diff --git a/changelog b/changelog index a90755b..4fb1bcc 100644 --- a/changelog +++ b/changelog @@ -1,3 +1,6 @@ +20140907 tpd src/axiom-website/patches.html 20140907.01.tpd.patch +20140907 tpd src/input/Makefile add groeb.input +20140907 tpd src/input/groeb.input test case for groebner basis 20140906 tpd src/axiom-website/patches.html 20140906.01.tpd.patch 20140906 tpd books/bookvol10.3 add SparseEchelonMatrix domain 20140906 tpd books/bookvol10 add SparseEchelonMatrix domain diff --git a/patch b/patch index f45c72c..09aaa08 100644 --- a/patch +++ b/patch @@ -1,3 +1,3 @@ -books/bookvol10.3 add SparseEchelonMatrix domain +src/input/groeb.input test case for groebner basis -Add the SparseEchelonMatrix (SEM) +write some tests for the groebner basis code diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html index 3ea8770..bb24bb7 100644 --- a/src/axiom-website/patches.html +++ b/src/axiom-website/patches.html @@ -4630,6 +4630,8 @@ src/axiom-website/videos.html add Building Test Cases video
books/bookvol10.4 add graphviz package
20140906.01.tpd.patch books/bookvol10.3 add SparseEchelonMatrix domain
+20140907.01.tpd.patch +src/input/groeb.input test case for groebner basis
diff --git a/src/input/Makefile.pamphlet b/src/input/Makefile.pamphlet index 5f7e4e1..94ddfec 100644 --- a/src/input/Makefile.pamphlet +++ b/src/input/Makefile.pamphlet @@ -344,7 +344,7 @@ REGRESSTESTS= ackermann.regress \ function.regress functioncode.regress \ galois.regress gamma.regress \ gbf.regress genups.regress gonshor.regress graphviz.regress \ - grpthry.regress \ + groeb.regress grpthry.regress \ gstbl.regress guess.regress \ heap.regress heat.regress help.regress \ herm.regress heugcd.regress \ @@ -955,8 +955,8 @@ FILES2=${OUT}/arith.input ${OUT}/bugs.input \ ${OUT}/exsum.input ${OUT}/fns.input \ ${OUT}/function.input ${OUT}/free.input \ ${OUT}/galois.input ${OUT}/gamma.input \ - ${OUT}/grpthry.input \ - ${OUT}/help.input ${OUT}/intef2.input \ + ${OUT}/groeb.input ${OUT}/grpthry.input \ + ${OUT}/help.input ${OUT}/intef2.input \ ${OUT}/intmix2.input ${OUT}/knot2.input ${OUT}/linalg.input \ ${OUT}/loop.input \ ${OUT}/numbers.input \ @@ -1182,7 +1182,8 @@ DOCFILES= \ ${DOC}/genups.input.dvi ${DOC}/gnarly1.input.dvi \ ${DOC}/gonshor.input.dvi ${DOC}/graphics.input.dvi \ ${DOC}/graphviz.input.dvi \ - ${DOC}/grdef.input.dvi ${DOC}/grpthry.input.dvi \ + ${DOC}/grdef.input.dvi ${DOC}/groeb.input.dvi \ + ${DOC}/grpthry.input.dvi \ ${DOC}/gstbl.input.dvi ${DOC}/guess.input.dvi \ ${DOC}/heap.input.dvi \ ${DOC}/heat.input.dvi ${DOC}/helix.input.dvi \ diff --git a/src/input/groeb.input.pamphlet b/src/input/groeb.input.pamphlet new file mode 100644 index 0000000..4ba10f6 --- /dev/null +++ b/src/input/groeb.input.pamphlet @@ -0,0 +1,525 @@ +\documentclass{article} +\usepackage{axiom} +\setlength{\textwidth}{400pt} +\begin{document} +\title{\$SPAD/src/input groeb.input} +\author{Timothy Daly} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\begin{chunk}{*} +)set break resume +)sys rm -f groeb.output +)spool groeb.output +)set message test on +)set message auto off +)clear all + +--S 1 of 12 +s1:DMP([w,p,z,t,s,b],FRAC(INT)):= 45*p + 35*s - 165*b - 36 +--R +--R +--R (1) 45p + 35s - 165b - 36 +--R Type: DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer)) +--E 1 + +--S 2 of 12 +s2:DMP([w,p,z,t,s,b],FRAC(INT)):= 35*p + 40*z + 25*t - 27*s +--R +--R +--R (2) 35p + 40z + 25t - 27s +--R Type: DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer)) +--E 2 + +--S 3 of 12 +s3:DMP([w,p,z,t,s,b],FRAC(INT)):= 15*w + 25*p*s + 30*z - 18*t - 165*b**2 +--R +--R +--R 2 +--R (3) 15w + 25p s + 30z - 18t - 165b +--R Type: DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer)) +--E 3 + +--S 4 of 12 +s4:DMP([w,p,z,t,s,b],FRAC(INT)):= -9*w + 15*p*t + 20*z*s +--R +--R +--R (4) - 9w + 15p t + 20z s +--R Type: DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer)) +--E 4 + +--S 5 of 12 +s5:DMP([w,p,z,t,s,b],FRAC(INT)):= w*p + 2*z*t - 11*b**3 +--R +--R +--R 3 +--R (5) w p + 2z t - 11b +--R Type: DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer)) +--E 5 + +--S 6 of 12 +s6:DMP([w,p,z,t,s,b],FRAC(INT)):= 99*w - 11*b*s + 3*b**2 +--R +--R +--R 2 +--R (6) 99w - 11s b + 3b +--R Type: DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer)) +--E 6 + +--S 7 of 12 +s7:DMP([w,p,z,t,s,b],FRAC(INT)):= b**2 + 33/50*b + 2673/10000 +--R +--R +--R 2 33 2673 +--R (7) b + -- b + ----- +--R 50 10000 +--R Type: DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer)) +--E 7 + +--S 8 of 12 +sn7:=[s1,s2,s3,s4,s5,s6,s7] +--R +--R +--R (8) +--R [45p + 35s - 165b - 36, 35p + 40z + 25t - 27s, +--R 2 3 +--R 15w + 25p s + 30z - 18t - 165b , - 9w + 15p t + 20z s, w p + 2z t - 11b , +--R 2 2 33 2673 +--R 99w - 11s b + 3b , b + -- b + -----] +--R 50 10000 +--RType: List(DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer))) +--E 8 + +--S 9 of 12 +groebner(sn7,"info","redcrit") +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 5 61 77 7 +--R z + - t - -- s + -- b + -- +--R 8 45 24 10 +--R +--R +--R +--R you choose option -info- +--R abbrev. for the following information strings are +--R ci => Leading monomial for critpair calculation +--R tci => Number of terms of polynomial i +--R cj => Leading monomial for critpair calculation +--R tcj => Number of terms of polynomial j +--R c => Leading monomial of critpair polynomial +--R tc => Number of terms of critpair polynomial +--R rc => Leading monomial of redcritpair polynomial +--R trc => Number of terms of redcritpair polynomial +--R tF => Number of polynomials in reduction list F +--R tD => Number of critpairs still to do +--R +--R +--R +--R +--R +--R [[ci= p,tci= 4,cj= p,tcj= 4,c= z,tc= 5,rc= z,trc= 5,tF= 4,tD= 3]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 66 603 278 2 11 672 2277 415881 +--R t s - -- t b + ---- t - --- s + -- s b - --- s - ---- b - ------ +--R 29 1450 435 29 725 7250 725000 +--R +--R +--R +--R [[ci= w,tci= 3,cj= w,tcj= 5,c= p t,tc= 6,rc= t s,trc= 8,tF= 5,tD= 2]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 100 2 160 104 37 79 +--R t + --- s - --- s b - --- s - --- b - --- +--R 189 63 63 105 125 +--R +--R +--R +--R [[ci= w,tci= 3,cj= w,tcj= 3,c= p t,tc= 4,rc= t,trc= 6,tF= 5,tD= 2]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 3 1026 2 5424 2 2529 1326807 12717 660717 +--R s - ---- s b - ---- s - ---- s b - ------- s + ----- b + ------- +--R 145 3625 725 362500 6250 3625000 +--R +--R +--R +--R 3 +--R [[ci= t s,tci= 8,cj= t,tcj= 6,c= t b,tc= 9,rc= s ,trc= 7,tF= 6,tD= 1]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 2 91248294 2 6550614 7087292937 20020838931 +--R s b + --------- s - ------- s b + ----------- s - ----------- b +--R 128176525 5127061 12817652500 12817652500 +--R + +--R 37595502243 +--R - ----------- +--R 51270610000 +--R +--R +--R +--R 2 +--R [[ci= w p,tci= 3,cj= w,tcj= 3,c= p s b,tc= 4,rc= s b,trc= 6,tF= 7,tD= 2]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 2 4746183626079988 1015195815329760 30723564870033201 +--R s - ---------------- s b - ---------------- s - ----------------- b +--R 987357073521193 987357073521193 24683926838029825 +--R + +--R 3696123458901625353 +--R - ------------------- +--R 2468392683802982500 +--R +--R +--R +--R 2 2 2 2 +--R [[ci= b ,tci= 3,cj= s b,tcj= 6,c= s b,tc= 6,rc= s ,trc= 5,tF= 6,tD= 2]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 0 +--R +--R +--R +--R 2 2 2 +--R [[ci= s b,tci= 6,cj= s ,tcj= 5,c= s ,tc= 7,rc= 0,trc= 0,tF= 6,tD= 1]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 16827373608076633182513471 1262793163581645698534964 +--R s b + -------------------------- s - ------------------------- b +--R 23063714246644859914108300 5765928561661214978527075 +--R + +--R 91594345205981119652436033 +--R --------------------------- +--R 144148214041530374463176875 +--R +--R +--R +--R 3 2 2 +--R [[ci= s ,tci= 7,cj= s ,tcj= 5,c= s b,tc= 6,rc= s b,trc= 4,tF= 7,tD= 2]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 5 9 +--R s - - b - --- +--R 2 200 +--R +--R +--R +--R 2 +--R [[ci= b ,tci= 3,cj= s b,tcj= 4,c= s b,tc= 4,rc= s,trc= 3,tF= 6,tD= 2]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 0 +--R +--R +--R +--R [[ci= s b,tci= 4,cj= s,tcj= 3,c= s,tc= 4,rc= 0,trc= 0,tF= 6,tD= 1]] +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 0 +--R +--R +--R +--R 2 +--R [[ci= s ,tci= 5,cj= s,tcj= 3,c= s b,tc= 4,rc= 0,trc= 0,tF= 6,tD= 0]] +--R +--R +--R There are +--R +--R 6 +--R +--R Groebner Basis Polynomials. +--R +--R +--R THE GROEBNER BASIS POLYNOMIALS +--R +--R (9) +--R 19 1323 31 153 49 1143 37 27 +--R [w + --- b + -----, p - -- b - ---, z + -- b + ----, t - -- b + ---, +--R 120 20000 18 200 36 2000 15 250 +--R 5 9 2 33 2673 +--R s - - b - ---, b + -- b + -----] +--R 2 200 50 10000 +--RType: List(DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer))) +--E 9 + +--S 10 of 12 +groebner(sn7,"info") +--R +--R +--R you choose option -info- +--R abbrev. for the following information strings are +--R ci => Leading monomial for critpair calculation +--R tci => Number of terms of polynomial i +--R cj => Leading monomial for critpair calculation +--R tcj => Number of terms of polynomial j +--R c => Leading monomial of critpair polynomial +--R tc => Number of terms of critpair polynomial +--R rc => Leading monomial of redcritpair polynomial +--R trc => Number of terms of redcritpair polynomial +--R tF => Number of polynomials in reduction list F +--R tD => Number of critpairs still to do +--R +--R +--R +--R +--R +--R [[ci= p,tci= 4,cj= p,tcj= 4,c= z,tc= 5,rc= z,trc= 5,tF= 4,tD= 3]] +--R +--R +--R [[ci= w,tci= 3,cj= w,tcj= 5,c= p t,tc= 6,rc= t s,trc= 8,tF= 5,tD= 2]] +--R +--R +--R [[ci= w,tci= 3,cj= w,tcj= 3,c= p t,tc= 4,rc= t,trc= 6,tF= 5,tD= 2]] +--R +--R +--R 3 +--R [[ci= t s,tci= 8,cj= t,tcj= 6,c= t b,tc= 9,rc= s ,trc= 7,tF= 6,tD= 1]] +--R +--R +--R 2 +--R [[ci= w p,tci= 3,cj= w,tcj= 3,c= p s b,tc= 4,rc= s b,trc= 6,tF= 7,tD= 2]] +--R +--R +--R 2 2 2 2 +--R [[ci= b ,tci= 3,cj= s b,tcj= 6,c= s b,tc= 6,rc= s ,trc= 5,tF= 6,tD= 2]] +--R +--R +--R 2 2 2 +--R [[ci= s b,tci= 6,cj= s ,tcj= 5,c= s ,tc= 7,rc= 0,trc= 0,tF= 6,tD= 1]] +--R +--R +--R 3 2 2 +--R [[ci= s ,tci= 7,cj= s ,tcj= 5,c= s b,tc= 6,rc= s b,trc= 4,tF= 7,tD= 2]] +--R +--R +--R 2 +--R [[ci= b ,tci= 3,cj= s b,tcj= 4,c= s b,tc= 4,rc= s,trc= 3,tF= 6,tD= 2]] +--R +--R +--R [[ci= s b,tci= 4,cj= s,tcj= 3,c= s,tc= 4,rc= 0,trc= 0,tF= 6,tD= 1]] +--R +--R +--R 2 +--R [[ci= s ,tci= 5,cj= s,tcj= 3,c= s b,tc= 4,rc= 0,trc= 0,tF= 6,tD= 0]] +--R +--R +--R There are +--R +--R 6 +--R +--R Groebner Basis Polynomials. +--R +--R +--R THE GROEBNER BASIS POLYNOMIALS +--R +--R (10) +--R 19 1323 31 153 49 1143 37 27 +--R [w + --- b + -----, p - -- b - ---, z + -- b + ----, t - -- b + ---, +--R 120 20000 18 200 36 2000 15 250 +--R 5 9 2 33 2673 +--R s - - b - ---, b + -- b + -----] +--R 2 200 50 10000 +--RType: List(DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer))) +--E 10 + +--S 11 of 12 +groebner(sn7,"redcrit") +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 5 61 77 7 +--R z + - t - -- s + -- b + -- +--R 8 45 24 10 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 66 603 278 2 11 672 2277 415881 +--R t s - -- t b + ---- t - --- s + -- s b - --- s - ---- b - ------ +--R 29 1450 435 29 725 7250 725000 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 100 2 160 104 37 79 +--R t + --- s - --- s b - --- s - --- b - --- +--R 189 63 63 105 125 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 3 1026 2 5424 2 2529 1326807 12717 660717 +--R s - ---- s b - ---- s - ---- s b - ------- s + ----- b + ------- +--R 145 3625 725 362500 6250 3625000 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 2 91248294 2 6550614 7087292937 20020838931 +--R s b + --------- s - ------- s b + ----------- s - ----------- b +--R 128176525 5127061 12817652500 12817652500 +--R + +--R 37595502243 +--R - ----------- +--R 51270610000 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 2 4746183626079988 1015195815329760 30723564870033201 +--R s - ---------------- s b - ---------------- s - ----------------- b +--R 987357073521193 987357073521193 24683926838029825 +--R + +--R 3696123458901625353 +--R - ------------------- +--R 2468392683802982500 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 0 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 16827373608076633182513471 1262793163581645698534964 +--R s b + -------------------------- s - ------------------------- b +--R 23063714246644859914108300 5765928561661214978527075 +--R + +--R 91594345205981119652436033 +--R --------------------------- +--R 144148214041530374463176875 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 5 9 +--R s - - b - --- +--R 2 200 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 0 +--R +--R +--R +--R +--R reduced Critpair - Polynom : +--R +--R +--R 0 +--R +--R +--R THE GROEBNER BASIS POLYNOMIALS +--R +--R (11) +--R 19 1323 31 153 49 1143 37 27 +--R [w + --- b + -----, p - -- b - ---, z + -- b + ----, t - -- b + ---, +--R 120 20000 18 200 36 2000 15 250 +--R 5 9 2 33 2673 +--R s - - b - ---, b + -- b + -----] +--R 2 200 50 10000 +--RType: List(DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer))) +--E 11 + +--S 12 of 12 +groebner(sn7) +--R +--R +--R (12) +--R 19 1323 31 153 49 1143 37 27 +--R [w + --- b + -----, p - -- b - ---, z + -- b + ----, t - -- b + ---, +--R 120 20000 18 200 36 2000 15 250 +--R 5 9 2 33 2673 +--R s - - b - ---, b + -- b + -----] +--R 2 200 50 10000 +--RType: List(DistributedMultivariatePolynomial([w,p,z,t,s,b],Fraction(Integer))) +--E 12 + +)spool +)lisp (bye) + +\end{chunk} +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document}