆþ¡)¤¶íªO0Oÿñðl‰ýdeNû¡ƒ{GsÜ?^ßýçEšÇuŸ›ÅåÚÝÕ»—wBþç™ÎóØ6GwqßÚ<¿„?ŸœíbøýQ€hÓ£”¢˜z]J×KÔjT¼%Žǰ§oÕR¢Ñûês†´·YR×^Íc]:Å'„9w¯e»”K²z£ÌBêWÚLJ~Þ…|ÕÛíÅÅò“Àû–‘ëëÙË%GŸ[ºæ€jJÑKE1‡³ ïëùIqØ…o‘ÒIb‡úgðIY(òKý2½ˆÏÞŸg—‰”çÝT+U¹"ïìaÆà|“²OU•ñ?wg‚©>£Ò½ý¨:ìËÈÌö˜’îWãî¬;ŽR¬Å‘ªTeC¶ýâ,_ªãl»ÒÕÿHmäC«Š›=ª’n­üÑ}mpž­å×ÏHYiJÉÑL³J”"„c5•"7õ&‡ån £”Oó\_ãóŽõ½ÕZá^4*:…æ1g^Ðó©êÕ’pzÖ½@_„ï='Èzˆe=˜ú׵ʺÂÞ.e{·œHcM0P({9Í—»ORƒf¯KeÓñœö~ÓUà—ÍI§ÝŸfƒrñveV‰ãx±w[ŒW”—$ŸÑ¸æÜ~ #«™%|úBN‹×&oà Eçñ3ù†¿íJóXnuŒ¡@ºH4Àe¬ñÁåsnï7È™>’’×!WØò)ùÓšo&+sàRKG1¹Ÿ~ÁÉ›ÁXz…^ÏÂú›N8cÅœ%¯,…ìŸ öâ&LIq–þ/;%ïxÜ;1Ú ‘ϱùÉIÍb…ñŒÉ¢ú°mæ3HBw¢òa*Á[¿7Ââà’I ã/Rk5¶J\‘JÿÔ¹—Éc_tX+㣋«üÁŽI¼­†%Ê%BV/nسC´­…ÚÏá?ªqÆd¦1ø&Çç{ +h¡¾“¥ºï³…JqÁXcvg´Âx>,TñãnA)Å…Wz®4»sê¨%ŽüCŠ&‘^¿!Gñ‚oóà`ŒøNoõ0ÍpŽÔxJeÖûÌXíKN: í¿nUSN)˜OoŸûqbÉ6§l?¶p¿yä>ah Þƒ/‹%åØB}MÈ[ìtgÀIê±6èåŒõÅVw³Ktɸ;.ï«iý>"ÙÚôî[!óä/W¤AÈÝ +˜á`®¾oñ¹Å…õÿò@þÿÿO˜Ù‚€; Äù2|9[ +endstream +endobj +369 0 obj +<< +/Type/FontDescriptor +/CapHeight 850 +/Ascent 850 +/Descent -200 +/FontBBox[-301 -250 1164 946] +/FontName/NXNDGO+CMBX10 +/ItalicAngle 0 +/StemV 114 +/FontFile 368 0 R +/Flags 4 +>> +endobj +368 0 obj +<< +/Filter[/FlateDecode] +/Length1 721 +/Length2 5063 +/Length3 533 +/Length 5612 +>> +stream +xÚí’UT\Û–† œàÁ)‚îîî®EQ…) +w NA‚‚\ƒ . œP@ Ášsν·GŸÛ/=ú­Gï½ÖœóßÿüÖ\‹I߈WÁîQ…{ yø$J:Šæ@€¨ˆÇƦ„€€.pe" ¨Bî÷Ÿ¤ˆ°$P  ÷ôC¸89#œJ\¨Ä +î„ äÐ!!î÷&` `»@~|€ 0üã/€!Ä ‚ð8òáá ]ÀH€ÄÉÅÿ, ( öWÚÑÛóŸ%Âëž Àù')àžÓîó8B xüºðû~{šÿ1ØÃõwsUoLäþ‡ýŸÃú·:ÈÝæ÷ÜÝÓ AtàŽ„Çߥf¿àá°k£Á\À +N0øWÊÅKÕÅâ¨ï‚;  ˜äÏ<ÄÃñï÷ƒû€_×\WYMûÇúWUäâ4öóü—ïò?cÿŒïǃpñXïç+p/¼ÿ¹²ù[70ÜÑÅà `„y8‚ŽÿJü;•¢"Ü÷9¯Ð½¯ Èý=H‹þW¥‰‡ËSoˆ†2@ЉŠÿ™{#äŸ7á~ËÿŒ¡.÷‚@|!`¼#ÎÎEJ ¥];gؗ벘Ð0i±[˜ÌbâVKæZ@-Çù ÜR£^Ûµi£ÝÎiåÕݧ`MqÞ°¬OI_¥÷4;GR#ü˜âËë^מ.d _çâëÚHZ'ZL{å2’¤-ù»ˆ.ÍÍÑ9‚º×õœ1Íz¬úsò ­ÉÓ§e5`ƒWŠÌá#=McÊîK£ KÙw1º¾Únâ¯0T𠘼]x=Tå1•18؆Ê §R:¨f<î)\Gè=¯Þ䬯x·”чa¤Òc›Å|«±†šañ¢4ãí0{¨»8\»KV²>m›¹ö:EÉz"îÛHc¤úw-.rÕÙØAÔe¿ m¸é.²Ø·ž‰|Ö¶W$CÎØržf°£u3ô\R“žm͹uRØDÏÕœÌwpjöàm%.¦u_ÉêaÔ‰™®<׆ºÔþÝÍv–â„£m!!·£ü§Þ_£š2/ßháù q5È›8ç4N—‡Ë|~¢õšÁŒ…Îþ͈"_•+Qàf ›—¶ÿøÄ%~¸(Ô‚ºTÁ¡æyx¹jRuöÀ¨É^È·÷«>.T}.(¶ TŸƒ“$´2Šõ§ÕîW»÷üX°Á•€/hùãDZO„Ý”©ždɽ¥¹Î¾xtñ„©0‡Hc‘n´(p¶À¾d€O‚[yÖ´3ëÓÙIY±{ª™ 2âk~¦âój|Õ”J|¯‚WBâ#®äU=E[¿ÐdJ‚W¶ƒ©ËÃv¦èS±H¦+ÃïT14vF—.† ¨•m€(Ù]Ì65 +–£ßÛ×Ò2äü6îwÝrâ{Óé¯ÔBR3Ê2@Q0Ôžá(åÔ¹¿ŒQXLâ}_‰ÜRmów_'ÔC›D3ÙB”8J»Ìõë‘G×ä¼ Ýv#ùÛh¢l­Ú˜­ÈAÚ iÒKbj± 5ɻլ}æ?Ü-}¨Ö +fÂu¢7Ε¸!¶ûÓ# ²Z¯xeò~°8¥É þ<¥2À¦å¶¥ÚÅodxÊäN6]wáI|jû;cÊ'{ÕV°}|ìŒó/±ð_"¯Þm…‚DƒH_PlÐÜÊ]¿eµU(Zó$&Ò˜á/Ø`ni¸@½^etxãüe.ªWk‡˜.Ó2ißfn3•m#?¡²Ú2Ý–!)pr›!L!„ýÎrPQÍ)‹S“ÜÚ1‚T3d.õà[¡½Q”¢ýˆŸ¿¥ì|¬2”,ZHð`³üfc•§(40ïl«‡ äbÕЫ7UŒa:p;´ð:ÂnJˆïnUßg±˜¶–…Q.y3ÈA=ª£ I°†_c4ÑVßëé-WëÏ ÀEÂ(!“k_mS#pÎm¾ýÉ×þpäxÆþ³¶N¤÷êCÚùY×2Í-ˆœÈJö1Î{bÒ +ùrÑuŒ—p¶ ižœ¾mÏf?˜ƒè¯ºÈϽR…‘”f¼¾qfëG‹ÈïMqŠ¿~Ñ +ÅßžvO`+|üjí¦ÁË£d ‹Ãé;ã>•£e€ífœ–ñëú¢Ûªˆ„žófp˜Ç¹w;©Yè…ÿ\ŒNãʱ{tÎãÞ€,éh ø{Í.wíAÚJF ;͉¡‹Ûâdb +…‡ÏÝÐð|ÏÜq~P«2Ô3õ©Ì£°Þrö åóZ +õâpÂ$24QÄä3•Î:{Y}¨æZƒ£¦y©Oá‹w7,‹1{·fº¯<3Ï„î^„„>!Šêž`«®Ô 4%­ÊeM*7Œ¢¶ Þ,]/QŠ”h'<éÕhùÒ@Ÿä8Dq«ÿ žûÜUí–D Lå0´Ÿ°¶}V§=±Õ× ëxl8®e Í\`Yv§¹ã{.ÃRÑ´ô•AÌ=L-Ý" >í¤zı¹¿ÿ7{3’WCºý¡’©7Qá´áÀÂÎäjŽ &f¤l¸ ÓÏMu#Ü- +_Ö"Ãsiùw{E^rÓ#üÙÜÓïžÁEzи ƒ½».öÅr·ßš}G‘ý»nÙu¥2‘=’ç|ÀÒ‘ŽWr‹$dXºæX(Är•³üÙÞš‹å¸Ý ¦N<ÜuȘ÷ã’”wÅõc´.ØÔàXË€¢HA´Zi¡©ÄqMª×Ûïdx8žº58¶ý5Mæ—óÒì)…zø'`6xn’^C!)ŸœI +Ü*š¼öáSÍ>ÚÈ˜áø’k…ÿè±V@ÁÊÑ× DcŽ*p;ÿì®7=×δ#öÌgÍöýVØ'|ˆñ(ܫơ}&ÿÀ'ty-gãœù†m=zÛÑ|žP²c íœV½f6ª˜Ž’6%h¡¶^ƒ)E×kÿã.%±([™ÒRÌçµCÖþƒÌ«zA­0)£ÛV%IÔS^-Š–¿¤BGuµ$M…}ˆÝû™³ŠÓÓ&ÞŒ#>€´ÙHW¦“õ /á];©k,b$²}—˜{R毦tÖýZÂÑ/¤úiUÅìÌÖ_SºMHøY+üÜ{…w¿-1/e«^ZWŠëC¶‹iÑT¿Ú!»´_‘§åbëÌ`̶ù¾áãj—Ho뛆c§/EaUî˜jØÃJñ»îF,À ÞÞVù­þ#µN§O·xÓ¢?o+ŽãÔW²¢¥„žæå?‚ÆÊDšiº»±€Ceh3à¥y"Ùð:óBx›É÷³tV‡'8¤³–j«Â´w!>¿c¤¸B ë;¿„Î,çݨàFöðs—NËízË«ä™%³/Q¹ítHÛ+Ÿ1àùÉqÛûÞüdchú\¯‰UëÓ€B]$ó£$WØ+Lä˜ÌUÔ_àËHA~’Τ~,ãX…´‘Ð4´´>uÉÐÆÛ¨kœÈ;ôv– ÂGÇ’SÑ‚£Oƒªe®ƒ S%±›–¯M¦Š*΋=†Ý3sÌ{×ÄíkŽ`!^ä&ú šy¬AÙµ/ËöbBøqPQBØ_j‘y¥ÏÈÇÙû±*c¹àÍyƹe»9UçÚ?ßQ^L-yŽ¢irYËAA"ö:Qìð´ëÕgÝ0Tƒv×'n¾‰‡‡x3©0ÝÃj2‰KóˆQÆ:Ru±°9ÊÏ‹±¡*‹ÇU4¡z{Òo[þ#Aâ|bÈ +÷äí=dy¼Òr_Ár¡Ï¯Úeù¿+¤QEdAl,RbŠÊãbDÌ ;…ˆ<àN^xeMå¤ðÓf¿ôk› EÍÔ´”WìÄÖM«SfŠ:ÑÞfN$³ý#€¹«™å_ì¤ÃSد»Ö¬J®õWÎòÛÓDiŠ ó3m7¤ Qâ N¹ËJåôƒ@÷v&•ñ°ˆ„BΡ×c@ìÞògú×' Û¹…¤Ó•u‰]|Ã?Útå÷i“Þ"^Š’lp}ü±Î"„ûÑ„A Ka/ #u¼6؆˜Þ ŽRwWHî’Õã%µ®Õ/6±¨0Ê*M|YŒ~Ž>Zƒœ+v|›»ÄV£ÜXh–m”ÎÌx?T~§ºÏ©°i©˜{Ö(YáŠû4YmŽ üF66 aš`o0I‹ò““ê$á¤îZí%ˆ+ôIÞÐüT¶fÓSQøEuéê73Kz'–µ/À3ì MSKùéf"@±åoÀ¿!õ(”[Ejld!†Z\p¦ÐÙ› U +–µ"9Àªã¯—>yXÕ,O𴆔‘üp­È"ó',”¹>h}ÂÉQèÑdÓIîr¼05P÷ì[h¬53øÅ;ÿz KχÊÝyåþÐ;bdçÈf-—È5 4§üð`6:þšV—puÍ*N0»ØŸaI9œZ;‰c+TPO3Ï´YR?#5waãé¯NgF…òÿ(|"ïÂýîÙòh Cµ1·Š„C²—ïM/RhnIS¹kLãöfÐÓ¾úÃ\òTmJ+tM+hPÊ;×¶XºŸ›ì´½8ÂTGÖ7ë= ‡=³>E+A~5õçÞj´'å\|éº-»\ëM/€¶7h­¾òa¥¯ |%x×ókž3¹/«ý.£eÂ^/TÜ®ù ðz÷y +”XgŸ_ÙìÎlÏGb³ÜÅ‚VnöýVÔ?RÓ™#›ªôý×T'Ç+µý“…ïªÀ\§FB¼SÈÎËѫӮ*ëÔc«ÚOÐùÓò)V¸K´Í«²ëT‘W9Q˜M/6u‰ÍC&JGž?‘'Îkhþ!_œ S"¯$0Ä>0€ ˜å)¢ï*J“OÖ0x<ãq;ÚtµÑ^ÉkYº™È®2¸ÏoÇRСðNĹjtÝÞnMØ»°‡Ã%ï© Þ”ïF=DNÍØÝ!ZD®uË08}WûÍ1©ôìÈ3¥ÔCüG$—U5Þà`6½6œ^!G 6>5ÒUEÎug´ÂYWØtHÒÀºy4W8W­¼ÊÇá¥iìsiÅhœŽ+;$vT¯¨äjÄ·†U¼Ø™µKGœÕxÞ˜8Ý–˜äLñ­b/LÂXeð˧™ä[ñt×øû û‡(øöµé'Ù'–ÊTY‘Í)¡—¯ò5i^7Ö}ùpV7§süIˆAÙîd¿Ï‡v¥óbùZ…‡àɄχ,±>yˆ¸¸JÕ)\G¢m`÷"ÎÄiþ+š¿Ãª›î‰â~_­kUrÑ­˜%UJé.ôÝ©Ìrsr=ÎÙã»-ÏGÝTóœ|ŒŒ’)„—r6øý<ð낈¸ƒýÍ ¶¤kH +] ïÀ%ó)ŽƒP*éê¥s »Ÿ$c}ßÉ¿ª]dö{®ê9ӃÛI¨kPò¿¡CLñùÛÃýsGdé{|OéÆM•0¾g¹Ã‡¡Hãö­VAßÏ?¢̾”žW·’¶ˆ_™ÜD†kz„dörˆ®” Oð—5V¼ü\£ÄtZÙn­¼0ü=èÁr÷šQk®ï@Zá¦#Fº;Ih‘†Ïw²Í-Ðú’s7Ö ÆË-ÚèË`‡]KS¤äAÄÙäb¿Õ[îu®9ãE÷œ•všRãœ[Dh×2íbI¿=ç/¿ôšŠzÊ8ÔêÐÚSGgÖ\;q¬24*3܈ݘ=½I‘Χßç¬,@xdÕ¿ýÛ¦ûÎÇ…7 ªFmi 2ag-Cbé¤E°è÷ZËS—ËæŒýl¨j¡áúÄ:ÛôzEúûµãÕÁ0|q™NÓyÔ'ùï€â w<¹cæCn,î¦;î<Ϋç¾Öo³#Ü­h$)¨fær@èB¯£Jú9é«Ã×”e'$±YUSËŠÈW6.‡GµöDä2‡tÓÌང1û6 Õ@!ÞGŒ©5AI-&¤ò>A¡Ù=À’ñØ©m±ò‚â3óŸ·ÑEÞ1À€ëÎIç´^Gþ*Øê>øfyt[׌øUA)w5Eïy[^^Ÿ²š Ë#:Ž{£¾˜T÷‹‰mm Íbä|€Fÿê@–‰ƒq,ø’ìØÏªø’øÛ„;\…m:Š j'W#‰§*Í:oÔ©7ÔUqÍIAÝÊO=mâíÒRÛì;«HïqÖô<ü}ºgeµ –â=Êk/1 ¨ül©¡Ê’úv+¸ÄM ¢76ê;éþ·LζDžn¶Öó^òk‰gМ8çK‹'jϪžFš)eT±øEpÎ|yrhŽhΗ›kTc½êfê6èÅ6&ºGÕ)8LÛëfWìkóÚqÕ¨³8Vnñ8Kø‰§Éôš`öåWPIû(¤c +b&ú¢èœ,§t-G{˜Èõ´ê‡n>ÎoSc[ v8 ÝôFKœ}ºÚkNLº[ßFGïsã¶ÎèëÑÃr7àç1˜”èþ.(Òp* S|Bú½˜‚ö²˜"Zn‰8ÂVmšå%~—­$%b¯ÂuPtœ°x¦ ü_>xÿo𠃀H¸;ᆇ÷Ñ[• +endstream +endobj +1 0 obj +<< +/Creator( TeX output 2008.12.30:1746) +/Producer(dvipdfm 0.13.2c, Copyright \251 1998, by Mark A. Wicks) +/CreationDate(D:20081230174624-05'00') +>> +endobj +5 0 obj +<< +/Type/Page +/Resources 6 0 R +/Contents[23 0 R 4 0 R 24 0 R 25 0 R] +/Parent 374 0 R +>> +endobj +27 0 obj +<< +/Type/Page +/Resources 28 0 R +/Contents[23 0 R 4 0 R 32 0 R 25 0 R] +/Parent 374 0 R +>> +endobj +34 0 obj +<< +/Type/Page +/Resources 35 0 R +/Contents[23 0 R 4 0 R 48 0 R 25 0 R] +/Parent 374 0 R +>> +endobj +50 0 obj +<< +/Type/Page +/Resources 51 0 R +/Contents[23 0 R 4 0 R 52 0 R 25 0 R] +/Parent 375 0 R +>> +endobj +54 0 obj +<< +/Type/Page +/Resources 55 0 R +/Contents[23 0 R 4 0 R 56 0 R 25 0 R] +/Parent 375 0 R +>> +endobj +375 0 obj +<< +/Type/Pages +/Count 2 +/Kids[50 0 R 54 0 R] +/Parent 374 0 R +>> +endobj +374 0 obj +<< +/Type/Pages +/Count 5 +/Kids[5 0 R 27 0 R 34 0 R 375 0 R] +/Parent 373 0 R +>> +endobj +58 0 obj +<< +/Type/Page +/Resources 59 0 R +/Contents[23 0 R 4 0 R 60 0 R 25 0 R] +/Parent 376 0 R +>> +endobj +62 0 obj +<< +/Type/Page +/Resources 63 0 R +/Contents[23 0 R 4 0 R 64 0 R 25 0 R] +/Parent 376 0 R +>> +endobj +66 0 obj +<< +/Type/Page +/Resources 67 0 R +/Contents[23 0 R 4 0 R 68 0 R 25 0 R] +/Parent 376 0 R +>> +endobj +70 0 obj +<< +/Type/Page +/Resources 71 0 R +/Contents[23 0 R 4 0 R 72 0 R 25 0 R] +/Parent 377 0 R +>> +endobj +74 0 obj +<< +/Type/Page +/Resources 75 0 R +/Contents[23 0 R 4 0 R 76 0 R 25 0 R] +/Parent 377 0 R +>> +endobj +377 0 obj +<< +/Type/Pages +/Count 2 +/Kids[70 0 R 74 0 R] +/Parent 376 0 R +>> +endobj +376 0 obj +<< +/Type/Pages +/Count 5 +/Kids[58 0 R 62 0 R 66 0 R 377 0 R] +/Parent 373 0 R +>> +endobj +78 0 obj +<< +/Type/Page +/Resources 79 0 R +/Contents[23 0 R 4 0 R 80 0 R 25 0 R] +/Parent 378 0 R +>> +endobj +82 0 obj +<< +/Type/Page +/Resources 83 0 R +/Contents[23 0 R 4 0 R 84 0 R 25 0 R] +/Parent 378 0 R +>> +endobj +86 0 obj +<< +/Type/Page +/Resources 87 0 R +/Contents[23 0 R 4 0 R 88 0 R 25 0 R] +/Parent 378 0 R +>> +endobj +90 0 obj +<< +/Type/Page +/Resources 91 0 R +/Contents[23 0 R 4 0 R 92 0 R 25 0 R] +/Parent 379 0 R +>> +endobj +94 0 obj +<< +/Type/Page +/Resources 95 0 R +/Contents[23 0 R 4 0 R 96 0 R 25 0 R] +/Parent 379 0 R +>> +endobj +379 0 obj +<< +/Type/Pages +/Count 2 +/Kids[90 0 R 94 0 R] +/Parent 378 0 R +>> +endobj +378 0 obj +<< +/Type/Pages +/Count 5 +/Kids[78 0 R 82 0 R 86 0 R 379 0 R] +/Parent 373 0 R +>> +endobj +98 0 obj +<< +/Type/Page +/Resources 99 0 R +/Contents[23 0 R 4 0 R 100 0 R 25 0 R] +/Parent 380 0 R +>> +endobj +102 0 obj +<< +/Type/Page +/Resources 103 0 R +/Contents[23 0 R 4 0 R 104 0 R 25 0 R] +/Parent 380 0 R +>> +endobj +106 0 obj +<< +/Type/Page +/Resources 107 0 R +/Contents[23 0 R 4 0 R 108 0 R 25 0 R] +/Parent 380 0 R +>> +endobj +110 0 obj +<< +/Type/Page +/Resources 111 0 R +/Contents[23 0 R 4 0 R 112 0 R 25 0 R] +/Parent 381 0 R +>> +endobj +114 0 obj +<< +/Type/Page +/Resources 115 0 R +/Contents[23 0 R 4 0 R 116 0 R 25 0 R] +/Parent 381 0 R +>> +endobj +381 0 obj +<< +/Type/Pages +/Count 2 +/Kids[110 0 R 114 0 R] +/Parent 380 0 R +>> +endobj +380 0 obj +<< +/Type/Pages +/Count 5 +/Kids[98 0 R 102 0 R 106 0 R 381 0 R] +/Parent 373 0 R +>> +endobj +373 0 obj +<< +/Type/Pages +/Count 20 +/Kids[374 0 R 376 0 R 378 0 R 380 0 R] +/Parent 3 0 R +>> +endobj +118 0 obj +<< +/Type/Page +/Resources 119 0 R +/Contents[23 0 R 4 0 R 120 0 R 25 0 R] +/Parent 383 0 R +>> +endobj +122 0 obj +<< +/Type/Page +/Resources 123 0 R +/Contents[23 0 R 4 0 R 124 0 R 25 0 R] +/Parent 383 0 R +>> +endobj +126 0 obj +<< +/Type/Page +/Resources 127 0 R +/Contents[23 0 R 4 0 R 128 0 R 25 0 R] +/Parent 383 0 R +>> +endobj +130 0 obj +<< +/Type/Page +/Resources 131 0 R +/Contents[23 0 R 4 0 R 132 0 R 25 0 R] +/Parent 384 0 R +>> +endobj +134 0 obj +<< +/Type/Page +/Resources 135 0 R +/Contents[23 0 R 4 0 R 136 0 R 25 0 R] +/Parent 384 0 R +>> +endobj +384 0 obj +<< +/Type/Pages +/Count 2 +/Kids[130 0 R 134 0 R] +/Parent 383 0 R +>> +endobj +383 0 obj +<< +/Type/Pages +/Count 5 +/Kids[118 0 R 122 0 R 126 0 R 384 0 R] +/Parent 382 0 R +>> +endobj +138 0 obj +<< +/Type/Page +/Resources 139 0 R +/Contents[23 0 R 4 0 R 140 0 R 25 0 R] +/Parent 385 0 R +>> +endobj +142 0 obj +<< +/Type/Page +/Resources 143 0 R +/Contents[23 0 R 4 0 R 144 0 R 25 0 R] +/Parent 385 0 R +>> +endobj +146 0 obj +<< +/Type/Page +/Resources 147 0 R +/Contents[23 0 R 4 0 R 148 0 R 25 0 R] +/Parent 385 0 R +>> +endobj +150 0 obj +<< +/Type/Page +/Resources 151 0 R +/Contents[23 0 R 4 0 R 152 0 R 25 0 R] +/Parent 386 0 R +>> +endobj +154 0 obj +<< +/Type/Page +/Resources 155 0 R +/Contents[23 0 R 4 0 R 156 0 R 25 0 R] +/Parent 386 0 R +>> +endobj +386 0 obj +<< +/Type/Pages +/Count 2 +/Kids[150 0 R 154 0 R] +/Parent 385 0 R +>> +endobj +385 0 obj +<< +/Type/Pages +/Count 5 +/Kids[138 0 R 142 0 R 146 0 R 386 0 R] +/Parent 382 0 R +>> +endobj +158 0 obj +<< +/Type/Page +/Resources 159 0 R +/Contents[23 0 R 4 0 R 160 0 R 25 0 R] +/Parent 387 0 R +>> +endobj +162 0 obj +<< +/Type/Page +/Resources 163 0 R +/Contents[23 0 R 4 0 R 164 0 R 25 0 R] +/Parent 387 0 R +>> +endobj +166 0 obj +<< +/Type/Page +/Resources 167 0 R +/Contents[23 0 R 4 0 R 168 0 R 25 0 R] +/Parent 387 0 R +>> +endobj +170 0 obj +<< +/Type/Page +/Resources 171 0 R +/Contents[23 0 R 4 0 R 172 0 R 25 0 R] +/Parent 388 0 R +>> +endobj +174 0 obj +<< +/Type/Page +/Resources 175 0 R +/Contents[23 0 R 4 0 R 176 0 R 25 0 R] +/Parent 388 0 R +>> +endobj +388 0 obj +<< +/Type/Pages +/Count 2 +/Kids[170 0 R 174 0 R] +/Parent 387 0 R +>> +endobj +387 0 obj +<< +/Type/Pages +/Count 5 +/Kids[158 0 R 162 0 R 166 0 R 388 0 R] +/Parent 382 0 R +>> +endobj +178 0 obj +<< +/Type/Page +/Resources 179 0 R +/Contents[23 0 R 4 0 R 180 0 R 25 0 R] +/Parent 389 0 R +>> +endobj +182 0 obj +<< +/Type/Page +/Resources 183 0 R +/Contents[23 0 R 4 0 R 184 0 R 25 0 R] +/Parent 390 0 R +>> +endobj +186 0 obj +<< +/Type/Page +/Resources 187 0 R +/Contents[23 0 R 4 0 R 188 0 R 25 0 R] +/Parent 390 0 R +>> +endobj +390 0 obj +<< +/Type/Pages +/Count 2 +/Kids[182 0 R 186 0 R] +/Parent 389 0 R +>> +endobj +190 0 obj +<< +/Type/Page +/Resources 191 0 R +/Contents[23 0 R 4 0 R 192 0 R 25 0 R] +/Parent 389 0 R +>> +endobj +194 0 obj +<< +/Type/Page +/Resources 195 0 R +/Contents[23 0 R 4 0 R 196 0 R 25 0 R] +/Parent 391 0 R +>> +endobj +198 0 obj +<< +/Type/Page +/Resources 199 0 R +/Contents[23 0 R 4 0 R 200 0 R 25 0 R] +/Parent 391 0 R +>> +endobj +391 0 obj +<< +/Type/Pages +/Count 2 +/Kids[194 0 R 198 0 R] +/Parent 389 0 R +>> +endobj +389 0 obj +<< +/Type/Pages +/Count 6 +/Kids[178 0 R 390 0 R 190 0 R 391 0 R] +/Parent 382 0 R +>> +endobj +382 0 obj +<< +/Type/Pages +/Count 21 +/Kids[383 0 R 385 0 R 387 0 R 389 0 R] +/Parent 3 0 R +>> +endobj +202 0 obj +<< +/Type/Page +/Resources 203 0 R +/Contents[23 0 R 4 0 R 204 0 R 25 0 R] +/Parent 393 0 R +>> +endobj +206 0 obj +<< +/Type/Page +/Resources 207 0 R +/Contents[23 0 R 4 0 R 208 0 R 25 0 R] +/Parent 393 0 R +>> +endobj +210 0 obj +<< +/Type/Page +/Resources 211 0 R +/Contents[23 0 R 4 0 R 212 0 R 25 0 R] +/Parent 393 0 R +>> +endobj +214 0 obj +<< +/Type/Page +/Resources 215 0 R +/Contents[23 0 R 4 0 R 216 0 R 25 0 R] +/Parent 394 0 R +>> +endobj +218 0 obj +<< +/Type/Page +/Resources 219 0 R +/Contents[23 0 R 4 0 R 220 0 R 25 0 R] +/Parent 394 0 R +>> +endobj +394 0 obj +<< +/Type/Pages +/Count 2 +/Kids[214 0 R 218 0 R] +/Parent 393 0 R +>> +endobj +393 0 obj +<< +/Type/Pages +/Count 5 +/Kids[202 0 R 206 0 R 210 0 R 394 0 R] +/Parent 392 0 R +>> +endobj +222 0 obj +<< +/Type/Page +/Resources 223 0 R +/Contents[23 0 R 4 0 R 224 0 R 25 0 R] +/Parent 395 0 R +>> +endobj +226 0 obj +<< +/Type/Page +/Resources 227 0 R +/Contents[23 0 R 4 0 R 228 0 R 25 0 R] +/Parent 395 0 R +>> +endobj +230 0 obj +<< +/Type/Page +/Resources 231 0 R +/Contents[23 0 R 4 0 R 232 0 R 25 0 R] +/Parent 395 0 R +>> +endobj +234 0 obj +<< +/Type/Page +/Resources 235 0 R +/Contents[23 0 R 4 0 R 236 0 R 25 0 R] +/Parent 396 0 R +>> +endobj +238 0 obj +<< +/Type/Page +/Resources 239 0 R +/Contents[23 0 R 4 0 R 240 0 R 25 0 R] +/Parent 396 0 R +>> +endobj +396 0 obj +<< +/Type/Pages +/Count 2 +/Kids[234 0 R 238 0 R] +/Parent 395 0 R +>> +endobj +395 0 obj +<< +/Type/Pages +/Count 5 +/Kids[222 0 R 226 0 R 230 0 R 396 0 R] +/Parent 392 0 R +>> +endobj +242 0 obj +<< +/Type/Page +/Resources 243 0 R +/Contents[23 0 R 4 0 R 244 0 R 25 0 R] +/Parent 397 0 R +>> +endobj +246 0 obj +<< +/Type/Page +/Resources 247 0 R +/Contents[23 0 R 4 0 R 248 0 R 25 0 R] +/Parent 397 0 R +>> +endobj +250 0 obj +<< +/Type/Page +/Resources 251 0 R +/Contents[23 0 R 4 0 R 252 0 R 25 0 R] +/Parent 397 0 R +>> +endobj +254 0 obj +<< +/Type/Page +/Resources 255 0 R +/Contents[23 0 R 4 0 R 256 0 R 25 0 R] +/Parent 398 0 R +>> +endobj +258 0 obj +<< +/Type/Page +/Resources 259 0 R +/Contents[23 0 R 4 0 R 260 0 R 25 0 R] +/Parent 398 0 R +>> +endobj +398 0 obj +<< +/Type/Pages +/Count 2 +/Kids[254 0 R 258 0 R] +/Parent 397 0 R +>> +endobj +397 0 obj +<< +/Type/Pages +/Count 5 +/Kids[242 0 R 246 0 R 250 0 R 398 0 R] +/Parent 392 0 R +>> +endobj +262 0 obj +<< +/Type/Page +/Resources 263 0 R +/Contents[23 0 R 4 0 R 264 0 R 25 0 R] +/Parent 399 0 R +>> +endobj +266 0 obj +<< +/Type/Page +/Resources 267 0 R +/Contents[23 0 R 4 0 R 268 0 R 25 0 R] +/Parent 400 0 R +>> +endobj +270 0 obj +<< +/Type/Page +/Resources 271 0 R +/Contents[23 0 R 4 0 R 272 0 R 25 0 R] +/Parent 400 0 R +>> +endobj +400 0 obj +<< +/Type/Pages +/Count 2 +/Kids[266 0 R 270 0 R] +/Parent 399 0 R +>> +endobj +274 0 obj +<< +/Type/Page +/Resources 275 0 R +/Contents[23 0 R 4 0 R 276 0 R 25 0 R] +/Parent 399 0 R +>> +endobj +278 0 obj +<< +/Type/Page +/Resources 279 0 R +/Contents[23 0 R 4 0 R 280 0 R 25 0 R] +/Parent 401 0 R +>> +endobj +282 0 obj +<< +/Type/Page +/Resources 283 0 R +/Contents[23 0 R 4 0 R 284 0 R 25 0 R] +/Parent 401 0 R +>> +endobj +401 0 obj +<< +/Type/Pages +/Count 2 +/Kids[278 0 R 282 0 R] +/Parent 399 0 R +>> +endobj +399 0 obj +<< +/Type/Pages +/Count 6 +/Kids[262 0 R 400 0 R 274 0 R 401 0 R] +/Parent 392 0 R +>> +endobj +392 0 obj +<< +/Type/Pages +/Count 21 +/Kids[393 0 R 395 0 R 397 0 R 399 0 R] +/Parent 3 0 R +>> +endobj +286 0 obj +<< +/Type/Page +/Resources 287 0 R +/Contents[23 0 R 4 0 R 288 0 R 25 0 R] +/Parent 403 0 R +>> +endobj +290 0 obj +<< +/Type/Page +/Resources 291 0 R +/Contents[23 0 R 4 0 R 292 0 R 25 0 R] +/Parent 403 0 R +>> +endobj +294 0 obj +<< +/Type/Page +/Resources 295 0 R +/Contents[23 0 R 4 0 R 296 0 R 25 0 R] +/Parent 403 0 R +>> +endobj +298 0 obj +<< +/Type/Page +/Resources 299 0 R +/Contents[23 0 R 4 0 R 300 0 R 25 0 R] +/Parent 404 0 R +>> +endobj +302 0 obj +<< +/Type/Page +/Resources 303 0 R +/Contents[23 0 R 4 0 R 304 0 R 25 0 R] +/Parent 404 0 R +>> +endobj +404 0 obj +<< +/Type/Pages +/Count 2 +/Kids[298 0 R 302 0 R] +/Parent 403 0 R +>> +endobj +403 0 obj +<< +/Type/Pages +/Count 5 +/Kids[286 0 R 290 0 R 294 0 R 404 0 R] +/Parent 402 0 R +>> +endobj +306 0 obj +<< +/Type/Page +/Resources 307 0 R +/Contents[23 0 R 4 0 R 308 0 R 25 0 R] +/Parent 405 0 R +>> +endobj +310 0 obj +<< +/Type/Page +/Resources 311 0 R +/Contents[23 0 R 4 0 R 312 0 R 25 0 R] +/Parent 405 0 R +>> +endobj +314 0 obj +<< +/Type/Page +/Resources 315 0 R +/Contents[23 0 R 4 0 R 316 0 R 25 0 R] +/Parent 405 0 R +>> +endobj +318 0 obj +<< +/Type/Page +/Resources 319 0 R +/Contents[23 0 R 4 0 R 320 0 R 25 0 R] +/Parent 406 0 R +>> +endobj +322 0 obj +<< +/Type/Page +/Resources 323 0 R +/Contents[23 0 R 4 0 R 324 0 R 25 0 R] +/Parent 406 0 R +>> +endobj +406 0 obj +<< +/Type/Pages +/Count 2 +/Kids[318 0 R 322 0 R] +/Parent 405 0 R +>> +endobj +405 0 obj +<< +/Type/Pages +/Count 5 +/Kids[306 0 R 310 0 R 314 0 R 406 0 R] +/Parent 402 0 R +>> +endobj +326 0 obj +<< +/Type/Page +/Resources 327 0 R +/Contents[23 0 R 4 0 R 328 0 R 25 0 R] +/Parent 407 0 R +>> +endobj +330 0 obj +<< +/Type/Page +/Resources 331 0 R +/Contents[23 0 R 4 0 R 332 0 R 25 0 R] +/Parent 407 0 R +>> +endobj +334 0 obj +<< +/Type/Page +/Resources 335 0 R +/Contents[23 0 R 4 0 R 336 0 R 25 0 R] +/Parent 407 0 R +>> +endobj +338 0 obj +<< +/Type/Page +/Resources 339 0 R +/Contents[23 0 R 4 0 R 340 0 R 25 0 R] +/Parent 408 0 R +>> +endobj +342 0 obj +<< +/Type/Page +/Resources 343 0 R +/Contents[23 0 R 4 0 R 344 0 R 25 0 R] +/Parent 408 0 R +>> +endobj +408 0 obj +<< +/Type/Pages +/Count 2 +/Kids[338 0 R 342 0 R] +/Parent 407 0 R +>> +endobj +407 0 obj +<< +/Type/Pages +/Count 5 +/Kids[326 0 R 330 0 R 334 0 R 408 0 R] +/Parent 402 0 R +>> +endobj +346 0 obj +<< +/Type/Page +/Resources 347 0 R +/Contents[23 0 R 4 0 R 348 0 R 25 0 R] +/Parent 409 0 R +>> +endobj +350 0 obj +<< +/Type/Page +/Resources 351 0 R +/Contents[23 0 R 4 0 R 352 0 R 25 0 R] +/Parent 410 0 R +>> +endobj +354 0 obj +<< +/Type/Page +/Resources 355 0 R +/Contents[23 0 R 4 0 R 356 0 R 25 0 R] +/Parent 410 0 R +>> +endobj +410 0 obj +<< +/Type/Pages +/Count 2 +/Kids[350 0 R 354 0 R] +/Parent 409 0 R +>> +endobj +358 0 obj +<< +/Type/Page +/Resources 359 0 R +/Contents[23 0 R 4 0 R 360 0 R 25 0 R] +/Parent 409 0 R +>> +endobj +362 0 obj +<< +/Type/Page +/Resources 363 0 R +/Contents[23 0 R 4 0 R 364 0 R 25 0 R] +/Parent 411 0 R +>> +endobj +366 0 obj +<< +/Type/Page +/Resources 367 0 R +/Contents[23 0 R 4 0 R 371 0 R 25 0 R] +/Parent 411 0 R +>> +endobj +411 0 obj +<< +/Type/Pages +/Count 2 +/Kids[362 0 R 366 0 R] +/Parent 409 0 R +>> +endobj +409 0 obj +<< +/Type/Pages +/Count 6 +/Kids[346 0 R 410 0 R 358 0 R 411 0 R] +/Parent 402 0 R +>> +endobj +402 0 obj +<< +/Type/Pages +/Count 21 +/Kids[403 0 R 405 0 R 407 0 R 409 0 R] +/Parent 3 0 R +>> +endobj +3 0 obj +<< +/Type/Pages +/Count 83 +/Kids[373 0 R 382 0 R 392 0 R 402 0 R] +/MediaBox[0 0 595 842] +>> +endobj +23 0 obj +<< +/Length 1 +>> +stream + +endstream +endobj +25 0 obj +<< +/Length 1 +>> +stream + +endstream +endobj +4 0 obj +<< +/Length 33 +>> +stream +1.00028 0 0 1.00028 72 769.82 cm +endstream +endobj +412 0 obj +<< +>> +endobj +413 0 obj +null +endobj +414 0 obj +<< +>> +endobj +2 0 obj +<< +/Type/Catalog +/Pages 3 0 R +/Outlines 412 0 R +/Threads 413 0 R +/Names 414 0 R +>> +endobj +xref +0 415 +0000000000 65535 f +0000129463 00000 n +0000142433 00000 n +0000142078 00000 n +0000142283 00000 n +0000129627 00000 n +0000006353 00000 n +0000000009 00000 n +0000075823 00000 n +0000075639 00000 n +0000000913 00000 n +0000080857 00000 n +0000080671 00000 n +0000001906 00000 n +0000085603 00000 n +0000085415 00000 n +0000002823 00000 n +0000088534 00000 n +0000088348 00000 n +0000003822 00000 n +0000097087 00000 n +0000096899 00000 n +0000004790 00000 n +0000142183 00000 n +0000005707 00000 n +0000142233 00000 n +0000006276 00000 n +0000129730 00000 n +0000007573 00000 n +0000104365 00000 n +0000104176 00000 n +0000006414 00000 n +0000007360 00000 n +0000007529 00000 n +0000129835 00000 n +0000014439 00000 n +0000007635 00000 n +0000107752 00000 n +0000107557 00000 n +0000009251 00000 n +0000010202 00000 n +0000109510 00000 n +0000109315 00000 n +0000011109 00000 n +0000012090 00000 n +0000112167 00000 n +0000111981 00000 n +0000013067 00000 n +0000013811 00000 n +0000014373 00000 n +0000129940 00000 n +0000015109 00000 n +0000014501 00000 n +0000015065 00000 n +0000130045 00000 n +0000015892 00000 n +0000015171 00000 n +0000015848 00000 n +0000130326 00000 n +0000016678 00000 n +0000015954 00000 n +0000016634 00000 n +0000130431 00000 n +0000017453 00000 n +0000016740 00000 n +0000017409 00000 n +0000130536 00000 n +0000018300 00000 n +0000017515 00000 n +0000018256 00000 n +0000130641 00000 n +0000019104 00000 n +0000018362 00000 n +0000019060 00000 n +0000130746 00000 n +0000019889 00000 n +0000019166 00000 n +0000019845 00000 n +0000131028 00000 n +0000020720 00000 n +0000019951 00000 n +0000020676 00000 n +0000131133 00000 n +0000021554 00000 n +0000020782 00000 n +0000021510 00000 n +0000131238 00000 n +0000022523 00000 n +0000021616 00000 n +0000022479 00000 n +0000131343 00000 n +0000023387 00000 n +0000022585 00000 n +0000023343 00000 n +0000131448 00000 n +0000024159 00000 n +0000023449 00000 n +0000024115 00000 n +0000131730 00000 n +0000024943 00000 n +0000024221 00000 n +0000024898 00000 n +0000131836 00000 n +0000025707 00000 n +0000025006 00000 n +0000025662 00000 n +0000131944 00000 n +0000026493 00000 n +0000025771 00000 n +0000026448 00000 n +0000132052 00000 n +0000027241 00000 n +0000026557 00000 n +0000027196 00000 n +0000132160 00000 n +0000028077 00000 n +0000027305 00000 n +0000028032 00000 n +0000132547 00000 n +0000028845 00000 n +0000028141 00000 n +0000028800 00000 n +0000132655 00000 n +0000029713 00000 n +0000028909 00000 n +0000029668 00000 n +0000132763 00000 n +0000030613 00000 n +0000029777 00000 n +0000030568 00000 n +0000132871 00000 n +0000031397 00000 n +0000030677 00000 n +0000031352 00000 n +0000132979 00000 n +0000032178 00000 n +0000031461 00000 n +0000032133 00000 n +0000133269 00000 n +0000032925 00000 n +0000032242 00000 n +0000032880 00000 n +0000133377 00000 n +0000033832 00000 n +0000032989 00000 n +0000033787 00000 n +0000133485 00000 n +0000034506 00000 n +0000033896 00000 n +0000034461 00000 n +0000133593 00000 n +0000035208 00000 n +0000034570 00000 n +0000035163 00000 n +0000133701 00000 n +0000035883 00000 n +0000035272 00000 n +0000035838 00000 n +0000133991 00000 n +0000036330 00000 n +0000035947 00000 n +0000036285 00000 n +0000134099 00000 n +0000037207 00000 n +0000036394 00000 n +0000037140 00000 n +0000134207 00000 n +0000037963 00000 n +0000037271 00000 n +0000037918 00000 n +0000134315 00000 n +0000038803 00000 n +0000038027 00000 n +0000038758 00000 n +0000134423 00000 n +0000039477 00000 n +0000038867 00000 n +0000039432 00000 n +0000134713 00000 n +0000040242 00000 n +0000039541 00000 n +0000040197 00000 n +0000134821 00000 n +0000040898 00000 n +0000040306 00000 n +0000040853 00000 n +0000134929 00000 n +0000041616 00000 n +0000040962 00000 n +0000041571 00000 n +0000135120 00000 n +0000042330 00000 n +0000041680 00000 n +0000042285 00000 n +0000135228 00000 n +0000043102 00000 n +0000042394 00000 n +0000043057 00000 n +0000135336 00000 n +0000043858 00000 n +0000043166 00000 n +0000043813 00000 n +0000135724 00000 n +0000044587 00000 n +0000043922 00000 n +0000044542 00000 n +0000135832 00000 n +0000045419 00000 n +0000044651 00000 n +0000045374 00000 n +0000135940 00000 n +0000046322 00000 n +0000045483 00000 n +0000046277 00000 n +0000136048 00000 n +0000047046 00000 n +0000046386 00000 n +0000047001 00000 n +0000136156 00000 n +0000047815 00000 n +0000047110 00000 n +0000047770 00000 n +0000136446 00000 n +0000048579 00000 n +0000047879 00000 n +0000048534 00000 n +0000136554 00000 n +0000049304 00000 n +0000048643 00000 n +0000049259 00000 n +0000136662 00000 n +0000050102 00000 n +0000049368 00000 n +0000050057 00000 n +0000136770 00000 n +0000050822 00000 n +0000050166 00000 n +0000050777 00000 n +0000136878 00000 n +0000051475 00000 n +0000050886 00000 n +0000051430 00000 n +0000137168 00000 n +0000052247 00000 n +0000051539 00000 n +0000052202 00000 n +0000137276 00000 n +0000053003 00000 n +0000052311 00000 n +0000052958 00000 n +0000137384 00000 n +0000053726 00000 n +0000053067 00000 n +0000053681 00000 n +0000137492 00000 n +0000054465 00000 n +0000053790 00000 n +0000054420 00000 n +0000137600 00000 n +0000055254 00000 n +0000054529 00000 n +0000055209 00000 n +0000137890 00000 n +0000055982 00000 n +0000055318 00000 n +0000055937 00000 n +0000137998 00000 n +0000056723 00000 n +0000056046 00000 n +0000056678 00000 n +0000138106 00000 n +0000057471 00000 n +0000056787 00000 n +0000057426 00000 n +0000138297 00000 n +0000058246 00000 n +0000057535 00000 n +0000058201 00000 n +0000138405 00000 n +0000058988 00000 n +0000058310 00000 n +0000058943 00000 n +0000138513 00000 n +0000059743 00000 n +0000059052 00000 n +0000059698 00000 n +0000138901 00000 n +0000060533 00000 n +0000059807 00000 n +0000060488 00000 n +0000139009 00000 n +0000061252 00000 n +0000060597 00000 n +0000061207 00000 n +0000139117 00000 n +0000062032 00000 n +0000061316 00000 n +0000061987 00000 n +0000139225 00000 n +0000062762 00000 n +0000062096 00000 n +0000062717 00000 n +0000139333 00000 n +0000063525 00000 n +0000062826 00000 n +0000063480 00000 n +0000139623 00000 n +0000064218 00000 n +0000063589 00000 n +0000064173 00000 n +0000139731 00000 n +0000065004 00000 n +0000064282 00000 n +0000064959 00000 n +0000139839 00000 n +0000065773 00000 n +0000065068 00000 n +0000065728 00000 n +0000139947 00000 n +0000066559 00000 n +0000065837 00000 n +0000066514 00000 n +0000140055 00000 n +0000067242 00000 n +0000066623 00000 n +0000067197 00000 n +0000140345 00000 n +0000067937 00000 n +0000067306 00000 n +0000067892 00000 n +0000140453 00000 n +0000068646 00000 n +0000068001 00000 n +0000068601 00000 n +0000140561 00000 n +0000069392 00000 n +0000068710 00000 n +0000069347 00000 n +0000140669 00000 n +0000070176 00000 n +0000069456 00000 n +0000070131 00000 n +0000140777 00000 n +0000070894 00000 n +0000070240 00000 n +0000070849 00000 n +0000141067 00000 n +0000071551 00000 n +0000070958 00000 n +0000071506 00000 n +0000141175 00000 n +0000072233 00000 n +0000071615 00000 n +0000072188 00000 n +0000141283 00000 n +0000072931 00000 n +0000072297 00000 n +0000072886 00000 n +0000141474 00000 n +0000073627 00000 n +0000072995 00000 n +0000073582 00000 n +0000141582 00000 n +0000074248 00000 n +0000073691 00000 n +0000074203 00000 n +0000141690 00000 n +0000075575 00000 n +0000123736 00000 n +0000123544 00000 n +0000074312 00000 n +0000075251 00000 n +0000075517 00000 n +0000132449 00000 n +0000130231 00000 n +0000130150 00000 n +0000130932 00000 n +0000130851 00000 n +0000131634 00000 n +0000131553 00000 n +0000132351 00000 n +0000132268 00000 n +0000135626 00000 n +0000133170 00000 n +0000133087 00000 n +0000133892 00000 n +0000133809 00000 n +0000134614 00000 n +0000134531 00000 n +0000135527 00000 n +0000135037 00000 n +0000135444 00000 n +0000138803 00000 n +0000136347 00000 n +0000136264 00000 n +0000137069 00000 n +0000136986 00000 n +0000137791 00000 n +0000137708 00000 n +0000138704 00000 n +0000138214 00000 n +0000138621 00000 n +0000141980 00000 n +0000139524 00000 n +0000139441 00000 n +0000140246 00000 n +0000140163 00000 n +0000140968 00000 n +0000140885 00000 n +0000141881 00000 n +0000141391 00000 n +0000141798 00000 n +0000142365 00000 n +0000142388 00000 n +0000142410 00000 n +trailer +<< +/Size 415 +/Root 2 0 R +/Info 1 0 R +>> +startxref +142531 +%%EOF diff --git a/src/axiom-website/CATS/kamke7.input.pamphlet b/src/axiom-website/CATS/kamke7.input.pamphlet new file mode 100644 index 0000000..eb989d3 --- /dev/null +++ b/src/axiom-website/CATS/kamke7.input.pamphlet @@ -0,0 +1,1538 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input kamke7.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +This is the remaining ODEs of the Kamke test suite as published by +E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom +syntax. Where possible we show that the particular solution actually +satisfies the original ordinary differential equation. + +Note that after a certain point Axiom can no longer generate useful +results. The failures fall into several cases which have been included +in other regression test files. +\end{abstract} +\eject +\tableofcontents +\eject +\section{Generated results} +<<*>>= +)spool kamke7.output +)set break resume +)set mes auto off +)clear all + +--S 1 of 97 +y:=operator 'y +--R +--R +--R (1) y +--R Type: BasicOperator +--E 1 + +--S 2 of 97 +f:=operator 'f +--R +--R +--R (2) f +--R Type: BasicOperator +--E 2 + +--S 3 of 97 +g:=operator 'g +--R +--R +--R (3) g +--R Type: BasicOperator +--E 3 + +--S 4 of 97 +h:=operator 'h +--R +--R +--R (4) h +--R Type: BasicOperator +--E 4 + +--S 5 of 97 +fa:=operator 'fa +--R +--R +--R (5) fa +--R Type: BasicOperator +--E 5 + +--S 6 of 97 +fb:=operator 'fb +--R +--R +--R (6) fb +--R Type: BasicOperator +--E 6 + +--S 7 of 97 +fc:=operator 'fc +--R +--R +--R (7) fc +--R Type: BasicOperator +--E 7 + +--S 8 of 97 +fd:=operator 'fd +--R +--R +--R (8) fd +--R Type: BasicOperator +--E 8 + +--S 9 of 97 +fe:=operator 'fe +--R +--R +--R (9) fe +--R Type: BasicOperator +--E 9 + +--S 10 of 97 +ff:=operator 'ff +--R +--R +--R (10) ff +--R Type: BasicOperator +--E 10 + +--S 11 of 97 +ode352 := D(y(x),x)*(cos(y(x))-sin(alpha)*sin(x))*cos(y(x))+(cos(x)-_ + sin(alpha)*sin(y(x)))*cos(x) +--R +--R +--R (11) +--R 2 , +--R (cos(y(x)) - sin(alpha)sin(x)cos(y(x)))y (x) - cos(x)sin(alpha)sin(y(x)) +--R +--R + +--R 2 +--R cos(x) +--R Type: Expression Integer +--E 11 + +--S 12 of 97 +yx:=solve(ode352,y,x) +--R +--R +--R (cos(y(x)) - 2sin(alpha)sin(x))sin(y(x)) + cos(x)sin(x) + y(x) + x +--R (12) ------------------------------------------------------------------ +--R 2 +--R Type: Union(Expression Integer,...) +--E 12 + +--S 13 of 97 +ode352expr := D(yx,x)*(cos(yx)-sin(alpha)*sin(x))*cos(yx)+(cos(x)-_ + sin(alpha)*sin(yx))*cos(x) +--R +--R +--R (13) +--R - +--R 2cos(x)sin(alpha) +--R * +--R sin +--R (cos(y(x)) - 2sin(alpha)sin(x))sin(y(x)) + cos(x)sin(x) +--R + +--R y(x) + x +--R / +--R 2 +--R + +--R 2 2 , +--R (- sin(y(x)) + cos(y(x)) - 2sin(alpha)sin(x)cos(y(x)) + 1)y (x) +--R +--R + +--R 2 2 +--R - 2cos(x)sin(alpha)sin(y(x)) - sin(x) + cos(x) + 1 +--R * +--R (cos(y(x)) - 2sin(alpha)sin(x))sin(y(x)) + cos(x)sin(x) + y(x) + x 2 +--R cos(------------------------------------------------------------------) +--R 2 +--R + +--R 2 2 +--R sin(alpha)sin(x)sin(y(x)) - sin(alpha)sin(x)cos(y(x)) +--R + +--R 2 2 +--R 2sin(alpha) sin(x) cos(y(x)) - sin(alpha)sin(x) +--R * +--R , +--R y (x) +--R +--R + +--R 2 3 +--R 2cos(x)sin(alpha) sin(x)sin(y(x)) + sin(alpha)sin(x) +--R + +--R 2 +--R (- cos(x) - 1)sin(alpha)sin(x) +--R * +--R (cos(y(x)) - 2sin(alpha)sin(x))sin(y(x)) + cos(x)sin(x) + y(x) + x +--R cos(------------------------------------------------------------------) +--R 2 +--R + +--R 2 +--R 2cos(x) +--R / +--R 2 +--R Type: Expression Integer +--E 13 + +--S 14 of 97 +ode353 := x*D(y(x),x)*cos(y(x))+sin(y(x)) +--R +--R +--R , +--R (14) x cos(y(x))y (x) + sin(y(x)) +--R +--R Type: Expression Integer +--E 14 + +--S 15 of 97 +yx:=solve(ode353,y,x) +--R +--R +--R (15) x sin(y(x)) +--R Type: Union(Expression Integer,...) +--E 15 + +--S 16 of 97 +ode353expr := x*D(yx,x)*cos(yx)+sin(yx) +--R +--R +--R 2 , +--R (16) sin(x sin(y(x))) + (x cos(y(x))y (x) + x sin(y(x)))cos(x sin(y(x))) +--R +--R Type: Expression Integer +--E 16 + +--S 17 of 97 +ode354 := (x*sin(y(x))-1)*D(y(x),x)+cos(y(x)) +--R +--R +--R , +--R (17) (x sin(y(x)) - 1)y (x) + cos(y(x)) +--R +--R Type: Expression Integer +--E 17 + +--S 18 of 97 +yx:=solve(ode354,y,x) +--R +--R +--R - sin(y(x)) + x +--R (18) --------------- +--R cos(y(x)) +--R Type: Union(Expression Integer,...) +--E 18 + +--S 19 of 97 +ode354expr := (x*sin(yx)-1)*D(yx,x)+cos(yx) +--R +--R +--R (19) +--R 2 2 2 , +--R ((x sin(y(x)) - x sin(y(x)) + x cos(y(x)) )y (x) - x cos(y(x))) +--R +--R * +--R sin(y(x)) - x +--R sin(-------------) +--R cos(y(x)) +--R + +--R 2 sin(y(x)) - x +--R cos(y(x)) cos(-------------) +--R cos(y(x)) +--R + +--R 2 2 , +--R (sin(y(x)) - x sin(y(x)) + cos(y(x)) )y (x) - cos(y(x)) +--R +--R / +--R 2 +--R cos(y(x)) +--R Type: Expression Integer +--E 19 + +--S 20 of 97 +ode355 := (x*cos(y(x))+cos(x))*D(y(x),x)-y(x)*sin(x)+sin(y(x)) +--R +--R +--R , +--R (20) (x cos(y(x)) + cos(x))y (x) + sin(y(x)) - y(x)sin(x) +--R +--R Type: Expression Integer +--E 20 + +--S 21 of 97 +yx:=solve(ode355,y,x) +--R +--R +--R (21) x sin(y(x)) + y(x)cos(x) +--R Type: Union(Expression Integer,...) +--E 21 + +--S 22 of 97 +ode355expr := (x*cos(yx)+cos(x))*D(yx,x)-yx*sin(x)+sin(yx) +--R +--R +--R (22) +--R sin(x sin(y(x)) + y(x)cos(x)) +--R + +--R 2 , +--R ((x cos(y(x)) + x cos(x))y (x) + x sin(y(x)) - x y(x)sin(x)) +--R +--R * +--R cos(x sin(y(x)) + y(x)cos(x)) +--R + +--R 2 , +--R (x cos(x)cos(y(x)) + cos(x) )y (x) + (- x sin(x) + cos(x))sin(y(x)) +--R +--R + +--R - 2y(x)cos(x)sin(x) +--R Type: Expression Integer +--E 22 + +--S 23 of 97 +ode356 := (x**2*cos(y(x))+2*y(x)*sin(x))*D(y(x),x)+2*x*sin(y(x))+y(x)**2*cos(x) +--R +--R +--R 2 , 2 +--R (23) (x cos(y(x)) + 2y(x)sin(x))y (x) + 2x sin(y(x)) + y(x) cos(x) +--R +--R Type: Expression Integer +--E 23 + +--S 24 of 97 +yx:=solve(ode356,y,x) +--R +--R +--R 2 2 +--R (24) x sin(y(x)) + y(x) sin(x) +--R Type: Union(Expression Integer,...) +--E 24 + +--S 25 of 97 +ode356expr:=(x**2*cos(yx)+2*yx*sin(x))*D(yx,x)+2*x*sin(yx)+yx**2*cos(x) +--R +--R +--R (25) +--R 2 2 +--R 2x sin(x sin(y(x)) + y(x) sin(x)) +--R + +--R 4 2 , 3 2 2 +--R ((x cos(y(x)) + 2x y(x)sin(x))y (x) + 2x sin(y(x)) + x y(x) cos(x)) +--R +--R * +--R 2 2 +--R cos(x sin(y(x)) + y(x) sin(x)) +--R + +--R 4 2 2 +--R (2x sin(x)cos(y(x)) + 4x y(x)sin(x) )sin(y(x)) +--R + +--R 2 2 2 3 3 +--R 2x y(x) sin(x) cos(y(x)) + 4y(x) sin(x) +--R * +--R , +--R y (x) +--R +--R + +--R 3 4 2 +--R (4x sin(x) + x cos(x))sin(y(x)) +--R + +--R 2 2 2 2 4 2 +--R (4x y(x) sin(x) + 4x y(x) cos(x)sin(x))sin(y(x)) + 3y(x) cos(x)sin(x) +--R Type: Expression Integer +--E 25 + +--S 26 of 97 +ode358 := D(y(x),x)*sin(y(x))*cos(x)+cos(y(x))*sin(x) +--R +--R +--R , +--R (26) cos(x)sin(y(x))y (x) + sin(x)cos(y(x)) +--R +--R Type: Expression Integer +--E 26 + +--S 27 of 97 +yx:=solve(ode358,y,x) +--R +--R +--R (27) - cos(x)cos(y(x)) +--R Type: Union(Expression Integer,...) +--E 27 + +--S 28 of 97 +ode358expr := D(yx,x)*sin(yx)*cos(x)+cos(yx)*sin(x) +--R +--R +--R (28) +--R 2 , +--R (- cos(x) sin(y(x))y (x) - cos(x)sin(x)cos(y(x)))sin(cos(x)cos(y(x))) +--R +--R + +--R sin(x)cos(cos(x)cos(y(x))) +--R Type: Expression Integer +--E 28 + +--S 29 of 97 +ode361 := (x*sin(x*y(x))+cos(x+y(x))-sin(y(x)))*D(y(x),x)+_ + y(x)*sin(x*y(x))+cos(x+y(x))+cos(x) +--R +--R +--R (29) +--R , +--R (x sin(x y(x)) - sin(y(x)) + cos(y(x) + x))y (x) + y(x)sin(x y(x)) +--R +--R + +--R cos(y(x) + x) + cos(x) +--R Type: Expression Integer +--E 29 + +--S 30 of 97 +yx:=solve(ode361,y,x) +--R +--R +--R (30) +--R y(x) 2 y(x) y(x) +--R 2cos(----) sin(y(x) + x) - 2cos(----)cos(y(x) + x)sin(----) - cos(x y(x)) +--R 2 2 2 +--R + +--R cos(y(x)) +--R Type: Union(Expression Integer,...) +--E 30 + +--S 31 of 97 +ode361expr:=(x*sin(x*yx)+cos(x+yx)-sin(yx))*D(yx,x)+_ + yx*sin(x*yx)+cos(x+yx)+cos(x) +--R +--R +--R (31) +--R 2 y(x) 2 +--R x sin(x y(x)) - x sin(y(x)) + x cos(y(x) + x)sin(----) +--R 2 +--R + +--R y(x) 2 +--R x cos(----) cos(y(x) + x) +--R 2 +--R * +--R , +--R y (x) +--R +--R + +--R y(x) y(x) y(x) 2 +--R x y(x)sin(x y(x)) + (2x cos(----)sin(----) + 2cos(----) )sin(y(x) + x) +--R 2 2 2 +--R + +--R y(x) y(x) +--R - 2cos(----)cos(y(x) + x)sin(----) - cos(x y(x)) +--R 2 2 +--R + +--R y(x) 2 +--R 2x cos(----) cos(y(x) + x) + cos(y(x)) +--R 2 +--R * +--R sin +--R y(x) 2 y(x) y(x) +--R 2x cos(----) sin(y(x) + x) - 2x cos(----)cos(y(x) + x)sin(----) +--R 2 2 2 +--R + +--R - x cos(x y(x)) + x cos(y(x)) +--R + +--R y(x) 2 +--R - x sin(x y(x)) + sin(y(x)) - cos(y(x) + x)sin(----) +--R 2 +--R + +--R y(x) 2 +--R - cos(----) cos(y(x) + x) +--R 2 +--R * +--R , +--R y (x) +--R +--R + +--R y(x) y(x) +--R - y(x)sin(x y(x)) - 2cos(----)sin(----)sin(y(x) + x) +--R 2 2 +--R + +--R y(x) 2 +--R - 2cos(----) cos(y(x) + x) +--R 2 +--R * +--R sin +--R y(x) 2 y(x) y(x) +--R 2cos(----) sin(y(x) + x) - 2cos(----)cos(y(x) + x)sin(----) +--R 2 2 2 +--R + +--R - cos(x y(x)) + cos(y(x)) +--R + +--R y(x) 2 +--R x sin(x y(x)) - sin(y(x)) + cos(y(x) + x)sin(----) +--R 2 +--R + +--R y(x) 2 +--R cos(----) cos(y(x) + x) +--R 2 +--R * +--R , +--R y (x) +--R +--R + +--R y(x) y(x) +--R y(x)sin(x y(x)) + 2cos(----)sin(----)sin(y(x) + x) +--R 2 2 +--R + +--R y(x) 2 +--R 2cos(----) cos(y(x) + x) + 1 +--R 2 +--R * +--R cos +--R y(x) 2 y(x) y(x) +--R 2cos(----) sin(y(x) + x) - 2cos(----)cos(y(x) + x)sin(----) +--R 2 2 2 +--R + +--R - cos(x y(x)) + cos(y(x)) + x +--R + +--R cos(x) +--R Type: Expression Integer +--E 31 + +--S 32 of 97 +ode363 := (x*D(y(x),x)-y(x))*cos(y(x)/x)**2+x +--R +--R +--R y(x) 2 , y(x) 2 +--R (32) x cos(----) y (x) - y(x)cos(----) + x +--R x x +--R Type: Expression Integer +--E 32 + +--S 33 of 97 +yx:=solve(ode363,y,x) +--R +--R +--R y(x) y(x) +--R x cos(----)sin(----) + 2x log(x) + y(x) +--R x x +--R (33) --------------------------------------- +--R 2x +--R Type: Union(Expression Integer,...) +--E 33 + +--S 34 of 97 +ode363expr := (x*D(yx,x)-yx)*cos(yx/x)**2+x +--R +--R +--R (34) +--R y(x) 2 y(x) 2 , y(x) 2 +--R (- x sin(----) + x cos(----) + x)y (x) + y(x)sin(----) +--R x x x +--R + +--R y(x) y(x) y(x) 2 +--R - x cos(----)sin(----) - y(x)cos(----) - 2x log(x) - 2y(x) + 2x +--R x x x +--R * +--R y(x) y(x) 2 +--R x cos(----)sin(----) + 2x log(x) + y(x) +--R x x +--R cos(---------------------------------------) +--R 2 +--R 2x +--R + +--R 2 +--R 2x +--R / +--R 2x +--R Type: Expression Integer +--E 34 + +--S 35 of 97 +ode364 := (y(x)*sin(y(x)/x)-x*cos(y(x)/x))*x*D(y(x),x)-_ + (x*cos(y(x)/x)+y(x)*sin(y(x)/x))*y(x) +--R +--R +--R (35) +--R y(x) 2 y(x) , 2 y(x) y(x) +--R (x y(x)sin(----) - x cos(----))y (x) - y(x) sin(----) - x y(x)cos(----) +--R x x x x +--R Type: Expression Integer +--E 35 + +--S 36 of 97 +yx:=solve(ode364,y,x) +--R +--R +--R y(x) +--R (36) - x y(x)cos(----) +--R x +--R Type: Union(Expression Integer,...) +--E 36 + +--S 37 of 97 +ode364expr := (yx*sin(yx/x)-x*cos(yx/x))*x*D(yx,x)-_ + (x*cos(yx/x)+yx*sin(yx/x))*yx +--R +--R +--R (37) +--R 2 2 y(x) y(x) 3 y(x) 2 , +--R (x y(x) cos(----)sin(----) - x y(x)cos(----) )y (x) +--R x x x +--R + +--R 3 y(x) y(x) +--R - x y(x) cos(----)sin(----) +--R x x +--R * +--R y(x) +--R sin(y(x)cos(----)) +--R x +--R + +--R 2 y(x) 3 y(x) , 2 y(x) +--R (- x y(x)sin(----) + x cos(----))y (x) + x y(x) sin(----) +--R x x x +--R + +--R 2 y(x) +--R 2x y(x)cos(----) +--R x +--R * +--R y(x) +--R cos(y(x)cos(----)) +--R x +--R Type: Expression Integer +--E 37 + +--S 38 of 97 +ode434 := D(y(x),x)-1 +--R +--R +--R , +--R (38) y (x) - 1 +--R +--R Type: Expression Integer +--E 38 + +--S 39 of 97 +ode434a:=solve(ode434,y,x) +--R +--R +--R (39) [particular= x,basis= [1]] +--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...) +--E 39 + +--S 40 of 97 +yx:=ode434a.particular +--R +--R +--R (40) x +--R Type: Expression Integer +--E 40 + +--S 41 of 97 +ode434expr := D(yx,x)-1 +--R +--R +--R (41) 0 +--R Type: Expression Integer +--E 41 + +--S 42 of 97 +ode683 := (D(y(x),x) = y(x)*(-1+log(x*(x+1))*y(x)*x**4-log(x*(x+1))*x**3)/x) +--R +--R +--R 4 2 3 2 +--R , (x y(x) - x y(x))log(x + x) - y(x) +--R (42) y (x)= ------------------------------------ +--R x +--R Type: Equation Expression Integer +--E 42 + +--S 43 of 97 +solve(ode683,y,x) +--R +--R +--R - x y(x) + 1 +--R (43) ----------------------------------------------- +--R 3 2 3 2 +--R 6x log(x + x) - 4x + 3x - 6x +--R ------------------------------- +--R 3+-----+ 18 +--R x y(x)\|x + 1 %e +--R Type: Union(Expression Integer,...) +--E 43 + +--S 44 of 97 +ode703 := (D(y(x),x) = y(x)*(1-x+y(x)*x**2*log(x)+y(x)*x**3-x*log(x)-x**2)/_ + (x-1)/x) +--R +--R +--R 2 2 3 2 2 +--R , (x y(x) - x y(x))log(x) + x y(x) + (- x - x + 1)y(x) +--R (44) y (x)= ------------------------------------------------------- +--R 2 +--R x - x +--R Type: Equation Expression Integer +--E 44 + +--S 45 of 97 +solve(ode703,y,x) +--R +--R +--R - x y(x) + 1 +--R (45) ---------------------------- +--R 2 - dilog(x) + x +--R (x - x)y(x)%e +--R Type: Union(Expression Integer,...) +--E 45 + +--S 46 of 97 +ode714 := (D(y(x),x) = -y(x)*(-log(1/x)+exp(x)+y(x)*x**2*log(x)+_ + y(x)*x**3-x*log(x)-x**2)/(-log(1/x)+exp(x))/x) +--R +--R +--R (46) +--R 2 2 1 x 3 2 2 +--R (x y(x) - x y(x))log(x) - y(x)log(-) + y(x)%e + x y(x) - x y(x) +--R , x +--R y (x)= ------------------------------------------------------------------ +--R 1 x +--R x log(-) - x %e +--R x +--R Type: Equation Expression Integer +--E 46 + +--S 47 of 97 +solve(ode714,y,x) +--R +--R +--R (47) +--R - +--I 1 %I 2 +--I x %I log(%I) + log(--) - %e + %I +--I ++ %I +--I | --------------------------------- d%I +--I ++ 1 %I +--I %I log(--) - %I %e +--I %I +--R y(x)%e +--R * +--R INTSIGN +--R , +--R x +--R , +--R 2 +--I - %I log(%I) - %I +--R -------------------------------------------------------------- +--I 1 %I 2 +--I %I %I log(%I) + log(--) - %e + %I +--I ++ %I +--I | --------------------------------- d%I +--I ++ 1 %I +--I %I log(--) - %I %e +--I 1 %I %I +--R (log(--) - %e )%e +--I %I +--R * +--I d%I +--R + +--R 1 +--R / +--I 1 %I 2 +--I x %I log(%I) + log(--) - %e + %I +--I ++ %I +--I | --------------------------------- d%I +--I ++ 1 %I +--I %I log(--) - %I %e +--I %I +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 47 + +--S 48 of 97 +ode719 := (D(y(x),x) = y(x)*(-exp(x)+log(2*x)*x**2*y(x)-log(2*x)*x)/x/exp(x)) +--R +--R +--R 2 2 x +--R , (x y(x) - x y(x))log(2x) - y(x)%e +--R (48) y (x)= ----------------------------------- +--R x +--R x %e +--R Type: Equation Expression Integer +--E 48 + +--S 49 of 97 +solve(ode719,y,x) +--R +--R +--R - x y(x) + 1 +--R (49) ---------------------------------- +--I x %I +--I ++ %I log(2%I) + %e +--I | ------------------ d%I +--I ++ %I +--I %I %e +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 49 + +--S 50 of 97 +ode736 := (D(y(x),x) = (2*x**2+2*x+x**4-2*y(x)*x**2-1+y(x)**2)/(x+1)) +--R +--R +--R 2 2 4 2 +--R , y(x) - 2x y(x) + x + 2x + 2x - 1 +--R (50) y (x)= ----------------------------------- +--R x + 1 +--R Type: Equation Expression Integer +--E 50 + +--S 51 of 97 +solve(ode736,y,x) +--R +--R +--R 2 4 3 2 +--R (x + 2x - 2)y(x) - x - 2x + 3x + 2x + 4 +--R (51) ------------------------------------------- +--R 2 +--R 2y(x) - 2x - 2 +--R Type: Union(Expression Integer,...) +--E 51 + +--S 52 of 97 +ode765 := (D(y(x),x) = y(x)*(-1-log((x-1)*(1+x)/x)+_ + log((x-1)*(1+x)/x)*x*y(x))/x) +--R +--R +--R 2 +--R 2 x - 1 +--R (x y(x) - y(x))log(------) - y(x) +--R , x +--R (52) y (x)= ---------------------------------- +--R x +--R Type: Equation Expression Integer +--E 52 + +--S 53 of 97 +solve(ode765,y,x) +--R +--R +--R - x y(x) + 1 +--R (53) -------------------------------- +--R 2 +--I %I - 1 +--R x log(-------) + 1 +--I ++ %I +--I | ---------------- d%I +--I ++ %I +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 53 + +--S 54 of 97 +ode766 := (D(y(x),x) = y(x)*(-log(x)-x*log((x-1)*(1+x)/x)+_ + log((x-1)*(1+x)/x)*x**2*y(x))/x/log(x)) +--R +--R +--R 2 +--R 2 2 x - 1 +--R - y(x)log(x) + (x y(x) - x y(x))log(------) +--R , x +--R (54) y (x)= -------------------------------------------- +--R x log(x) +--R Type: Equation Expression Integer +--E 54 + +--S 55 of 97 +solve(ode766,y,x) +--R +--R +--R (55) +--R - +--R 2 +--I %I - 1 +--I x log(%I) + %I log(-------) +--I ++ %I +--I | ------------------------- d%I +--I ++ %I log(%I) +--R y(x)%e +--R * +--R 2 +--I %I - 1 +--I x %I log(-------) +--I ++ %I +--I | - --------------------------------------------- d%I +--R ++ 2 +--I %I - 1 +--I %I log(%I) + %I log(-------) +--I ++ %I +--I | ------------------------- d%I +--I ++ %I log(%I) +--I log(%I)%e +--R + +--R 1 +--R / +--R 2 +--I %I - 1 +--I x log(%I) + %I log(-------) +--I ++ %I +--I | ------------------------- d%I +--I ++ %I log(%I) +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 55 + +--S 56 of 97 +ode776 := (D(y(x),x) = y(x)*(-log(1/x)-log((x**2+1)/x)*x+_ + log((x**2+1)/x)*x**2*y(x))/x/log(1/x)) +--R +--R +--R 2 +--R 2 2 x + 1 1 +--R (x y(x) - x y(x))log(------) - y(x)log(-) +--R , x x +--R (56) y (x)= ------------------------------------------ +--R 1 +--R x log(-) +--R x +--R Type: Equation Expression Integer +--E 56 + +--S 57 of 97 +solve(ode776,y,x) +--R +--R +--R - x y(x) + 1 +--R (57) ----------------------------------------- +--R 2 +--I %I + 1 1 +--I x %I log(-------) + log(--) +--I ++ %I %I +--I | ------------------------- d%I +--R ++ 1 +--I %I log(--) +--I %I +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 57 + +--S 58 of 97 +ode872 := (D(y(x),x) = 1/5*(-30*y(x)*x**3+12*x**6+70*x**(7/2)-30*x**3-_ + 25*y(x)*x**(1/2)+50*x-25*x**(1/2)-25)/_ + (-5*y(x)+2*x**3+10*x**(1/2)-5)/x) +--R +--R +--R 3 +-+ 3 6 3 +--R , (- 25y(x) + 70x - 25)\|x - 30x y(x) + 12x - 30x + 50x - 25 +--R (58) y (x)= -------------------------------------------------------------- +--R +-+ 4 +--R 50x\|x - 25x y(x) + 10x - 25x +--R Type: Equation Expression Integer +--E 58 + +--S 59 of 97 +solve(ode872,y,x) +--R +--R +--R (59) +--R +-+ 3 +-+ 2 3 +--R 100log(\|x ) + (100y(x) - 40x + 100)\|x - 25y(x) + (20x - 50)y(x) +--R + +--R 6 3 +--R - 4x + 20x - 100x +--R / +--R 2 +--R Type: Union(Expression Integer,...) +--E 59 + +--S 60 of 97 +ode555 := sqrt(D(y(x),x)**2+1)+x*D(y(x),x)-y(x) +--R +--R +--R +----------+ +--R | , 2 , +--R (60) |y (x) + 1 + xy (x) - y(x) +--R \| +--R Type: Expression Integer +--E 60 + +--S 61 of 97 +solve(ode555,y,x) +--R +--R +--R +-----------+ +--R | , 2 +--I x |y (%I) + 1 - y(x) +--R ++ \| +--I (61) | --------------------- d%I +--R ++ 2 +--I %I +--R Type: Union(Expression Integer,...) +--E 61 + +--S 62 of 97 +ode557 := x*(sqrt(D(y(x),x)**2+1)+D(y(x),x))-y(x) +--R +--R +--R +----------+ +--R | , 2 , +--R (62) x |y (x) + 1 + xy (x) - y(x) +--R \| +--R Type: Expression Integer +--E 62 + +--S 63 of 97 +solve(ode557,y,x) +--R +--R +--R +-----------+ +--R | , 2 +--I x %I |y (%I) + 1 - y(x) +--R ++ \| +--I (63) | ----------------------- d%I +--R ++ 2 +--I %I +--R Type: Union(Expression Integer,...) +--E 63 + +--S 64 of 97 +ode558 := a*x*sqrt(D(y(x),x)**2+1)+x*D(y(x),x)-y(x) +--R +--R +--R +----------+ +--R | , 2 , +--R (64) a x |y (x) + 1 + xy (x) - y(x) +--R \| +--R Type: Expression Integer +--E 64 + +--S 65 of 97 +solve(ode558,y,x) +--R +--R +--R +-----------+ +--R | , 2 +--I x %I a |y (%I) + 1 - y(x) +--R ++ \| +--I (65) | ------------------------- d%I +--R ++ 2 +--I %I +--R Type: Union(Expression Integer,...) +--E 65 + +--S 66 of 97 +ode562 := a*(D(y(x),x)**3+1)**(1/3)+b*x*D(y(x),x)-y(x) +--R +--R +--R +----------+ +--R | , 3 , +--R (66) a 3|y (x) + 1 + b xy (x) - y(x) +--R \| +--R Type: Expression Integer +--E 66 + +--S 67 of 97 +solve(ode562,y,x) +--R +--R +--I log(%I) log(%I) +--R - ------- +-----------+ - ------- +--R b | , 3 b +--I x a %e 3|y (%I) + 1 - y(x)%e +--R ++ \| +--I (67) | --------------------------------------------- d%I +--I ++ %I +--R Type: Union(Expression Integer,...) +--E 67 + +--S 68 of 97 +ode563 := log(D(y(x),x))+x*D(y(x),x)+a*y(x)+b +--R +--R +--R , , +--R (68) log(y (x)) + xy (x) + a y(x) + b +--R +--R Type: Expression Integer +--E 68 + +--S 69 of 97 +solve(ode563,y,x) +--R +--R +--I a log(%I) , a log(%I) +--I x %e log(y (%I)) + (a y(x) + b)%e +--R ++ +--I (69) | ------------------------------------------------ d%I +--I ++ %I +--R Type: Union(Expression Integer,...) +--E 69 + +--S 70 of 97 +ode564 := log(D(y(x),x))+a*(x*D(y(x),x)-y(x)) +--R +--R +--R , , +--R (70) log(y (x)) + a xy (x) - a y(x) +--R +--R Type: Expression Integer +--E 70 + +--S 71 of 97 +solve(ode564,y,x) +--R +--R +--R , +--I x log(y (%I)) - a y(x) +--R ++ +--I (71) | -------------------- d%I +--R ++ 2 +--I %I +--R Type: Union(Expression Integer,...) +--E 71 + +--S 72 of 97 +ode571 := a*x**n*f(D(y(x),x))+x*D(y(x),x)-y(x) +--R +--R +--R n , , +--R (72) a x f(y (x)) + xy (x) - y(x) +--R +--R Type: Expression Integer +--E 72 + +--S 73 of 97 +solve(ode571,y,x) +--R +--R +--R n , +--I x a %I f(y (%I)) - y(x) +--R ++ +--I (73) | --------------------- d%I +--R ++ 2 +--I %I +--R Type: Union(Expression Integer,...) +--E 73 + +--S 74 of 97 +ode573 := f(x*D(y(x),x)**2)+2*x*D(y(x),x)-y(x) +--R +--R +--R , 2 , +--R (74) f(x y (x) ) + 2xy (x) - y(x) +--R +--R Type: Expression Integer +--E 74 + +--S 75 of 97 +solve(ode573,y,x) +--R +--R +--R , 2 +--I x f(%I y (%I) ) - y(x) +--R ++ +--I (75) | -------------------- d%I +--R ++ +--+ +--I %I\|%I +--R Type: Union(Expression Integer,...) +--E 75 + +--S 76 of 97 +ode683 := (D(y(x),x) = y(x)*(-1+log(x*(x+1))*y(x)*x**4-log(x*(x+1))*x**3)/x) +--R +--R +--R 4 2 3 2 +--R , (x y(x) - x y(x))log(x + x) - y(x) +--R (76) y (x)= ------------------------------------ +--R x +--R Type: Equation Expression Integer +--E 76 + +--S 77 of 97 +solve(ode683,y,x) +--R +--R +--R - x y(x) + 1 +--R (77) ----------------------------------------------- +--R 3 2 3 2 +--R 6x log(x + x) - 4x + 3x - 6x +--R ------------------------------- +--R 3+-----+ 18 +--R x y(x)\|x + 1 %e +--R Type: Union(Expression Integer,...) +--E 77 + +--S 78 of 97 +ode703 := (D(y(x),x) = y(x)*(1-x+y(x)*x**2*log(x)+y(x)*x**3-x*log(x)-x**2)/_ + (x-1)/x) +--R +--R +--R 2 2 3 2 2 +--R , (x y(x) - x y(x))log(x) + x y(x) + (- x - x + 1)y(x) +--R (78) y (x)= ------------------------------------------------------- +--R 2 +--R x - x +--R Type: Equation Expression Integer +--E 78 + +--S 79 of 97 +solve(ode703,y,x) +--R +--R +--R - x y(x) + 1 +--R (79) ---------------------------- +--R 2 - dilog(x) + x +--R (x - x)y(x)%e +--R Type: Union(Expression Integer,...) +--E 79 + +--S 80 of 97 +ode714 := (D(y(x),x) = -y(x)*(-log(1/x)+exp(x)+y(x)*x**2*log(x)+_ + y(x)*x**3-x*log(x)-x**2)/(-log(1/x)+exp(x))/x) +--R +--R +--R (80) +--R 2 2 1 x 3 2 2 +--R (x y(x) - x y(x))log(x) - y(x)log(-) + y(x)%e + x y(x) - x y(x) +--R , x +--R y (x)= ------------------------------------------------------------------ +--R 1 x +--R x log(-) - x %e +--R x +--R Type: Equation Expression Integer +--E 80 + +--S 81 of 97 +solve(ode714,y,x) +--R +--R +--R (81) +--R - +--I 1 %I 2 +--I x %I log(%I) + log(--) - %e + %I +--I ++ %I +--I | --------------------------------- d%I +--I ++ 1 %I +--I %I log(--) - %I %e +--I %I +--R y(x)%e +--R * +--R INTSIGN +--R , +--R x +--R , +--R 2 +--I - %I log(%I) - %I +--R -------------------------------------------------------------- +--I 1 %I 2 +--I %I %I log(%I) + log(--) - %e + %I +--I ++ %I +--I | --------------------------------- d%I +--I ++ 1 %I +--I %I log(--) - %I %e +--I 1 %I %I +--R (log(--) - %e )%e +--I %I +--R * +--I d%I +--R + +--R 1 +--R / +--I 1 %I 2 +--I x %I log(%I) + log(--) - %e + %I +--I ++ %I +--I | --------------------------------- d%I +--I ++ 1 %I +--I %I log(--) - %I %e +--I %I +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 81 + +--S 82 of 97 +ode719 := (D(y(x),x) = y(x)*(-exp(x)+log(2*x)*x**2*y(x)-log(2*x)*x)/x/exp(x)) +--R +--R +--R 2 2 x +--R , (x y(x) - x y(x))log(2x) - y(x)%e +--R (82) y (x)= ----------------------------------- +--R x +--R x %e +--R Type: Equation Expression Integer +--E 82 + +--S 83 of 97 +solve(ode719,y,x) +--R +--R +--R - x y(x) + 1 +--R (83) ---------------------------------- +--I x %I +--I ++ %I log(2%I) + %e +--I | ------------------ d%I +--I ++ %I +--I %I %e +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 83 + +--S 84 of 97 +ode736 := (D(y(x),x) = (2*x**2+2*x+x**4-2*y(x)*x**2-1+y(x)**2)/(x+1)) +--R +--R +--R 2 2 4 2 +--R , y(x) - 2x y(x) + x + 2x + 2x - 1 +--R (84) y (x)= ----------------------------------- +--R x + 1 +--R Type: Equation Expression Integer +--E 84 + +--S 85 of 97 +solve(ode736,y,x) +--R +--R +--R 2 4 3 2 +--R (x + 2x - 2)y(x) - x - 2x + 3x + 2x + 4 +--R (85) ------------------------------------------- +--R 2 +--R 2y(x) - 2x - 2 +--R Type: Union(Expression Integer,...) +--E 85 + +--S 86 of 97 +ode765 := (D(y(x),x) = y(x)*(-1-log((x-1)*(1+x)/x)+_ + log((x-1)*(1+x)/x)*x*y(x))/x) +--R +--R +--R 2 +--R 2 x - 1 +--R (x y(x) - y(x))log(------) - y(x) +--R , x +--R (86) y (x)= ---------------------------------- +--R x +--R Type: Equation Expression Integer +--E 86 + +--S 87 of 97 +solve(ode765,y,x) +--R +--R +--R - x y(x) + 1 +--R (87) -------------------------------- +--R 2 +--I %I - 1 +--R x log(-------) + 1 +--I ++ %I +--I | ---------------- d%I +--I ++ %I +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 87 + +--S 88 of 97 +ode766 := (D(y(x),x) = y(x)*(-log(x)-x*log((x-1)*(1+x)/x)+_ + log((x-1)*(1+x)/x)*x**2*y(x))/x/log(x)) +--R +--R +--R 2 +--R 2 2 x - 1 +--R - y(x)log(x) + (x y(x) - x y(x))log(------) +--R , x +--R (88) y (x)= -------------------------------------------- +--R x log(x) +--R Type: Equation Expression Integer +--E 88 + +--S 89 of 97 +solve(ode766,y,x) +--R +--R +--R (89) +--R - +--R 2 +--I %I - 1 +--I x log(%I) + %I log(-------) +--I ++ %I +--I | ------------------------- d%I +--I ++ %I log(%I) +--R y(x)%e +--R * +--R 2 +--I %I - 1 +--I x %I log(-------) +--I ++ %I +--I | - --------------------------------------------- d%I +--R ++ 2 +--I %I - 1 +--I %I log(%I) + %I log(-------) +--I ++ %I +--I | ------------------------- d%I +--I ++ %I log(%I) +--I log(%I)%e +--R + +--R 1 +--R / +--R 2 +--I %I - 1 +--I x log(%I) + %I log(-------) +--I ++ %I +--I | ------------------------- d%I +--I ++ %I log(%I) +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 89 + +--S 90 of 97 +ode776 := (D(y(x),x) = y(x)*(-log(1/x)-log((x**2+1)/x)*x+_ + log((x**2+1)/x)*x**2*y(x))/x/log(1/x)) +--R +--R +--R 2 +--R 2 2 x + 1 1 +--R (x y(x) - x y(x))log(------) - y(x)log(-) +--R , x x +--R (90) y (x)= ------------------------------------------ +--R 1 +--R x log(-) +--R x +--R Type: Equation Expression Integer +--E 90 + +--S 91 of 97 +solve(ode776,y,x) +--R +--R +--R - x y(x) + 1 +--R (91) ----------------------------------------- +--R 2 +--I %I + 1 1 +--I x %I log(-------) + log(--) +--I ++ %I %I +--I | ------------------------- d%I +--R ++ 1 +--I %I log(--) +--I %I +--R y(x)%e +--R Type: Union(Expression Integer,...) +--E 91 + +--S 92 of 97 +ode872 := (D(y(x),x) = 1/5*(-30*y(x)*x**3+12*x**6+70*x**(7/2)-30*x**3-_ + 25*y(x)*x**(1/2)+50*x-25*x**(1/2)-25)/(-5*y(x)+2*x**3+_ + 10*x**(1/2)-5)/x) +--R +--R +--R 3 +-+ 3 6 3 +--R , (- 25y(x) + 70x - 25)\|x - 30x y(x) + 12x - 30x + 50x - 25 +--R (92) y (x)= -------------------------------------------------------------- +--R +-+ 4 +--R 50x\|x - 25x y(x) + 10x - 25x +--R Type: Equation Expression Integer +--E 92 + +--S 93 of 97 +solve(ode872,y,x) +--R +--R +--R (93) +--R +-+ 3 +-+ 2 3 +--R 100log(\|x ) + (100y(x) - 40x + 100)\|x - 25y(x) + (20x - 50)y(x) +--R + +--R 6 3 +--R - 4x + 20x - 100x +--R / +--R 2 +--R Type: Union(Expression Integer,...) +--E 93 + +--S 94 of 97 +ode956 := (D(y(x),x) = 1/(1+log(x))*y(x)*(-1-x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*x**2-x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*x**2*log(x)+x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*x**2*y(x)+2*x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*x**2*y(x)*log(x)+x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*x**2*y(x)*log(x)**2)/x) +--R +--R +--R (94) +--R , +--R y (x) = +--R +--R 2 2 2 2 2 2 2 2 2 +--R (x y(x) log(x) + (2x y(x) - x y(x))log(x) + x y(x) - x y(x)) +--R * +--R 2 +--R 2log(x) 2 +--R ---------- ---------- +--R log(x) + 1 log(x) + 1 +--R %e x +--R + +--R - y(x) +--R / +--R x log(x) + x +--R Type: Equation Expression Integer +--E 94 + +--S 95 of 97 +solve(ode956,y,x) +--R +--R +--R - y(x)log(x) - y(x) + 1 +--R (95) ------------------------- +--R 4 4 +--R x x +--R -- -- +--R 4 4 +--R y(x)%e log(x) + y(x)%e +--R Type: Union(Expression Integer,...) +--E 95 + +--S 96 of 97 +ode957 := (D(y(x),x) = 1/(1+log(x))*y(x)*(-1-x**3*x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)-x**3*x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*log(x)+x**3*x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*y(x)+2*x**3*x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*y(x)*log(x)+x**3*x**(2/(1+log(x)))*_ + exp(2/(1+log(x))*log(x)**2)*y(x)*log(x)**2)/x) +--R +--R +--R (96) +--R , +--R y (x) = +--R +--R 3 2 2 3 2 3 3 2 3 +--R (x y(x) log(x) + (2x y(x) - x y(x))log(x) + x y(x) - x y(x)) +--R * +--R 2 +--R 2log(x) 2 +--R ---------- ---------- +--R log(x) + 1 log(x) + 1 +--R %e x +--R + +--R - y(x) +--R / +--R x log(x) + x +--R Type: Equation Expression Integer +--E 96 + +--S 97 of 97 +solve(ode957,y,x) +--R +--R +--R - y(x)log(x) - y(x) + 1 +--R (97) ------------------------- +--R 5 5 +--R x x +--R -- -- +--R 5 5 +--R y(x)%e log(x) + y(x)%e +--R Type: Union(Expression Integer,...) +--E 97 +)spool +)lisp (bye) +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html} +\end{thebibliography} +\end{document} diff --git a/src/axiom-website/CATS/kamke7.input.pdf b/src/axiom-website/CATS/kamke7.input.pdf new file mode 100644 index 0000000..c3054c2 Binary files /dev/null and b/src/axiom-website/CATS/kamke7.input.pdf differ