@ SALTSTACK

Salt Documentation
Release 2015.5.10

SaltStack, Inc.

April 18, 2016






Contents

1

2

3

4

Introduction to Salt

1.1 The 30 second SUMMATIY . . . . . . v v v vt it ettt e e et e e e e e e e
1.2 SImplicity . . . . . o e e
1.3 Parallel execution . . . . . . . . . e
1.4  Building on proven technology . . . . . . . . ...
1.5 Python clientinterface . . . . . . . . . . .
1.6 Fast, flexible, scalable . . . . . . . . .
1.7 0pen . . . . e e
1.8 SaltCommunity . . . . . . o .o e e
1.9  Mailing List . . . . . . . . e
110 IRC .. e e e
1.11 Followon Github . . . . . . . . . . . e
112 Blogs . . o o e e
1.13 Example Salt States . . . . . . . . L
1.14 Followonohloh . . . . . . o
1.15 Other community links . . . . . . .. ..
1.16 HacktheSource. . . . . . . . . .
Installation

21 QuickInstall. . . . . . . . e
2.2 Platform-specific Installation Instructions . . . . . . .. ... ... L L
23 Dependencies . . . . . . ... e
24  Optional Dependencies . . . . . . . . . . i e
2.5 Upgrading Salt . . . . . .
Tutorials

3.1 Introduction . . . . . . . L
3.2 Basics ... e
33 States . .. . e e e e
3.4 Advanced TOPICS . . . . . . . Lo e
3.5 Salt VIrt . . ..o e
3.6  Halite . . .. . . . e
3.7 LXC o
3.8 UsingSaltatscale. . . . . . . . . e e
Targeting Minions

4.1 Matching theminion id . ... ... ..
4.2 Grains . . . . v e e e e e

26
27
27

29
29
31
40
70
126
131
134
134

139
139
140




9

43 Targeting with Pillar . . . . . . . . L
4.4  Subnet/IP Address Matching . . . . . . . . . .. L
45 Compound matchers . . . . . . . . L
4.6 NOe GroUPS . . « v v v v e e e e e e
47 BatchSize . . . . . . L
48 SECORANGe . . . . o o o it e e e e e
Storing Static Data in the Pillar
5.1 Declaring the Master Pillar . . . . . . . . .. . . e
5.2 Pillar namespace flattened . . . . . . . ..
5.3  Pillar Namespace Merges. . . . . . . . . . o i
54 Including Other Pillars . . . . . . . . . . L o e
55 Viewing Minjon Pillar . . . . . . . .. Lo
5.6  Pillar “Tget" Function . . . . . . . L e e
5.7 Refreshing Pillar Data . . . . . . . . . . . . e
5.8  SetPillar Data at the Command Line . . . . ... .. ... ... ... ... ... .. ... ... ...
59 Master ConfigInPillar . . . . . . . . . L
5.10 Master Provided Pillar Error . . . . . . . . ... e
Reactor System
6.1 EventSystem . . . . . . . . .
6.2  Mapping Events to Reactor SLSFiles . . . . . . . . . .. . . e
6.3 Fireanevent . . . . . . . . L e e e
6.4 Knowing what eventisbeing fired . . . . . . ... ... ... L
6.5 Debugging the Reactor . . . . . . . . . . . e
6.6  Understanding the Structure of Reactor Formulas . . . . . .. ... ... ... . ... ... ...
6.7 A Complete Example . . . . . . .. .
6.8  Syncing Custom Types on Minion Start . . . . .. .. ... ... ...
The Salt Mine
7.1 Mine vs Grains . . . . . . . . ..o e
7.2 Mine Functions . . . . . . . . L e e e e
7.3 MineInterval . . . . ..
74  Minein Salt-SSH . . . . . . L e
75  Example . ..o e
External Authentication System
8.1 AccessControl System . . . . . . . . e
8.2 Tokens . . . . ..
8.3  OpenLDAP and similar systems . . . . . . .. .. ...
8.4  Active Directory . . . . . . . e e
Access Control System

10 Job Management
10.1 The Minion proc System . . . . . . . . . . Lo e e e
10.2 Functions in the saltutil Module . . . . . . . . ... . . .
10.3 ThejobsRunner. . . . . . . . . . L o e
10.4 Scheduling Jobs . . . . . . . L
10.5  States . . . . . L e
10.6  Highstates . . . . . . . . L L e
10.7 RUNNEIS . . . . . oo e e
10.8 Scheduler With Returner . . . . . . . . . . . o

11 Managing the Job Cache

149
149
150
151
152
152
152
153
153
153
153

155
155
155
156
156
157
157
160
161

163
163
163
164
164
164

167
167
168
168
170

171

173
173
173
173
174
176
176
177
177

181




12

13

14

15

16

17

18

19

20

11.1 Default Job Cache . . . . . . . . . e e 181
11.2  Additional Job Cache Options . . . . . . . . . . 181
Storing Job Results in an External System 183
12.1 External Job Cache - Minion-Side Returner. . . . . . . . . . . ... .. ... ... ... ....... 183
12.2 Master Job Cache - Master-Side Returner . . . . . . . . . . . . . . . . i 184
12.3 Configure an External or Master JobCache . . . ... ... ... .. .. .. .. ... . . . ... 184
Storing Data in Other Databases 187
13.1 SDB Configuration . . . . . . . . . ot i e e 187
13.2 SDBURIS . . . . . . e 187
133 Writing SDB Modules . . . . . . . . oL e 188
Salt Event System 189
141 Eventtypes . . . . . . . . e 189
14.2 Listening for Events . . . . . . . . . . e 193
143 Firing Events . . . . . . o . L L e e e 194
14.4 Firing Events from Python . . . . . . . . . . . L 195
Beacons 197
15.1 Configuring Beacons . . . . . . . . . oL e 197
15.2 Beacon Example . . . . . . oL 198
153 Writing Beacon Plugins . . . . . . . . . . L e 200
Running Custom Master Processes 201
16.1 Example Configuration . . . . . . . . . . . L e 201
16.2 Example Process Class . . . . . . . . . . e 201
High Availability Features in Salt 203
17.1 Multimaster . . . . . . . . o e e e 203
17.2  Multimaster with Failover . . . . . . . . . . o 203
173 Syndic . . . . . oL 204
17.4 Syndic with Multimaster . . . . . . . . . . .. 204
Salt Syndic 205
18.1 Configuringthe Syndic. . . . . . . . . . L 205
18.2 Configuring the Syndic with Multimaster . . . . . . . . . ... ... ... . . ... 206
18.3 Running the Syndic . . . . . . . . . L 206
184 Topology . . o o 207
185 Syndicwalt . . . . . . L e 207
18.6 Syndic configoptions. . . . . . . .. 207
Salt Proxy Minion Documentation 209
19.1 Getting Started . . . . . . . L 209
19.2 The __proxyenabled__directive . . . . . . . . . ... L 216
The RAET Transport 217
20.1 Using RAET inSalt . . . . . . . . 217
20.2 Limitations . . . . . . . . e e 218
203 WRY? © ot e 218
204 RAETReliability . . . . . . oo oot oottt e e 218
20.5 RAET and ZeroMQ . . . . . . . 0 e e e e 218
20.6  Encryption . . . . . . .. 219
20.7 ProgrammingIntro . . . . . . ... o e 219




22

23

24

25

26

27

28

21 Windows Software Repository
21,1 Operation . . . . . .o v it e e
212 USAGEe . v v i e
21.3 Generate Repo Cache File . . . . . . . . . . e
21.4 Install Windows Software . . . . . . . . . e
21.5 Uninstall Windows Software . . . . . . . .. ... .. L e
21.6 Standalone Minion Salt Windows RepoModule . . . . . ... ... ... ... ... ... .. . ...
21.7 GitHosted Repo . . . . . . o o e
21.8 Troubleshooting . . . . . . . . . . . . L
Windows-specific Behaviour
22.1 Group parameter forfiles . . . . ...
22.2 Dealing with case-insensitive but case-preservingnames . . . . . . . ... ...
22.3 Dealing with various username forms . . . . . . .. ... L Lo e
224 Specifyingthe None group . . . . . . . . . . e
22,5 Symboliclinkloops . . . . . . .
22.6  Modifying security properties (ACLs) onfiles . . . . .. ... ... .. ... . L o .
Salt Cloud
23.1 Getting Started . . . . . oL e
23.2 UsingSalt Cloud . . . . . . . e
233 Core Configuration . . . . . . . . . . . L L
23.4 Windows Configuration . . . . . . . . . . .. e e
23.5 Cloud Provider Specifics . . . . . . . . . e
23.6 Miscellaneous Options . . . . . . . . . . o L e e
23.7 Troubleshooting Steps . . . . . . . . . L
23.8 Extending Salt Cloud . . . . . . . . . . .
23.9 UsingSalt Cloud from Salt . . . . . . . . .. . e
23.10 Feature Comparison . . . . . . . . . . . L e e e e e e e e e e
23.11 Tutorials . . . . . . L e
netapi modules
24.1 Writing netapi modules . . . . . ...
24.2 Introduction tonetapimodules . . . . . . .. L
243 Clientinterfaces . . . . . . . . . L
Salt Virt
25.1 Salt Virt Tutorial . . . . . . . . L e
252 TheSalt VirtRunner . . . . .. . . . . .
253 BasedonLiveState Data . . . . . . . . . . . .
254 Deploy from Network or Disk . . . . . . . . .. . .
Understanding YAML
26.1 Rule One: Indentation . . . . .. .. . . e e
26.2 Rule Two: Colons . . . . . . o . o e
26.3 Rule Three: Dashes . . . . . . . . .. . e
26.4 Learning More . . . . . . . . e e
Master Tops System
Salt SSH
28.1 Getting Started . . . . ... e e e
28.2 Salt SSHRoSter . . . . . . . e e
28.3 Deploysshkeyforsalt-ssh. . . . .. ..
284 Calling Salt SSH . . . . . . . o e

221
221
222
224
224
224
225
225
225

227
227
227
228
228
228
228

229
229
231
240
249
251
314
319
321
330
334
337

341
341
342
342

345
345
345
346
346

349
349
349
350
350

351




29

30

31

32

28.5
28.6
28.7
28.8
28.9
28.10

States Via Salt SSH . . . . . . . . L e
Targeting with Salt SSH . . . . . . . . . . o e
Configuring Salt SSH . . . . . . . . . e
Running Salt SSH as non-root user . . . . . . ... ittt e
Define CLI Options with Saltfile . . . . . . . . . .. ... .. .
Debugging salt-ssh . . . . . . .. L

Salt Rosters

29.1

How Rosters Work . . . . . . . o o e

Reference

30.1

30.2

30.3

30.4

30.5

30.6

30.7

30.8

30.9

30.10
30.11
30.12
30.13
30.14
30.15
30.16
30.17
30.18
30.19
30.20
30.21
30.22
30.23
30.24
30.25
30.26
30.27
30.28
30.29
30.30
30.31
30.32
30.33

Full list of builtin auth modules . . . . . . . . . . . ... .. .. .
Command Line Reference . . . . . . . . . . . . . . . . . e
Client ACL system . . . . . . . o ittt e et e e e e e e e
Python client APT . . . . . . . L o e
Full list of Salt Cloud modules . . . . . . . . . .. ...
Configuration file examples . . . . . . . . .. L
Configuring Salt . . . . . . . . e
Configuring the Salt Master . . . . . . . . . . . . e
Configuring the Salt Minion . . . . . . . . . . . .
Running the Salt Master/Minion as an Unprivileged User . . . . . . . ... ... ... ... ......
Logging . . . . . . . e
External Logging Handlers . . . . . . . . . .. .. e
Salt File Server . . . . . . . . e e
Full list of builtin fileserver modules . . . . . . . . . . . .. ... .
Salt code and internals . . . . . . . . . .
Full list of builtin execution modules . . . . . . . . . ... . ...
Full list of netapimodules . . . . . . . .. .. e
Full list of builtin output modules . . . . . . . . .. ... L
Peer Communication . . . . . . . . . . L. e e e e e e e e e e e
Pillars . . . . .
Full list of builtin pillarmodules . . . . . . . . .. .. . .
Renderers . . . . . . . . . . e
Returners . . . . . . . e e e e e e e
Full list of builtin roster modules . . . . . . . . . . .. ...
Salt RUNNETS . . . . . . . o o e e e e e e
State Enforcement . . . . . . . . . L e e e e
Full list of builtin state modules . . . . . . . . . . . . . . ...
Execution Modules . . . . . . . . L
Master TOPS . . . . . o o o e e e
Full list of builtin master tops modules . . . . . . . ... ... L L
Full list of builtin wheel modules . . . . . . ... ... .. ... ... ...
Full list of builtin beacon modules . . . . . . . . . .. .. ...
Full list of builtin sdb modules . . . . . . . . . . . .. ...

Salt Best Practices

31.1
31.2
31.3
31.4
31.5
31.6

Generalrules . . . . . . .. L
Structuring States and Formulas . . . . . . . . ... L L
Structuring Pillar Files . . . . . . . . . ..
Variable Flexibility . . . . . . . . . .
Modularity Within States . . . . . . . . . L e
Storing Secure Data. . . . . . . ... e

Hardening Salt

32.1

General hardening tips . . . . . . . . . . oL




33

34

35

36

37

38

32.2 Salthardening tips . . . . . . . . e

Troubleshooting

33.1 Troubleshooting the Salt Master . . . . . . . . . . ... . ... .. ..
33.2 Troubleshooting the Salt Minion . . . . . .. . .. ... .. .. ..
33.3 Running in the Foreground . . . . . ... .. ... . e
33.4 What Ports do the Master and Minion Need Open? . . . . . .. ... ... ... . ... ........
33.5 Usingsalt-call . . . . . . oL e
33.6 Toomanyopenfiles . . . . . . . . .
33.7 Salt Master Stops Responding . . . . . . . .. ..
33.8 Saltand SELINUX . . . . . . oot e e e e e
33.9 Red Hat Enterprise LINUX 5 . . . . . . . oo i e e
33.10 Common YAML Gotchas . . . . . . . . . . . .
33.11 Live Python Debug Output . . . . . . . . . . e
33.12 Salt 0.16.x minions cannot communicate with a 0.17.x master . . . . .. ... ... .. ... .. ...
33.13 Debugging the Master and Minion . . . . . . . . . ... .. L e

Developing Salt

341 OVeIrVIEW . . . . . . .o
34.2 SaltClient . . . . . . . . e
343 Salt Master . . . . . . . . . e
344 Salt Minion . . . . . . . L e
34.5 A Note on ClearFuncs vs. AESFUNCs . . . . . . . . . . . . 0 it
34.6 Contributing . . . . . . . L e
347 Deprecating Code . . . . . . . . . e e
34.8 Dunder Dictionaries . . . . . . . . . . . L e
349 External Pillars . . . . . . . . e
34.10 Installing Salt for development . . . . . . . .. .. . . L e
34.11 GitHub Labels and Milestones . . . . . . . . . . . . . e
34.12 Logging Internals . . . . . . . . . L e
34.13 Modular Systems . . . . . ...
34.14 Package Providers . . . . . . . . . ..
34.15 Community Projects That Use Salt . . . . . . . . . . . . ... . . ...
34.16 Salt Topology . . . . o o o e e e
34.17 Translating Documentation . . . . . . . . .. ... L e e
34.18 Running The Tests . . . . . . . . o e
34.19 Automated TestRuns . . . . . . . . .. L L
3420 Writing Tests . . . . . . . L
3421 raet . . ... e e e e
34.22 SaltStack Git Policy . . . . . . . . .
34.23 Salt Conventions . . . . . . . . . . . e

Release notes
35.1 Latest Branch Release . . . . . . . . . . . . . e
35.2 PreviousReleases . . . . . . . . . e e e

Salt Based Projects
36.1 SaltSandbox. . . . . .. e

Security disclosure policy
37.1 Security response procedure . . . . .. ...l e e e
37.2 Receiving security announcemnts . . . . . . . . ...l e e e e e e e e e e e

Frequently Asked Questions
38.1 IsSaltopen-core? . . . . . . . . . e

vi



38.2 What ports should I open on my firewall? . . . . ... ... ... ... ... .. .. 1927
38.3 I'm seeing weird behavior (including but not limited to packages not installing their users properly) 1928
38.4 My script runs every time [ run a state.apply. Why? . . . . . . ... Lo 1928
38.5 When I run test.ping, why don't the Minions that aren't responding return anything? Returning
False would be helpful. . . . . . . . . 1928
38.6 How does Salt determine the Minion'sid? . . . . . . . .. ... ... . . .. L 1929
38.7 I'm trying to manage packages/services but I get an error saying that the state is not available. Why? 1929
38.8 I'm using gitfs and my custom modules/states/etc are not syncing. Why? . . . . ... ... ... ... 1929
38.9 Why aren't my custom modules/states/etc. available on my Minions? . . . . .. ... ... ... ... 1929
38.10 Module X isn't available, even though the shell command it uses is installed. Why? . . . .. ... .. 1929
38.11 Can Irun different versions of Salt on my Master and Minion? . . .. ... ... ... ........ 1930
38.12 Does Salt support backing up managed files? . . . . . . ... ... L L o 1930
38.13 What is the best way to restart a Salt daemon using Salt? . . . . . . .. ... ... .. .. ... .. .. 1930
38.14 Salting the Salt Master . . . . . . . . . . e 1931
38.15 Is Targeting using Grain Data Secure? . . . . . ... .. ... . ... .. .. ... ... ... 1932
39 Glossary 1933
Salt Module Index 1937
Index 1945

vii






CHAPTER 1

Introduction to Salt

We’re not just talking about NaCl.

1.1 The 30 second summary

Salt is:

- a configuration management system, capable of maintaining remote nodes in defined states (for example,
ensuring that specific packages are installed and specific services are running)

« a distributed remote execution system used to execute commands and query data on remote nodes, either
individually or by arbitrary selection criteria

It was developed in order to bring the best solutions found in the world of remote execution together and make them
better, faster, and more malleable. Salt accomplishes this through its ability to handle large loads of information, and
not just dozens but hundreds and even thousands of individual servers quickly through a simple and manageable
interface.

1.2 Simplicity

Providing versatility between massive scale deployments and smaller systems may seem daunting, but Salt is very
simple to set up and maintain, regardless of the size of the project. The architecture of Salt is designed to work with
any number of servers, from a handful of local network systems to international deployments across different data
centers. The topology is a simple server/client model with the needed functionality built into a single set of daemons.
While the default configuration will work with little to no modification, Salt can be fine tuned to meet specific needs.

1.3 Parallel execution

The core functions of Salt:
« enable commands to remote systems to be called in parallel rather than serially
« use a secure and encrypted protocol
« use the smallest and fastest network payloads possible
« provide a simple programming interface

Salt also introduces more granular controls to the realm of remote execution, allowing systems to be targeted not
just by hostname, but also by system properties.




Salt Documentation, Release 2015.5.10

1.4 Building on proven technology

Salt takes advantage of a number of technologies and techniques. The networking layer is built with the excellent
ZeroMQ networking library, so the Salt daemon includes a viable and transparent AMQ broker. Salt uses public
keys for authentication with the master daemon, then uses faster AES encryption for payload communication; au-
thentication and encryption are integral to Salt. Salt takes advantage of communication via msgpack, enabling fast
and light network traffic.

1.5 Python client interface

In order to allow for simple expansion, Salt execution routines can be written as plain Python modules. The data
collected from Salt executions can be sent back to the master server, or to any arbitrary program. Salt can be called
from a simple Python API, or from the command line, so that Salt can be used to execute one-off commands as well
as operate as an integral part of a larger application.

1.6 Fast, flexible, scalable

The result is a system that can execute commands at high speed on target server groups ranging from one to very
many servers. Salt is very fast, easy to set up, amazingly malleable and provides a single remote execution architec-
ture that can manage the diverse requirements of any number of servers. The Salt infrastructure brings together the
best of the remote execution world, amplifies its capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

1.7 Open

Salt is developed under the Apache 2.0 license, and can be used for open and proprietary projects. Please submit
your expansions back to the Salt project so that we can all benefit together as Salt grows. Please feel free to sprinkle
Salt around your systems and let the deliciousness come forth.

1.8 Salt Community

Join the Salt!
There are many ways to participate in and communicate with the Salt community.

Salt has an active IRC channel and a mailing list.

1.9 Mailing List

Join the salt-users mailing list. It is the best place to ask questions about Salt and see whats going on with Salt
development! The Salt mailing list is hosted by Google Groups. It is open to new members.

https://groups.google.com/forum/#!forum/salt-users
There is also a low-traffic list used to announce new releases called salt-announce

https://groups.google.com/forum/#!forum/salt-announce

2 Chapter 1. Introduction to Salt


http://zeromq.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://msgpack.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-announce
https://groups.google.com/forum/#!forum/salt-announce

Salt Documentation, Release 2015.5.10

1.10 IRC

The #salt IRC channel is hosted on the popular Freenode network. You can use the Freenode webchat client right
from your browser.

Logs of the IRC channel activity are being collected courtesy of Moritz Lenz.

If you wish to discuss the development of Salt itself join us in #salt-devel.

1.11 Follow on Github

The Salt code is developed via Github. Follow Salt for constant updates on what is happening in Salt development:

https://github.com/saltstack/salt

1.12 Blogs

SaltStack Inc. keeps a blog with recent news and advancements:
http://www.saltstack.com/blog/
Thomas Hatch also shares news and thoughts on Salt and related projects in his personal blog The Red45:

http://red45.wordpress.com/

1.13 Example Salt States

The official salt-states repository is: https://github.com/saltstack/salt-states
A few examples of salt states from the community:

« https://github.com/blast-hardcheese/blast-salt-states

https://github.com/kevingranade/kevingranade-salt-state

https://github.com/uggedal/states

https://github.com/mattmcclean/salt-openstack/tree/master/salt

https://github.com/rentalita/ubuntu-setup/

https://github.com/brutasse/states

https://github.com/bclermont/states

https://github.com/pcrews/salt-data

1.14 Follow on ohloh

https://www.ohloh.net/p/salt

1.10. IRC 3


http://freenode.net/irc_servers.shtml
http://webchat.freenode.net/?channels=salt&uio=Mj10cnVlJjk9dHJ1ZSYxMD10cnVl83
http://irclog.perlgeek.de/salt/
https://github.com/saltstack/salt
http://www.saltstack.com/blog/
http://www.saltstack.com/blog/
http://red45.wordpress.com/
http://red45.wordpress.com/
https://github.com/saltstack/salt-states
https://github.com/blast-hardcheese/blast-salt-states
https://github.com/kevingranade/kevingranade-salt-state
https://github.com/uggedal/states
https://github.com/mattmcclean/salt-openstack/tree/master/salt
https://github.com/rentalita/ubuntu-setup/
https://github.com/brutasse/states
https://github.com/bclermont/states
https://github.com/pcrews/salt-data
https://www.ohloh.net/p/salt

Salt Documentation, Release 2015.5.10

1.15 Other community links

Salt Stack Inc.
Subreddit

« Google+
« YouTube
« Facebook

o Twitter

Wikipedia page

1.16 Hack the Source

If you want to get involved with the development of source code or the documentation efforts, please review the
hacking section!

4 Chapter 1. Introduction to Salt


http://www.saltstack.com
http://www.reddit.com/r/saltstack
https://plus.google.com/114449193225626631691/posts
http://www.youtube.com/user/SaltStack
https://www.facebook.com/SaltStack
https://twitter.com/SaltStackInc
http://en.wikipedia.org/wiki/Salt_(software)

CHAPTER 2

Installation

See also:

Installing Salt for development and contributing to the project.

2.1 Quick Install

On most distributions, you can set up a Salt Minion with the Salt Bootstrap.

2.2 Platform-specific Installation Instructions

These guides go into detail how to install Salt on a given platform.

2.2.1 Arch Linux

Installation

Salt (stable) is currently available via the Arch Linux Official repositories. There are currently -git packages available
in the Arch User repositories (AUR) as well.

Stable Release

Install Salt stable releases from the Arch Linux Official repositories as follows:

‘pacman -S salt-zmq

To install Salt stable releases using the RAET protocol, use the following:

’pacman -S salt-raet

Tracking develop

To install the bleeding edge version of Salt (may include bugs!), use the -git package. Installing the -git package as
follows:



https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2015.5.10

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz

cd salt-git/

makepkg -is

Note: yaourt

If a tool such as Yaourt is used, the dependencies will be gathered and built automatically.

The command to install salt using the yaourt tool is:

yaourt salt-git

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemct1 as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you've completed all of these steps you're ready to start your Salt Master. You should be able to start your Salt
Master now using the command seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

2.2.2 Debian Installation

Currently the latest packages for Debian Old Stable, Stable, and Unstable (Squeeze, Wheezy, and Sid) are published
in our (saltstack.com) Debian repository.

Configure Apt
Squeeze (Old Stable)

For squeeze, you will need to enable the Debian backports repository as well as the debian.saltstack.com repository.
To do so, add the following to /etc/apt/sources.listorafilein /etc/apt/sources.list.d:

deb http://debian.saltstack.com/debian squeeze-saltstack main
deb http://backports.debian.org/debian-backports squeeze-backports main contrib non-free

Wheezy (Stable)

For wheezy, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d:

’deb http://debian.saltstack.com/debian wheezy-saltstack main

6 Chapter 2. Installation


https://aur.archlinux.org/packages.php?ID=5863

Salt Documentation, Release 2015.5.10

Jessie (Testing)

For jessie, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d

‘deb http://debian.saltstack.com/debian jessie-saltstack main

Sid (Unstable)

For sid, the following line is needed in either /etc/apt/sources.list or a file in
/etc/apt/sources.list.d:

’deb http://debian.saltstack.com/debian unstable main

Import the repository key.

You will need to import the key used for signing.

‘wget -q -0- "http://debian.saltstack.com/debian-salt-team-joehealy.gpg.key" | apt-key a(#d -

Note: You can optionally verify the key integrity with sha512sum using the public key signature shown here. E.g:

’ echo "b702969447140d555363le9701bel3callccOa?edSerb30acb84915675606662f834772b5®95d73541fcecb2384a5cl

Update the package database

apt-get update

Install packages

Install the Salt master, minion, or syndic from the repository with the apt-get command. These examples each install
one daemon, but more than one package name may be given at a time:

’apt—get install salt-master ‘

’apt—get install salt-minion ‘

‘apt—get install salt-syndic ‘

Post-installation tasks

Now, go to the Configuring Salt page.

Notes

1. These packages will be backported from the packages intended to be uploaded into Debian unstable. This means
that the packages will be built for unstable first and then backported over the next day or so.

2.2. Platform-specific Installation Instructions 7



Salt Documentation, Release 2015.5.10

2. These packages will be tracking the released versions of salt rather than maintaining a stable fixed feature set. If
a fixed version is what you desire, then either pinning or manual installation may be more appropriate for you.

3. The version numbering and backporting process should provide clean upgrade paths between Debian versions.

If you have any questions regarding these, please email the mailing list or look for joehh on IRC.

2.2.3 Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora repositories and EPEL. It is installable
using yum. Fedora will have more up to date versions of Salt than other members of the Red Hat family, which
makes it a great place to help improve Salt!

WARNING: Fedora 19 comes with systemd 204. Systemd has known bugs fixed in later revisions that prevent the
salt-master from starting reliably or opening the network connections that it needs to. It's not likely that a salt-

master will start or run reliably on any distribution that uses systemd version 204 or earlier. Running salt-minions
should be OK.

Installation

Salt can be installed using yum and is available in the standard Fedora repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

yum install salt-master
yum install salt-minion

Installing from updates-testing

When a new Salt release is packaged, it is first admitted into the updates—-testing repository, before being
moved to the stable repo.

To install from updates—-testing, use the enablerepo argument for yum:

yum -—-enablerepo=updates-testing install salt-master
yum --enablerepo=updates-testing install salt-minion

Installation Using pip

Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using a package manager.
Installing from pip has a few additional requirements:

« Install the group "Development Tools', dnf groupinstall 'Development Tools'

« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

8 Chapter 2. Installation



http://fedoraproject.org/wiki/EPEL
https://pypi.python.org/pypi/salt

Salt Documentation, Release 2015.5.10

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

Post-installation tasks

Master

To have the Master start automatically at boot time:

’systemctl enable salt-master.service ‘

To start the Master:

’systemctl start salt-master.service ‘

Minion

To have the Minion start automatically at boot time:

‘systemctl enable salt-minion.service ‘

To start the Minion:

‘systemctl start salt-minion.service ‘

Now go to the Configuring Salt page.

2.2.4 FreeBSD

Salt was added to the FreeBSD ports tree Dec 26th, 2011 by Christer Edwards <christer.edwards@gmail.com>. It has
been tested on FreeBSD 7.4, 8.2, 9.0, and 9.1 releases.

Salt is dependent on the following additional ports. These will be installed as dependencies of the sysutils/py—
salt port:

/devel/py-yaml
/devel/py-pyzmq
/devel/py-Jinja2
/devel/py-msgpack
/security/py-pycrypto
/security/py-m2crypto

Installation

On FreeBSD 10 and later, to install Salt from the FreeBSD pkgng repo, use the command:

pkg install py27-salt

On older versions of FreeBSD, to install Salt from the FreeBSD ports tree, use the command:

2.2. Platform-specific Installation Instructions 9


mailto:christer.edwards@gmail.com

Salt Documentation, Release 2015.5.10

make -C /usr/ports/sysutils/py-salt install clean

Post-installation tasks

Master

Copy the sample configuration file:

cp /usr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf or /etc/rc.conf.local and add:

+ salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

service salt_master start

Minion

Copy the sample configuration file:

cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.conf or /etc/rc.conf.local and add:

+ salt_minion_enable="YES"
+ salt_minion_paths="/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin"

Start the Minion

Start the Salt Minion as follows:

service salt_minion start

Now go to the Configuring Salt page.

2.2.5 Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

10 Chapter 2. Installation




Salt Documentation, Release 2015.5.10

2.2.6 OpenBSD

Salt was added to the OpenBSD ports tree on Aug 10th 2013. It has been tested on OpenBSD 5.5 onwards.

Salt is dependent on the following additional ports. These will be installed as dependencies of the sysutils/salt
port:

devel/py-futures
devel/py-progressbar
net/py-msgpack
net/py-zmq
security/py-crypto
security/py-M2Crypto
textproc/py-MarkupSafe
textproc/py-yaml
www/py-jinja2
www/py-requests
www/py-tornado

Installation

To install Salt from the OpenBSD pkg repo, use the command:

pkg_add salt

Post-installation tasks

Master

To have the Master start automatically at boot time:

’rcctl enable salt_master

To start the Master:

’rcctl start salt_master

Minion

To have the Minion start automatically at boot time:

’rcctl enable salt_minion

To start the Minion:

’rcctl start salt_minion

Now go to the Configuring Salt page.

2.2.7 OS X

Dependency Installation

It should be noted that Homebrew explicitly discourages the use of sudo:

2.2. Platform-specific Installation Instructions 11


https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#sudo

Salt Documentation, Release 2015.5.10

Homebrew is designed to work without using sudo. You can decide to use it but we strongly recommend
not to do so. If you have used sudo and run into a bug then it is likely to be the cause. Please don’t file
a bug report unless you can reproduce it after reinstalling Homebrew from scratch without using sudo

So when using Homebrew, if you want support from the Homebrew community, install this way:

‘brew install saltstack

When using MacPorts, install this way:

’sudo port install salt

When only using the OS X system's pip, install this way:

’sudo pip install salt

Salt-Master Customizations

To run salt-master on OS X, the root user maxfiles limit must be increased:

‘sudo launchctl limit maxfiles 4096 8192

And sudo add this configuration option to the /etc/salt/master file:

‘ max_open_files: 8192

Now the salt-master should run without errors:

‘sudo salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

2.2.8 RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux
Installation from Repository

RHEL/CentOS 5

Due to the removal of some of Salt's dependencies from EPEL5, we have created a repository on Fedora COPR.
Moving forward, this will be the official means of installing Salt on RHEL5-based systems. Information on how to
enable this repository can be found here.

RHEL/CentOS 6 and 7, Scientific Linux, etc.

Beginning with version 0.9.4, Salt has been available in EPEL. It is installable using yum. Salt should work prop-
erly with all mainstream derivatives of RHEL, including CentOS, Scientific Linux, Oracle Linux and Amazon Linux.
Report any bugs or issues on the issue tracker.

On RHELS, the proper Jinja package "python-jinja2' was moved from EPEL to the ' 'RHEL Server Optional Channel".
Verify this repository is enabled before installing salt on RHEL6.

12 Chapter 2. Installation


https://copr.fedoraproject.org/
https://copr.fedoraproject.org/coprs/saltstack/salt-el5/
http://fedoraproject.org/wiki/EPEL
https://github.com/saltstack/salt/issues

Salt Documentation, Release 2015.5.10

Enabling EPEL If the EPEL repository is not installed on your system, you can download the RPM from here for
RHEL/CentOS 6 (or here for RHEL/CentOS 7) and install it using the following command:

rpm -Uvh epel-release-X-Y.rpm

Replace epel-release-X-Y. rpm with the appropriate filename.

Installing Stable Release Salt is packaged separately for the minion and the master. It is necessary only to install
the appropriate package for the role the machine will play. Typically, there will be one master and multiple minions.

On the salt-master, run this:

’yum install salt-master

On each salt-minion, run this:

’yum install salt-minion

Installing from epel-testing When a new Salt release is packaged, it is first admitted into the epel-
testing repository, before being moved to the stable repo.

To install from epel-testing, use the enablerepo argument for yum:

yum --enablerepo=epel-testing install salt-minion

Installation Using pip
Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using RPMs (which can be
installed from EPEL).
Installing from pip has a few additional requirements:
« Install the group "Development Tools', yum groupinstall 'Development Tools'
« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

ZeroMQ 4

We recommend using ZeroMQ 4 where available. SaltStack provides ZeroMQ 4.0.4 and pyzmq 14.3.1 in a COPR
repository. Instructions for adding this repository (as well as for upgrading ZeroMQ and pyzmgq on existing minions)
can be found here.

If this repo is added before Salt is installed, then installing either salt-master or salt-minion will automati-
cally pull in ZeroMQ 4.0.4, and additional states to upgrade ZeroMQ and pyzmq are unnecessary.

2.2. Platform-specific Installation Instructions 13


http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html
https://pypi.python.org/pypi/salt
http://fedoraproject.org/wiki/EPEL
http://copr.fedoraproject.org/
http://copr.fedoraproject.org/coprs/saltstack/zeromq4/

Salt Documentation, Release 2015.5.10

Warning: RHEL/CentOS 5 Users Using COPR repos on RHEL/CentOS 5 requires that the python-hashlib
package be installed. Not having it present will result in checksum errors because YUM will not be able to process
the SHA256 checksums used by COPR.

Note: For RHEL/CentOS 5 installations, if using the new repository to install Salt (as detailed above), then it is not
necessary to enable the zeromq4 COPR, as the new EL5 repository includes ZeroMQ 4.

Package Management

Salt's interface to yum makes heavy use of the repoquery utility, from the yum-utils package. This package will
be installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is
being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this
dependency.

Post-installation tasks

Master

To have the Master start automatically at boot time:

‘chkconﬁ'g salt-master on

To start the Master:

’service salt-master start

Minion

To have the Minion start automatically at boot time:

‘chkconﬁ'g salt-minion on

To start the Minion:

’service salt-minion start

Now go to the Configuring Salt page.

2.2.9 Solaris

Salt was added to the OpenCSW package repository in September of 2012 by Romeo Theriault <romeot@hawaii.edu>
at version 0.10.2 of Salt. It has mainly been tested on Solaris 10 (sparc), though it is built for and has been tested
minimally on Solaris 10 (x86), Solaris 9 (sparc/x86) and 11 (sparc/x86). (Please let me know if you're using it on these
platforms!) Most of the testing has also just focused on the minion, though it has verified that the master starts up
successfully on Solaris 10.

Comments and patches for better support on these platforms is very welcome.

As of version 0.10.4, Solaris is well supported under salt, with all of the following working well:
1. remote execution
2. grain detection

3. service control with SMF

14 Chapter 2. Installation


http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils
mailto:romeot@hawaii.edu

Salt Documentation, Release 2015.5.10

. 'pkg' states with “pkgadd' and “pkgutil' modules

4

5. cron modules/states

6. user and group modules/states

7. shadow password management modules/states

Salt is dependent on the following additional packages. These will automatically be installed as dependencies of the
py_salt package:

« py_yaml

* py_pyzmq

* py_jinja2

«+ py_msgpack_python
e py_m2crypto

e py_crypto
+ python

Installation

To install Salt from the OpenCSW package repository you first need to install pkgutil assuming you don't already
have it installed:

On Solaris 10:

pkgadd -d http://get.opencsw.org/now

On Solaris 9:

wget http://mirror.opencsw.org/opencsw/pkgutil.pkg
pkgadd -d pkgutil.pkg all

Once pkgutil is installed you'll need to edit it's config file /etc/opt/csw/pkgutil.conf to point it at the
unstable catalog:

- #mirror=http://mirror.opencsw.org/opencsw/testing
+ mirror=http://mirror.opencsw.org/opencsw/unstable

OK, time to install salt.

# Update the catalog

root> /opt/csw/bin/pkgutil -U

# Install salt

root> /opt/csw/bin/pkgutil -i -y py_salt

Minion Configuration

Now that salt is installed you can find it's configuration files in /etc/opt/csw/salt/.

You'll want to edit the minion config file to set the name of your salt master server:

- #master: salt
+ master: your-salt-server

2.2. Platform-specific Installation Instructions 15



http://www.opencsw.org/manual/for-administrators/getting-started.html

Salt Documentation, Release 2015.5.10

If you would like to use pkgutil as the default package provider for your Solaris minions, you can do so using the
providers option in the minion config file.

You can now start the salt minion like so:

On Solaris 10:

’svcadm enable salt-minion ‘

On Solaris 9:

‘/etc/‘in‘it.d/salt—m‘in‘ion start ‘

You should now be able to log onto the salt master and check to see if the salt-minion key is awaiting acceptance:

’salt—key -1 un ‘

Accept the key:

’salt—key -a <your-salt-minion> ‘

Run a simple test against the minion:

‘ salt '<your-salt-minion>' test.ping ‘

Troubleshooting

Logsarein /var/log/salt

2.2.10 Ubuntu Installation

Add repository

The latest packages for Ubuntu are published in the saltstack PPA. If you have the add—apt-repository utility,
you can add the repository and import the key in one step:

sudo add-apt-repository ppa:saltstack/salt

add-apt-repository: command not found?

The add-apt-repository command is not always present on Ubuntu systems. This can be fixed by installing
python-software-properties:

‘sudo apt-get install python-software-properties ‘

The following may be required as well:

‘sudo apt-get install software-properties-common ‘

Note that since Ubuntu 12.10 (Raring Ringtail), add-apt-repository is found in the software-properties-common
package, and is part of the base install. Thus, add-apt-repository should be able to be used out-of-the-box to
add the PPA.

Alternately, manually add the repository and import the PPA key with these commands:

echo deb http://ppa.launchpad.net/saltstack/salt/ubuntu "“1lsb_release -sc’ main | sudo tee /etc/apt/s
wget -q -0- "http://keyserver.ubuntu.com:11371/pks/lookup?op=get&search=0x4759FA960E27CQA6" | sudo aj

16 Chapter 2. Installation


http://www.opencsw.org/manual/for-administrators/getting-started.html

Salt Documentation, Release 2015.5.10

After adding the repository, update the package management database:

sudo apt-get update

Install packages

Install the Salt master, minion, or syndic from the repository with the apt-get command. These examples each install
one daemon, but more than one package name may be given at a time:

’sudo apt-get install salt-master

‘sudo apt-get install salt-minion

’sudo apt-get install salt-syndic

ZeroMQ 4

ZeroMQ 4 is available by default for Ubuntu 14.04 and newer. However, for Ubuntu 12.04 LTS, starting with Salt
version 2014.7.5, ZeroMQ 4 is included with the Salt installation package and nothing additional needs to be
done.

Post-installation tasks

Now go to the Configuring Salt page.

2.2.11 Windows

Salt has full support for running the Salt Minion on Windows.

There are no plans for the foreseeable future to develop a Salt Master on Windows. For now you must run your Salt
Master on a supported operating system to control your Salt Minions on Windows.

Many of the standard Salt modules have been ported to work on Windows and many of the Salt States currently
work on Windows, as well.

Windows Installer

Salt Minion Windows installers can be found here. The output of md5sum <salt minion exe>should match the contents
of the corresponding md5 file.

Latest stable build from the selected branch:

Earlier builds from supported branches

Archived builds from unsupported branches

Note: The installation executable installs dependencies that the Salt minion requires.

The 64bit installer has been tested on Windows 7 64bit and Windows Server 2008R2 64bit. The 32bit installer has
been tested on Windows 2003 Server 32bit. Please file a bug report on our GitHub repo if issues for other platforms
are found.

2.2. Platform-specific Installation Instructions 17


https://repo.saltstack.com/windows/
https://repo.saltstack.com/windows/archive/

Salt Documentation, Release 2015.5.10

The installer asks for 2 bits of information; the master hostname and the minion name. The installer will update the
minion config with these options and then start the minion.

The salt-minion service will appear in the Windows Service Manager and can be started and stopped there or with
the command line program sc like any other Windows service.

If the minion won't start, try installing the Microsoft Visual C++ 2008 x64 SP1 redistributable. Allow all Windows
updates to run salt-minion smoothly.

Silent Installer options
The installer can be run silently by providing the /S option at the command line. The installer also accepts the
following options for configuring the Salt Minion silently:

« /master= A string value to set the IP address or host name of the master. Default value is “salt'

+ /minion-name= A string value to set the minion name. Default is "hostname'

« /start-service= Either a 1 or 0. “1' will start the service, “0' will not. Default is to start the service after installa-
tion.

Here's an example of using the silent installer:

Salt-Minion-2015.5.6-Setup-amd64.exe /S /master=yoursaltmaster /m'in'ion—name:yourm'in'ionnéme /start-sel

Running the Salt Minion on Windows as an Unprivileged User

Notes: - These instructions were tested with Windows Server 2008 R2 - They are generalizable to any version of
Windows that supports a salt-minion

A. Create the Unprivileged User that the Salt Minion will Run As

1. Click "Start", "“Control Panel", " "User Accounts"

2. Click ""Add or remove user accounts"

. Click "'Create new account”

. Enter "“salt-user” (or a name of your preference) in the " New account name" field
. Select the " "Standard user" radio button

. Click the ""Create Account" button

. Click on the newly created user account

(o = N B N o)

. Click the ""Create a password" link

9. In the ""New password" and " Confirm new password" fields, provide a password (e.g " SuperSecretMinion-
Password4Me!")

10. In the “"Type a password hint" field, provide appropriate text (e.g. =~ My Salt Password")
11. Click the **Create password" button

12. Close the ""Change an Account" window

18 Chapter 2. Installation



Salt Documentation, Release 2015.5.10

B. Add the New User to the Access Control List for the Salt Folder

1. In a File Explorer window, browse to the path where Salt is installed (the default path is C:Salt)
. Right-click on the **Salt" folder and select " Properties"

. Click on the ""Security" tab

. Click the ""Edit" button

. Click the ""Add" button

. Type the name of your designated Salt user and click the **OK" button

. Check the box to *"Allow" the " Modify" permission

. Click the ""OK" button

O 0 I N U R WD

. Click the ""OK" button to close the " "Salt Properties" window

C. Update the Windows Service User for the ““salt-minion" Service

1. Click "’Start", " Administrative Tools", *“Services"

2. In the list of Services, Right-Click on " salt-minion" and select " Properties"
. Click the ""Log On" tab

. Click the " "This account" radio button

. Provide the account credentials created in section A

. Click the ""OK" button

N oW W

. Click the "“OK" button to the prompt confirming that the user " "has been granted the Log On As A Service
right"

8. Click the **OK" button to the prompt confirming that * " The new logon name will not take effect until you stop
and restart the service"

9. Right-Click on " salt-minion" and select *"Stop"

10. Right-Click on " “salt-minion" and select " Start"

Setting up a Windows build environment
This document will explain how to set up a development environment for salt on Windows. The development

environment allows you to work with the source code to customize or fix bugs. It will also allow you to build
your own installation.

The Easy Way

Prerequisite Software To do this the easy way you only need to install Git for Windows.

Create the Build Environment
1. Clone the Salt-Windows-Dev repo from github.

Open a command line and type:

2.2. Platform-specific Installation Instructions 19


https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20150319/Git-1.9.5-preview20150319.exe/
https://github.com/saltstack/salt-windows-dev/

Salt Documentation, Release 2015.5.10

git clone https://github.com/saltstack/salt-windows-dev

2. Build the Python Environment

Go into the salt-windows-dev directory. Right-click the file named dev_env.ps1 and select Run with Power-
Shell

If you get an error, you may need to change the execution policy.

Open a powershell window and type the following:

Set-ExecutionPolicy RemoteSigned

This will download and install Python with all the dependencies needed to develop and build salt.
3. Build the Salt Environment
Right-click on the file named dev_env_salt.ps1 and select Run with Powershell

This will clone salt into C:\Salt-Dev\salt and set it to the 2015.5 branch. You could optionally run the
command from a powershell window with a ~Version switch to pull a different version. For example:

dev_env_salt.psl -Version '2014.7'

To view a list of available branches and tags, open a command prompt in your C:Salt-Devsalt directory and
type:

git branch -a
git tag -n

The Hard Way

Prerequisite Software Install the following software:
1. Git for Windows
2. Nullsoft Installer
Download the Prerequisite zip file for your CPU architecture from the SaltStack download site:
« Salt32.zip
« Salt64.zip

These files contain all sofware required to build and develop salt. Unzip the contents of the file to C:\Salt-
Dev\temp.

Create the Build Environment
1. Build the Python Environment
« Install Python:

Browse to the C:\Salt-Dev\temp directory and find the Python installation file for your CPU Ar-
chitecture under the corresponding subfolder. Double-click the file to install python.

Make sure the following are in your PATH environment variable:

C:\Python27
C:\Python27\Scripts

20 Chapter 2. Installation



https://github.com/msysgit/msysgit/releases/download/Git-1.9.5-preview20150319/Git-1.9.5-preview20150319.exe/
http://downloads.sourceforge.net/project/nsis/NSIS%203%20Pre-release/3.0b1/nsis-3.0b1-setup.exe/
http://repo.saltstack.com/windows/dependencies/Salt32.zip/
http://repo.saltstack.com/windows/dependencies/Salt64.zip/

Salt Documentation, Release 2015.5.10

« Install Pip

Open a command prompt and navigate to C: \Salt-Dev\temp Run the following command:

python get-pip.py

Easy Install compiled binaries.

M2Crypto, PyCrypto, and PyWin32 need to be installed using Easy Install. Open a command prompt
and navigate to C: \Sa'lt-Dev\temp\<cpuarch>. Run the following commands:

easy_install -Z <M2Crypto file name>
easy_install -Z <PyCrypto file name>
easy_install -Z <PyWin32 file name>

Note: You can type the first part of the file name and then press the tab key to auto-complete the name
of the file.

Pip Install Additional Prerequisites

All remaining prerequisites need to be pip installed. These prerequisites are as follow:

MarkupSafe
- Jinja
MsgPack
PSUtil
PyYAML
PyZMQ

- WMI

Requests
- Certifi

Open a command prompt and navigate to C: \Salt-Dev\temp. Run the following commands:

pip install <cpuarch>\<MarkupSafe file name>
pip install <Jinja file name>

pip install <cpuarch>\<MsgPack file name>
pip install <cpuarch>\<psutil file name>

pip install <cpuarch>\<PyYAML file name>

pip install <cpuarch>\<pyzmq file name>

pip install <WMI file name>

pip install <requests file name>

pip install <certifi file name>

2. Build the Salt Environment
« Clone Salt

Open a command prompt and navigate to C: \Salt-Dev. Run the following command to clone salt:

git clone https://github.com/saltstack/salt

« Checkout Branch

Checkout the branch or tag of salt you want to work on or build. Open a command prompt and navigate
toC:\Salt-Dev\salt. Getalist of available tags and branches by running the following commands:

. Platform-specific Installation Instructions 21




Salt Documentation, Release 2015.5.10

git fetch --all

To view a list of available branches:
git branch -a

To view a list of availabel tags:
git tag -n

Checkout the branch or tag by typing the following command:

git checkout <branch/tag name>

« Clean the Environment

When switching between branches residual files can be left behind that will interfere with the functional-
ity of salt. Therefore, after you check out the branch you want to work on, type the following commands
to clean the salt environment:

Developing with Salt

There are two ways to develop with salt. You can run salt's setup.py each time you make a change to source code or
you can use the setup tools develop mode.

Configure the Minion

Both methods require that the minion configuration be in the C:\salt directory. Copy the conf and var directo-
ries from C:\Salt-Dev\salt\pkg\ windows\buildenv to C:\salt. Now go into the C:\salt\conf
directory and edit the file name minion (no extension). You need to configure the master and id parameters in this
file. Edit the following lines:

master: <ip or name of your master>
id: <name of your minion>

Setup.py Method

Go into the C:\Salt-Dev\salt directory from a cmd prompt and type:

python setup.py 1install --force

This will install python into your python installation at C: \Python27. Everytime you make an edit to your source
code, you'll have to stop the minion, run the setup, and start the minion.

To start the salt-minion go into C: \Python27\Scripts from a cmd prompt and type:

’ salt-minion

For debug mode type:

’salt—m‘in‘ion -1 debug

To stop the minion press Ctrl+C.

22 Chapter 2. Installation



Salt Documentation, Release 2015.5.10

Setup Tools Develop Mode (Preferred Method)

To use the Setup Tools Develop Mode go into C:\Salt-Dev\salt from a cmd prompt and type:

pip install -e .

This will install pointers to your source code that resides at C:\Salt-Dev\salt. When you edit your source
code you only have to restart the minion.

Build the windows installer

This is the method of building the installer as of version 2014.7.4.

Clean the Environment

Make sure you don't have any leftover salt files from previous versions of salt in your Python directory.
1. Remove all files that start with salt in the C: \Python27\Scripts directory

2. Remove all files and directorys that start with salt in the C: \Python27\Lib\site-packages directory

Install Salt

Install salt using salt's setup.py. From the C:\Salt-Dev\salt directory type the following command:

python setup.py install --force

Build the Installer

From cmd prompt go into the C: \Salt-Dev\salt\pkg\windows directory. Type the following command for
the branch or tag of salt you're building:

BuildSalt.bat <branch or tag>

This will copy python with salt installed to the buildenv\bin directory, make it portable, and then create the
windows installer . The .exe for the windows installer will be placed in the installer directory.

Testing the Salt minion

1. Create the directory C:\salt (if it doesn't exist already)
2. Copy the example conf and var directories from pkg/windows/buildenv/ into C:\salt

3. Edit C:\salt\conf\minion

master: +ipaddress or hostname of your salt-master

4. Start the salt-minion

cd C:\Python27\Scripts
python salt-minion

5. On the salt-master accept the new minion's key

2.2. Platform-specific Installation Instructions 23




Salt Documentation, Release 2015.5.10

sudo salt-key -A

This accepts all unaccepted keys. If you're concerned about security just accept the key for this specific minion.
6. Test that your minion is responding

On the salt-master run:

sudo salt 'x' test.ping

You should get the following response: {'your minion hostname': True}

Single command bootstrap script

On a 64 bit Windows host the following script makes an unattended install of salt, including all dependencies:

Not up to date.

This script is not up to date. Please use the installer found above

# (ALl in one line.)

"PowerShell (New-Object System.Net.WebClient).DownloadFile('http://csa-net.dk/salt/bootstrap64.bat’',

You can execute the above command remotely from a Linux host using winexe:

winexe -U "administrator" //fqdn "PowerShell (New-Object ...... )"

For more info check http://csa-net.dk/salt

Packages management under Windows 2003

On windows Server 2003, you need to install optional component *“wmi windows installer provider" to have full list
of installed packages. If you don't have this, salt-minion can't report some installed softwares.

2.2.12 SUSE Installation

With openSUSE 13.2, Salt 2014.1.11 is available in the primary repositories. The devellanguage:python repo will
have more up to date versions of salt, all package development will be done there.

Installation

Salt can be installed using zypper and is available in the standard openSUSE repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

24 Chapter 2. Installation


http://csa-net.dk/salt

Salt Documentation, Release 2015.5.10

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

‘systemctl enable salt-master.service ‘

To start the Master:

’systemctl start salt-master.service ‘

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service ‘

To start the Minion:

’systemctl start salt-minion.service ‘

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

‘chkconf‘ig salt-master on ‘

To start the Master:

‘ rcsalt-master start ‘

Minion

To have the Minion start automatically at boot time:

‘chkconf'ig salt-minion on ‘

To start the Minion:

’ rcsalt-minion start ‘

Unstable Release
openSUSE

For openSUSE Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_Factory/deve
zypper refresh
zypper install salt salt-minion salt-master

For openSUSE 13.2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_13.2/devel:’
zypper refresh
zypper install salt salt-minion salt-master

2.2. Platform-specific Installation Instructions 25



Salt Documentation, Release 2015.5.10

For openSUSE 13.1 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/openSUSE_13.1/devel:’
zypper refresh
zypper install salt salt-minion salt-master

For bleeding edge python Factory run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/bleeding_edge_python.
zypper refresh
zypper install salt salt-minion salt-master

Suse Linux Enterprise

For SLE 12 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_12/devel:languags
zypper refresh
zypper install salt salt-minion salt-master

For SLE 11 SP3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_$P3/devel: lan;
zypper refresh
zypper install salt salt-minion salt-master

For SLE 11 SP2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/devel:languages:python/SLE_11_$P2/devel: lan;
zypper refresh
zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

2.3 Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.
« Python 2.6 >= 2.6 <3.0
« msgpack-python - High-performance message interchange format
« YAML - Python YAML bindings
« Jinja2 - parsing Salt States (configurable in the master settings)
« MarkupSafe - Implements a XML/HTML/XHTML Markup safe string for Python

« apache-libcloud - Python lib for interacting with many of the popular cloud service providers using a unified
API

+ Requests - HTTP library
Depending on the chosen Salt transport, ZeroMQ or RAET, dependencies vary:
o ZeroMQ:
- ZeroMQ >=3.2.0

— pyzmgq >= 2.2.0 - ZeroMQ Python bindings

26 Chapter 2. Installation


http://python.org/download/
https://pypi.python.org/pypi/msgpack-python/0.1.12
http://pyyaml.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
http://libcloud.apache.org
http://docs.python-requests.org/en/latest
http://zeromq.org/
https://github.com/saltstack/raet
http://zeromq.org/
https://github.com/zeromq/pyzmq

Salt Documentation, Release 2015.5.10

— PyCrypto - The Python cryptography toolkit
— M2Crypto - *"Me Too Crypto" - Python OpenSSL wrapper
« RAET:
— libnacl - Python bindings to libsodium
— ioflo - The flo programming interface raet and salt-raet is built on
— RAET - The worlds most awesome UDP protocol

Salt defaults to the ZeroMQ transport, and the choice can be made at install time, for example:

python setup.py install --salt-transport=raet

This way, only the required dependencies are pulled by the setup script if need be.

If installing using pip, the ——salt-transport install option can be provided like:

‘p'ip install --install-option="--salt-transport=raet" salt

2.4 Optional Dependencies

« mako - an optional parser for Salt States (configurable in the master settings)

« gcc - dynamic Cython module compiling

2.5 Upgrading Salt

When upgrading Salt, the master(s) should always be upgraded first. Backward compatibility for minions running
newer versions of salt than their masters is not guaranteed.

Whenever possible, backward compatibility between new masters and old minions will be preserved. Generally, the
only exception to this policy is in case of a security vulnerability.

2.4. Optional Dependencies 27


https://www.dlitz.net/software/pycrypto/
http://chandlerproject.org/Projects/MeTooCrypto
https://github.com/saltstack/libnacl
https://github.com/jedisct1/libsodium
https://github.com/ioflo/ioflo
https://github.com/saltstack/raet
http://zeromq.org/
http://www.makotemplates.org/
http://cython.org/

Salt Documentation, Release 2015.5.10

28 Chapter 2. Installation



CHAPTER 3

Tutorials

3.1 Introduction

3.1.1 Salt Masterless Quickstart
Running a masterless salt-minion lets you use Salt's configuration management for a single machine without calling
out to a Salt master on another machine.

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Stand up a master server via States (Salting a Salt Master)
« Use salt-call commands on a system without connectivity to a master
« Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

Bootstrap Salt Minion

The salt-bootstrap script makes bootstrapping a server with Salt simple for any OS with a Bourne shell:

wget -0 - https://bootstrap.saltstack.com | sudo sh

See the salt-bootstrap documentation for other one liners. When using Vagrant to test out salt, the Vagrant salt
provisioner will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master, the file_client configuration option needs to be set in the
minion configuration file. By default the file_client is set to remote so that the minion gathers file server
and pillar data from the salt master. When setting the file_client option to Local the minion is configured to
not gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local system has all of the file and pillar
resources.

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to

29


https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
http://www.vagrantup.com/
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.vagrantup.com/v2/provisioning/salt.html

Salt Documentation, Release 2015.5.10

connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Create State Tree
Following the successful installation of a salt-minion, the next step is to create a state tree, which is where the SLS
files that comprise the possible states of the minion are stored.

The following example walks through the steps necessary to create a state tree that ensures that the server has the
Apache webserver installed.

Note: For a complete explanation on Salt States, see the tutorial.

1. Create the top.sls file:
/srv/salt/top.sls:

base:
l*!:
- webserver

2. Create the webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
pkg: # state declaration
- 1installed # function declaration

Note: The apache package has different names on different platforms, for instance on Debian/Ubuntu it is apache2,
on Fedora/RHEL it is httpd and on Arch it is apache

The only thing left is to provision our minion using salt-call.

Salt-call

The salt-call command is used to run remote execution functions locally on a minion instead of executing them from
the master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data:

salt-call --local state.apply

The --local flag tells the salt-minion to look for the state tree in the local file system and not to contact a Salt
Master for instructions.

To provide verbose output, use -1 debug:

salt-call --local state.apply -1 debug

The minion first examines the top . ss file and determines that it is a part of the group matched by * glob and that
the webserver SLS should be applied.

It then examines the webserver . sls file and finds the apache state, which installs the Apache package.

The minion should now have Apache installed, and the next step is to begin learning how to write more complex
states.

30 Chapter 3. Tutorials



http://docs.saltstack.com/en/latest/topics/tutorials/states_pt1.html

Salt Documentation, Release 2015.5.10

3.2 Basics

3.2.1 Standalone Minion
Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Use salt-call commands on a system without connectivity to a master

« Masterless States, run states entirely from files local to the minion

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data. To instruct the minion to
not look for a master when running salt-call the file_client configuration option needs to be set. By default
the file_client is set to remote so that the minion knows that file server and pillar data are to be gathered
from the master. When setting the file_client option to Local the minion is configured to not gather this
data from the master.

file_client: local

Now the salt-call command will not look for a master and will assume that the local system has all of the file and
pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files local to the minion. To do this the
minion configuration file needs to be set up to know how to return file_roots information like the master. The
file_roots setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
base:
- /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that they would be set up on a master.
Now, with the file_client option set to Llocal and an available state tree then calls to functions in the state
module will use the information in the file_roots on the minion instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or path changes needed, SLS modules
written to be used from a master do not need to be modified in any way to work with a minion.

This makes it easy to " “script" deployments with Salt states without having to set up a master, and allows for these
SLS modules to be easily moved into a Salt master as the deployment grows.

The declared state can now be executed with:

salt-call state.apply

Or the salt-call command can be executed with the ——local flag, this makes it unnecessary to change the config-
uration file:

3.2. Basics 31




Salt Documentation, Release 2015.5.10

salt-call state.apply --local

External Pillars

External pillars are supported when running in masterless mode.

3.2.2 Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ connection. These communi-
cations are done over TCP ports 4505 and 4506, which need to be accessible on the master only. This document
outlines suggested firewall rules for allowing these incoming connections to the master.

Note: No firewall configuration needs to be done on Salt minions. These changes refer to the master only.

Fedora 18 and beyond / RHEL 7 / CentOS 7

Starting with Fedora 18 FirewallD is the tool that is used to dynamically manage the firewall rules on a host. It has
support for IPv4/6 settings and the separation of runtime and permanent configurations. To interact with FirewallD
use the command line client firewall-cmd.

firewall-cmd example:

’f'irewall—cmd --permanent --zone=<zone> --add-port=4505-4506/tcp

Please choose the desired zone according to your setup. Don't forget to reload after you made your changes.

’ firewall-cmd --reload

RHEL 6 / CentOS 6

The lokk1it command packaged with some Linux distributions makes opening iptables firewall ports very simple
via the command line. Just be careful to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

lokkit -p 22:tcp -p 4505:tcp -p 4506:tcp

The system-config-firewall-tui command provides a text-based interface to modifying the firewall.

system-config-firewall-tui:

system-config-firewall-tui

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt. Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

32 Chapter 3. Tutorials


https://fedoraproject.org/wiki/FirewallD
https://github.com/saltstack/salt/blob/develop/pkg/suse/salt.SuSEfirewall2

Salt Documentation, Release 2015.5.10

If you have an older package of Salt where the above configuration file is not included, the SUSEfirewall2
command makes opening iptables firewall ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the firewall.

YaST2:

yast2 firewall

iptables

Different Linux distributions store their iptables (also known as netfilter) rules in different places, which makes it
difficult to standardize firewall documentation. Included are some of the more common locations, but your mileage
may vary.

Fedora / RHEL / CentOS:

‘ /etc/sysconfig/iptables

Arch Linux:

’ /etc/iptables/iptables.rules

Debian
Follow these instructions: https://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the two lines below to allow traffic on tcp/4505 and
tcp/4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT
-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw. Enable with:

ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf). The following example describes the additions to
pf.conf needed to access the Salt master.

pass 1in on S$int_if proto tcp from any to $int_if port 4505
pass 1in on $int_if proto tcp from any to $int_if port 4506

Once these additions have been made to the pf.conf the rules will need to be reloaded. This can be done using
the pfctl command.

pfctl -vf /etc/pf.conf

3.2. Basics 33


http://www.netfilter.org/
https://wiki.debian.org/iptables
https://github.com/saltstack/salt/blob/develop/pkg/salt.ufw
http://openbsd.org/faq/pf/

Salt Documentation, Release 2015.5.10

3.2.3 Whitelist communication to Master

There are situations where you want to selectively allow Minion traffic from specific hosts or networks into your Salt
Master. The first scenario which comes to mind is to prevent unwanted traffic to your Master out of security concerns,
but another scenario is to handle Minion upgrades when there are backwards incompatible changes between the
installed Salt versions in your environment.

Here is an example Linux iptables ruleset to be set on the Master:

# Allow Minions from these networks

-I INPUT -s 10.1.2.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
-I INPUT -s 10.1.3.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
# Allow Salt to communicate with Master on the loopback interface

-A INPUT -i lo -p tcp -m multiport --dports 4505,4506 -j ACCEPT

# Reject everything else

-A INPUT -p tcp -m multiport --dports 4505,4506 -j REJECT

Note: The important thing to note here is that the salt command needs to communicate with the listening
network socket of salt—-master on the loopback interface. Without this you will see no outgoing Salt traffic from

the master, even for a simple salt 'x' test.ping, because the salt client never reached the salt-master
to tell it to carry out the execution.

3.2.4 Using cron with Salt

The Salt Minion can initiate its own highstate using the salt-call command.

$ salt-call state.apply

This will cause the minion to check in with the master and ensure it is in the correct *“state".

3.2.5 Use cron to initiate a highstate

If you would like the Salt Minion to regularly check in with the master you can use cron to run the salt-call
command:

0 0 x x * salt-call state.apply

The above cron entry will run a highstate every day at midnight.

Note: When executing Salt using cron, keep in mind that the default PATH for cron may not include the path for
any scripts or commands used by Salt, and it may be necessary to set the PATH accordingly in the crontab:

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/opt/bin

® 0 * x x salt-call state.apply

3.2.6 Remote execution tutorial

Before continuing make sure you have a working Salt installation by following the installation and the configuration
instructions.

Stuck?

34 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Order your minions around

Now that you have a master and at least one minion communicating with each other you can perform commands on
the minion via the salt command. Salt calls are comprised of three main components:

salt '<target>' <function> [arguments]

See also:

salt manpage

target

The target component allows you to filter which minions should run the following function. The default filter is a
glob on the minion id. For example:

salt '+x' test.ping
salt 'x.example.org' test.ping

Targets can be based on minion system information using the Grains system:

salt -G 'os:Ubuntu' test.ping

See also:
Grains system

Targets can be filtered by regular expression:

’salt -E 'virtmach[0-9]' test.ping

Targets can be explicitly specified in a list:

’salt -L 'foo,bar,baz,quo' test.ping

Or Multiple target types can be combined in one command:

‘salt -C 'GRos:Ubuntu and webserx or E@database.x' test.ping

function

A function is some functionality provided by a module. Salt ships with a large collection of available functions. List
all available functions on your minions:

salt 'x' sys.doc

Here are some examples:

Show all currently available minions:

salt '+x' test.ping

Run an arbitrary shell command:

3.2. Basics 35


https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2015.5.10

salt 'x' cmd.run 'uname -a'

See also:

the full list of modules

arguments

Space-delimited arguments to the function:

‘salt 'x' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

’salt 'x' pip.install salt timeout=5 upgrade=True

They are always in the form of kwarg=argument.

3.2.7 Pillar Walkthrough

Note: This walkthrough assumes that the reader has already completed the initial Salt walkthrough.

Pillars are tree-like structures of data defined on the Salt Master and passed through to minions. They allow confi-
dential, targeted data to be securely sent only to the relevant minion.

Note: Grains and Pillar are sometimes confused, just remember that Grains are data about a minion which is stored
or generated from the minion. This is why information like the OS and CPU type are found in Grains. Pillar is

information about a minion or many minions stored or generated on the Salt Master.

Pillar data is useful for:

Highly Sensitive Data: Information transferred via pillar is guaranteed to only be presented to the minions that are
targeted, making Pillar suitable for managing security information, such as cryptographic keys and passwords.

Minion Configuration: Minion modules such as the execution modules, states, and returners can often be configured
via data stored in pillar.

Variables: Variables which need to be assigned to specific minions or groups of minions can be defined in pillar and
then accessed inside sls formulas and template files.

Arbitrary Data: Pillar can contain any basic data structure in dictionary format, so a key/value store can be defined
making it easy to iterate over a group of values in sls formulas.

Pillar is therefore one of the most important systems when using Salt. This walkthrough is designed to get a simple
Pillar up and running in a few minutes and then to dive into the capabilities of Pillar and where the data is available.

Setting Up Pillar

The pillar is already running in Salt by default. To see the minion's pillar data:

salt '+x' pillar.items

Note: Prior to version 0.16.2, this function is named pillar.data. This function name is still supported for
backwards compatibility.

36 Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

By default the contents of the master configuration file are loaded into pillar for all minions. This enables the master
configuration file to be used for global configuration of minions.

Similar to the state tree, the pillar is comprised of sls files and has a top file. The default location for the pillar is in
/srv/pillar.

Note: The pillar location can be configured via the pillar_roots option inside the master configuration file. It must
not be in a subdirectory of the state tree or file_roots. If the pillar is under file_roots, any pillar targeting can be

bypassed by minions.

To start setting up the pillar, the /srv/pillar directory needs to be present:

\mkdir /srv/pillar

Now create a simple top file, following the same format as the top file used for states:

/srv/pillar/top.sls

base:
I*I:
- data

This top file associates the data.sls file to all minions. Now the /srv/pillar/data.sls file needs to be popu-
lated:

/srv/pillar/data.sls:

‘info: some data

To ensure that the minions have the new pillar data, issue a command to them asking that they fetch their pillars
from the master:

‘salt 'x' saltutil.refresh_pillar

Now that the minions have the new pillar, it can be retrieved:

’ salt 'x' pillar.items

The key info should now appear in the returned pillar data.

More Complex Data

Unlike states, pillar files do not need to define formulas. This example sets up user data with a UID:

/srv/pillar/users/init.sls

users:
thatch: 1000
shouse: 1001
utahdave: 1002
redbeard: 1003

Note: The same directory lookups that exist in states exist in pillar, so the file users/init.sls can be referenced
with users in the top file.

The top file will need to be updated to include this sls file:
/srv/pillar/top.sls

3.2. Basics 37



Salt Documentation, Release 2015.5.10

base:
I*I:

- data

- users

Now the data will be available to the minions. To use the pillar data in a state, you can use Jinja:

/srv/salt/users/init.sls

{% for user, uid 1in pillar.get('users', {}).items() %}
{{user}}:
user.present:
- uid: {{uid}}

{% endfor %}

This approach allows for users to be safely defined in a pillar and then the user data is applied in an sls file.

Parameterizing States With Pillar

Pillar data can be accessed in state files to customise behavior for each minion. All pillar (and grain) data applicable
to each minion is substituted into the state files through templating before being run. Typical uses include setting
directories appropriate for the minion and skipping states that don't apply.

A simple example is to set up a mapping of package names in pillar for separate Linux distributions:

/srv/pillar/pkg/init.sls:

pkgs:
% if grains['os_family'] == 'RedHat' %}
apache: httpd
vim: vim-enhanced
% elif grains['os_family'] == 'Debian' %
apache: apache2
vim: vim
% elif grains['os'] == 'Arch' %}
apache: apache
vim: vim
% endif %

The new pkg sls needs to be added to the top file:
/srv/pillar/top.sls:

base:
I*I:

- data

- users

- pkg

Now the minions will auto map values based on respective operating systems inside of the pillar, so sls files can be
safely parameterized:

/srv/salt/apache/init.sls

apache:
pkg.installed:
- name: {{ pillar['pkgs']['apache'] }}

Or, if no pillar is available a default can be set as well:

38 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

Note: The function pillar.get used in this example was added to Salt in version 0.14.0

/srv/salt/apache/init.sls

apache:
pkg.installed:
- name: {{ salt['pillar.get']('pkgs:apache', 'httpd') }}

In the above example, if the pillar value pillar['pkgs']['apache'] isnot set in the minion's pillar, then the
default of httpd will be used.

Note: Under the hood, pillar is just a Python dict, so Python dict methods such as get and items can be used.

Pillar Makes Simple States Grow Easily

One of the design goals of pillar is to make simple sls formulas easily grow into more flexible formulas without
refactoring or complicating the states.

A simple formula:

/srv/salt/edit/vim.sls

vim:
pkg.installed: []

/etc/vimrc:
file.managed:
- source: salt://edit/vimrc
- mode: 644
- user: root
- group: root
- require:
- pkg: vim

Can be easily transformed into a powerful, parameterized formula:

/srv/salt/edit/vim.sls

vim:
pkg.installed:
- name: {{ pillar['pkgs']['vim'] }}

/etc/vimrc:

file.managed:
- source: {{ pillar['vimrc'] }}
- mode: 644
- user: root
- group: root
- require:

- pkg: vim

Where the vimrc source location can now be changed via pillar:

/srv/pillar/edit/vim.sls:

{% if grains['id'].startswith('dev') %}
vimrc: salt://edit/dev_vimrc
{% elif grains['id'].startswith('qga') %}

3.2. Basics 39




Salt Documentation, Release 2015.5.10

vimrc: salt://edit/ga_vimrc
% else %}

vimrc: salt://edit/vimrc

% endif %

Ensuring that the right vimrc is sent out to the correct minions.

Setting Pillar Data on the Command Line

Pillar data can be set on the command line when running state.apply <salt.modules.state.apply_()
like so:

salt '+' state.apply pillar='{"foo": "bar"}'
salt 'x' state.apply my_sls_file pillar="'{"hello": "world"}'

Note: If a key is passed on the command line that already exists on the minion, the key that is passed in will
overwrite the entire value of that key, rather than merging only the specified value set via the command line.

The example below will swap the value for vim with telnet in the previously specified list, notice the nested pillar
dict:

salt '+' state.apply edit.vim pillar="{"pkgs": {"vim": "telnet"}}'

Note: This will attempt to install telnet on your minions, feel free to uninstall the package or replace telnet value
with anything else.

More On Pillar

Pillar data is generated on the Salt master and securely distributed to minions. Salt is not restricted to the pillar sls
files when defining the pillar but can retrieve data from external sources. This can be useful when information about
an infrastructure is stored in a separate location.

Reference information on pillar and the external pillar interface can be found in the Salt documentation:

Pillar

3.3 States

3.3.1 How Do I Use Salt States?

Simplicity, Simplicity, Simplicity

Many of the most powerful and useful engineering solutions are founded on simple principles. Salt States strive to
do just that: KI.S.S. (Keep It Stupidly Simple)

The core of the Salt State system is the SLS, or SaLt State file. The SLS is a representation of the state in which a system
should be in, and is set up to contain this data in a simple format. This is often called configuration management.

Note: This is just the beginning of using states, make sure to read up on pillar Pillar next.

40 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

It is All Just Data

Before delving into the particulars, it will help to understand that the SLS file is just a data structure under the hood.
While understanding that the SLS is just a data structure isn't critical for understanding and making use of Salt States,
it should help bolster knowledge of where the real power is.

SLS files are therefore, in reality, just dictionaries, lists, strings, and numbers. By using this approach Salt can be
much more flexible. As one writes more state files, it becomes clearer exactly what is being written. The result is a
system that is easy to understand, yet grows with the needs of the admin or developer.

The Top File

The example SLS files in the below sections can be assigned to hosts using a file called top.sls. This file is described
in-depth here.

Default Data - YAML

By default Salt represents the SLS data in what is one of the simplest serialization formats available - YAML.

A typical SLS file will often look like this in YAML:

Note: These demos use some generic service and package names, different distributions often use different names
for packages and services. For instance apache should be replaced with httpd on a Red Hat system. Salt uses the

name of the init script, systemd name, upstart name etc. based on what the underlying service management for the
platform. To get a list of the available service names on a platform execute the service.get_all salt function.

Information on how to make states work with multiple distributions is later in the tutorial.

apache:
pkg.installed: []
service.running:
- require:
- pkg: apache

This SLS data will ensure that the package named apache is installed, and that the apache service is running. The
components can be explained in a simple way.

The first line is the ID for a set of data, and it is called the ID Declaration. This ID sets the name of the thing that
needs to be manipulated.

The second and third lines contain the state module function to be run, in the format
<state_module>.<function>. The pkg.installed state module function ensures that a software
package is installed via the system's native package manager. The service.running state module function
ensures that a given system daemon is running.

Finally, on line five, is the word require. This is called a Requisite Statement, and it makes sure that the Apache
service is only started after a successful installation of the apache package.

Adding Configs and Users

When setting up a service like an Apache web server, many more components may need to be added. The Apache
configuration file will most likely be managed, and a user and group may need to be set up.

3.3. States 41



http://docs.python.org/2/library/stdtypes.html#typesmapping
http://docs.python.org/2/library/stdtypes.html#typesseq
http://docs.python.org/2/library/stdtypes.html#typesseq
http://docs.python.org/2/library/stdtypes.html#typesnumeric
http://yaml.org/spec/1.1/

Salt Documentation, Release 2015.5.10

apache:
pkg.installed: []
service.running:
- watch:
- pkg: apache
- file: /etc/httpd/conf/httpd.conf
- user: apache
user.present:
- uid: 87
- gid: 87
- home: /var/www/html
- shell: /bin/nologin
- require:
- group: apache
group.present:
- gid: 87
- require:
- pkg: apache

/etc/httpd/conf/httpd.conf:
file.managed:
- source: salt://apache/httpd.conf
- user: root
- group: root
- mode: 644

This SLS data greatly extends the first example, and includes a config file, a user, a group and new requisite statement:
watch.

Adding more states is easy, since the new user and group states are under the Apache ID, the user and group will
be the Apache user and group. The require statements will make sure that the user will only be made after the
group, and that the group will be made only after the Apache package is installed.

Next, the requ re statement under service was changed to watch, and is now watching 3 states instead of just one.
The watch statement does the same thing as require, making sure that the other states run before running the state
with a watch, but it adds an extra component. The watch statement will run the state's watcher function for any
changes to the watched states. So if the package was updated, the config file changed, or the user uid modified, then
the service state's watcher will be run. The service state's watcher just restarts the service, so in this case, a change
in the config file will also trigger a restart of the respective service.

Moving Beyond a Single SLS

When setting up Salt States in a scalable manner, more than one SLS will need to be used. The above examples were
in a single SLS file, but two or more SLS files can be combined to build out a State Tree. The above example also
references a file with a strange source - salt://apache/httpd.conf. That file will need to be available as
well.

The SLS files are laid out in a directory structure on the Salt master; an SLS is just a file and files to download are
just files.

The Apache example would be laid out in the root of the Salt file server like this:

apache/init.sls
apache/httpd.conf

So the httpd.conf is just a file in the apache directory, and is referenced directly.

42 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

But when using more than one single SLS file, more components can be added to the toolkit. Consider this SSH

example:

ssh/init.sls:

openssh-client:
pkg.installed

/etc/ssh/ssh_config:

file.managed:
- user: root
- group: root
- mode: 644
- source: salt://ssh/ssh_config
- require:

- pkg: openssh-client

ssh/server.sls:

include:
- ssh

openssh-server:
pkg.installed

sshd:
service.running:
- require:
- pkg: openssh-client
- pkg: openssh-server
- file: /etc/ssh/banner
- file: /etc/ssh/sshd_config

/etc/ssh/sshd_config:

file.managed:
- user: root
- group: root
- mode: 644
- source: salt://ssh/sshd_config
- require:

- pkg: openssh-server

/etc/ssh/banner:
file:
- managed
- user: root
- group: root
- mode: 644
- source: salt://ssh/banner
- require:
- pkg: openssh-server

Note: Notice that we use two similar ways of denoting that a file is managed by Salt. In the /etc/ssh/sshd_config state
section above, we use the file. managed state declaration whereas with the /etc/ssh/banner state section, we use the

file state declaration and add a managed attribute to that state declaration. Both ways produce an identical result;

the first way -- using file.managed -- is merely a shortcut.

Now our State Tree looks like this:

3.3. States

43




Salt Documentation, Release 2015.5.10

apache/init.sls
apache/httpd.conf
ssh/init.sls
ssh/server.sls
ssh/banner
ssh/ssh_config
ssh/sshd_config

This example now introduces the include statement. The include statement includes another SLS file so that
components found in it can be required, watched or as will soon be demonstrated - extended.

The include statement allows for states to be cross linked. When an SLS has an include statement it is literally
extended to include the contents of the included SLS files.

Note that some of the SLS files are called init.sls, while others are not. More info on what this means can be found
in the States Tutorial.

Extending Included SLS Data
Sometimes SLS data needs to be extended. Perhaps the apache service needs to watch additional resources, or under
certain circumstances a different file needs to be placed.

In these examples, the first will add a custom banner to ssh and the second will add more watchers to apache to
include mod_python.

ssh/custom-server.sls:

include:
- ssh.server

extend:
/etc/ssh/banner:
file:
- source: salt://ssh/custom-banner

python/mod_python.sls:

include:
- apache

extend:
apache:
service:
- watch:
- pkg: mod_python

mod_python:
pkg.installed

The custom-server.sls file uses the extend statement to overwrite where the banner is being downloaded
from, and therefore changing what file is being used to configure the banner.

In the new mod_python SLS the mod_python package is added, but more importantly the apache service was ex-
tended to also watch the mod_python package.

Using extend with require or watch

The extend statement works differently for require or watch. It appends to, rather than replacing the requisite
component.

44 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

Understanding the Render System

Since SLS data is simply that (data), it does not need to be represented with YAML. Salt defaults to YAML because
it is very straightforward and easy to learn and use. But the SLS files can be rendered from almost any imaginable
medium, so long as a renderer module is provided.

The default rendering system is the yaml_jinja renderer. The yaml_jinja renderer will first pass the template
through the Jinja2 templating system, and then through the YAML parser. The benefit here is that full programming
constructs are available when creating SLS files.

Other renderers available are yaml_mako and yaml_wempy which each use the Mako or Wempy templating
system respectively rather than the jinja templating system, and more notably, the pure Python or py, pydsl &
pyobjects renderers. The py renderer allows for SLS files to be written in pure Python, allowing for the utmost
level of flexibility and power when preparing SLS data; while the pydsl renderer provides a flexible, domain-specific
language for authoring SLS data in Python; and the pyobjects renderer gives you a * Pythonic" interface to building
state data.

Note: The templating engines described above aren't just available in SLS files. They can also be used in
file.managed states, making file management much more dynamic and flexible. Some examples for using tem-

plates in managed files can be found in the documentation for the file states, as well as the MooseFS example below.

Getting to Know the Default - yaml_jinja

The default renderer - yaml_jinja, allows for use of the jinja templating system. A guide to the Jinja templating
system can be found here: http://jinja.pocoo.org/docs

When working with renderers a few very useful bits of data are passed in. In the case of templating engine based
renderers, three critical components are available, salt, grains, and pillar. The salt object allows for any
Salt function to be called from within the template, and grains allows for the Grains to be accessed from within
the template. A few examples:

apache/init.sls:

apache:
pkg.installed:
{% if grains['os'] == 'RedHat'%}
- name: httpd
{% endif %}
service.running:
{% if grains['os'] == 'RedHat'%}
- name: httpd
{% endif %}
- watch:
- pkg: apache
- file: /etc/httpd/conf/httpd.conf
- user: apache
user.present:
- uid: 87
- gid: 87
- home: /var/www/html
- shell: /bin/nologin
- require:
- group: apache
group.present:

3.3. States 45



http://jinja.pocoo.org/
http://www.makotemplates.org/
https://fossil.secution.com/u/gcw/wempy/doc/tip/README.wiki
http://legacy.python.org/dev/peps/pep-0008/
http://jinja.pocoo.org/docs

Salt Documentation, Release 2015.5.10

- gid: 87
- require:
- pkg: apache

/etc/httpd/conf/httpd.conf:
file.managed:
- source: salt://apache/httpd.conf
- user: root
- group: root
- mode: 644

This example is simple. If the 0s grain states that the operating system is Red Hat, then the name of the Apache
package and service needs to be httpd. A more aggressive way to use Jinja can be found here, in a module to set up
a MooseFS distributed filesystem chunkserver:

moosefs/chunk.sls:

include:
- moosefs

{% for mnt in salt['cmd.run']('ls /dev/data/moosex').split() %}
/mnt/moose{{ mnt[-1] }}:
mount.mounted:
- device: {{ mnt }}
- fstype: xfs
- mkmnt: True
file.directory:
- user: mfs
- group: mfs
- require:
- user: mfs
- group: mfs
% endfor %}

/etc/mfshdd.cfg:
file.managed:
- source: salt://moosefs/mfshdd.cfg
- user: root
- group: root
- mode: 644
- template: jinja
- require:
- pkg: mfs-chunkserver

/etc/mfschunkserver.cfg:

file.managed:
- source: salt://moosefs/mfschunkserver.cfg
- user: root
- group: root
- mode: 644
- template: jinja
- require:

- pkg: mfs-chunkserver

mfs-chunkserver:
pkg.installed: []
mfschunkserver:
service.running:
- require:

46 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

{% for mnt in salt['cmd.run']('ls /dev/data/moosex') %}
- mount: /mnt/moose{{ mnt[-1] }}
- file: /mnt/moose{{ mnt[-1] }}
{% endfor %}
- file: /etc/mfschunkserver.cfg
- file: /etc/mfshdd.cfg
- file: /var/lib/mfs

This example shows much more of the available power of Jinja. Multiple for loops are used to dynamically de-
tect available hard drives and set them up to be mounted, and the sa'lt object is used multiple times to call shell
commands to gather data.

Introducing the Python, PyDSL, and the Pyobjects Renderers

Sometimes the chosen default renderer might not have enough logical power to accomplish the needed task. When
this happens, the Python renderer can be used. Normally a YAML renderer should be used for the majority of SLS
files, but an SLS file set to use another renderer can be easily added to the tree.

This example shows a very basic Python SLS file:
python/django.sls:

#1py

def run():

rr

Install the django package
return {'include': ['python'],
'django': {'pkg': ['installed']}}

This is a very simple example; the first line has an SLS shebang that tells Salt to not use the default renderer, but to
use the py renderer. Then the run function is defined, the return value from the run function must be a Salt friendly
data structure, or better known as a Salt HighState data structure.

Alternatively, using the pydsl renderer, the above example can be written more succinctly as:

#!pydsl

include('python', delayed=True)
state('django') .pkg.installed()

The pyobjects renderer provides an * " Pythonic" object based approach for building the state data. The above example
could be written as:

#!pyobjects

include('python')
Pkg.installed("django")

This Python examples would look like this if they were written in YAML:

include:
- python

django:
pkg.installed

3.3. States 47



http://legacy.python.org/dev/peps/pep-0008/

Salt Documentation, Release 2015.5.10

This example clearly illustrates that; one, using the YAML renderer by default is a wise decision and two, unbridled
power can be obtained where needed by using a pure Python SLS.

Running and debugging salt states.

Once the rules in an SLS are ready, they should be tested to ensure they work properly. To invoke these rules, simply
execute salt 'x' state.apply on the command line. If you get back only hostnames with a : after, but
no return, chances are there is a problem with one or more of the sls files. On the minion, use the salt-call
command to examine the output for errors:

salt-call state.apply -1 debug

This should help troubleshoot the issue. The minion can also be started in the foreground in debug mode by running
salt-minion -1 debug.

Next Reading

With an understanding of states, the next recommendation is to become familiar with Salt's pillar interface:

Pillar Walkthrough

3.3.2 States tutorial, part 1 - Basic Usage
The purpose of this tutorial is to demonstrate how quickly you can configure a system to be managed by Salt States.
For detailed information about the state system please refer to the full states reference.

This tutorial will walk you through using Salt to configure a minion to run the Apache HTTP server and to ensure
the server is running.

Before continuing make sure you have a working Salt installation by following the installation and the configuration
instructions.

Stuck?

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Setting up the Salt State Tree
States are stored in text files on the master and transferred to the minions on demand via the master's File Server.
The collection of state files make up the State Tree.

To start using a central state system in Salt, the Salt File Server must first be set up. Edit the master config file
(file_roots)and uncomment the following lines:

file_roots:
base:
- /srv/salt

Note: If you are deploying on FreeBSD via ports, the file_roots path defaults to
/usr/local/etc/salt/states.

Restart the Salt master in order to pick up this change:

48 Chapter 3. Tutorials



https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2015.5.10

pkill salt-master
salt-master -d

Preparing the Top File

On the master, in the directory uncommented in the previous step, (/srv/salt by default), create a new file called
top. sls and add the following:

base:
I*lc

- webserver

The top file is separated into environments (discussed later). The default environment is base. Under the base
environment a collection of minion matches is defined; for now simply specify all hosts (*).

Targeting minions
The expressions can use any of the targeting mechanisms used by Salt — minions can be matched by glob, PCRE
regular expression, or by grains. For example:

base:
'GRos:Fedora':
- match: grain
- webserver

Create an s's file

In the same directory as the fop file, create a file named webserver.sls, containing the following:

apache: # ID declaration
pkg: # state declaration
- 1dnstalled # function declaration

The first line, called the ID declaration, is an arbitrary identifier. In this case it defines the name of the package to be
installed.

Note: The package name for the Apache httpd web server may differ depending on OS or distro — for example, on
Fedora it is httpd but on Debian/Ubuntu it is apache2.

The second line, called the State declaration, defines which of the Salt States we are using. In this example, we are
using the pkg state to ensure that a given package is installed.

The third line, called the Function declaration, defines which function in the pkg state module to call.

Renderers

States s1s files can be written in many formats. Salt requires only a simple data structure and is not concerned with
how that data structure is built. Templating languages and DSLs are a dime-a-dozen and everyone has a favorite.

Building the expected data structure is the job of Salt renderers and they are dead-simple to write.

In this tutorial we will be using YAML in Jinja2 templates, which is the default format. The default can be changed
by editing renderer in the master configuration file.

3.3. States 49



http://en.wikipedia.org/wiki/Domain-specific_language

Salt Documentation, Release 2015.5.10

Install the package

Next, let's run the state we created. Open a terminal on the master and run:

salt '+x' state.apply

Our master is instructing all targeted minions to run state.apply. When this function is executied without any
SLS targets, a minion will download the top file and attempt to match the expressions within it. When the minion
does match an expression the modules listed for it will be downloaded, compiled, and executed.

Note: This action is referred to as a " highstate", and can be run using the state. highstate function. How-
ever, to make the usage easier to understand (" "highstate" is not necessarily an intuitive name), a state.apply

function was added in version 2015.5.0, which when invoked without any SLS names will trigger a highstate.
state.highstate still exists and can be used, but the documentation (as can be seen above) has been updated
to reference state. apply, so keep the following in mind as you read the documentation:

« state.apply invoked without any SLS names will run state. highstate

. state.apply invoked with SLS names will run state.sls

Once completed, the minion will report back with a summary of all actions taken and all changes made.

Warning: If you have created custom grain modules, they will not be available in the top file until after the first
highstate. To make custom grains available on a minion's first highstate, it is recommended to use this example
to ensure that the custom grains are synced when the minion starts.

SLS File Namespace

Note that in the example above, the SLS file webserver . s'ls was referred to simply as webserver. The names-
pace for SLS files follows a few simple rules:

1. The .sls is discarded (i.e. webserver.sls becomes webserver).
2. Subdirectories can be used for better organization.

(a) Each subdirectory is represented by a dot.

(b) webserver/dev.sls isreferred to as webserver.dev.

3. A file called init.sls in a subdirectory is referred to by the path of the directory. So, web-
server/init.sls isreferred to as webserver.

4. If both webserver.s'ls and webserver/init.s'ls happen to exist, webserver/init.s'ls will be
ignored and webserver.sls will be the file referred to as webserver.

Troubleshooting Salt

If the expected output isn't seen, the following tips can help to narrow down the problem.

Turn up logging Salt can be quite chatty when you change the logging setting to debug:

’ salt-minion -1 debug

Run the minion in the foreground By not starting the minion in daemon mode (-d) one can view any output from
the minion as it works:

salt-minion

Increase the default timeout value when running salt. For example, to change the default timeout to 60 seconds:

50 Chapter 3. Tutorials



L T U

® N e s N e

Salt Documentation, Release 2015.5.10

salt -t 60

For best results, combine all three:

salt-minion -1 debug # On the minion
salt '+x' state.apply -t 60 # On the master

Next steps

This tutorial focused on getting a simple Salt States configuration working. Part 2 will build on this example to cover
more advanced sls syntax and will explore more of the states that ship with Salt.

3.3.3 States tutorial, part 2 - More Complex States, Requisites

Note: This tutorial builds on topics covered in part 1. It is recommended that you begin there.

In the last part of the Salt States tutorial we covered the basics of installing a package. We will now modify our
webserver.s'ls file to have requirements, and use even more Salt States.

Call multiple States

You can specify multiple State declaration under an ID declaration. For example, a quick modification to our web-
server.sls to also start Apache if it is not running:

apache:
pkg.installed: []
service.running:
- require:
- pkg: apache

Try stopping Apache before running state. apply once again and observe the output.

Note: For those running RedhatOS derivatives (Centos, AWS), you will want to specify the service name to be httpd.
More on state service here, service state. With the example above, just add * - name: httpd" above the require

line and with the same spacing.

Require other states

We now have a working installation of Apache so let's add an HTML file to customize our website. It isn't exactly
useful to have a website without a webserver so we don't want Salt to install our HTML file until Apache is installed
and running. Include the following at the bottom of your webserver/init.sls file:

apache:
pkg.installed: []
service.running:

- require:
- pkg: apache
/var/www/index.html: # ID declaration
file: # state declaration

3.3. States 51




Salt Documentation, Release 2015.5.10

- managed # function

- source: salt://webserver/index.html # function arg

- require: # requisite declaration
- pkg: apache # requisite reference

line 9 is the ID declaration. In this example it is the location we want to install our custom HTML file. (Note: the
default location that Apache serves may differ from the above on your OS or distro. /srv/www could also be a
likely place to look.)

Line 10 the State declaration. This example uses the Salt file state.

Line 11 is the Function declaration. The managed function will download a file from the master and install it in
the location specified.

Line 12 is a Function arg declaration which, in this example, passes the source argument to the managed func-
tion.

Line 13 is a Requisite declaration.

Line 14 is a Requisite reference which refers to a state and an ID. In this example, it is referring to the ID decla-
ration from our example in part 1. This declaration tells Salt not to install the HTML file until Apache is installed.

Next, create the index.html file and save it in the webserver directory:

<html>
<head><title>Salt rocks</title></head>
<body>
<h1>This file brought to you by Salt</hi>
</body>
</html>

Last, call state. apply again and the minion will fetch and execute the highstate as well as our HTML file from
the master using Salt's File Server:

salt '+x' state.apply

Verify that Apache is now serving your custom HTML.

require vs. watch

There are two Requisite declaration, “require”, and “watch”. Not every state supports “watch”. The service state
does support “watch” and will restart a service based on the watch condition.

For example, if you use Salt to install an Apache virtual host configuration file and want to restart Apache whenever
that file is changed you could modify our Apache example from earlier as follows:

/etc/httpd/extra/httpd-vhosts.conf:
file.managed:
- source: salt://webserver/httpd-vhosts.conf

apache:
pkg.installed: []
service.running:

- watch:

- file: /etc/httpd/extra/httpd-vhosts.conf
- require:

- pkg: apache

If the pkg and service names differ on your OS or distro of choice you can specify each one separately using a Name
declaration which explained in Part 3.

52 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

Next steps

In part 3 we will discuss how to use includes, extends, and templating to make a more complete State Tree configu-
ration.

3.3.4 States tutorial, part 3 - Templating, Includes, Extends

Note: This tutorial builds on topics covered in part 1 and part 2. It is recommended that you begin there.

This part of the tutorial will cover more advanced templating and configuration techniques for sls files.

Templating SLS modules

SLS modules may require programming logic or inline execution. This is accomplished with module templating. The
default module templating system used is Jinja2 and may be configured by changing the renderer value in the
master config.

All states are passed through a templating system when they are initially read. To make use of the templating system,
simply add some templating markup. An example of an sls module with templating markup may look like this:

% for usr din ['moe','larry','curly'] %}
{{ usr }}:

user.present
% endfor %

This templated sls file once generated will look like this:

moe:
user.present

larry:
user.present

curly:
user.present

Here's a more complex example:

Comments in yaml start with a hash symbol.
Since jinja rendering occurs before yaml parsing, if you want to include jinja
in the comments you may need to escape them using 'jinja' comments to prevent
jinja from trying to render something which is not well-defined jinja.
e.g.
{# iterate over the Three Stooges using a {% for %}..{% endfor %} loop
# with the iterator variable {{ usr }} becoming the state ID. #}
{% for usr in 'moe','larry','curly' %}
{{ usr }}:
group:
- present
user:
- present
- gid_from_name: True
- require:
- group: {{ usr }}
% endfor %}

HoF R O W

3.3. States 53



http://jinja.pocoo.org/

Salt Documentation, Release 2015.5.10

Using Grains in SLS modules

Often times a state will need to behave differently on different systems. Salt grains objects are made available in the
template context. The grains can be used from within sls modules:

apache:
pkg.installed:
% if grains['os'] == 'RedHat' %}
- name: httpd
% elif grains['os'] == 'Ubuntu' %

- name: apache2
% endif %}

Using Environment Variables in SLS modules

You can use salt['environ.get'] ('VARNAME') to use an environment variable in a Salt state.

MYENVVAR="wor1ld" salt-call state.template test.sls

Create a file with contents from an environment variable:
file.managed:

- name: /tmp/hello

- contents: {{ salt['environ.get']('MYENVVAR") }}

Error checking:

% set myenvvar = salt['environ.get']('MYENVVAR') %}
{% if myenvvar %}

Create a file with contents from an environment variable:
file.managed:
- name: /tmp/hello
- contents: {{ salt['environ.get']('MYENVVAR') }}

{% else %}
Fail - no environment passed 1in:
test:
A. fail_without_changes

% endif %3}

Calling Salt modules from templates

All of the Salt modules loaded by the minion are available within the templating system. This allows data to be
gathered in real time on the target system. It also allows for shell commands to be run easily from within the sls
modules.

The Salt module functions are also made available in the template context as salt:

moe:
user.present:
- gid: {{ salt['file.group_to_gid']('some_group_that_exists') 1}

Note that for the above example to work, some_group_that_exists must exist before the state file is processed
by the templating engine.

54 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

Below is an example that uses the network. hw_addr function to retrieve the MAC address for etho:

salt['network.hw_addr']('etho')

Advanced SLS module syntax

Lastly, we will cover some incredibly useful techniques for more complex State trees.

Include declaration

A previous example showed how to spread a Salt tree across several files. Similarly, requisites span multiple files by
using an Include declaration. For example:

python/python-1libs.sls:

python-dateutil:
pkg.installed

python/django.sls:

include:
- python.python-1libs

django:
pkg.installed:
- require:
- pkg: python-dateutil

Extend declaration

You can modify previous declarations by using an Extend declaration. For example the following modifies the Apache
tree to also restart Apache when the vhosts file is changed:

apache/apache.sls:

apache:
pkg.installed

apache/mywebsite.sls:

include:
- apache.apache

extend:
apache:
service:
- running
- watch:
- file: /etc/httpd/extra/httpd-vhosts.conf

/etc/httpd/extra/httpd-vhosts.conf:
file.managed:
- source: salt://apache/httpd-vhosts.conf

3.3. States 55




Salt Documentation, Release 2015.5.10

Using extend with require or watch

The extend statement works differently for require or watch. It appends to, rather than replacing the requisite
component.

Name declaration

You can override the ID declaration by using a Name declaration. For example, the previous example is a bit more
maintainable if rewritten as follows:

apache/mywebsite.sls:

include:
- apache.apache

extend:
apache:
service:
- running
- watch:
- file: mywebsite

mywebsite:
file.managed:
- name: /etc/httpd/extra/httpd-vhosts.conf
- source: salt://apache/httpd-vhosts.conf

Names declaration

Even more powerful is using a Names declaration to override the ID declaration for multiple states at once. This
often can remove the need for looping in a template. For example, the first example in this tutorial can be rewritten
without the loop:

stooges:
user.present:
- names:
- moe
- larry
- curly

Next steps

In part 4 we will discuss how to use salt's file_roots to set up a workflow in which states can be " promoted"
from dev, to QA, to production.

3.3.5 States tutorial, part 4

Note: This tutorial builds on topics covered in part 1, part 2 and part 3. It is recommended that you begin there.

This part of the tutorial will show how to use salt's file_roots to set up a workflow in which states can be
*“promoted" from dev, to QA, to production.

56 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

Salt fileserver path inheritance

Salt's fileserver allows for more than one root directory per environment, like in the below example, which uses both
a local directory and a secondary location shared to the salt master via NFS:

# In the master config file (/etc/salt/master)
file_roots:
base:
- /srv/salt
- /mnt/salt-nfs/base

Salt's fileserver collapses the list of root directories into a single virtual environment containing all files from each
root. If the same file exists at the same relative path in more than one root, then the top-most match " wins". For ex-
ample, if /srv/salt/foo.txtand /mnt/salt-nfs/base/foo.txt both exist, then salt://foo.txt
will point to /srv/salt/foo.txt.

Note: When using multiple fileserver backends, the order in which they are listed in the i leserver_backend
parameter also matters. If both roots and git backends contain a file with the same relative path, and roots

appears before git in the fileserver_backend list, then the file in roots will **win", and the file in gitfs will
be ignored.

A more thorough explanation of how Salt's modular fileserver works can be found here. We recommend reading
this.

Environment configuration

Configure a multiple-environment setup like so:

file_roots:

base:

- /srv/salt/prod
ga:

- /srv/salt/qa

- /srv/salt/prod
dev:

- /srv/salt/dev

- /srv/salt/qa

- /srv/salt/prod

Given the path inheritance described above, files within /srv/salt/prod would be available in all environments.
Files within /srv/salt/qga would be available in both ga, and dev. Finally, the files within /srv/salt/dev
would only be available within the dev environment.

Based on the order in which the roots are defined, new files/states can be placed within /srv/salt/dev, and
pushed out to the dev hosts for testing.

Those files/states can then be moved to the same relative path within /srv/salt/qa, and they are now available
only in the dev and ga environments, allowing them to be pushed to QA hosts and tested.

Finally, if moved to the same relative path within /srv/salt/prod, the files are now available in all three envi-
ronments.

Practical Example

As an example, consider a simple website, installed to /var /www/foobarcom. Below is a top.sls that can be used
to deploy the website:

3.3. States 57




Salt Documentation, Release 2015.5.10

/srv/salt/prod/top.sls:

base:
'web*prodx':
- webserver.foobarcom
ga:
'webxqax*':
- webserver.foobarcom
dev:
'webxdevx"':
- webserver.foobarcom

Using pillar, roles can be assigned to the hosts:

/srv/pillar/top.sls:

base:
'web*xprodx*':
- webserver.prod
'webxgax':
- webserver.qa
'webxdevx':
- webserver.dev

/srv/pillar/webserver/prod.sls:

’ webserver_role: prod

/srv/pillar/webserver/qa.sls:

’ webserver_role: ga

/srv/pillar/webserver/dev.sls:

‘ webserver_role: dev

And finally, the SLS to deploy the website:

/srv/salt/prod/webserver/foobarcom.sls:

{% if pillar.get('webserver_role', '') %}
/var /www/foobarcom:
file.recurse:

- source: salt://webserver/src/foobarcom

- env: {{ pillar['webserver_role'] }}

- user: www

- group: www

- dir_mode: 755

- file_mode: 644
{% endif %}

Given the above SLS, the source for the website should initially be placed

/srv/salt/dev/webserver/src/foobarcom

First, let's deploy to dev. Given the configuration in the top file, this can be done using state.apply:

in

’salt --pillar 'webserver_role:dev' state.apply

However, in the event that it is not desirable to apply all states configured in the top file (which could be likely in
more complex setups), it is possible to apply just the states for the foobarcom website, by invoking state.apply

with the desired SLS target as an argument:

58 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

‘salt --pillar 'webserver_role:dev' state.apply webserver.foobarcom

Once the site has been tested in dev, then the files <can be moved from
/srv/salt/dev/webserver/src/foobarcom to /srv/salt/qa/webserver/src/foobarcom,
and deployed using the following:

‘salt --pillar 'webserver_role:qga' state.apply webserver.foobarcom

Finally, once the site has been tested in qa, then the files can be moved from
/srv/salt/qa/webserver/src/foobarcom to /srv/salt/prod/webserver/src/foobarcom,
and deployed using the following:

‘salt --pillar 'webserver_role:prod' state.apply webserver.foobarcom

Thanks to Salt's fileserver inheritance, even though the files have been moved to within /srv/salt/prod, they
are still available from the same salt:// URI in both the qa and dev environments.

Continue Learning

The best way to continue learning about Salt States is to read through the reference documentation and to look
through examples of existing state trees. Many pre-configured state trees can be found on Github in the saltstack-
formulas collection of repositories.

If you have any questions, suggestions, or just want to chat with other people who are using Salt, we have a very
active community and we'd love to hear from you.

In addition, by continuing to part 5, you can learn about the powerful orchestration of which Salt is capable.

3.3.6 States Tutorial, Part 5 - Orchestration with Salt

Note: This tutorial builds on some of the topics covered in the earlier States Walkthrough pages. It is recommended
to start with Part 1 if you are not familiar with how to use states.

Orchestration is accomplished in salt primarily through the Orchestrate Runner. Added in version 0.17.0, this Salt
Runner can use the full suite of requisites available in states, and can also execute states/functions using salt-ssh.
This runner replaces the OverState.

The Orchestrate Runner

New in version 0.17.0.

Note: Orchestrate Deprecates OverState

The Orchestrate Runner (originally called the state.sls runner) offers all the functionality of the OverState, but with
some advantages:

« All requisites available in states can be used.
« The states/functions will also work on salt-ssh minions.

The Orchestrate Runner was added with the intent to eventually deprecate the OverState system, however the Over-
State will still be maintained until Salt Boron.

The orchestrate runner generalizes the Salt state system to a Salt master context. Whereas state.apply is con-
currently and independently executed on each Salt minion, the state.orchestrate runner is executed on the

3.3. States 59


https://github.com/saltstack-formulas
https://github.com/saltstack-formulas

Salt Documentation, Release 2015.5.10

master, giving it a master-level view and control over requisites, such as state ordering and conditionals. This al-
lows for inter minion requisites, like ordering the application of states on different minions that must not happen
simultaneously, or for halting the state run on all minions if a minion fails one of its states.

If you want to setup a load balancer in front of a cluster of web servers, for example, you can ensure the load balancer
is setup before the web servers or stop the state run altogether if one of the minions does not set up correctly.

state.apply allows you to statefully manage each minion and the state.orchestrate runner allows you
to statefully manage your entire infrastructure.

Executing the Orchestrate Runner

The Orchestrate Runner command format is the same as for the state.sls function, except that since it
is a runner, it is executed with salt-run rather than salt. Assuming you have a statesls file called
/srv/salt/orch/webserver.sls the following command run on the master will apply the states defined
in that file.

’salt—run state.orchestrate orch.webserver

Note: state.orchisasynonym for state.orchestrate

Changed in version 2014.1.1: The runner function was renamed to state.orchestrate to avoid confusion with
the state. sls remote execution function. In versions 0.17.0 through 2014.1.0, state. s'ls must be used.

Examples

Function To execute a function, use salt. function:

# /srv/salt/orch/cleanfoo.sls

cmd.run:
salt. function:
- tgt: "'
- arg:

- rm -rf /tmp/foo

salt-run state.orchestrate orch.cleanfoo

State To execute a state, use salt.state.

# /srv/salt/orch/webserver.sls
install_nginx:
salt.state:
- tgt: 'webx'
- sls:
- nginx

salt-run state.orchestrate orch.webserver

Highstate To run a highstate, set highstate: True in your state config:

# /srv/salt/orch/web_setup.sls
webserver_setup:
salt.state:

60 Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

- tgt: 'webx'
- highstate: True

salt-run state.orchestrate orch.web_setup

More Complex Orchestration

Many states/functions can be configured in a single file, which when combined with the full suite of requisites, can
be used to easily configure complex orchestration tasks. Additionally, the states/functions will be executed in the
order in which they are defined, unless prevented from doing so by any requisites, as is the default in SLS files since
0.17.0.

cmd.run:
salt. function:
- tgt: 10.0.0.0/24
- tgt_type: ipcidr
- arg:
- bootstrap

storage_setup:
salt.state:
- tgt: 'role:storage'
- tgt_type: grain
- sls: ceph
- require:
- salt: webserver_setup

webserver_setup:
salt.state:
- tgt: "webx'
- highstate: True

Given the above setup, the orchestration will be carried out as follows:
1. The shell command bootstrap will be executed on all minions in the 10.0.0.0/24 subnet.

2. A Highstate will be run on all minions whose ID starts with *web", since the storage_setup state requires
it.

3. Finally, the ceph SLS target will be executed on all minions which have a grain called role with a value of
storage.

The OverState System

Warning: The OverState runner is deprecated, and will be removed in the feature release of Salt codenamed
Boron. (Three feature releases after 2014.7.0, which is codenamed Helium)

Often, servers need to be set up and configured in a specific order, and systems should only be set up if systems
earlier in the sequence have been set up without any issues.

The OverState system can be used to orchestrate deployment in a smooth and reliable way across multiple systems
in small to large environments.

3.3. States 61




Salt Documentation, Release 2015.5.10

The OverState SLS

The OverState system is managed by an SLS file named overstate.s'ls, located in the root of a Salt fileserver
environment.

The overstate.sls configures an unordered list of stages, each stage defines the minions on which to execute the state,
and can define what sls files to run, execute a highstate, or run a function. Here's a sample overstate.sls:

mysql:
match: 'dbx'
sls:
- mysql.server
- drbd
webservers:
match: 'webx'
require:
- mysql
all:
match: 'x'
require:
- mysql
- webservers

Note: The match argument uses compound matching

Given the above setup, the OverState will be carried out as follows:

1. The mysql stage will be executed first because it is required by the webservers and all stages. It will
execute state. app ly once for each of the two listed SLS targets These states will be executed on all minions
whose minion ID starts with *“db". This is the equivalent of running the following two commands from the
CLL

salt 'dbx' state.apply mysql.server
salt 'db*x' state.apply drbd

2. The webservers stage will then be executed, but only if the mysql stage executes without any failures.
The webservers stage will trigger a highstate on all minions whose minion IDs start with " web". This is
the equivalent of running the following command from the CLI:

salt 'webx' state.apply

3. Finally, the a'll stage will execute, triggering a highstate all systems, if, and only if the mysql and web-
servers stages completed without any failures. This is the equivalent of running the following command
from the CLI:

salt '+x' state.apply

Any failure in the above steps would cause the requires to fail, preventing the dependent stages from executing.

Using Functions with OverState

In the above example, you'll notice that the stages lacking an s1s entry trigger a highstate. As mentioned earlier, it
is also possible to execute other functions in a stage. This functionality was added in version 0.15.0.

Running a function is easy:

62 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

http:
function:
pkg.install:
- httpd

The list of function arguments are defined after the declared function. So, the above stage would run pkg.install
http. Requisites only function properly if the given function supports returning a custom return code.

Executing an OverState

Since the OverState is a Runner, it is executed using the salt-run command. The runner function for the OverState
is state.over.

salt-run state.over

The function will by default look in the root of the base environment (as defined in 1 le_roots) for a file called
overstate. sls, and then execute the stages defined within that file.

Different environments and paths can be used as well, by adding them as positional arguments:

salt-run state.over dev /root/other-overstate.sls

The above would run an OverState using the dev fileserver environment, with the stages definedin /root/other-
overstate.sls.

Warning: Since these are positional arguments, when defining the path to the overstate file the environment
must also be specified, even if it is the base environment.

Note: Remember, salt-run is always executed on the master.

3.3.7 Syslog-ng usage
Overview

Syslog_ng state module is for generating syslog-ng configurations. You can do the following things:
« generate syslog-ng configuration from YAML,
« use non-YAML configuration,
« start, stop or reload syslog-ng.

There is also an execution module, which can check the syntax of the configuration, get the version and other
information about syslog-ng.

Configuration

Users can create syslog-ng configuration statements with the syslog_ng.config function. It requires a name
and a config parameter. The name parameter determines the name of the generated statement and the config param-
eter holds a parsed YAML structure.

A statement can be declared in the following forms (both are equivalent):

3.3. States 63




Salt Documentation, Release 2015.5.10

source.s_localhost:
syslog_ng.config:

- config:
- tcp:
- dp: "127.0.0.1"
- port: 1233

s_Tlocalhost:
syslog_ng.config:

- config:
source:
- tcp:
- dp: "127.0.0.1"
- port: 1233

The first one is called short form, because it needs less typing. Users can use lists and dictionaries to specify their
configuration. The format is quite self describing and there are more examples [at the end](#examples) of this doc-
ument.

Quotation

The quotation can be tricky sometimes but here are some rules to follow:

« when a string meant to be "string" in the generated configuration, it should be like '"string"'
in the YAML document

« similarly, users should write " 'string'" to get 'string' in the generated configuration

Full example

The following configuration is an example, how a complete syslog-ng configuration looks like:

# Set the location of the configuration file
set_location:
module.run:
- name: syslog_ng.set_config_file
- m_name: "/home/tibi/install/syslog-ng/etc/syslog-ng.conf"

# The syslog-ng and syslog-ng-ctl binaries are here. You needn't use
# this method if these binaries can be found in a directory in your PATH.
set_bin_path:
module.run:
- name: syslog_ng.set_binary_path
- m_name: "/home/tibi/install/syslog—ng/sbin"

# Writes the first lines into the config file, also erases its previous
# content
write_version:
module.run:
- name: syslog_ng.write_version
- m_name: "3.6"

# There 1is a shorter form to set the above variables
set_variables:
module.run:
- name: syslog_ng.set_parameters

64 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

- version: "3.6"
- binary_path: "/home/tibi/install/syslog-ng/sbin"
- config_file: "/home/tibi/install/syslog-ng/etc/syslog-ng.conf"

# Some global options
options.global_options:
syslog_ng.config:
- config:
- time_reap: 30
- mark_freq: 10
- keep_hostname: "yes"

source.s_localhost:
syslog_ng.config:

- config:
- tcp:
- 49p: "127.0.0.1"
- port: 1233

destination.d_log_server:
syslog_ng.config:
- config:
- tcp:
- "127.0.0.1"
- port: 1234

log.1l_log_to_central_server:
syslog_ng.config:
- config:
- source: s_localhost
- destination: d_log_server

some_comment:
module.run:
- name: syslog_ng.write_config
- config: |

# An other mode to use comments or existing configuration snippets
config.other_comment_form:
syslog_ng.config:
- config: |

The syslog_ng. reloaded function can generate syslog-ng configuration from YAML. If the statement (source
destination, parser, etc.) has a name, this function uses the id as the name, otherwise (log statement) it's purpose is
like a mandatory comment.

After execution this example the syslog_ng state will generate this file:

#Generated by Salt on 2014-08-18 00:11:11
@version: 3.6

options {
time_reap(
30

3.3. States 65




Salt Documentation, Release 2015.5.10

)

mark_freq(
10

)

keep_hostname (
yes

)

};

source s_localhost {
tep(
ip(

)
port(
1233

127.0.0.1

)
)5
}s

destination d_log_server {

tep(
127.0.0.1,
port(
1234
)
)
};
log {
source(
s_localhost
)
destination(
d_log_server
)
}s

# Multi line
# comment

# Multi line
# comment

Users can include arbitrary texts in the generated configuration with using the confi g statement (see the example

above).

Syslog_ng module functions

You can use syslog_ng.set_binary_path to set the directory which contains the syslog-ng and syslog-
ng-ctl binaries. If this directory is in your PATH, you don't need to use this function. There is also a sys-
log_ng.set_config_f1ile function to set the location of the configuration file.

66

Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

Examples

Simple source

source s_tail {
file(
"/var/log/apache/access.log",
follow_freq(l),
flags(no-parse, validate-utf8)
)3
}s

s_tail:
# Salt will call the source function of syslog_ng module
syslog_ng.config:

- config:
source:
- file:
- file: '"'"/var/log/apache/access.log""'
- follow_freq : 1
- flags:
- no-parse
- validate-utf8
OR
s_tail:
syslog_ng.config:
- config:
source:
- file:
- ''""/var/log/apache/access.log"""'
- follow_freq : 1
- flags:
- no-parse
- validate-utf8
OR

source.s_tail:
syslog_ng.config:
- config:
- file:
- ''""/var/log/apache/access.log"""'
- follow_freq : 1
- flags:
- no-parse
- validate-utf8

Complex source

source s_gsoc2014 {

tep(
ip("0.0.0.0"),
port(1234),
flags(no-parse)

3.3. States 67




Salt Documentation, Release 2015.5.10

)3
s

S_gsoc2014:
syslog_ng.config:
- config:
source:
- tcp:
- dp: 0.0.0.0
- port: 1234
- flags: no-parse

Filter

filter f_json {

match(
"@json:"

)3

}s

f_json:
syslog_ng.config:
- config:
filter:
- match:
—_ llll@json:llll

Template

template t_demo_filetemplate {
template(
"SISODATE $HOST $MSG "

)

template_escape(

no
)
};

t_demo_filetemplate:
syslog_ng.config:

-config:
template:
- template:
- '"STISODATE S$HOST $MSG\n"'
- template_escape:
—_ Ilnoll
Rewrite

rewrite r_set_message_to_MESSAGE {
set(
"${.json.messagel}",

68

Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

value ("S$SMESSAGE")
)3
}s

r_set_message_to_MESSAGE:
syslog_ng.config:
- config:
rewrite:
- set:
- '"${.json.message}"’
- value : '""SMESSAGE"'

Global options

options {
time_reap(30);
mark_freq(10);
keep_hostname(yes);

s

global_options:
syslog_ng.config:
- config:
options:
- time_reap: 30
- mark_freq: 10
- keep_hostname: "yes"

Log

log {
source(s_gsoc2014);
junction {
channel {
filter(f_json);
parser (p_json);
rewrite(r_set_json_tag);
rewrite(r_set_message_to_MESSAGE);
destination {
file(
"/tmp/json-input.log",
template(t_gsoc2014)
)
};
flags(final);
};
channel {
filter(f_not_json);
parser {
syslog-parser(

)5
15

rewrite(r_set_syslog_tag);

3.3. States

69




Salt Documentation, Release 2015.5.10

flags(final);
}s;
};
destination {
file(
"/tmp/all.log",
template(t_gsoc2014)
)
};
};

1_gsoc2014:
syslog_ng.config:
- config:
log:
- source: s_gsoc2014
- junction:
- channel:
- filter: f_json
- parser: p_json
- rewrite: r_set_json_tag
- rewrite: r_set_message_to_MESSAGE
- destination:
- file:
- '""/tmp/json-input.log"'
- template: t_gsoc2014
- flags: final
- channel:
- filter: f_not_json
- parser:
- syslog-parser: []
- rewrite: r_set_syslog_tag
- flags: final
- destination:
- file:
- "/tmp/all. log"
- template: t_gsoc2014

3.4 Advanced Topics

3.4.1 SaltStack Walk-through

Note: Welcome to SaltStack! I am excited that you are interested in Salt and starting down the path to better infras-
tructure management. I developed (and am continuing to develop) Salt with the goal of making the best software

available to manage computers of almost any kind. I hope you enjoy working with Salt and that the software can
solve your real world needs!

+ Thomas S Hatch
« Salt creator and Chief Developer
« CTO of SaltStack, Inc.

70 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

Getting Started

What is Salt?

Salt is a different approach to infrastructure management, founded on the idea that high-speed communication with
large numbers of systems can open up new capabilities. This approach makes Salt a powerful multitasking system
that can solve many specific problems in an infrastructure.

The backbone of Salt is the remote execution engine, which creates a high-speed, secure and bi-directional commu-
nication net for groups of systems. On top of this communication system, Salt provides an extremely fast, flexible,
and easy-to-use configuration management system called Salt States.

Installing Salt

SaltStack has been made to be very easy to install and get started. The installation documents contain instructions
for all supported platforms.

Starting Salt

Salt functions on a master/minion topology. A master server acts as a central control bus for the clients, which are
called minions. The minions connect back to the master.

Setting Up the Salt Master Turning on the Salt Master is easy -- just turn it on! The default configuration is suitable
for the vast majority of installations. The Salt Master can be controlled by the local Linux/Unix service manager:

On Systemd based platforms (OpenSuse, Fedora):

’systemctl start salt-master

On Upstart based systems (Ubuntu, older Fedora/RHEL):

‘service salt-master start

On SysV Init systems (Debian, Gentoo etc.):

‘ /etc/init.d/salt-master start

Alternatively, the Master can be started directly on the command-line:

’ salt-master -d

The Salt Master can also be started in the foreground in debug mode, thus greatly increasing the command output:

’salt—master -1 debug

The Salt Master needs to bind to two TCP network ports on the system. These ports are 4505 and 4506. For more
in depth information on firewalling these ports, the firewall tutorial is available here.

Setting up a Salt Minion

Note: The Salt Minion can operate with or without a Salt Master. This walk-through assumes that the minion will be
connected to the master, for information on how to run a master-less minion please see the master-less quick-start

guide:

Masterless Minion Quickstart

3.4. Advanced Topics 71



Salt Documentation, Release 2015.5.10

The Salt Minion only needs to be aware of one piece of information to run, the network location of the master.

By default the minion will look for the DNS name sa'lt for the master, making the easiest approach to set internal
DNS to resolve the name salt back to the Salt Master IP.

Otherwise, the minion configuration file will need to be edited so that the configuration option master points to
the DNS name or the IP of the Salt Master:

Note: The default location of the configuration files is /etc/salt. Most platforms adhere to this convention, but
platforms such as FreeBSD and Microsoft Windows place this file in different locations.

/etc/salt/minion:

’ master: saltmaster.example.com

Now that the master can be found, start the minion in the same way as the master; with the platform init system or
via the command line directly:

As a daemon:

‘salt—minion -d

In the foreground in debug mode:

’salt—m‘in‘ion -1 debug

When the minion is started, it will generate an 7d value, unless it has been generated on a previous run and cached in
the configuration directory, which is /etc/salt by default. This is the name by which the minion will attempt to
authenticate to the master. The following steps are attempted, in order to try to find a value that is not localhost:

1. The Python function socket.getfqdn() is run
2. /etc/hostname is checked (non-Windows only)

3. /etc/hosts (BWINDIR%\system32\drivers\etc\hosts on Windows hosts) is checked for host-
names that map to anything within 127.0.0.0/8.

If none of the above are able to produce an id which is not Localhost, then a sorted list of IP addresses on the
minion (excluding any within 127.0.0.0/8) is inspected. The first publicly-routable IP address is used, if there is one.
Otherwise, the first privately-routable IP address is used.

If all else fails, then Localhost is used as a fallback.

Note: Overriding the id

The minion id can be manually specified using the 1d parameter in the minion config file. If this configuration value
is specified, it will override all other sources for the id.

Now that the minion is started, it will generate cryptographic keys and attempt to connect to the master. The next
step is to venture back to the master server and accept the new minion's public key.

Using salt-key Salt authenticates minions using public-key encryption and authentication. For a minion to start
accepting commands from the master, the minion keys need to be accepted by the master.

The salt-key command is used to manage all of the keys on the master. To list the keys that are on the master:

salt-key -L

The keys that have been rejected, accepted, and pending acceptance are listed. The easiest way to accept the minion
key is to accept all pending keys:

72 Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

salt-key -A

Note: Keys should be verified! Print the master key fingerprint by running salt-key -F master on the
Salt master. Copy the master.pub fingerprint from the Local Keys section, and then set this value as the mas-

ter_finger in the minion configuration file. Restart the Salt minion.

On the master, run salt-key —f minion-1id toprint the fingerprint of the minion's public key that was received
by the master. On the minion, run salt-call key.finger --Tlocal to print the fingerprint of the minion
key.

On the master:

# salt-key -f foo.domain.com
Unaccepted Keys:
foo.domain.com: 39:f9:e4:8a:aa:74:8d:52:1a:ec:92:03:82:09:c8:f9

On the minion:

# salt-call key.finger —--local
local:
39:f9:e4:8a:aa:74:8d:52:1a:ec:92:03:82:09:c8:f9

If they match, approve the key with salt-key -a foo.domain.com.

Sending the First Commands Now that the minion is connected to the master and authenticated, the master can
start to command the minion.

Salt commands allow for a vast set of functions to be executed and for specific minions and groups of minions to be
targeted for execution.

The salt command is comprised of command options, target specification, the function to execute, and arguments
to the function.

A simple command to start with looks like this:

salt '+x' test.ping

The * is the target, which specifies all minions.
test.ping tells the minion to run the test. ping function.

In the case of test.ping, test refers to a execution module. ping refers to the ping function contained in the
aforementioned test module.

Note: Execution modules are the workhorses of Salt. They do the work on the system to perform various tasks,
such as manipulating files and restarting services.

The result of running this command will be the master instructing all of the minions to execute test.ping in
parallel and return the result.

This is not an actual ICMP ping, but rather a simple function which returns True. Using test.ping is a good
way of confirming that a minion is connected.

Note: Each minion registers itself with a unique minion ID. This ID defaults to the minion's hostname, but can be
explicitly defined in the minion config as well by using the 1d parameter.

Of course, there are hundreds of other modules that can be called just as test. ping can. For example, the following
would return disk usage on all targeted minions:

3.4. Advanced Topics 73




Salt Documentation, Release 2015.5.10

salt '+' disk.usage

Getting to Know the Functions Salt comes with a vast library of functions available for execution, and Salt func-
tions are self-documenting. To see what functions are available on the minions execute the sys . doc function:

salt 'x' sys.doc

This will display a very large list of available functions and documentation on them.

Note: Module documentation is also available on the web.

These functions cover everything from shelling out to package management to manipulating database servers. They
comprise a powerful system management API which is the backbone to Salt configuration management and many
other aspects of Salt.

Note: Salt comes with many plugin systems. The functions that are available via the salt command are called
Execution Modules.

Helpful Functions to Know The cmd module contains functions to shell out on minions, such as cmd. run and
cmd. run_all:

‘salt 'x'" emd.run 'ls -1 /etc'

The pkg functions automatically map local system package managers to the same salt functions. This means that
pkg.install will install packages via yum on Red Hat based systems, apt on Debian systems, etc.:

‘salt 'x!' pkg.install vim

Note: Some custom Linux spins and derivatives of other distributions are not properly detected by Salt. If the above
command returns an error message saying that pkg.install is not available, then you may need to override the

pkg provider. This process is explained here.

The network. interfaces function will list all interfaces on a minion, along with their IP addresses, netmasks,
MAC addresses, etc:

salt 'x' network.interfaces

Changing the Output Format The default output format used for most Salt commands is called the nested out-
putter, but there are several other outputters that can be used to change the way the output is displayed. For instance,
the pprint outputter can be used to display the return data using Python's pprint module:

root@saltmaster:~# salt myminion grains.item pythonpath --out=pprint

{'myminion': {'pythonpath': ['/usr/1lib64/python2.7',
'/usr/lib/python2.7/plat-1linux2',
'/usr/1lib64/python2.7/1lib-tk"',
'/usr/lib/python2.7/1lib-tk",
'/usr/lib/python2.7/site-packages"',
'Jusr/lib/python2.7/site-packages/gst-0.10",
'/usr/lib/python2.7/site-packages/gtk-2.0"']}}

The full list of Salt outputters, as well as example output, can be found here.

74 Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

salt-call The examples so far have described running commands from the Master using the salt command,
but when troubleshooting it can be more beneficial to login to the minion directly and use salt-call.

Doing so allows you to see the minion log messages specific to the command you are running (which are not part
of the return data you see when running the command from the Master using salt), making it unnecessary to tail
the minion log. More information on salt-call and how to use it can be found here.

Grains Salt uses a system called Grains to build up static data about minions. This data includes information about
the operating system that is running, CPU architecture and much more. The grains system is used throughout Salt
to deliver platform data to many components and to users.

Grains can also be statically set, this makes it easy to assign values to minions for grouping and managing.

A common practice is to assign grains to minions to specify what the role or roles a minion might be. These static
grains can be set in the minion configuration file or via the grains. setval function.

Targeting Salt allows for minions to be targeted based on a wide range of criteria. The default targeting system
uses globular expressions to match minions, hence if there are minions named larryl, larry2, curlyl, and
curly2,aglobof larry* will match larryl and larry2, and a glob of *1 will match larryl and curlyl.

Many other targeting systems can be used other than globs, these systems include:
Regular Expressions Target using PCRE-compliant regular expressions

Grains Target based on grains data: Targeting with Grains

Pillar Target based on pillar data: Targeting with Pillar

IP Target based on IP address/subnet/range

Compound Create logic to target based on multiple targets: Targeting with Compound
Nodegroup Target with nodegroups: Targeting with Nodegroup

The concepts of targets are used on the command line with Salt, but also function in many other areas as well,
including the state system and the systems used for ACLs and user permissions.

Passing in Arguments Many of the functions available accept arguments which can be passed in on the command
line:

salt 'x' pkg.install vim

This example passes the argument vim to the pkg.install function. Since many functions can accept more complex
input then just a string, the arguments are parsed through YAML, allowing for more complex data to be sent on the
command line:

salt '+x' test.echo 'foo: bar'

In this case Salt translates the string ‘foo: bar' into the dictionary **{'foo": “bar'}"

Note: Any line that contains a newline will not be parsed by YAML.

Salt States

Now that the basics are covered the time has come to evaluate States. Salt States, or the State Systemis
the component of Salt made for configuration management.

3.4. Advanced Topics 75



Salt Documentation, Release 2015.5.10

The state system is already available with a basic Salt setup, no additional configuration is required. States can be
set up immediately.

Note: Before diving into the state system, a brief overview of how states are constructed will make many of the
concepts clearer. Salt states are based on data modeling and build on a low level data structure that is used to execute

each state function. Then more logical layers are built on top of each other.

The high layers of the state system which this tutorial will cover consists of everything that needs to be known to
use states, the two high layers covered here are the sis layer and the highest layer highstate.

Understanding the layers of data management in the State System will help with understanding states, but they never
need to be used. Just as understanding how a compiler functions assists when learning a programming language,
understanding what is going on under the hood of a configuration management system will also prove to be a
valuable asset.

The First SLS Formula

The state system is built on SLS formulas. These formulas are built out in files on Salt's file server. To make a very
basic SLS formula open up a file under /srv/salt named vim.sls. The following state ensures that vim is installed on
a system to which that state has been applied.

/srv/salt/vim.sls:

vim:
pkg.installed

Now install vim on the minions by calling the SLS directly:

salt '+x' state.apply vim

This command will invoke the state system and run the vim SLS.
Now, to beef up the vim SLS formula, a vimrc can be added:

/srv/salt/vim.sls:

vim:
pkg.installed: []

/etc/vimrc:
file.managed:
- source: salt://vimrc
- mode: 644
- user: root
- group: root

Now the desired vimrc needs to be copied into the Salt file server to /srv/salt/vimrc. In Salt, everything is a
file, so no path redirection needs to be accounted for. The vimrc file is placed right next to the vim. sls file. The
same command as above can be executed to all the vim SLS formulas and now include managing the file.

Note: Salt does not need to be restarted/reloaded or have the master manipulated in any way when changing SLS
formulas. They are instantly available.

76 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

Adding Some Depth

Obviously maintaining SLS formulas right in a single directory at the root of the file server will not scale out to
reasonably sized deployments. This is why more depth is required. Start by making an nginx formula a better way,
make an nginx subdirectory and add an init.sls file:

/srv/salt/nginx/init.sls:

nginx:
pkg.installed: []
service.running:
- require:
- pkg: nginx

A few concepts are introduced in this SLS formula.
First is the service statement which ensures that the nginx service is running.

Of course, the nginx service can't be started unless the package is installed -- hence the require statement which
sets up a dependency between the two.

The require statement makes sure that the required component is executed before and that it results in success.

Note: The require option belongs to a family of options called requisites. Requisites are a powerful component of
Salt States, for more information on how requisites work and what is available see: Requisites

Also evaluation ordering is available in Salt as well: Ordering States

This new sls formula has a special name -- init.sls. When an SLS formula is named init.s'ls it inherits the
name of the directory path that contains it. This formula can be referenced via the following command:

salt 'x' state.apply nginx

Note: state.apply isjust another remote execution function, just like test.pingor disk.usage. It simply
takes the name of an SLS file as an argument.

Now that subdirectories can be used, the vim. sls formula can be cleaned up. To make things more flexible, move
the vim. sls and vimrc into a new subdirectory called edit and change the vim. sls file to reflect the change:

/srv/salt/edit/vim.sls:

vim:
pkg.installed

/etc/vimrc:
file.managed:
- source: salt://edit/vimrc
- mode: 644
- user: root
- group: root

Only the source path to the vimrec file has changed. Now the formula is referenced as edit.vim because it resides
in the edit subdirectory. Now the edit subdirectory can contain formulas for emacs, nano, joe or any other editor
that may need to be deployed.

3.4. Advanced Topics 77




Salt Documentation, Release 2015.5.10

Next Reading

Two walk-throughs are specifically recommended at this point. First, a deeper run through States, followed by an
explanation of Pillar.

1. Starting States
2. Pillar Walkthrough

An understanding of Pillar is extremely helpful in using States.

Getting Deeper Into States

Two more in-depth States tutorials exist, which delve much more deeply into States functionality.
1. How Do I Use Salt States?, covers much more to get off the ground with States.
2. The States Tutorial also provides a fantastic introduction.

These tutorials include much more in-depth information including templating SLS formulas etc.

So Much More!
This concludes the initial Salt walk-through, but there are many more things still to learn! These documents will
cover important core aspects of Salt:
« Pillar
+ Job Management
A few more tutorials are also available:
+ Remote Execution Tutorial
« Standalone Minion

This still is only scratching the surface, many components such as the reactor and event systems, extending Salt,
modular components and more are not covered here. For an overview of all Salt features and documentation, look
at the Table of Contents.

3.4.2 MinionFS Backend Walkthrough
Propagating Files

New in version 2014.1.0.

Sometimes, one might need to propagate files that are generated on a minion. Salt already has a feature to send files
from a minion to the master.

Enabling File Propagation

To enable propagation, the 1 le_recyv option needs to be set to True.

file_recv: True

These changes require a restart of the master, then new requests for the salt://minion-1id/ protocol will send
files that are pushed by cp.push from minion-1id to the master.

78 Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

‘salt 'minion-id' cp.push /path/to/the/file

This command will store the file, including its full path, under cachedir /master/minions/minion-
id/files. With the default cachedir the example file above would be stored as
/var/cache/salt/master/minions/minion-id/files/path/to/the/file.

Note: This walkthrough assumes basic knowledge of Salt and cp. push. To get up to speed, check out the walk-
through.

MinionFS Backend

Since it is not a good idea to expose the whole cachedir, MinionFS should be used to send these files to other
minions.

Simple Configuration

To use the minionfs backend only two configuration changes are required on the master. The file-
server_backend option needs to contain a value of minion and file_recv needs to be set to true:

fileserver_backend:
- roots
- minion

file_recv: True

These changes require a restart of the master, then new requests for the salt://minion-1id/ protocol will send
files that are pushed by cp. push from minion-1id to the master.

Note: All of the files that are pushed to the master are going to be available to all of the minions. If this is not what
you want, please remove minion from fileserver_backend in the master config file.

Note: Having directories with the same name as your minions in the root that can be accessed like
salt://minion-1id/ might cause confusion.

Commandline Example

Lets assume that we are going to generate SSH keys on a minion called minion-source and put the public part
in ~/.ssh/authorized_keys of root user of a minion called minion-destination.

First, lets make sure that /root/ . ssh exists and has the right permissions:

[root@salt-master filel# salt '#' file.mkdir dir_path=/root/.ssh user=root group=root md
minion-source:
None
minion-destination:
None

We create an RSA key pair without a passphrase *’:

0 Yes, that was the actual key on my server, but the server is already destroyed.

3.4. Advanced Topics 79

de=700



Salt Documentation, Release 2015.5.10

[root@salt-master file]# salt 'minion-source' cmd.run 'ssh-keygen -N "" -f /root/.ssh/-d
minion-source:
Generating public/private rsa key pair.
Your -ddentification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint 1s:
9b:cd:1c:b9:c2:93:8e:ad:a3:52:a0:8b:0a:cc:d4:9b root@minion-source
The key's randomart image is:

+--[ RSA 2048]----+
I I
| I
I I
| o . I
| oo S o |
|= + .Bo I
|o+ E B = |
|+ .+ 0 I
|o 000 |
Fom +

and we send the public part to the master to be available to all minions:

[root@salt-master filel# salt 'minion-source' cp.push /root/.ssh/id_rsa.pub
minion-source:
True

now it can be seen by everyone:

[root@salt-master filel]# salt 'minion-destination' cp.list_master_dirs
minion-destination:

- etc

- minion-source/root

- minion-source/root/.ssh

Lets copy that as the only authorized key to minion-destination:

[root@salt-master filel]# salt 'minion-destination' cp.get_file salt://minion-source/root

minion-destination:
/root/.ssh/authorized_keys

Or we can use a more elegant and salty way to add an SSH key:

[root@salt-master filel]# salt 'minion-destination' ssh.set_auth_key_ from_file user=root
minion-destination:
new

3.4.3 Automatic Updates / Frozen Deployments

New in version 0.10.3.d.

Salt has support for the Esky application freezing and update tool. This tool allows one to build a complete zipfile
out of the salt scripts and all their dependencies - including shared objects / DLLs.

80 Chapter 3. Tutorials

_rsa'

/.ssh/id_rsa.

source=salt:,


https://github.com/cloudmatrix/esky

Salt Documentation, Release 2015.5.10

Getting Started
To build frozen applications, suitable build environment will be needed for each platform. You should probably set
up a virtualenv in order to limit the scope of Q/A.

This process does work on Windows. Directions are available at https://github.com/saltstack/salt-windows-install
for details on installing Salt in Windows. Only the 32-bit Python and dependencies have been tested, but they have
been tested on 64-bit Windows.

Install bbfreeze, and then esky from PyPI in order to enable the bdist_esky command in setup.py. Salt
itself must also be installed, in addition to its dependencies.

Building and Freezing

Once you have your tools installed and the environment configured, use setup . py to prepare the distribution files.

python setup.py sdist
python setup.py bdist

Once the distribution files are in place, Esky can be used traverse the module tree and pack all the scripts up into a
redistributable.

python setup.py bdist_esky

There will be an appropriately versioned salt-VERSION. zip in dist/ if everything went smoothly.

Windows

C:\Python27\1lib\site-packages\zmq will need to be added to the PATH variable. This helps bbfreeze
find the zmq DLL so it can pack it up.

Using the Frozen Build

Unpack the zip file in the desired install location. Scripts like salt-minion and salt-call will be in the root
of the zip file. The associated libraries and bootstrapping will be in the directories at the same level. (Check the Esky
documentation for more information)

To support updating your minions in the wild, put the builds on a web server that the minions can reach.
salt.modules.saltutil.update () will trigger an update and (optionally) a restart of the minion service
under the new version.

Troubleshooting
A Windows minion isn't responding

The process dispatch on Windows is slower than it is on *nix. It may be necessary to add "-t 15' to salt commands to
give minions plenty of time to return.

Windows and the Visual Studio Redist

The Visual C++ 2008 32-bit redistributable will need to be installed on all Windows minions. Esky has an op-
tion to pack the library into the zipfile, but OpenSSL does not seem to acknowledge the new location. If a no

3.4. Advanced Topics 81



https://github.com/saltstack/salt-windows-install
https://github.com/cloudmatrix/esky

Salt Documentation, Release 2015.5.10

OPENSSL_Applink error appears on the console when trying to start a frozen minion, the redistributable is not
installed.

Mixed Linux environments and Yum

The Yum Python module doesn't appear to be available on any of the standard Python package mirrors. If
RHEL/CentOS systems need to be supported, the frozen build should created on that platform to support all the
Linux nodes. Remember to build the virtualenv with ——-system-site-packages so that the yum module is
included.

Automatic (Python) module discovery

Automatic (Python) module discovery does not work with the late-loaded scheme that Salt uses for (Salt) modules.
Any misbehaving modules will need to be explicitly added to the freezer_includes in Salt's setup.py. Al-
ways check the zipped application to make sure that the necessary modules were included.

3.4.4 Multi Master Tutorial

As of Salt 0.16.0, the ability to connect minions to multiple masters has been made available. The multi-master system
allows for redundancy of Salt masters and facilitates multiple points of communication out to minions. When using
a multi-master setup, all masters are running hot, and any active master can be used to send commands out to the
minions.

Note: If you need failover capabilities with multiple masters, there is also a MultiMaster-PKI setup available, that
uses a different topology MultiMaster-PKI with Failover Tutorial

In 0.16.0, the masters do not share any information, keys need to be accepted on both masters, and shared files need to
be shared manually or use tools like the git fileserver backend to ensure that the file_roots are kept consistent.

Summary of Steps

1. Create a redundant master server
2. Copy primary master key to redundant master

. Start redundant master

3
4. Configure minions to connect to redundant master
5. Restart minions

6

. Accept keys on redundant master

Prepping a Redundant Master

The first task is to prepare the redundant master. If the redundant master is already running, stop it. There is only
one requirement when preparing a redundant master, which is that masters share the same private key. When the
first master was created, the master's identifying key pair was generated and placed in the master's pki_dir. The
default location of the master's key pair is /etc/salt/pki/master/. Take the private key, master.pem,
and copy it to the same location on the redundant master. Do the same for the master's public key, master . pub.
Assuming that no minions have yet been connected to the new redundant master, it is safe to delete any existing
key in this location and replace it.

82 Chapter 3. Tutorials


http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2015.5.10

Note: There is no logical limit to the number of redundant masters that can be used.

Once the new key is in place, the redundant master can be safely started.

Configure Minions

Since minions need to be master-aware, the new master needs to be added to the minion configurations. Simply
update the minion configurations to list all connected masters:

master:
- saltmasterl.example.com
- saltmaster2.example.com

Now the minion can be safely restarted.

Now the minions will check into the original master and also check into the new redundant master. Both masters
are first-class and have rights to the minions.

Note: Minions can automatically detect failed masters and attempt to reconnect to reconnect to them quickly. To
enable this functionality, set master_alive_interval in the minion config and specify a number of seconds to poll the

masters for connection status.

If this option is not set, minions will still reconnect to failed masters but the first command sent after a master comes
back up may be lost while the minion authenticates.

Sharing Files Between Masters

Salt does not automatically share files between multiple masters. A number of files should be shared or sharing of
these files should be strongly considered.

Minion Keys

Minion keys can be accepted the normal way wusing salt-key on both masters. Keys ac-
cepted, deleted, or rejected on one master will NOT be automatically managed on redundant
masters; this needs to be taken care of by running salt-key on both masters or sharing the
/etc/salt/pki/master/{minions,minions_pre,minions_rejected} directories between mas-
ters.

Note: While sharing the /etc/salt/pki/master directory will work, it is strongly discouraged, since allowing access
to the master.pem key outside of Salt creates a SERIOUS security risk.

File_Roots

The file_roots contents should be kept consistent between masters. Otherwise state runs will not always be
consistent on minions since instructions managed by one master will not agree with other masters.

The recommended way to sync these is to use a fileserver backend like gitfs or to keep these files on shared storage.

3.4. Advanced Topics 83




Salt Documentation, Release 2015.5.10

Pillar_Roots

Pillar roots should be given the same considerations as file_roots.

Master Configurations

While reasons may exist to maintain separate master configurations, it is wise to remember that each master main-
tains independent control over minions. Therefore, access controls should be in sync between masters unless a valid
reason otherwise exists to keep them inconsistent.

These access control options include but are not limited to:
« external_auth
« client_acl
. peer

e peer_run

3.4.5 Multi-Master-PKI Tutorial With Failover
This tutorial will explain, how to run a salt-environment where a single minion can have multiple masters and
fail-over between them if its current master fails.
The individual steps are
« setup the master(s) to sign its auth-replies
« setup minion(s) to verify master-public-keys
« enable multiple masters on minion(s)
« enable master-check on minion(s)

Please note, that it is advised to have good knowledge of the salt- authentication and
communication-process to understand this tutorial. All of the settings described here, go on top
of the default authentication/communication process.

Motivation

The default behaviour of a salt-minion is to connect to a master and accept the masters public key. With each
publication, the master sends his public-key for the minion to check and if this public-key ever changes, the minion
complains and exits. Practically this means, that there can only be a single master at any given time.

Would it not be much nicer, if the minion could have any number of masters (1:n) and jump to the next master if its
current master died because of a network or hardware failure?

Note: There is also a MultiMaster-Tutorial with a different approach and topology than this one, that might also
suite your needs or might even be better suited Multi-Master Tutorial

It is also desirable, to add some sort of authenticity-check to the very first public key a minion receives from a master.
Currently a minions takes the first masters public key for granted.

84 Chapter 3. Tutorials


http://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

Salt Documentation, Release 2015.5.10

The Goal

Setup the master to sign the public key it sends to the minions and enable the minions to verify this signature for
authenticity.

Prepping the master to sign its public key

For signing to work, both master and minion must have the signing and/or verification settings enabled. If the master
signs the public key but the minion does not verify it, the minion will complain and exit. The same happens, when
the master does not sign but the minion tries to verify.

The easiest way to have the master sign its public key is to set

master_sign_pubkey: True

After restarting the salt-master service, the master will automatically generate a new key-pair

master_sign.pem
master_sign.pub

A custom name can be set for the signing key-pair by setting

master_sign_key_name: <name_without_suffix>

The master will then generate that key-pair upon restart and use it for creating the public keys signature attached
to the auth-reply.

The computation is done for every auth-request of a minion. If many minions auth very often, it is advised to use
conf_master:master_pubkey_signature and conf_master:master_use_pubkey_signature settings described below.

If multiple masters are in use and should sign their auth-replies, the signing key-pair master_sign.* has to be copied
to each master. Otherwise a minion will fail to verify the masters public when connecting to a different master than
it did initially. That is because the public keys signature was created with a different signing key-pair.

Prepping the minion to verify received public keys

The minion must have the public key (and only that one!) available to be able to verify a signature it receives. That
public key (defaults to master_sign.pub) must be copied from the master to the minions pki-directory.

/etc/salt/pki/minion/master_sign.pub

DO NOT COPY THE master_sign.pem FILE. IT MUST STAY ON THE MASTER AND
ONLY THERE!

When that is done, enable the signature checking in the minions configuration

’ verify_master_pubkey_sign: True

and restart the minion. For the first try, the minion should be run in manual debug mode.

‘$ salt-minion -1 debug

Upon connecting to the master, the following lines should appear on the output:

[DEBUG ] Attempting to authenticate with the Salt Master at 172.16.0.10
[DEBUG ] Loaded minion key: /etc/salt/pki/minion/minion.pem

[DEBUG ] salt.crypt.verify_signature: Loading public key
[DEBUG ] salt.crypt.verify_signature: Verifying signature

3.4. Advanced Topics 85



Salt Documentation, Release 2015.5.10

[INFO ]
[DEBUG ]

[DEBUG ] Successfully verified signature of master public key with verification public

Received signed and verified master pubkey from master 172.16.0.10
Decrypting the current master AES key

If the signature verification fails, something went wrong and it will look like this

[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[CRITICAL

e e

Attempting to authenticate with the Salt Master at 172.16.0.10
Loaded minion key: /etc/salt/pki/minion/minion.pem
salt.crypt.verify_signature: Loading public key
salt.crypt.verify_signature: Verifying signature

Failed to verify signature of public key

The Salt Master server's public key did not authenticate!

In a case like this, it should be checked, that the verification pubkey (master_sign.pub) on the minion is the same as
the one on the master.

Once the verification is successful, the minion can be started in daemon mode again.

For the paranoid among us, its also possible to verify the publication whenever it is received from the master. That
is, for every single auth-attempt which can be quite frequent. For example just the start of the minion will force the
signature to be checked 6 times for various things like auth, mine, highstate, etc.

If that is desired, enable the setting

always_verify_signature: True

Multiple Masters For A Minion

Configuring multiple masters on a minion is done by specifying two settings:

« alist of masters addresses

« what type of master is defined

master:

- 172.16.0.10
- 172.16.0.11
- 172.16.0.12

’ master_type: failover

This tells the minion that all the master above are available for it to connect to. When started with this configuration,
it will try the master in the order they are defined. To randomize that order, set

’ master_shuffle: True

The master-list will then be shuffled before the first connection attempt.

The first master that accepts the minion, is used by the minion. If the master does not yet know the minion, that
counts as accepted and the minion stays on that master.

For the minion to be able to detect if its still connected to its current master enable the check for it

master_alive_interval: <seconds>

If the loss of the connection is detected, the minion will temporarily remove the failed master from the list and try
one of the other masters defined (again shuffled if that is enabled).

86

Chapter 3. Tutorials

key master_:



Salt Documentation, Release 2015.5.10

Testing the setup

At least two running masters are needed to test the failover setup.

Both masters should be running and the minion should be running on the command line in debug mode

$ salt-minion -1 debug

The minion will connect to the first master from its master list

[DEBUG
[DEBUG
[DEBUG
[DEBUG
[DEBUG
[INFO

[DEBUG

T Y T T Y S|

Attempting to authenticate with the Salt Master at 172.16.0.10
Loaded minion key: /etc/salt/pki/minion/minion.pem
salt.crypt.verify_signature: Loading public key
salt.crypt.verify_signature: Verifying signature

Successfully verified signature of master public key with verification public

Received signed and verified master pubkey from master 172.16.0.10
Decrypting the current master AES key

A test.ping on the master the minion is currently connected to should be run to test connectivity.

If successful, that master should be turned off. A firewall-rule denying the minions packets will also do the trick.

Depending on the configured conf_minion:master_alive_interval, the minion will notice the loss of the connection
and log it to its logfile.

[INFO ]
[INFO ]

Connection to master 172.16.0.10 lost
Trying to tune in to next master from master-1list

The minion will then remove the current master from the list and try connecting to the next master

[INFO ]
[WARNING ]
[DEBUG |

Removing possibly failed master 172.16.0.10 from list of masters
Master ip address changed from 172.16.0.10 to 172.16.0.11
Attempting to authenticate with the Salt Master at 172.16.0.11

If everything is configured correctly, the new masters public key will be verified successfully

[DEBUG ]
[DEBUG ]
[DEBUG ]
[DEBUG ]

Loaded minion key: /etc/salt/pki/minion/minion.pem
salt.crypt.verify_signature: Loading public key
salt.crypt.verify_signature: Verifying signature

Successfully verified signature of master public key with verification publicg

the authentication with the new master is successful

[INFO
[DEBUG
[DEBUG

]
]
]
[INFO ]

Received signed and verified master pubkey from master 172.16.0.11
Decrypting the current master AES key

Loaded minion key: /etc/salt/pki/minion/minion.pem

Authentication with master successful!

and the minion can be pinged again from its new master.

Performance Tuning

With the setup described above, the master computes a signature for every auth-request of a minion. With many
minions and many auth-requests, that can chew up quite a bit of CPU-Power.

To avoid that, the master can use a pre-created signature of its public-key. The signature is saved as a base64 encoded
string which the master reads once when starting and attaches only that string to auth-replies.

3.4. Advanced Topics 87

key master_:

key master_:



Salt Documentation, Release 2015.5.10

Enabling this also gives paranoid users the possibility, to have the signing key-pair on a different system than the
actual salt-master and create the public keys signature there. Probably on a system with more restrictive firewall
rules, without internet access, less users, etc.

That signature can be created with

‘$ salt-key --gen-signature

This will create a default signature file in the master pki-directory

’ /etc/salt/pki/master/master_pubkey_signature

It is a simple text-file with the binary-signature converted to base64.

If no signing-pair is present yet, this will auto-create the signing pair and the signature file in one call

‘$ salt-key --gen-signature --auto-create

Telling the master to use the pre-created signature is done with

’ master_use_pubkey_signature: True

That requires the file ‘master_pubkey_signature' to be present in the masters pki-directory with the correct signature.

If the signature file is named differently, its name can be set with

master_pubkey_signature: <filename>

With many masters and many public-keys (default and signing), it is advised to use the salt-masters hostname for
the signature-files name. Signatures can be easily confused because they do not provide any information about the
key the signature was created from.

Verifying that everything works is done the same way as above.

How the signing and verification works

The default key-pair of the salt-master is

/etc/salt/pki/master/master.pem
/etc/salt/pki/master/master.pub

To be able to create a signature of a message (in this case a public-key), another key-pair has to be added to the setup.
Its default name is:

master_sign.pem
master_sign.pub

The combination of the master” and master_sign* key-pairs give the possibility of generating signatures. The sig-
nature of a given message is unique and can be verified, if the public-key of the signing-key-pair is available to the
recipient (the minion).

The signature of the masters public-key in master.pub is computed with

master_sign.pem
master.pub
M2Crypto.EVP.sign_update()

This results in a binary signature which is converted to base64 and attached to the auth-reply send to the minion.

With the signing-pairs public-key available to the minion, the attached signature can be verified with

88 Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

master_sign.pub
master.pub
M2Cryptos EVP.verify_update().

When running multiple masters, either the signing key-pair has to be present on all of them, or the mas-
ter_pubkey_signature has to be pre-computed for each master individually (because they all have different public-
keys).

DO NOT PUT THE SAME master.pub ON ALL MASTERS FOR EASE OF USE.

3.4.6 Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before accepting its key on the master. For
instance, you may want the minion to bootstrap itself as soon as it comes online. You may also want to to let your
developers provision new development machines on the fly.

See also:

Many ways to preseed minion keys

Salt has other ways to generate and pre-accept minion keys in addition to the manual steps outlined below.
salt-cloud performs these same steps automatically when new cloud VMs are created (unless instructed not to).

salt-api exposes an HTTP call to Salt's REST APl to generate and download the new minion keys as
a tarball.

There is a general four step process to do this:

1. Generate the keys on the master:

root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion's id.

2. Add the public key to the accepted minion folder:

root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_id]

It is necessary that the public key file has the same name as your minion id. This is how Salt matches minions with
their keys. Also note that the pki folder could be in a different location, depending on your OS or if specified in the
master config file.

3. Distribute the minion keys.

There is no single method to get the keypair to your minion. The difficulty is finding a distribution method
which is secure. For Amazon EC2 only, an AWS best practice is to use IAM Roles to pass credentials.
(See blog post, http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-
AWS-credentials-to-your-EC2-instances )

Security Warning

Since the minion key is already accepted on the master, distributing the private key poses a potential security risk.
A malicious party will have access to your entire state tree and other sensitive data if they gain access to a preseeded
minion key.

4. Preseed the Minion with the keys

You will want to place the minion keys before starting the salt-minion daemon:

3.4. Advanced Topics 89



http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances

Salt Documentation, Release 2015.5.10

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run salt-call state.apply or any other salt
commands that require master authentication.

3.4.7 Salt Bootstrap

The Salt Bootstrap script allows for a user to install the Salt Minion or Master on a variety of system distributions
and versions. This shell script known as bootstrap-salt.sh runs through a series of checks to determine
the operating system type and version. It then installs the Salt binaries using the appropriate methods. The Salt
Bootstrap script installs the minimum number of packages required to run Salt. This means that in the event you
run the bootstrap to install via package, Git will not be installed. Installing the minimum number of packages helps
ensure the script stays as lightweight as possible, assuming the user will install any other required packages after the
Salt binaries are present on the system. The script source is available on GitHub: https://github.com/saltstack/salt-
bootstrap

Supported Operating Systems

« Amazon Linux 2012.09

« Arch

« CentOS 5/6

« Debian 6.x/7.x/8(git installations only)
« Fedora 17/18

« FreeBSD 9.1/9.2/10

« Gentoo

« Linaro

« Linux Mint 13/14

« OpenSUSE 12.x

« Oracle Linux 5/5

« Red Hat 5/6

« Red Hat Enterprise 5/6

« Scientific Linux 5/6

» SmartOS

« SuSE 11 SP1/11 SP2

« Ubuntu 10.x/11.x/12.x/13.04/13.10
« Elementary OS 0.2

Note: In the event you do not see your distribution or version available please review the develop branch on
Github as it main contain updates that are not present in the stable release: https://github.com/saltstack/salt-

bootstrap/tree/develop

920 Chapter 3. Tutorials



https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap/tree/develop
https://github.com/saltstack/salt-bootstrap/tree/develop

Salt Documentation, Release 2015.5.10

Example Usage

If you're looking for the one-liner to install salt, please scroll to the bottom and use the instructions for Installing via
an Insecure One-Liner

Note: In every two-step example, you would be well-served to examine the downloaded file and examine it to
ensure that it does what you expect.

Using curl to install latest git:

curl -L https://bootstrap.saltstack.com -o install_salt.sh
sudo sh install_salt.sh git develop

Using wget to install your distribution's stable packages:

wget -0 install_salt.sh https://bootstrap.saltstack.com
sudo sh install_salt.sh

Install a specific version from git using wget:

wget -0 install_salt.sh https://bootstrap.saltstack.com
sudo sh install_salt.sh -P git v0.16.4

If you already have python installed, python 2.6, then it's as easy as:

python -m urllib "https://bootstrap.saltstack.com" > install_salt.sh
sudo sh install_salt.sh git develop

All python versions should support the following one liner:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").read(
sudo sh install_salt.sh git develop

On a FreeBSD base system you usually don't have either of the above binaries available. You do have fetch available
though:

fetch -o install_salt.sh https://bootstrap.saltstack.com
sudo sh dinstall_salt.sh

If all you want is to install a salt-master using latest git:

curl -o install_salt.sh -L https://bootstrap.saltstack.com
sudo sh install_salt.sh -M -N git develop

If you want to install a specific release version (based on the git tags):

curl -o install_salt.sh -L https://bootstrap.saltstack.com
sudo sh install_salt.sh git v0.16.4

To install a specific branch from a git fork:

curl -o install_salt.sh -L https://bootstrap.saltstack.com
sudo sh dinstall_salt.sh -g https://github.com/myuser/salt.git git mybranch

Installing via an Insecure One-Liner

The following examples illustrate how to install Salt via a one-liner.

3.4. Advanced Topics 91

1

> dinstall_:



Salt Documentation, Release 2015.5.10

Note: Warning! These methods do not involve a verification step and assume that the delivered file is trustworthy.

Examples

Installing the latest develop branch of Salt:

curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop

Any of the example above which use two-lines can be made to run in a single-line configuration with minor modi-
fications.

Example Usage

The Salt Bootstrap script has a wide variety of options that can be passed as well as several ways of obtaining the
bootstrap script itself.

For example, using curl to install your distribution's stable packages:

’curl -L https://bootstrap.saltstack.com | sudo sh

Using wget to install your distribution's stable packages:

’wget -0 - https://bootstrap.saltstack.com | sudo sh

Installing the latest version available from git with cur1:

’curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop

Install a specific version from git using wget:

‘wget -0 - https://bootstrap.saltstack.com | sh -s -- -P git v0.16.4

If you already have python installed, python 2.6, then it's as easy as:

’python -m urllib "https://bootstrap.saltstack.com" | sudo sh -s -- git develop

All python versions should support the following one liner:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").read(
sudo sh -s -- git develop

On a FreeBSD base system you usually don't have either of the above binaries available. You do have fetch available
though:

’fetch -0 - https://bootstrap.saltstack.com | sudo sh

If all you want is to install a salt-master using latest git:

‘curl -L https://bootstrap.saltstack.com | sudo sh -s -- -M -N git develop

If you want to install a specific release version (based on the git tags):

‘curl -L https://bootstrap.saltstack.com | sudo sh -s -- git v0.16.4

Downloading the develop branch (from here standard command line options may be passed):

92 Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

wget https://bootstrap.saltstack.com/develop

Command Line Options

Here's a summary of the command line options:

$ sh bootstrap-salt.sh -h
Usage : bootstrap-salt.sh [options] <install-type> <install-type-args>

Installation types:
- stable (default)
- daily (ubuntu specific)
- git

Examples:

bootstrap-salt.sh

bootstrap-salt.sh stable

bootstrap-salt.sh daily

bootstrap-salt.sh git

bootstrap-salt.sh git develop

bootstrap-salt.sh git v0.17.0

bootstrap-salt.sh git 8c3fadfl5ec183e5ce8c63739850d543617e4357

R Vol Vo S Vo S Vo SR Vo SR Vo 8

Options:

-h Display this message

-v Display script version

-n  No colours.

-D Show debug output.

-c Temporary configuration directory

-g Salt repository URL. (default: git://github.com/saltstack/salt.git)

-k Temporary directory holding the minion keys which will pre-seed
the master.

-M Also install salt-master

-S Also install salt-syndic

-N Do not install salt-minion

-X Do not start daemons after dinstallation

-C Only run the configuration function. This option automatically
bypasses any installation.

-P Allow pip based installations. On some distributions the required salt
packages or its dependencies are not available as a package for that
distribution. Using this flag allows the script to use pip as a last
resort method. NOTE: This only works for functions which actually
implement pip based installations.

-F Allow copied files to overwrite existing(config, init.d, etc)

-U If set, fully upgrade the system prior to bootstrapping salt

-K If set, keep the temporary files 1in the temporary directories specified
with -c and -k.

-I If set, allow insecure connections while downloading any files. For
example, pass '--no-check-certificate' to 'wget' or '--insecure' to 'curl'

-A Pass the salt-master DNS name or IP. This will be stored under
${BS_SALT_ETC_DIR}/minion.d/99-master-address.conf

-i Pass the salt-minion 1id. This will be stored under
${BS_SALT_ETC_DIR}/minion_id

-L Install the Apache Libcloud package if possible(required for salt-cloud)

-p Extra-package to install while installing salt dependencies. One package
per -p flag. You're responsible for providing the proper package name.

3.4. Advanced Topics 93




Salt Documentation, Release 2015.5.10

3.4.8 Git Fileserver Backend Walkthrough

Note: This walkthrough assumes basic knowledge of Salt. To get up to speed, check out the Salt Walkthrough.

The gitfs backend allows Salt to serve files from git repositories. It can be enabled by adding git to the file-
server_backend list, and configuring one or more repositories in gitfs_remotes.

Branches and tags become Salt fileserver environments.

Installing Dependencies
Beginning with version 2014.7.0, both pygit2 and Dulwich are supported as alternatives to GitPython. The desired
provider can be configured using the gitfs_provider parameter in the master config file.

If gitfs_provider is not configured, then Salt will prefer pygit2 if a suitable version is available, followed by
GitPython and Dulwich.

Note: It is recommended to always run the most recent version of any the below dependencies. Certain features of
gitfs may not be available without the most recent version of the chosen library.

pysgit2
The minimum supported version of pygit2 is 0.20.3. Availability for this version of pygit2 is still limited, though the
SaltStack team is working to get compatible versions available for as many platforms as possible.

For the Fedora/EPEL versions which have a new enough version packaged, the following command would be used
to install pygit2:

‘# yum install python-pygit2

Provided a valid version is packaged for Debian/Ubuntu (which is not currently the case), the package name would
be the same, and the following command would be used to install it:

‘# apt-get install python-pygit2

If pygit2 is not packaged for the platform on which the Master is running, the pygit2 website has installation instruc-
tions here. Keep in mind however that following these instructions will install libgit2 and pygit2 without system
packages. Additionally, keep in mind that SSH authentication in pygit2 requires libssh2 (not libssh) development
libraries to be present before libgit2 is built.

GitPython

GitPython 0.3.0 or newer is required to use GitPython for gitfs. For RHEL-based Linux distros, a compatible version
is available in EPEL, and can be easily installed on the master using yum:

‘# yum install GitPython

Ubuntu 14.04 LTS and Debian Wheezy (7.x) also have a compatible version packaged:

‘# apt-get install python-git

If your master is running an older version (such as Ubuntu 12.04 LTS or Debian Squeeze), then you will need to install
GitPython using either pip or easy_install (it is recommended to use pip). Version 0.3.2.RC1 is now marked as the

94 Chapter 3. Tutorials


https://github.com/libgit2/pygit2
https://www.samba.org/~jelmer/dulwich/
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://www.samba.org/~jelmer/dulwich/
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
http://www.pygit2.org/install.html
https://github.com/libgit2/pygit2
http://www.libssh2.org/
https://github.com/gitpython-developers/GitPython
http://www.pip-installer.org/

Salt Documentation, Release 2015.5.10

stable release in PyPI, so it should be a simple matter of running pip install GitPython (oreasy_install
GitPython) as root.

Warning: Keep in mind that if GitPython has been previously installed on the master using pip (even if
it was subsequently uninstalled), then it may still exist in the build cache (typically /tmp/pip-build-
root/GitPython) if the cache is not cleared after installation. The package in the build cache will override
any requirement specifiers, so if you try upgrading to version 0.3.2.RC1 by running pip install 'Git-
Python==0.3.2.RC1" then it will ignore this and simply install the version from the cache directory. There-
fore, it may be necessary to delete the GitPython directory from the build cache in order to ensure that the
specified version is installed.

Dulwich

Dulwich 0.9.4 or newer is required to use Dulwich as backend for gitfs.

Dulwich is available in EPEL, and can be easily installed on the master using yum:

‘# yum install python-dulwich

For APT-based distros such as Ubuntu and Debian:

’# apt-get install python-dulwich

Important: If switching to Dulwich from GitPython/pygit2, or switching from GitPython/pygit2 to Dulwich, it is
necessary to clear the gitfs cache to avoid unpredictable behavior. This is probably a good idea whenever switching

toanew gitfs_provider,butit is less important when switching between GitPython and pygit2.

Beginning in version 2015.5.0, the gitfs cache can be easily cleared using the fileserver.clear_cache runner.

‘salt—run fileserver.clear_cache backend=git

If the Master is running an earlier version, then the cache can be cleared by removing the gitfs
and file_lists/gitfs directories (both paths relative to the master cache directory, usually
/var/cache/salt/master).

’rm -rf /var/cache/salt/master{,/file_lists}/gitfs

Simple Configuration

To use the gitfs backend, only two configuration changes are required on the master:

1. Include git inthe fileserver_backend list in the master config file:

fileserver_backend:
- git

2. Specify one or more git://, https://, file://,or ssh:// URLsin gitfs_remotes to configure
which repositories to cache and search for requested files:

gitfs_remotes:
- https://github.com/saltstack-formulas/salt-formula.git

SSH remotes can also be configured using scp-like syntax:

3.4. Advanced Topics 95



Salt Documentation, Release 2015.5.10

gitfs_remotes:
- git@github.com:user/repo.git
- ssh://user@domain.tld/path/to/repo.git

Information on how to authenticate to SSH remotes can be found here.

Note: Dulwich does not recognize ssh:// URLs, git+ssh:// must be used instead. Salt version 2015.5.0
and later will automatically add the git+ to the beginning of these URLs before fetching, but earlier Salt

versions will fail to fetch unless the URL is specified using git+ssh://.

3. Restart the master to load the new configuration.

Note: In a master/minion setup, files from a gitfs remote are cached once by the master, so minions do not need
direct access to the git repository.

Multiple Remotes

The gitfs_remotes option accepts an ordered list of git remotes to cache and search, in listed order, for requested
files.

A simple scenario illustrates this cascading lookup behavior:

If the gitfs_remotes option specifies three remotes:

gitfs_remotes:
- git://github.com/example/first.git
- https://github.com/example/second.git
- file:///root/third

And each repository contains some files:

first.git:
top.sls
edit/vim.sls
edit/vimrc
nginx/init.sls

second.git:
edit/dev_vimrc
haproxy/init.sls

third:
haproxy/haproxy.conf
edit/dev_vimrc

Salt will attempt to lookup the requested file from each gitfs remote repository in the order in which they are defined
in the configuration. The git://github.com/example/first.git remote will be searched first. If the requested file is
found, then it is served and no further searching is executed. For example:

« A request for the file salt://haproxy/init.sls will be served from the https://github.com/example/second.git
git repo.

« A request for the file salt://haproxy/haproxy.conf will be served from the file:///root/third repo.

Note: This example is purposefully contrived to illustrate the behavior of the gitfs backend. This example should
not be read as a recommended way to lay out files and git repos.

96 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

The file:// prefix denotes a git repository in a local directory. However, it will still use the given file:// URL as a
remote, rather than copying the git repo to the salt cache. This means that any refs you want accessible must exist
as local refs in the specified repo.

Warning: Salt versions prior to 2014.1.0 are not tolerant of changing the order of remotes or modifying the
URI of existing remotes. In those versions, when modifying remotes it is a good idea to remove the gitfs cache
directory (/var/cache/salt/master/gitfs) before restarting the salt-master service.

Per-remote Configuration Parameters

New in version 2014.7.0.
The following master config parameters are global (that is, they apply to all configured gitfs remotes):
. gitfs_base
« gitfs_root
« gitfs_mountpoint (new in 2014.7.0)
« gitfs_user (pygit2 only, new in 2014.7.0)
« gitfs_password (pygit2 only, new in 2014.7.0)
. gitfs_insecure_auth (pygit2 only, new in 2014.7.0)
. gitfs_pubkey (pygit2 only, new in 2014.7.0)
« gitfs_privkey (pygit2 only, new in 2014.7.0)
« gitfs_passphrase (pygit2 only, new in 2014.7.0)

These parameters can now be overridden on a per-remote basis. This allows for a tremendous amount of customiza-
tion. Here's some example usage:

gitfs_provider: pygit2
gitfs_base: develop

gitfs_remotes:

- https://foo.com/foo.git

- https://foo.com/bar.git:
- root: salt
- mountpoint: salt://foo/bar/baz
- base: salt-base

- http://foo.com/baz.git:
- root: salt/states
- user: joe
- password: mysupersecretpassword
- dnsecure_auth: True

Important: There are two important distinctions which should be noted for per-remote configuration:

1. The URL of a remote which has per-remote configuration must be suffixed with a colon.

2. Per-remote configuration parameters are named like the global versions, with the gitfs_ removed from the
beginning.

In the example configuration above, the following is true:

3.4. Advanced Topics 97




Salt Documentation, Release 2015.5.10

1. The first and third gitfs remotes will use the develop branch/tag as the base environment, while the second
one will use the salt-base branch/tag as the base environment.

2. The first remote will serve all files in the repository. The second remote will only serve files from the sa'lt di-
rectory (and its subdirectories), while the third remote will only serve files from the salt/states directory
(and its subdirectories).

3. The files from the second remote will be located under salt://foo/bar/baz, while the files from the first
and third remotes will be located under the root of the Salt fileserver namespace (salt://).

4. The third remote overrides the default behavior of not authenticating to insecure (non-HTTPS) remotes.

Serving from a Subdirectory

The gitfs_root parameter allows files to be served from a subdirectory within the repository. This allows for
only part of a repository to be exposed to the Salt fileserver.

Assume the below layout:

.gitignore

README. txt

foo/

foo/bar/
foo/bar/one.txt
foo/bar/two.txt
foo/bar/three.txt
foo/baz/
foo/baz/top.sls
foo/baz/edit/vim.sls
foo/baz/edit/vimrc
foo/baz/nginx/init.sls

The below configuration would serve only the files under foo/baz, ignoring the other files in the repository:

gitfs_remotes:
- git://mydomain.com/stuff.git

gitfs_root: foo/baz

The root can also be configured on a per-remote basis.

Mountpoints

New in version 2014.7.0.

The gitfs_mountpoint parameter will prepend the specified path to the files served from gitfs. This allows an
existing repository to be used, rather than needing to reorganize a repository or design it around the layout of the
Salt fileserver.

Before the addition of this feature, if a file being served up via gitfs was deeply nested within the root directory (for
example, salt://webapps/foo/files/foo.conf,it would be necessary to ensure that the file was properly
located in the remote repository, and that all of the the parent directories were present (for example, the directories
webapps/foo/files/ would need to exist at the root of the repository).

The below example would allow for a file foo.conf at the root of the repository to be served up from the Salt
fileserver path salt://webapps/foo/files/foo.conf.

98 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

gitfs_remotes:
- https://mydomain.com/stuff.git

gitfs_mountpoint: salt://webapps/foo/files

Mountpoints can also be configured on a per-remote basis.

Using gitfs Alongside Other Backends
Sometimes it may make sense to use multiple backends; for instance, if s's files are stored in git but larger files are
stored directly on the master.

The cascading lookup logic used for multiple remotes is also used with multiple backends. If the file-
server_backend option contains multiple backends:

fileserver_backend:
- roots
- git

Then the roots backend (the default backend of files in /srv/salt) will be searched first for the requested file;
then, if it is not found on the master, each configured git remote will be searched.

Branches, Environments, and Top Files

When using the gitfs backend, branches, and tags will be mapped to environments using the branch/tag name as an
identifier.

There is one exception to this rule: the master branch is implicitly mapped to the base environment.

So, for a typical base, qa, dev setup, the following branches could be used:

master

ga
dev

top. sls files from different branches will be merged into one at runtime. Since this can lead to overly complex
configurations, the recommended setup is to have the top . s1s file only in the master branch and use environment-
specific branches for state definitions.

To map a branch other than master as the base environment, use the gitfs_base parameter.

gitfs_base: salt-base

The base can also be configured on a per-remote basis.

Environment Whitelist/Blacklist

New in version 2014.7.0.

The gitfs_env_whitelist and gitfs_env_blacklist parameters allow for greater control over which
branches/tags are exposed as fileserver environments. Exact matches, globs, and regular expressions are supported,
and are evaluated in that order. If using a regular expression, » and $ must be omitted, and the expression must
match the entire branch/tag.

3.4. Advanced Topics 99




Salt Documentation, Release 2015.5.10

gitfs_env_whitelist:
- base
- vl.*
- 'mybranch\d+"'

Note: v1.*,in this example, will match as both a glob and a regular expression (though it will have been matched
as a glob, since globs are evaluated before regular expressions).

The behavior of the blacklist/whitelist will differ depending on which combination of the two options is used:

« Ifonlygitfs_env_whitelist isused, then only branches/tags which match the whitelist will be available
as environments

« Ifonlygitfs_env_blacklist isused, then the branches/tags which match the blacklist will not be avail-
able as environments

« If both are used, then the branches/tags which match the whitelist, but do not match the blacklist, will be
available as environments.

Authentication
pysgit2

New in version 2014.7.0.

Both HTTPS and SSH authentication are supported as of version 0.20.3, which is the earliest version of pygit2
supported by Salt for gitfs.

Note: The examples below make use of per-remote configuration parameters, a feature new to Salt 2014.7.0. More
information on these can be found here.

HTTPS For HTTPS repositories which require authentication, the username and password can be provided like
so:

gitfs_remotes:
- https://domain.tld/myrepo.git:
- user: git
- password: mypassword

If the repository is served over HTTP instead of HTTPS, then Salt will by default refuse to authenticate to it. This
behavior can be overridden by adding an insecure_auth parameter:

gitfs_remotes:
- http://domain.tld/insecure_repo.git:
- user: git
- password: mypassword
- insecure_auth: True

SSH SSH repositories can be configured using the ssh: // protocol designation, or using scp-like syntax. So, the
following two configurations are equivalent:

« ssh://git@github.com/user/repo.git
. git@github.com:user/repo.git

100 Chapter 3. Tutorials



https://github.com/libgit2/pygit2

Salt Documentation, Release 2015.5.10

Both gitfs_pubkey and gitfs_privkey (or their per-remote counterparts) must be configured in order to
authenticate to SSH-based repos. If the private key is protected with a passphrase, it can be configured using
gitfs_passphrase (or simply passphrase if being configured per-remote). For example:

gitfs_remotes:
- git@github.com:user/repo.git:
- pubkey: /root/.ssh/id_rsa.pub
- privkey: /root/.ssh/id_rsa
- passphrase: myawesomepassphrase

Finally, the SSH host key must be added to the known_hosts file.

GitPython

With GitPython, only passphrase-less SSH public key authentication is supported. The auth parameters (pubkey,
privkey, etc.) shown in the pygit2 authentication examples above do not work with GitPython.

gitfs_remotes:
- ssh://git@github.com/example/salt-states.git

Since GitPython wraps the git CLI, the private key must be located in ~/ . ssh /i d_rsa for the user under which the
Master is running, and should have permissions of ©600. Also, in the absence of a user in the repo URL, GitPython
will (just as SSH does) attempt to login as the current user (in other words, the user under which the Master is
running, usually root).

If a key needs to be used, then ~/.ssh/config can be configured to use the desired key. Information on how to
do this can be found by viewing the manpage for ssh_config. Here's an example entry which can be added to
the ~/.ssh/conf1ig to use an alternate key for gitfs:

Host github.com
IdentityFile /root/.ssh/id_rsa_gitfs

The Host parameter should be a hostname (or hostname glob) that matches the domain name of the git repository.

It is also necessary to add the SSH host key to the known_hosts file. The exception to this would be if strict
host key checking is disabled, which can be done by adding StrictHostKeyChecking no to the entry in
~/.ssh/config

Host github.com
IdentityFile /root/.ssh/id_rsa_gitfs
StrictHostKeyChecking no

However, this is generally regarded as insecure, and is not recommended.

Adding the SSH Host Key to the known_hosts File

To use SSH authentication, it is necessary to have the remote repository's SSH host key in the
~/ .ssh/known_hosts file. If the master is also a minion, this can be done using the ssh. set_known_host
function:

# salt mymaster ssh.set_known_host user=root hostname=github.com
mymaster:

3.4. Advanced Topics 101



https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython

Salt Documentation, Release 2015.5.10

ssh-rsa
fingerprint:
16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48
hostname:
[1]07efWWqOD4kwO3BhoIGa®loR5AA=|BIXVtmcTbPER+68HVvXmceodDcfI=
key:
AAAAB3NzaClyc2EAAAABIWAAAQEAQ2A7ThRGmdnm9tUDbO9IDSWBK6TbQa+PXYPCPy6rbTrTtw7Ph
old:
None
status:
updated

If not, then the easiest way to add the key is to su to the user (usually root) under which the salt-master runs and
attempt to login to the server via SSH:

$ su

Password:

# ssh github.com

The authenticity of host 'github.com (192.30.252.128)' can't be established.

RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'github.com,192.30.252.128' (RSA) to the list of known hosts
Permission denied (publickey).

It doesn't matter if the login was successful, as answering yes will write the fingerprint to the known_hosts file.

Verifying the Fingerprint To verify that the correct fingerprint was added, it is a good idea to look it up. One way
to do this is to use nmap:

$ nmap github.com --script ssh-hostkey

Starting Nmap 5.51 ( http://nmap.org ) at 2014-08-18 17:47 CDT
Nmap scan report for github.com (192.30.252.129)

Host is up (0.17s latency).

Not shown: 996 filtered ports

PORT STATE SERVICE

22/tcp open ssh

| ssh-hostkey: 1024 ad:1c:08:a4:40:e3:6f:9¢c:f5:66:26:5d:4b:33:5d:8c (DSA)
| _2048 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48 (RSA)
80/tcp open http

443 /tcp open https

9418/tcp open git

Nmap done: 1 IP address (1 host up) scanned in 28.78 seconds

Another way is to check one's own known_hosts file, using this one-liner:

$ ssh-keygen -1 -f /dev/stdin <<<'ssh-keyscan -t rsa github.com 2>/dev/null’ | awk '{pr
16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48

Refreshing gitfs Upon Push

By default, Salt updates the remote fileserver backends every 60 seconds. However, if it is desirable to refresh quicker
than that, the Reactor System can be used to signal the master to update the fileserver on each push, provided that
the git server is also a Salt minion. There are three steps to this process:

102 Chapter 3. Tutorials

ikccKrppOyVhp!

nt $2}'



Salt Documentation, Release 2015.5.10

1. On the master, create a file /srv/reactor/update_fileserver.sls, with the following contents:

update_fileserver:
runner.fileserver.update

2. Add the following reactor configuration to the master config file:

reactor:
- 'salt/fileserver/gitfs/update':
- /srv/reactor/update_fileserver.sls

3. On the git server, add a post-receive hook with the following contents:

#!/usr/bin/env sh

salt-call event.fire_master update salt/fileserver/gitfs/update

The update argument right after event. fire_master in this example can really be anything, as it represents
the data being passed in the event, and the passed data is ignored by this reactor.

Similarly, the tag name salt/fileserver/gitfs/update can be replaced by anything, so long as the usage
is consistent.

Using Git as an External Pillar Source

Git repositories can also be used to provide Pillar data, using the External Pillar system. Note that this is different
from gitfs, and is not yet at feature parity with it.

To define a git external pillar, add a section like the following to the salt master config file:

ext_pillar:
- git: <branch> <repo> [root=<gitroot>]

Changed in version 2014.7.0: The optional root parameter was added

The <branch> param is the branch containing the pillar SLS tree. The <repo> param is the URI for the repository.
To add the master branch of the specified repo as an external pillar source:

ext_pillar:
- git: master https://domain.com/pillar.git

Use the root parameter to use pillars from a subdirectory of a git repository:

ext_pillar:
- git: master https://domain.com/pillar.git root=subdirectory

More information on the git external pillar can be found in the salt.pillar.git_pillar docs.

Why aren't my custom modules/states/etc. syncing to my Minions?

In versions 0.16.3 and older, when using the git fileserver backend, certain versions of GitPython may generate errors
when fetching, which Salt fails to catch. While not fatal to the fetch process, these interrupt the fileserver update
that takes place before custom types are synced, and thus interrupt the sync itself. Try disabling the git fileserver
backend in the master config, restarting the master, and attempting the sync again.

This issue is worked around in Salt 0.16.4 and newer.

3.4. Advanced Topics 103



http://www.git-scm.com/book/en/Customizing-Git-Git-Hooks#Server-Side-Hooks

Salt Documentation, Release 2015.5.10

3.4.9 The MacOS X (Maverick) Developer Step By Step Guide To Salt Installation

This document provides a step-by-step guide to installing a Salt cluster consisting of one master, and one minion
running on a local VM hosted on Mac OS X.

Note: This guide is aimed at developers who wish to run Salt in a virtual machine. The official (Linux) walkthrough
can be found here.

The 5 Cent Salt Intro

Since you're here you've probably already heard about Salt, so you already know Salt lets you configure and run
commands on hordes of servers easily. Here's a brief overview of a Salt cluster:

- Salt works by having a *‘master" server sending commands to one or multiple ' ‘minion" servers !. The mas-
ter server is the *“command center". It is going to be the place where you store your configuration files, aka:
““which server is the db, which is the web server, and what libraries and software they should have installed".
The minions receive orders from the master. Minions are the servers actually performing work for your busi-
ness.

« Salt has two types of configuration files:

1. the *“salt communication channels" or ““meta" or *“config" configuration files (not official names): one for
the master (usually is /etc/salt/master , on the master server), and one for minions (default is /etc/salt/minion
or /etc/salt/minion.conf, on the minion servers). Those files are used to determine things like the Salt Master
IP, port, Salt folder locations, etc.. If these are configured incorrectly, your minions will probably be unable to
receive orders from the master, or the master will not know which software a given minion should install.

2. the ““business" or "“service" configuration files (once again, not an official name): these are configuration
files, ending with ".sls" extension, that describe which software should run on which server, along with par-
ticular configuration properties for the software that is being installed. These files should be created in the
/srv/salt folder by default, but their location can be changed using ... /etc/salt/master configuration file!

Note: This tutorial contains a third important configuration file, not to be confused with the previous two: the
virtual machine provisioning configuration file. This in itself is not specifically tied to Salt, but it also contains some

Salt configuration. More on that in step 3. Also note that all configuration files are YAML files. So indentation
matters.

Before Digging In, The Architecture Of The Salt Cluster

Salt Master

The " *Salt master" server is going to be the Mac OS machine, directly. Commands will be run from a terminal app, so
Salt will need to be installed on the Mac. This is going to be more convenient for toying around with configuration

files.

Salt Minion

We'll only have one " *Salt minion" server. It is going to be running on a Virtual Machine running on the Mac, using
VirtualBox. It will run an Ubuntu distribution.

1 Salt also works with *“masterless" configuration where a minion is autonomous (in which case salt can be seen as a local configuration tool),
or in " “multiple master" configuration. See the documentation for more on that.

104 Chapter 3. Tutorials


http://docs.saltstack.com/topics/tutorials/walkthrough.html

Salt Documentation, Release 2015.5.10

3.4.10 Step 1 - Configuring The Salt Master On Your Mac

official documentation

Because Salt has a lot of dependencies that are not built in Mac OS X, we will use Homebrew to install Salt. Homebrew
is a package manager for Mac, it's great, use it (for this tutorial at least!). Some people spend a lot of time installing
libs by hand to better understand dependencies, and then realize how useful a package manager is once they're
configuring a brand new machine and have to do it all over again. It also lets you uninstall things easily.

Note: Brew is a Ruby program (Ruby is installed by default with your Mac). Brew downloads, compiles, and links
software. The linking phase is when compiled software is deployed on your machine. It may conflict with manually

installed software, especially in the /usr/local directory. It's ok, remove the manually installed version then refresh
the link by typing brew 1link 'packageName'. Brew has a brew doctor command that can help you
troubleshoot. It's a great command, use it often. Brew requires xcode command line tools. When you run brew the
first time it asks you to install them if they're not already on your system. Brew installs software in /usr/local/bin
(system bins are in /usr/bin). In order to use those bins you need your $PATH to search there first. Brew tells you if
your $PATH needs to be fixed.

Tip: Use the keyboard shortcut cmd + shift + period inthe “open" Mac OS X dialog box to display hidden
files and folders, such as .profile.

Install Homebrew

Install Homebrew here http://brew.sh/ Or just type

ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Now type the following commands in your terminal (you may want to type brew doctor after each to make sure
everything's fine):

brew install python
brew install swig
brew install zmq

Note: zmgq is ZeroMQ. It's a fantastic library used for server to server network communication and is at the core of
Salt efficiency.

Install Salt

You should now have everything ready to launch this command:

pip install salt

Note: There should be noneed for sudo pip install salt. Brew installed Python for your user, so you should
have all the access. In case you would like to check, type which python to ensure that it's /usr/local/bin/python,

and which p1ip which should be /usr/local/bin/pip.

Now type python in a terminal then, import salt. There should be no errors. Now exit the Python terminal
using exit ().

3.4. Advanced Topics 105



http://docs.saltstack.com/topics/installation/osx.html
http://brew.sh/

Salt Documentation, Release 2015.5.10

Create The Master Configuration

If the default /etc/salt/master configuration file was not created, copy-paste it from here:
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Note: /etc/salt/master is afile, not a folder.

Salt Master configuration changes. The Salt master needs a few customization to be able to run on Mac OS X:

’sudo launchctl limit maxfiles 4096 8192

In the /etc/salt/master file, change max_open_files to 8192 (or just add the line: max_open_files: 8192 (no
quote) if it doesn't already exists).

You should now be able to launch the Salt master:

’sudo salt-master --log-level=all

There should be no errors when running the above command.

Note: This command is supposed to be a daemon, but for toying around, we'll keep it running on a terminal to
monitor the activity.

Now that the master is set, let's configure a minion on a VM.

3.4.11 Step 2 - Configuring The Minion VM

The Salt minion is going to run on a Virtual Machine. There are a lot of software options that let you run virtual
machines on a mac, But for this tutorial we're going to use VirtualBox. In addition to virtualBox, we will use Vagrant,
which allows you to create the base VM configuration.

Vagrant lets you build ready to use VM images, starting from an OS image and customizing it using " "provisioners".
In our case, we'll use it to:

« Download the base Ubuntu image

« Install salt on that Ubuntu image (Salt is going to be the *“provisioner" for the VM).
« Launch the VM

« SSH into the VM to debug

« Stop the VM once you're done.

Install VirtualBox

Go get it here: https://www.virtualBox.org/wiki/Downloads (click on VirtualBox for OS X hosts => x86/amd64)

Install Vagrant

Go get it here: http://downloads.vagrantup.com/ and choose the latest version (1.3.5 at time of writing), then the
.dmg file. Double-click to install it. Make sure the vagrant command is found when run in the terminal. Type
vagrant. It should display a list of commands.

106 Chapter 3. Tutorials


http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master
https://www.virtualBox.org/wiki/Downloads
http://downloads.vagrantup.com/

Salt Documentation, Release 2015.5.10

Create The Minion VM Folder

Create a folder in which you will store your minion's VM. In this tutorial, it's going to be a minion folder in the
$home directory.

cd $home
mkdir minion

Initialize Vagrant

From the minion folder, type

vagrant 1init

This command creates a default Vagrantfile configuration file. This configuration file will be used to pass configura-
tion parameters to the Salt provisioner in Step 3.

Import Precise64 Ubuntu Box

vagrant box add precise64 http://files.vagrantup.com/precise64.box

Note: This box is added at the global Vagrant level. You only need to do it once as each VM will use this same file.

Modify the Vagrantfile

Modify ./minion/Vagrantfile to use th precise64 box. Change the config.vm.box line to:

‘conf‘ig.vm.box = "precisec64" ‘

Uncomment the line creating a host-only IP. This is the ip of your minion (you can change it to something else if
that IP is already in use):

’conﬁg.vm.network :private_network, ip: "192.168.33.10" ‘

At this point you should have a VM that can run, although there won't be much in it. Let's check that.

Checking The VM

From the $home/minion folder type:

‘vagrant up ‘

A log showing the VM booting should be present. Once it's done you'll be back to the terminal:

]pw‘ng 192.168.33.10 ‘

The VM should respond to your ping request.

Now log into the VM in ssh using Vagrant again:

vagrant ssh

You should see the shell prompt change to something similar to vagrant@precise64: ~$ meaning you're inside
the VM. From there, enter the following:

3.4. Advanced Topics 107



Salt Documentation, Release 2015.5.10

ping 10.0.2.2

Note: That ip is the ip of your VM host (the Mac OS X OS). The number is a VirtualBox default and is displayed in
the log after the Vagrant ssh command. We'll use that IP to tell the minion where the Salt master is. Once you're

done, end the ssh session by typing exi t.

It's now time to connect the VM to the salt master

3.4.12 Step 3 - Connecting Master and Minion
Creating The Minion Configuration File

Create the /etc/salt/minion file. In that file, put the following lines, giving the ID for this minion, and the IP
of the master:

master: 10.0.2.2
id: 'minionl’'
file_client: remote

Minions authenticate with the master using keys. Keys are generated automatically if you don't provide one and
can accept them later on. However, this requires accepting the minion key every time the minion is destroyed or
created (which could be quite often). A better way is to create those keys in advance, feed them to the minion, and
authorize them once.

Preseed minion keys

From the minion folder on your Mac run:

sudo salt-key --gen-keys=minionl

This should create two files: minion1l.pem, and minion1.pub. Since those files have been created using sudo, but will
be used by vagrant, you need to change ownership:

sudo chown youruser:yourgroup minionl.pem
sudo chown youruser:yourgroup minionl.pub

Then copy the .pub file into the list of accepted minions:

sudo cp minionl.pub /etc/salt/pki/master/minions/minionl

Modify Vagrantfile to Use Salt Provisioner

Let's now modify the Vagrantfile used to provision the Salt VM. Add the following section in the Vagrantfile (note:
it should be at the same indentation level as the other properties):

# salt-vagrant config
config.vm.provision :salt do |salt|
salt.run_highstate = true

salt.minion_config = "/etc/salt/minion"
salt.minion_key = "./minionl.pem"
salt.minion_pub = "./minionl.pub"

end

108 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

Now destroy the vm and recreate it from the /minion folder:

vagrant destroy
vagrant up

If everything is fine you should see the following message:

"Bootstrapping Salt... (this may take a while)
Salt successfully configured and installed!"

Checking Master-Minion Communication

To make sure the master and minion are talking to each other, enter the following:

sudo salt 'x' test.ping

You should see your minion answering the ping. It's now time to do some configuration.

3.4.13 Step 4 - Configure Services to Install On the Minion

In this step we'll use the Salt master to instruct our minion to install Nginx.

Checking the system's original state

First, make sure that an HTTP server is not installed on our minion. When opening a browser directed at
http://192.168.33.10/ You should get an error saying the site cannot be reached.

Initialize the top.sls file

System configuration is done in /srv/salt/top.sls (and subfiles/folders), and then applied by running the
state. app ly function to have the Salt master order its minions to update their instructions and run the associated
commands.

First Create an empty file on your Salt master (Mac OS X machine):

‘ touch /srv/salt/top.sls

When the file is empty, or if no configuration is found for our minion an error is reported:

’sudo salt 'minionl' state.apply

This should return an error stating: No Top file or external nodes data matches found.

Create The Nginx Configuration

Now is finally the time to enter the real meat of our server's configuration. For this tutorial our minion will be treated
as a web server that needs to have Nginx installed.

Insert the following lines into /srv/salt/top.sls (which should current be empty).

base:
'minionl’':
- bin.nginx

3.4. Advanced Topics 109



Salt Documentation, Release 2015.5.10

Now create /srv/salt/bin/nginx.sls containing the following:

nginx:
pkg.installed:
- name: nginx
service.running:
- enable: True
- reload: True

Check Minion State

Finally, run the state. app ly function again:

sudo salt 'minionl' state.apply

You should see a log showing that the Nginx package has been installed and the service configured. To prove it,
open your browser and navigate to http://192.168.33.10/, you should see the standard Nginx welcome page.

Congratulations!

Where To Go From Here

A full description of configuration management within Salt (sls files among other things) is available here:
http://docs.saltstack.com/index.html#configuration-management

3.4.14 Writing Salt Tests

Note: THIS TUTORIAL IS A WORK IN PROGRESS

Salt comes with a powerful integration and unit test suite. The test suite allows for the fully automated run of
integration and/or unit tests from a single interface. The integration tests are surprisingly easy to write and can be
written to be either destructive or non-destructive.

Getting Set Up For Tests

To walk through adding an integration test, start by getting the latest development code and the test system from
GitHub:

Note: The develop branch often has failing tests and should always be considered a staging area. For a checkout
that tests should be running perfectly on, please check out a specific release tag (such as v2014.1.4).

git clone git@github.com:saltstack/salt.git
pip install git+https://github.com/saltstack/salt-testing.git#egg=SaltTesting

Now that a fresh checkout is available run the test suite

Destructive vs Non-destructive

Since Salt is used to change the settings and behavior of systems, often, the best approach to run tests is to make
actual changes to an underlying system. This is where the concept of destructive integration tests comes into play.

110 Chapter 3. Tutorials



http://192.168.33.10/
http://docs.saltstack.com/index.html#configuration-management

Salt Documentation, Release 2015.5.10

Tests can be written to alter the system they are running on. This capability is what fills in the gap needed to properly
test aspects of system management like package installation.

To write a destructive test import and use the destructiveTest decorator for the test method:

import integration
from salttesting.helpers import destructiveTest

class PkgTest(integration.ModuleCase):
@destructiveTest
def test_pkg_install(self):
ret = self.run_function('pkg.install', name='finch")
self.assertSaltTrueReturn(ret)
ret = self.run_function('pkg.purge', name='finch')
self.assertSaltTrueReturn(ret)

Automated Test Runs

SaltStack maintains a Jenkins server which can be viewed at http://jenkins.saltstack.com. The tests executed from
this Jenkins server create fresh virtual machines for each test run, then execute the destructive tests on the new clean
virtual machine. This allows for the execution of tests across supported platforms.

3.4.15 HTTP Modules

This tutorial demonstrates using the various HTTP modules available in Salt. These modules wrap the Python
urllib2 and requests libraries, extending them in a manner that is more consistent with Salt workflows.

The salt.utils.http Library

This library forms the core of the HTTP modules. Since it is designed to be used from the minion as an execution
module, in addition to the master as a runner, it was abstracted into this multi-use library. This library can also be
imported by 3rd-party programs wishing to take advantage of its extended functionality.

Core functionality of the execution, state, and runner modules is derived from this library, so common usages be-
tween them are described here. Documentation specific to each module is described below.

This library can be imported with:

import salt.utils.http

Configuring Libraries

This library can make use of either ur'l1lib2, which ships with Python, or requests, which can be installed
separately. By default, ur L17b2 will be used. In order to switch to requests, set the following variable:

requests_Llib: True

This can be set in the master or minion configuration file, or passed as an option directly to any http.query ()
functions.

3.4. Advanced Topics 111



http://jenkins.saltstack.com

Salt Documentation, Release 2015.5.10

salt.utils.http.query()

This function forms a basic query, but with some add-ons not present in the url1lib2 and requests libraries.
Not all functionality currently available in these libraries has been added, but can be in future iterations.

A basic query can be performed by calling this function with no more than a single URL:

’ salt.utils.http.query('http://example.com')

By default the query will be performed with a GET method. The method can be overridden with the method
argument:

‘ salt.utils.http.query('http://example.com/delete/url', 'DELETE")

When using the POST method (and others, such as PUT), extra data is usually sent as well. This data can be sent
directly, in whatever format is required by the remote server (XML, JSON, plain text, etc).

salt.utils.http.query(
'"http://example.com/delete/url’',
method="POST',
data=json.loads(mydict)

)

Bear in mind that this data must be sent pre-formatted; this function will not format it for you. However, a templated
file stored on the local system may be passed through, along with variables to populate it with. To pass through only
the file (untemplated):

salt.utils.http.query(
'http://example.com/post/url',
method="'POST"',
data_file='/srv/salt/somefile.xml'

)

To pass through a file that contains jinja + yaml templating (the default):

salt.utils.http.query(
"http://example.com/post/url',
method="'POST"',
data_file="/srv/salt/somefile.jinja’,
data_render=True,
template_data={'keyl': 'valuel', 'key2': 'value2'}
)

To pass through a file that contains mako templating:

salt.utils.http.query(
'http://example.com/post/url',
method="POST"',
data_file='/srv/salt/somefile.mako"',
data_render=True,
data_renderer="mako',
template_data={'keyl': 'valuel', 'key2': 'value2'}
)

Because this function uses Salt's own rendering system, any Salt renderer can be used. Because Salt's renderer
requires __opts__ to be set, an opts dictionary should be passed in. If it is not, then the default __opts__
values for the node type (master or minion) will be used. Because this library is intended primarily for use by
minions, the default node type is minion. However, this can be changed to master if necessary.

112 Chapter 3. Tutorials



Salt Documentation, Release 2015.5.10

salt.utils.http.query(
'http://example.com/post/url',
method="'POST"',
data_file="'/srv/salt/somefile.jinja’,
data_render=True,
template_data={'keyl': 'valuel', 'key2': 'value2'},
opts=__opts_

)

salt.utils.http.query(
'"http://example.com/post/url',
method="'POST"',
data_file="'/srv/salt/somefile.jinja’,
data_render=True,
template_data={'keyl': 'valuel', 'key2': 'value2'},
node="'master'

)

Headers may also be passed through, either asa header_1list,aheader_dict,orasaheader_file. Aswith
the data_f1ile, the header_f1ile may also be templated. Take note that because HTTP headers are normally
syntactically-correct YAML, they will automatically be imported as an a Python dict.

salt.utils.http.query(
'http://example.com/delete/url’',
method="'POST"',
header_file='/srv/salt/headers.jinja',
header_render=True,
header_renderer="'jinja',
template_data={'keyl': 'valuel', 'key2': 'value2'}
)

Because much of the data that would be templated between headers and data may be the same, the template_data
is the same for both. Correcting possible variable name collisions is up to the user.

The query () function supports basic HTTP authentication. A username and password may be passed in as user—
name and password, respectively.

salt.utils.http.query(
"http://example.com',
username="'larry',
password="5700g3543v4r ",

)

Cookies are also supported, using Python's built-in cookielib. However, they are turned off by default. To turn
cookies on, set cookies to True.

salt.utils.http.query(
"http://example.com',
cookies=True

)

By default cookies are stored in Salt's cache directory, normally /var/cache/salt, as a file called cook-
jes. txt. However, this location may be changed with the cookie_jar argument:

salt.utils.http.query(
'"http://example.com',
cookies=True,
cookie_jar="'/path/to/cookie_jar.txt'

3.4. Advanced Topics 113




Salt Documentation, Release 2015.5.10

By default, the format of the cookie jar is LWP (aka, lib-www-perl). This default was chosen because it is a human-
readable text file. If desired, the format of the cookie jar can be set to Mozilla:

salt.utils.http.query(
"http://example.com',
cookies=True,
cookie_jar='/path/to/cookie_jar.txt',
cookie_format="mozilla'

)

Because Salt commands are normally one-off commands that are piped together, this library cannot normally be-
have as a normal browser, with session cookies that persist across multiple HTTP requests. However, the session
can be persisted in a separate cookie jar. The default filename for this file, inside Salt's cache directory, is cook-
jes.session.p. This can also be changed.

salt.utils.http.query(
"http://example.com',
persist_session=True,
session_cookie_jar='/path/to/jar.p'

)

The format of this file is msgpack, which is consistent with much of the rest of Salt's internal structure. Historically,
the extension for this file is . p. There are no current plans to make this configurable.

Return Data

Note: Return data encoding

If decode is set to True, query () will attempt to decode the return data. decode_type defaults to auto. Set
it to a specific encoding, xm1, for example, to override autodetection.

Because Salt's http library was designed to be used with REST interfaces, query () will attempt to decode the data
received from the remote server when decode is set to True. First it will check the Content-type header to
try and find references to XML. If it does not find any, it will look for references to JSON. If it does not find any, it
will fall back to plain text, which will not be decoded.

JSON data is translated into a dict using Python's built-in json library. XML is translated using
salt.utils.xml_util, which will use Python's built-in XML libraries to attempt to convert the XML into
a dict. In order to force either JSON or XML decoding, the decode_type may be set:

salt.utils.http.query(
'"http://example.com',
decode_type="'xml'

)

Once translated, the return dict from query () will include a dict called dict.

If the data is not to be translated using one of these methods, decoding may be turned off.

salt.utils.http.query(
'"http://example.com',
decode=False

)

If decoding is turned on, and references to JSON or XML cannot be found, then this module will default to plain text,
and return the undecoded data as text (even if text is set to Fa'lse; see below).

114 Chapter 3. Tutorials




Salt Documentation, Release 2015.5.10

The query () function can return the HTTP status code, headers, and/or text as required. However, each must
individually be turned on.

salt.utils.http.query(
"http://example.com',
status=True,
headers=True,
text=True

)

The return from these will be found in the return dict as status, headers and text, respectively.

Writing Return Data to Files

It is possible to write either the return data or headers to files, as soon as the response is received from the server,
but specifying file locations via the text_out or headers_out arguments. text and headers do not need to
be returned to the user in order to do this.

salt.utils.http.query(
"http://example.com',
text=False,
headers=False,
text_out="'/path/to/url_download.txt',
headers_out="/path/to/headers_download.txt',

SSL Verification

By default, this function will verify SSL certificates. However, for testing or debugging purposes, SSL verification
can be turned off.

salt.utils.http.query(
'https://example.com',
verify_ssl=False,

CA Bundles

The requests library has its own method of detecting which CA (certficate authority) bundle file to use. Usually
this is implemented by the packager for the specific operating system distribution that you are using. However,
urllib2 requires a little more work under the hood. By default, Salt will try to auto-detect the location of this file.
However, if it is not in an expected location, or a different path needs to be specified, it may be done so using the
ca_bundle variable.

salt.utils.http.query(
'https://example.com',
ca_bundle="'/path/to/ca_bundle.pem',

Updating CA Bundles The update_ca_bundle () function can be used to update the bundle file at a specified
location. If the target location is not specified, then it will attempt to auto-detect the location of the bundle file. If
the URL to download the bundle from does not exist, a bundle will be downloaded from the cURL website.

3.4. Advanced Topics 115




Salt Documentation, Release 2015.5.10

CAUTION: The target and the source should always be specified! Failure to specify the target may result
in the file being written to the wrong location on the local system. Failure to specify the source may cause the
upstream URL to receive excess unnecessary traffic, and may cause a file to be download which is hazardous or does
not meet the needs of the user.

salt.utils.http.update_ca_bundle(
target='/path/to/ca-bundle.crt',
source="https://example.com/path/to/ca-bundle.crt"',
opts=__opts__,

)

The opts parameter should also always be specified. If it is, then the target and the source may be specified
in the relevant configuration file (master or minion) as ca_bundle and ca_bundle_ur, respectively.

ca_bundle: /path/to/ca-bundle.crt
ca_bundle_url: https://example.com/path/to/ca-bundle.crt

If Salt is unable to auto-detect the location of the CA bundle, it will raise an error.

The update_ca_bundle() function can also be passed a string or a list of strings which represent files on the
local system, which should be appended (in the specified order) to the end of the CA bundle file. This is useful in
environments where private certs need to be made available, and are not otherwise reasonable to add to the bundle
file.

salt.utils.http.update_ca_bundle(
opts=__opts__,
merge_files=[
'/etc/ssl/private_cert_1l.pem',
'/etc/ssl/private_cert_2.pem',
'/etc/ssl/private_cert_3.pem',

Test Mode

This function may be run in test mode. This mode will perform all work up until the actual HT TP request. By default,
instead of performing the request, an empty dict will be returned. Using this function with TRACE logging turned
on will reveal the contents of the headers and POST data to be sent.

Rather than returning an empty dict, an alternate test_ur 1 may be passed in. If this is detected, then test mode
will replace the ur 1 with the test_ur'l, set test to True in the return data, and perform the rest of the requested
operations as usual. This allows a custom, non-destructive URL to be used for testing when necessary.

Execution Module
The http execution module is a very thin wrapper around the salt.utils.http library. The opts can be
passed through as well, but if they are not sp