diff --git a/books/bookvol10.3.pamphlet b/books/bookvol10.3.pamphlet index 4d83d51..f8a3ab2 100644 --- a/books/bookvol10.3.pamphlet +++ b/books/bookvol10.3.pamphlet @@ -2716,6 +2716,7 @@ AlgebraGivenByStructuralConstants(R:Field, n : PositiveInteger,_ --R knownInfBasis : NonNegativeInteger -> Void --R lcm : (%,%) -> % if Fraction(UP) has FIELD --R lcm : List(%) -> % if Fraction(UP) has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Fraction(UP) has FIELD --R lookup : % -> PositiveInteger if Fraction(UP) has FINITE --R minimalPolynomial : % -> UPUP if Fraction(UP) has FIELD --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") if Fraction(UP) has FIELD @@ -3226,6 +3227,7 @@ AlgebraicFunctionField(F, UP, UPUP, modulus): Exports == Implementation where --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R is? : (%,BasicOperator) -> Boolean --R kernel : (BasicOperator,List(%)) -> % +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R mainKernel : % -> Union(Kernel(%),"failed") --R map : ((% -> %),Kernel(%)) -> % --R minPoly : Kernel(%) -> SparseUnivariatePolynomial(%) if $ has RING @@ -15136,6 +15138,7 @@ BalancedBinaryTree(S: SetCategory): Exports == Implementation where --R extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed") --R extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") --R principalIdeal : List(%) -> Record(coef: List(%),generator: %) --R root : (SparseUnivariatePolynomial(Integer),Integer) -> % @@ -15340,6 +15343,7 @@ BalancedPAdicInteger(p:Integer) == InnerPAdicInteger(p,false$Boolean) --R fractionPart : % -> % if BalancedPAdicInteger(p) has EUCDOM --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R init : () -> % if BalancedPAdicInteger(p) has STEP +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R map : ((BalancedPAdicInteger(p) -> BalancedPAdicInteger(p)),%) -> % --R max : (%,%) -> % if BalancedPAdicInteger(p) has ORDSET --R min : (%,%) -> % if BalancedPAdicInteger(p) has ORDSET @@ -33277,6 +33281,7 @@ DesingTree(S: SetCategory): T==C where --R isTimes : % -> Union(List(%),"failed") --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R mainVariable : % -> Union(V,"failed") --R makeVariable : % -> (NonNegativeInteger -> %) if R has DIFRING --R makeVariable : S -> (NonNegativeInteger -> %) @@ -41161,6 +41166,7 @@ EqTable(Key: SetCategory, Entry: SetCategory) == --R extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed") --R extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") --R principalIdeal : List(%) -> Record(coef: List(%),generator: %) --R subtractIfCan : (%,%) -> Union(%,"failed") @@ -41592,6 +41598,7 @@ Exit: SetCategory == add --R fractionPart : % -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen) has EUCDOM --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R init : () -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen) has STEP +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R limitPlus : % -> Union(OrderedCompletion(FE),"failed") --R map : ((UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen) -> UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen)),%) -> % --R max : (%,%) -> % if UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,var,cen) has ORDSET @@ -43072,6 +43079,7 @@ Expression(R:OrderedSet): Exports == Implementation where --R integrate : % -> % if FE has ALGEBRA(FRAC(INT)) --R lcm : (%,%) -> % if FE has FIELD --R lcm : List(%) -> % if FE has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if FE has FIELD --R log : % -> % if FE has ALGEBRA(FRAC(INT)) --R monomial : (%,List(SingletonAsOrderedSet),List(Fraction(Integer))) -> % --R monomial : (%,SingletonAsOrderedSet,Fraction(Integer)) -> % @@ -46756,6 +46764,7 @@ FiniteDivisor(F, UP, UPUP, R): Exports == Implementation where --S 1 of 1 )show FiniteField +--R --R FiniteField(p: PositiveInteger,n: PositiveInteger) is a domain constructor --R Abbreviation for FiniteField is FF --R This constructor is exposed in this frame. @@ -46826,6 +46835,7 @@ FiniteDivisor(F, UP, UPUP, R): Exports == Implementation where --R generator : () -> % if PrimeField(p) has FINITE --R index : PositiveInteger -> % if PrimeField(p) has FINITE --R init : () -> % if PrimeField(p) has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(PrimeField(p))) -> % if PrimeField(p) has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(PrimeField(p)),"failed") if PrimeField(p) has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(PrimeField(p)) if PrimeField(p) has FINITE @@ -47015,6 +47025,7 @@ FiniteField(p:PositiveInteger, n:PositiveInteger): _ --S 1 of 1 )show FiniteFieldCyclicGroup +--R --R FiniteFieldCyclicGroup(p: PositiveInteger,extdeg: PositiveInteger) is a domain constructor --R Abbreviation for FiniteFieldCyclicGroup is FFCG --R This constructor is exposed in this frame. @@ -47086,6 +47097,7 @@ FiniteField(p:PositiveInteger, n:PositiveInteger): _ --R getZechTable : () -> PrimitiveArray(SingleInteger) --R index : PositiveInteger -> % if PrimeField(p) has FINITE --R init : () -> % if PrimeField(p) has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(PrimeField(p))) -> % if PrimeField(p) has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(PrimeField(p)),"failed") if PrimeField(p) has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(PrimeField(p)) if PrimeField(p) has FINITE @@ -47288,6 +47300,7 @@ FiniteFieldCyclicGroup(p,extdeg):_ --S 1 of 1 )show FiniteFieldCyclicGroupExtension +--R --R FiniteFieldCyclicGroupExtension(GF: FiniteFieldCategory,extdeg: PositiveInteger) is a domain constructor --R Abbreviation for FiniteFieldCyclicGroupExtension is FFCGX --R This constructor is not exposed in this frame. @@ -47358,6 +47371,7 @@ FiniteFieldCyclicGroup(p,extdeg):_ --R getZechTable : () -> PrimitiveArray(SingleInteger) --R index : PositiveInteger -> % if GF has FINITE --R init : () -> % if GF has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(GF)) -> % if GF has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(GF),"failed") if GF has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(GF) if GF has FINITE @@ -47561,6 +47575,7 @@ FiniteFieldCyclicGroupExtension(GF,extdeg):_ --S 1 of 1 )show FiniteFieldCyclicGroupExtensionByPolynomial +--R --R FiniteFieldCyclicGroupExtensionByPolynomial(GF: FiniteFieldCategory,defpol: SparseUnivariatePolynomial(GF)) is a domain constructor --R Abbreviation for FiniteFieldCyclicGroupExtensionByPolynomial is FFCGP --R This constructor is not exposed in this frame. @@ -47631,6 +47646,7 @@ FiniteFieldCyclicGroupExtension(GF,extdeg):_ --R getZechTable : () -> PrimitiveArray(SingleInteger) --R index : PositiveInteger -> % if GF has FINITE --R init : () -> % if GF has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(GF)) -> % if GF has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(GF),"failed") if GF has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(GF) if GF has FINITE @@ -48101,6 +48117,7 @@ FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol):_ --S 1 of 1 )show FiniteFieldExtension +--R --R FiniteFieldExtension(GF: FiniteFieldCategory,n: PositiveInteger) is a domain constructor --R Abbreviation for FiniteFieldExtension is FFX --R This constructor is not exposed in this frame. @@ -48170,6 +48187,7 @@ FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol):_ --R generator : () -> % if GF has FINITE --R index : PositiveInteger -> % if GF has FINITE --R init : () -> % if GF has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(GF)) -> % if GF has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(GF),"failed") if GF has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(GF) if GF has FINITE @@ -48361,6 +48379,7 @@ FiniteFieldExtension(GF, n): Exports == Implementation where --S 1 of 1 )show FiniteFieldExtensionByPolynomial +--R --R FiniteFieldExtensionByPolynomial(GF: FiniteFieldCategory,defpol: SparseUnivariatePolynomial(GF)) is a domain constructor --R Abbreviation for FiniteFieldExtensionByPolynomial is FFP --R This constructor is not exposed in this frame. @@ -48430,6 +48449,7 @@ FiniteFieldExtension(GF, n): Exports == Implementation where --R generator : () -> % if GF has FINITE --R index : PositiveInteger -> % if GF has FINITE --R init : () -> % if GF has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(GF)) -> % if GF has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(GF),"failed") if GF has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(GF) if GF has FINITE @@ -48821,6 +48841,7 @@ FiniteFieldExtensionByPolynomial(GF:FiniteFieldCategory,_ --S 1 of 1 )show FiniteFieldNormalBasis +--R --R FiniteFieldNormalBasis(p: PositiveInteger,extdeg: PositiveInteger) is a domain constructor --R Abbreviation for FiniteFieldNormalBasis is FFNB --R This constructor is exposed in this frame. @@ -48893,6 +48914,7 @@ FiniteFieldExtensionByPolynomial(GF:FiniteFieldCategory,_ --R getMultiplicationTable : () -> Vector(List(Record(value: PrimeField(p),index: SingleInteger))) --R index : PositiveInteger -> % if PrimeField(p) has FINITE --R init : () -> % if PrimeField(p) has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(PrimeField(p))) -> % if PrimeField(p) has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(PrimeField(p)),"failed") if PrimeField(p) has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(PrimeField(p)) if PrimeField(p) has FINITE @@ -49106,6 +49128,7 @@ FiniteFieldNormalBasis(p,extdeg):_ --S 1 of 1 )show FiniteFieldNormalBasisExtension +--R --R FiniteFieldNormalBasisExtension(GF: FiniteFieldCategory,extdeg: PositiveInteger) is a domain constructor --R Abbreviation for FiniteFieldNormalBasisExtension is FFNBX --R This constructor is not exposed in this frame. @@ -49177,6 +49200,7 @@ FiniteFieldNormalBasis(p,extdeg):_ --R getMultiplicationTable : () -> Vector(List(Record(value: GF,index: SingleInteger))) --R index : PositiveInteger -> % if GF has FINITE --R init : () -> % if GF has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(GF)) -> % if GF has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(GF),"failed") if GF has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(GF) if GF has FINITE @@ -49390,6 +49414,7 @@ FiniteFieldNormalBasisExtension(GF,extdeg):_ --S 1 of 1 )show FiniteFieldNormalBasisExtensionByPolynomial +--R --R FiniteFieldNormalBasisExtensionByPolynomial(GF: FiniteFieldCategory,uni: Union(SparseUnivariatePolynomial(GF),Vector(List(Record(value: GF,index: SingleInteger))))) is a domain constructor --R Abbreviation for FiniteFieldNormalBasisExtensionByPolynomial is FFNBP --R This constructor is not exposed in this frame. @@ -49461,6 +49486,7 @@ FiniteFieldNormalBasisExtension(GF,extdeg):_ --R getMultiplicationTable : () -> Vector(List(Record(value: GF,index: SingleInteger))) --R index : PositiveInteger -> % if GF has FINITE --R init : () -> % if GF has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(GF)) -> % if GF has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(GF),"failed") if GF has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(GF) if GF has FINITE @@ -60189,6 +60215,7 @@ GeneralTriangularSet(R,E,V,P) : Exports == Implementation where --R inv : % -> % if Coef has FIELD --R lcm : (%,%) -> % if Coef has FIELD --R lcm : List(%) -> % if Coef has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Coef has FIELD --R log : % -> % if Coef has ALGEBRA(FRAC(INT)) --R monomial : (%,List(SingletonAsOrderedSet),List(Fraction(Integer))) -> % --R monomial : (%,SingletonAsOrderedSet,Fraction(Integer)) -> % @@ -69307,6 +69334,7 @@ InfinitlyClosePointOverPseudoAlgebraicClosureOfFiniteField(K,symb,BLMET):_ --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R is? : (%,BasicOperator) -> Boolean --R kernel : (BasicOperator,List(%)) -> % +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R mainKernel : % -> Union(Kernel(%),"failed") --R map : ((% -> %),Kernel(%)) -> % --R minPoly : Kernel(%) -> SparseUnivariatePolynomial(%) if $ has RING @@ -69618,6 +69646,7 @@ InnerAlgebraicNumber(): Exports == Implementation where --S 1 of 1 )show InnerFiniteField +--R --R InnerFiniteField(p: PositiveInteger,n: PositiveInteger) is a domain constructor --R Abbreviation for InnerFiniteField is IFF --R This constructor is not exposed in this frame. @@ -69689,6 +69718,7 @@ InnerAlgebraicNumber(): Exports == Implementation where --R generator : () -> % if InnerPrimeField(p) has FINITE --R index : PositiveInteger -> % if InnerPrimeField(p) has FINITE --R init : () -> % if InnerPrimeField(p) has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(InnerPrimeField(p))) -> % if InnerPrimeField(p) has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(InnerPrimeField(p)),"failed") if InnerPrimeField(p) has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(InnerPrimeField(p)) if InnerPrimeField(p) has FINITE @@ -70260,6 +70290,7 @@ InnerIndexedTwoDimensionalArray(R,mnRow,mnCol,Row,Col):_ --R extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed") --R extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") --R principalIdeal : List(%) -> Record(coef: List(%),generator: %) --R root : (SparseUnivariatePolynomial(Integer),Integer) -> % @@ -70607,6 +70638,7 @@ InnerPAdicInteger(p,unBalanced?): Exports == Implementation where --S 1 of 1 )show InnerPrimeField +--R --R InnerPrimeField(p: PositiveInteger) is a domain constructor --R Abbreviation for InnerPrimeField is IPF --R This constructor is not exposed in this frame. @@ -70675,6 +70707,7 @@ InnerPAdicInteger(p,unBalanced?): Exports == Implementation where --R factorsOfCyclicGroupSize : () -> List(Record(factor: Integer,exponent: Integer)) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R generator : () -> % if $ has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(%)) -> % if $ has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(%) if $ has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(%),"failed") if $ has FINITE @@ -74880,6 +74913,7 @@ contains?(t3,0.3) --R characteristic : () -> NonNegativeInteger --R exquo : (%,%) -> Union(%,"failed") --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R retractIfCan : % -> Union(Integer,"failed") --R subtractIfCan : (%,%) -> Union(%,"failed") --R unitNormal : % -> Record(unit: %,canonical: %,associate: %) @@ -76516,6 +76550,7 @@ KeyedAccessFile(Entry): KAFcategory == KAFcapsule where --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has FIELD --R lcm : (%,%) -> % if R has FIELD --R lcm : List(%) -> % if R has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has FIELD --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") if R has FIELD --R principalIdeal : List(%) -> Record(coef: List(%),generator: %) if R has FIELD --R ?quo? : (%,%) -> % if R has FIELD @@ -82349,6 +82384,7 @@ LyndonWord(VarSet:OrderedSet):Public == Private where --S 1 of 1 )show MachineComplex +--R --R MachineComplex is a domain constructor --R Abbreviation for MachineComplex is MCMPLX --R This constructor is exposed in this frame. @@ -82482,6 +82518,7 @@ LyndonWord(VarSet:OrderedSet):Public == Private where --R inv : % -> % if MachineFloat has FIELD --R lcm : (%,%) -> % if MachineFloat has EUCDOM --R lcm : List(%) -> % if MachineFloat has EUCDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if MachineFloat has EUCDOM --R lift : % -> SparseUnivariatePolynomial(MachineFloat) --R log : % -> % if MachineFloat has TRANFUN --R lookup : % -> PositiveInteger if MachineFloat has FINITE @@ -82832,6 +82869,7 @@ MachineComplex():Exports == Implementation where --R float : (Integer,Integer,PositiveInteger) -> % --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R increasePrecision : Integer -> PositiveInteger if $ has arbitraryPrecision +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R max : () -> % if not(has($,arbitraryExponent)) and not(has($,arbitraryPrecision)) --R maximumExponent : Integer -> Integer --R min : () -> % if not(has($,arbitraryExponent)) and not(has($,arbitraryPrecision)) @@ -83327,6 +83365,7 @@ MachineFloat(): Exports == Implementation where --R extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed") --R extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R maxint : PositiveInteger -> PositiveInteger --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") --R nextItem : % -> Union(%,"failed") @@ -86940,6 +86979,7 @@ Matrix(R): Exports == Implementation where --S 1 of 1 )show ModMonic +--R --R ModMonic(R: Ring,Rep: UnivariatePolynomialCategory(R)) is a domain constructor --R Abbreviation for ModMonic is MODMON --R This constructor is not exposed in this frame. @@ -86971,8 +87011,8 @@ Matrix(R): Exports == Implementation where --R pseudoRemainder : (%,%) -> % recip : % -> Union(%,"failed") --R reduce : Rep -> % reductum : % -> % --R retract : % -> R sample : () -> % ---R setPoly : Rep -> Rep zero? : % -> Boolean ---R ?~=? : (%,%) -> Boolean +--R setPoly : Rep -> Rep unvectorise : Vector(R) -> % +--R zero? : % -> Boolean ?~=? : (%,%) -> Boolean --R ?*? : (Fraction(Integer),%) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (%,Fraction(Integer)) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (NonNegativeInteger,%) -> % @@ -87060,6 +87100,7 @@ Matrix(R): Exports == Implementation where --R karatsubaDivide : (%,NonNegativeInteger) -> Record(quotient: %,remainder: %) --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R lookup : % -> PositiveInteger if R has FINITE --R mainVariable : % -> Union(SingletonAsOrderedSet,"failed") --R makeSUP : % -> SparseUnivariatePolynomial(R) @@ -87510,6 +87551,7 @@ ModMonic(R,Rep): C == T --R extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed") --R extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") --R principalIdeal : List(%) -> Record(coef: List(%),generator: %) --R subtractIfCan : (%,%) -> Union(%,"failed") @@ -89908,6 +89950,7 @@ MultivariatePolynomial(vl:List Symbol, R:Ring) --R kernel : (BasicOperator,List(%)) -> % --R lcm : (%,%) -> % if R has INTDOM --R lcm : List(%) -> % if R has INTDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has INTDOM --R mainKernel : % -> Union(Kernel(%),"failed") --R map : ((% -> %),Kernel(%)) -> % --R minPoly : Kernel(%) -> SparseUnivariatePolynomial(%) if $ has RING @@ -90180,7 +90223,8 @@ MyExpression(q: Symbol, R): Exports == Implementation where --R pseudoRemainder : (%,%) -> % recip : % -> Union(%,"failed") --R reductum : % -> % retract : % -> Symbol --R retract : % -> R sample : () -> % ---R zero? : % -> Boolean ?~=? : (%,%) -> Boolean +--R unvectorise : Vector(R) -> % zero? : % -> Boolean +--R ?~=? : (%,%) -> Boolean --R ?*? : (Fraction(Integer),%) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (%,Fraction(Integer)) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (NonNegativeInteger,%) -> % @@ -90265,6 +90309,7 @@ MyExpression(q: Symbol, R): Exports == Implementation where --R karatsubaDivide : (%,NonNegativeInteger) -> Record(quotient: %,remainder: %) --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R mainVariable : % -> Union(SingletonAsOrderedSet,"failed") --R makeSUP : % -> SparseUnivariatePolynomial(R) --R mapExponents : ((NonNegativeInteger -> NonNegativeInteger),%) -> % @@ -90653,6 +90698,7 @@ MyUnivariatePolynomial(x:Symbol, R:Ring): --R insert : (Record(k: Integer,c: K),%,Integer) -> % --R last : % -> Record(k: Integer,c: K) --R last : (%,NonNegativeInteger) -> % +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R leaves : % -> List(Record(k: Integer,c: K)) --R less? : (%,NonNegativeInteger) -> Boolean --R map : ((Record(k: Integer,c: K) -> Record(k: Integer,c: K)),%) -> % @@ -91268,6 +91314,7 @@ by means of triangular sets. --R lazyResidueClass : (%,%) -> Record(polnum: %,polden: %,power: NonNegativeInteger) --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R leadingCoefficient : (%,VarSet) -> % --R mainContent : % -> % if R has GCDDOM --R mainPrimitivePart : % -> % if R has GCDDOM @@ -91945,7 +91992,8 @@ constructur {\bf SparseUnivariatePolynomial}. --R one? : % -> Boolean pseudoRemainder : (%,%) -> % --R recip : % -> Union(%,"failed") reductum : % -> % --R retract : % -> R sample : () -> % ---R zero? : % -> Boolean ?~=? : (%,%) -> Boolean +--R unvectorise : Vector(R) -> % zero? : % -> Boolean +--R ?~=? : (%,%) -> Boolean --R ?*? : (Fraction(Integer),%) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (%,Fraction(Integer)) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (NonNegativeInteger,%) -> % @@ -92042,6 +92090,7 @@ constructur {\bf SparseUnivariatePolynomial}. --R lazyResidueClass : (%,%) -> Record(polnum: %,polden: R,power: NonNegativeInteger) --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R mainVariable : % -> Union(SingletonAsOrderedSet,"failed") --R makeSUP : % -> SparseUnivariatePolynomial(R) --R mapExponents : ((NonNegativeInteger -> NonNegativeInteger),%) -> % @@ -98351,6 +98400,7 @@ OrderlyDifferentialVariable(S:OrderedSet):DifferentialVariableCategory(S) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has FIELD --R lcm : (%,%) -> % if R has FIELD --R lcm : List(%) -> % if R has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has FIELD --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") if R has FIELD --R prime? : % -> Boolean if R has FIELD --R principalIdeal : List(%) -> Record(coef: List(%),generator: %) if R has FIELD @@ -99411,6 +99461,7 @@ OutputForm(): SetCategory with --R extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed") --R extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") --R principalIdeal : List(%) -> Record(coef: List(%),generator: %) --R root : (SparseUnivariatePolynomial(Integer),Integer) -> % @@ -99616,6 +99667,7 @@ PAdicInteger(p:Integer) == InnerPAdicInteger(p,true$Boolean) --R fractionPart : % -> % if PAdicInteger(p) has EUCDOM --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R init : () -> % if PAdicInteger(p) has STEP +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R map : ((PAdicInteger(p) -> PAdicInteger(p)),%) -> % --R max : (%,%) -> % if PAdicInteger(p) has ORDSET --R min : (%,%) -> % if PAdicInteger(p) has ORDSET @@ -99879,6 +99931,7 @@ PAdicRational(p:Integer) == PAdicRationalConstructor(p,PAdicInteger p) --R fractionPart : % -> % if PADIC has EUCDOM --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R init : () -> % if PADIC has STEP +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R max : (%,%) -> % if PADIC has ORDSET --R min : (%,%) -> % if PADIC has ORDSET --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") @@ -105297,6 +105350,7 @@ non-interactive environment (library), HACKPI would not exist. --R extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed") --R extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") --R principalIdeal : List(%) -> Record(coef: List(%),generator: %) --R retractIfCan : % -> Union(Fraction(Integer),"failed") @@ -111461,6 +111515,7 @@ PositiveInteger: Join(AbelianSemiGroup,OrderedSet,Monoid) with --S 1 of 1 )show PrimeField +--R --R PrimeField(p: PositiveInteger) is a domain constructor --R Abbreviation for PrimeField is PF --R This constructor is exposed in this frame. @@ -111529,6 +111584,7 @@ PositiveInteger: Join(AbelianSemiGroup,OrderedSet,Monoid) with --R factorsOfCyclicGroupSize : () -> List(Record(factor: Integer,exponent: Integer)) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) --R generator : () -> % if $ has FINITE +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R linearAssociatedExp : (%,SparseUnivariatePolynomial(%)) -> % if $ has FINITE --R linearAssociatedLog : % -> SparseUnivariatePolynomial(%) if $ has FINITE --R linearAssociatedLog : (%,%) -> Union(SparseUnivariatePolynomial(%),"failed") if $ has FINITE @@ -112957,6 +113013,7 @@ PseudoAlgebraicClosureOfAlgExtOfRationalNumber(downLevel:K):Exp == Impl where --S 1 of 1 )show PseudoAlgebraicClosureOfFiniteField +--R --R PseudoAlgebraicClosureOfFiniteField(K: FiniteFieldCategory) is a domain constructor --R Abbreviation for PseudoAlgebraicClosureOfFiniteField is PACOFF --R This constructor is exposed in this frame. @@ -113024,6 +113081,7 @@ PseudoAlgebraicClosureOfAlgExtOfRationalNumber(downLevel:K):Exp == Impl where --R extensionDegree : () -> OnePointCompletion(PositiveInteger) --R factorsOfCyclicGroupSize : () -> List(Record(factor: Integer,exponent: Integer)) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R lift : % -> SparseUnivariatePolynomial(%) --R lift : (%,%) -> SparseUnivariatePolynomial(%) --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") @@ -113574,6 +113632,7 @@ PseudoAlgebraicClosureOfFiniteField(K):Exports == Implementation where --R extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) --R extensionDegree : () -> OnePointCompletion(PositiveInteger) --R gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) --R lift : (%,%) -> SparseUnivariatePolynomial(%) --R lift : % -> SparseUnivariatePolynomial(%) --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") @@ -115721,6 +115780,7 @@ Queue(S:SetCategory): QueueAggregate S with --S 1 of 1 )show RadicalFunctionField +--R --R RadicalFunctionField(F: UniqueFactorizationDomain,UP: UnivariatePolynomialCategory(F),UPUP: UnivariatePolynomialCategory(Fraction(UP)),radicnd: Fraction(UP),n: NonNegativeInteger) is a domain constructor --R Abbreviation for RadicalFunctionField is RADFF --R This constructor is not exposed in this frame. @@ -115828,6 +115888,7 @@ Queue(S:SetCategory): QueueAggregate S with --R inverseIntegralMatrixAtInfinity : () -> Matrix(Fraction(UP)) --R lcm : (%,%) -> % if Fraction(UP) has FIELD --R lcm : List(%) -> % if Fraction(UP) has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Fraction(UP) has FIELD --R lookup : % -> PositiveInteger if Fraction(UP) has FINITE --R minimalPolynomial : % -> UPUP if Fraction(UP) has FIELD --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") if Fraction(UP) has FIELD @@ -125246,6 +125307,7 @@ SetOfMIntegersInOneToN(m, n): Exports == Implementation where --R isTimes : % -> Union(List(%),"failed") --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R leader : % -> SequentialDifferentialVariable(Symbol) --R mainVariable : % -> Union(SequentialDifferentialVariable(Symbol),"failed") --R makeVariable : % -> (NonNegativeInteger -> %) if R has DIFRING @@ -125872,6 +125934,7 @@ SExpressionOf(Str, Sym, Int, Flt, Expr): Decl == Body where --S 1 of 1 )show SimpleAlgebraicExtension +--R --R SimpleAlgebraicExtension(R: CommutativeRing,UP: UnivariatePolynomialCategory(R),M: UP) is a domain constructor --R Abbreviation for SimpleAlgebraicExtension is SAE --R This constructor is not exposed in this frame. @@ -125954,6 +126017,7 @@ SExpressionOf(Str, Sym, Int, Flt, Expr): Decl == Body where --R init : () -> % if R has FFIELDC --R lcm : (%,%) -> % if R has FIELD --R lcm : List(%) -> % if R has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has FIELD --R lookup : % -> PositiveInteger if R has FINITE --R minimalPolynomial : % -> UP if R has FIELD --R multiEuclidean : (List(%),%) -> Union(List(%),"failed") if R has FIELD @@ -127180,10 +127244,11 @@ SingletonAsOrderedSet(): OrderedSet with --S 1 of 1 )show SparseEchelonMatrix +--R --R SparseEchelonMatrix(C: OrderedSet,D: Ring) is a domain constructor --R Abbreviation for SparseEchelonMatrix is SEM --R This constructor is exposed in this frame. ---R Issue )edit /research/ref/SEM.spad to see algebra source code for SEM +--R Issue )edit bookvol10.3.pamphlet to see algebra source code for SEM --R --R------------------------------- Operations -------------------------------- --R ?*? : (Matrix(D),%) -> % allIndices : % -> List(C) @@ -128131,6 +128196,7 @@ SparseEchelonMatrix(C : OrderedSet, D : Ring) : Cat == Def where --R isTimes : % -> Union(List(%),"failed") --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R mainVariable : % -> Union(VarSet,"failed") --R mapExponents : ((IndexedExponents(VarSet) -> IndexedExponents(VarSet)),%) -> % --R max : (%,%) -> % if R has ORDSET @@ -129815,6 +129881,7 @@ SparseTable(Key:SetCategory, Ent:SetCategory, dent:Ent) == --R laurent : (Integer,SparseUnivariateTaylorSeries(Coef,var,cen)) -> % --R lcm : (%,%) -> % if Coef has FIELD --R lcm : List(%) -> % if Coef has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Coef has FIELD --R log : % -> % if Coef has ALGEBRA(FRAC(INT)) --R map : ((SparseUnivariateTaylorSeries(Coef,var,cen) -> SparseUnivariateTaylorSeries(Coef,var,cen)),%) -> % if Coef has FIELD --R max : (%,%) -> % if SparseUnivariateTaylorSeries(Coef,var,cen) has OINTDOM and Coef has FIELD or SparseUnivariateTaylorSeries(Coef,var,cen) has ORDSET and Coef has FIELD @@ -130279,7 +130346,8 @@ SparseUnivariateLaurentSeries(Coef,var,cen): Exports == Implementation where --R one? : % -> Boolean pseudoRemainder : (%,%) -> % --R recip : % -> Union(%,"failed") reductum : % -> % --R retract : % -> R sample : () -> % ---R zero? : % -> Boolean ?~=? : (%,%) -> Boolean +--R unvectorise : Vector(R) -> % zero? : % -> Boolean +--R ?~=? : (%,%) -> Boolean --R ?*? : (Fraction(Integer),%) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (%,Fraction(Integer)) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (NonNegativeInteger,%) -> % @@ -130364,6 +130432,7 @@ SparseUnivariateLaurentSeries(Coef,var,cen): Exports == Implementation where --R karatsubaDivide : (%,NonNegativeInteger) -> Record(quotient: %,remainder: %) --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R mainVariable : % -> Union(SingletonAsOrderedSet,"failed") --R makeSUP : % -> SparseUnivariatePolynomial(R) --R mapExponents : ((NonNegativeInteger -> NonNegativeInteger),%) -> % @@ -130988,8 +131057,8 @@ unfortunately. --R one? : % -> Boolean pi : () -> % if R has TRANFUN --R pseudoRemainder : (%,%) -> % recip : % -> Union(%,"failed") --R reductum : % -> % retract : % -> R ---R sample : () -> % zero? : % -> Boolean ---R ?~=? : (%,%) -> Boolean +--R sample : () -> % unvectorise : Vector(R) -> % +--R zero? : % -> Boolean ?~=? : (%,%) -> Boolean --R ?*? : (Fraction(Integer),%) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (%,Fraction(Integer)) -> % if R has ALGEBRA(FRAC(INT)) --R ?*? : (NonNegativeInteger,%) -> % @@ -131093,6 +131162,7 @@ unfortunately. --R karatsubaDivide : (%,NonNegativeInteger) -> Record(quotient: %,remainder: %) --R lcm : (%,%) -> % if R has GCDDOM --R lcm : List(%) -> % if R has GCDDOM +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if R has GCDDOM --R log : % -> % if R has TRANFUN --R mainVariable : % -> Union(SingletonAsOrderedSet,"failed") --R makeSUP : % -> SparseUnivariatePolynomial(R) @@ -131491,6 +131561,7 @@ SparseUnivariatePolynomialExpressions(R: Ring): Exports == Implementation where --R laurentRep : % -> SparseUnivariateLaurentSeries(Coef,var,cen) --R lcm : (%,%) -> % if Coef has FIELD --R lcm : List(%) -> % if Coef has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Coef has FIELD --R log : % -> % if Coef has ALGEBRA(FRAC(INT)) --R monomial : (%,List(SingletonAsOrderedSet),List(Fraction(Integer))) -> % --R monomial : (%,SingletonAsOrderedSet,Fraction(Integer)) -> % @@ -146723,6 +146794,7 @@ UnivariateFormalPowerSeries(Coef: Ring) == --R laurent : (Integer,UnivariateTaylorSeries(Coef,var,cen)) -> % --R lcm : (%,%) -> % if Coef has FIELD --R lcm : List(%) -> % if Coef has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Coef has FIELD --R log : % -> % if Coef has ALGEBRA(FRAC(INT)) --R map : ((UnivariateTaylorSeries(Coef,var,cen) -> UnivariateTaylorSeries(Coef,var,cen)),%) -> % if Coef has FIELD --R max : (%,%) -> % if UnivariateTaylorSeries(Coef,var,cen) has OINTDOM and Coef has FIELD or UnivariateTaylorSeries(Coef,var,cen) has ORDSET and Coef has FIELD @@ -147154,6 +147226,7 @@ UnivariateLaurentSeries(Coef,var,cen): Exports == Implementation where --R inv : % -> % if Coef has FIELD --R lcm : (%,%) -> % if Coef has FIELD --R lcm : List(%) -> % if Coef has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Coef has FIELD --R log : % -> % if Coef has ALGEBRA(FRAC(INT)) --R map : ((UTS -> UTS),%) -> % if Coef has FIELD --R max : (%,%) -> % if UTS has ORDSET and Coef has FIELD @@ -148728,6 +148801,7 @@ UnivariatePolynomial(x:Symbol, R:Ring): --R laurentRep : % -> UnivariateLaurentSeries(Coef,var,cen) --R lcm : (%,%) -> % if Coef has FIELD --R lcm : List(%) -> % if Coef has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Coef has FIELD --R log : % -> % if Coef has ALGEBRA(FRAC(INT)) --R monomial : (%,List(SingletonAsOrderedSet),List(Fraction(Integer))) -> % --R monomial : (%,SingletonAsOrderedSet,Fraction(Integer)) -> % @@ -149166,6 +149240,7 @@ UnivariatePuiseuxSeries(Coef,var,cen): Exports == Implementation where --R laurentIfCan : % -> Union(ULS,"failed") --R lcm : (%,%) -> % if Coef has FIELD --R lcm : List(%) -> % if Coef has FIELD +--R lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %) if Coef has FIELD --R log : % -> % if Coef has ALGEBRA(FRAC(INT)) --R monomial : (%,List(SingletonAsOrderedSet),List(Fraction(Integer))) -> % --R monomial : (%,SingletonAsOrderedSet,Fraction(Integer)) -> % diff --git a/changelog b/changelog index 0f3d9c2..b9f9089 100644 --- a/changelog +++ b/changelog @@ -1,4 +1,6 @@ -20141124 tpd src/axiom-website/patches.html 20141124.02.rhx.patch +20141124 tpd src/axiom-website/patches.html 20141124.03.tpd.patch +20141124 tpd books/bookvol10.3 fix failing domain tests +20141124 tpd src/axiom-website/patches.html 20141124.02.tpd.patch 20141124 tpd books/bookvol10.4 help docs for MatrixManipulation 20141124 rhx src/axiom-website/patches.html 20141124.01.rhx.patch 20141124 rhx buglist bug 7265: interpreter does early retract to Taylor series diff --git a/patch b/patch index c4f8880..1d3285e 100644 --- a/patch +++ b/patch @@ -1,7 +1 @@ -books/bookvol10.4 help docs for MatrixManipulation - -add )help and )d op documentation for - -MatrixManipulation, element, aRow, rows, aColumn, columns, subMatrix, -diagonalMatrix, bandMatrix, horizConcat, vertConcat, blockConcat, -vertSplit, horizSplit, blockSplit +books/bookvol10.3 fix failing domain tests diff --git a/src/axiom-website/patches.html b/src/axiom-website/patches.html index f637d7d..4bfad16 100644 --- a/src/axiom-website/patches.html +++ b/src/axiom-website/patches.html @@ -4730,6 +4730,8 @@ buglist bug 7264: 2.7@DoubleFloat failed to coerce to DoubleFloat
buglist bug 7265: interpreter does early retract to Taylor series 20141124.02.tpd.patch books/bookvol10.4 help docs for MatrixManipulation
+20141124.03.tpd.patch +books/bookvol10.3 fix failing domain tests