@ SALTSTACK

Salt Documentation
Release 2019.2.2

SaltStack, Inc.

Jan 14, 2020

CONTENTS

1 Introduction to Salt 1
1.1 The 30 second SUMMATY v v vttt it e e et e e e e e e 1
1.2 Simplicity o 1
1.3 Parallel execution 1
1.4 Builds on proven technology 2
1.5 Pythonclientinterface L 2
1.6 Fast, flexible, scalable 2
1.7 0pen e 2
1.8 SaltCommunity e 2
1.9 Mailing List o L 2
110 IRC .. e e 3
1.11 Followon Github 3
112 Blogs . . o o oo 3
1.13 Example Salt States L. 3
1.14 FollowonOpenHub 3
1.15 Other community links L 4
1.16 HacktheSource. e 4

2 Installation 5
21 QuickInstall. o 5
2.2 Platform-specific Installation Instructions L 5
2.3 Imitial Configuration 29
2.4 Additional Installation Guides 32
25 Dependencies e 48
2.6 Optional Dependencies i e e 49
2.7 Upgrading Salt 49
2.8 Building Packages using SaltPack. L L L 49

3 Configuring Salt 51
3.1 Configuring the Salt Master e 51
3.2 Configuring the Salt Minion o e 122
3.3 Configuring the Salt Proxy Minion e 166
3.4 Configuration file examples L e 168
3.5 Minion Blackout Configuration 221
3.6 Access Control System 221
3.7 JobManagement e e e 232
3.8 Managingthe JobCache e 239
3.9 Storing Job Results in an External System Lo o 240
310 Logging o e e 243
3.11 External Logging Handlers. e 246

10

11

12

3.12 SaltFile Server e
3.13 Git Fileserver Backend Walkthrough L
3.14 MinionFS Backend Walkthrough
3.15 Salt Package Manager i e e
3.16 Storing Data in Other Databases e
3.17 Running the Salt Master/Minion as an Unprivileged User
3.18 Usingcronwith Salt o
3.19 Use cron to initiate a highstate L L
3.20 Hardening Salt
3.21 Security disclosure policy
3.22 Salt Transport o e e e
3.23 Master Tops System oo e e e
3.24 Returners
3.25 Renderers e
Using Salt

41 Grains e
4.2 Storing Static Datainthe Pillaro L L L
43 Targeting Minions
44 TheSalt Mine
45 Runners
4.6 SaltEngines oL e
4.7 Understanding YAML L
4.8 Understanding Jinja e e
49 Tutorials Index
410 Troubleshooting e
411 Frequently Asked Questions
4.12 SaltBestPractices.
Remote Execution

5.1 Running Commands on Salt Minions e
5.2 Writing Execution Modules L L L e
53 EXecutors e e e e e e
Configuration Management

6.1 State System Reference
Return Codes

7.1 Retcode Passthrough e
Utility Modules - Code Reuse in Custom Modules

Events & Reactor

9.1 Event System e e
9.2 Beacoms
9.3 Reactor System e
Orchestration

10.1 Orchestrate Runner
Solaris

11.1 Solaris-specific Behaviour L
Salt SSH

12.1 Getting Started e e

389
389
393
410
419
422
424
425
427
451
551
566
573

581
581
583
593

595
596

661
661

663

667
667
675
680

693
693

703
703

705

12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

Salt SSHRoster oo e
Deploy sshkey forsalt-ssh.
Calling Salt SSH« . L e
States Via Salt SSH L e
Targeting with Salt SSH oL . e
Configuring Salt SSH L e
Running Salt SSH as non-root usert e
Define CLI Options with Saltfile
Debugging salt-ssh L

13 Thorium Complex Reactor

13.1
13.2
13.3
13.4

Starting the Thorium Engine
Thorium Modules L e
Writing Thorium Formulas L e
The Thorium Register o e

14 Salt Cloud

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13

Configuration L L e
Configuration Inheritance L
QuickStart L
Using Salt Cloud e
Core Configuration
Windows Configuration e e
Cloud Provider Specifics e
Miscellaneous Options ot it it e e e e e
Troubleshooting Steps e
Extending Salt Cloud e
Using Salt Cloud from Salt e
Feature COomparison vt vttt e e e e e e e e e e e e e e e e
Tutorials e

15 Salt Proxy Minion

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

New in 2017.7.0 o e e e e e e e e e e e e e e e e e
New in 2016.11.0 o e e e e e e e e e e e e e e e e e e e
New in 2016.3 o e e e e e e e e e e e e e e e e
New in 2015.8.2 o e e e e e e e e e e e e e e e
New in 2015.8 e e e e e e e e e e e
Getting Started e
The _proxyenabled__ directive L e
SSH Proxymodules o

16 Network Automation

16.1
16.2

New in Carbon (2016.11) v vt e e e e e e e e e e e
NAPALM . . o

16.3 JUNOS

17 Salt Virt

17.1
17.2
17.3
17.4

18 Command Line Reference

18.1
18.2

salt-call e
Salt . . e

711
711
711
712
714

717
717
717
718
718
728
739
742
889
895
898
907
912
915

923
923
923
924
925
925
925
933
935

943
943
943
950

953
953
953
954
954

957
957
959

19

20

21

22

23

24

25

18.3 salt-cloud e 963
184 salt-Cp 963
18.5 salt-extend e e 965
18.6 salt-key 966
18.7 salt-master. e 970
18.8 salt-minion L e e e 971
18.9 salt-proXy o e 972
18.10 salt-run e 973
18.11 salt-ssh. e e e 974
18.12 salt-syndic L e 978
18.13 salt-unity oL 979
18.14 salt-api L o e 979
1815 SPM . . L L o e e 980
Pillars 983
Master Tops 985
Salt Module Reference 987
21.1 authmodules e e e e 987
21.2 beaconmodules 995
21.3 Cache Modules e e 1016
21.4 cloudmodules. L e e 1021
215 enginemodules 1145
21.6 executorsmodules e e 1164
21.7 fileserver modules 1165
21.8 grainsmodules e 1170
21.9 executionmodules e 1179
21.10 netapimodules L e e 2868
21.11 outputmodules L 2903
2112 pillarmodules L 2912
21.13 proxy modules e 2971
21.14 queuemodules e 3009
21.15 rostermodules L L e e e 3011
21.16 runner modules L L e e e 3017
21.17 sdbmodules e 3085
21.18 serializer modules. L 3095
21.19 statemodules L L e 3099
21.20 thoriummodules e e 3723
21.21 master topsmodules 3733
21.22 wheel modules e e 3740
APIs 3747
22.1 Pythonclient APL 3747
222 netapimodules e 3758
Architecture 3761
23.1 High Availability Featuresin Salt e 3761
232 SaltSyndic. 3762
Minion Data Cache 3767
24.1 Pluggable Data Cache e 3767
24.2 Configuring the Minion Data Cache 3767
Slots 3769

25.1 Execution functions e e 3769

26 Windows 3771
26.1 Windows Software Repository e 3771
26.2 Windows-specific Behaviour 3783

27 Developing Salt 3787
27.1 OVEIVIEW . . . o o e e e e e e e e 3787
27.2 SaltClient e 3787
273 SaltMaster 3787
274 Salt MINIOn o e 3789
27.5 ANote on ClearFuncs vs. AESFuUncs i 3790
27.6 Contributing L e 3790
27.7 Deprecating Code L e e 3798
27.8 Installing Salt for development L 3798
27.9 GitHub Labels and Milestones L e 3803
27.10 Logging Internals L 3807
27.11 Package Providers e 3807
27.12 PullRequests o e 3812
27.13 Reporting Bugs o e e e e 3814
27.14 Salt Topology . . . o o o o e 3814
27.15 Translating Documentation 3815
27.16 Developing Salt Tutorial e 3816
27.17 Modular Systems 3819
2718 SaltExtend e e e 3832
27.19 Salt’sTestSuite L 3834
27.20 Integration Tests L 3841
27.21 Writing Unit Tests 3851
27.22 TaCt . . . L e e e e e e e e 3866
27.23 SaltStack Git Policy o e 3869
27.24 Salt Conventions L e 3870
27.25 Saltcodeand internals L. 3907
27.26 Salt Community Projects L e e 3915

28 Release Notes 3917
28.1 LatestBranch Release e 3917
28.2 PreviousReleases 3917

29 Venafi Tools for Salt 5281
29.1 Introduction e 5281
29.2 Example Usage o i e e e e 5281
293 RunnerFunctions 5282

30 Glossary 5285

Salt Module Index 5289

Index 5301

CHAPTER

ONE

INTRODUCTION TO SALT

We’re not just talking about NaCl.
1.1 The 30 second summary

Salt is:

« a configuration management system, capable of maintaining remote nodes in defined states (for example,
ensuring that specific packages are installed and specific services are running)

- a distributed remote execution system used to execute commands and query data on remote nodes, either
individually or by arbitrary selection criteria

It was developed in order to bring the best solutions found in the world of remote execution together and make them
better, faster, and more malleable. Salt accomplishes this through its ability to handle large loads of information, and
not just dozens but hundreds and even thousands of individual servers quickly through a simple and manageable
interface.

1.2 Simplicity

Providing versatility between massive scale deployments and smaller systems may seem daunting, but Salt is very
simple to set up and maintain, regardless of the size of the project. The architecture of Salt is designed to work with
any number of servers, from a handful of local network systems to international deployments across different data
centers. The topology is a simple server/client model with the needed functionality built into a single set of daemons.
While the default configuration will work with little to no modification, Salt can be fine tuned to meet specific needs.

1.3 Parallel execution

The core functions of Salt:
« enable commands to remote systems to be called in parallel rather than serially
« use a secure and encrypted protocol
« use the smallest and fastest network payloads possible
« provide a simple programming interface

Salt also introduces more granular controls to the realm of remote execution, allowing systems to be targeted not
just by hostname, but also by system properties.

Salt Documentation, Release 2019.2.2

1.4 Builds on proven technology

Salt takes advantage of a number of technologies and techniques. The networking layer is built with the excellent
ZeroMQ networking library, so the Salt daemon includes a viable and transparent AMQ broker. Salt uses public
keys for authentication with the master daemon, then uses faster AES encryption for payload communication; au-
thentication and encryption are integral to Salt. Salt takes advantage of communication via msgpack, enabling fast
and light network traffic.

1.5 Python client interface

In order to allow for simple expansion, Salt execution routines can be written as plain Python modules. The data
collected from Salt executions can be sent back to the master server, or to any arbitrary program. Salt can be called
from a simple Python API, or from the command line, so that Salt can be used to execute one-off commands as well
as operate as an integral part of a larger application.

1.6 Fast, flexible, scalable

The result is a system that can execute commands at high speed on target server groups ranging from one to very
many servers. Salt is very fast, easy to set up, amazingly malleable and provides a single remote execution architec-
ture that can manage the diverse requirements of any number of servers. The Salt infrastructure brings together the
best of the remote execution world, amplifies its capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

1.7 Open

Salt is developed under the Apache 2.0 license, and can be used for open and proprietary projects. Please submit
your expansions back to the Salt project so that we can all benefit together as Salt grows. Please feel free to sprinkle
Salt around your systems and let the deliciousness come forth.

1.8 Salt Community

Join the Salt!
There are many ways to participate in and communicate with the Salt community.

Salt has an active IRC channel and a mailing list.

1.9 Mailing List

Join the salt-users mailing list. It is the best place to ask questions about Salt and see whats going on with Salt
development! The Salt mailing list is hosted by Google Groups. It is open to new members.

2 Chapter 1. Introduction to Salt

http://zeromq.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://msgpack.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://groups.google.com/forum/#!forum/salt-users

Salt Documentation, Release 2019.2.2

1.10 IRC

The #salt IRC channel is hosted on the popular Freenode network. You can use the Freenode webchat client right
from your browser.

Logs of the IRC channel activity are being collected courtesy of Moritz Lenz.

If you wish to discuss the development of Salt itself join us in #salt-devel.

1.11 Follow on Github

The Salt code is developed via Github. Follow Salt for constant updates on what is happening in Salt development:

https://github.com/saltstack/salt

1.12 Blogs

SaltStack Inc. keeps a blog with recent news and advancements:

http://www.saltstack.com/blog/

1.13 Example Salt States

The official salt-states repository is: https://github.com/saltstack/salt-states
A few examples of salt states from the community:

« https://github.com/blast-hardcheese/blast-salt-states

https://github.com/kevingranade/kevingranade-salt-state

https://github.com/uggedal/states

https://github.com/mattmcclean/salt-openstack/tree/master/salt

https://github.com/rentalita/ubuntu-setup/

» https://github.com/brutasse/states

https://github.com/bclermont/states

https://github.com/pcrews/salt-data

1.14 Follow on Open Hub

https://www.openhub.net/p/salt

1.10. IRC 3

http://freenode.net/irc_servers.shtml
http://webchat.freenode.net/?channels=salt&uio=Mj10cnVlJjk9dHJ1ZSYxMD10cnVl83
http://irclog.perlgeek.de/salt/
https://github.com/saltstack/salt
http://www.saltstack.com/blog/
http://www.saltstack.com/blog/
https://github.com/saltstack/salt-states
https://github.com/blast-hardcheese/blast-salt-states
https://github.com/kevingranade/kevingranade-salt-state
https://github.com/uggedal/states
https://github.com/mattmcclean/salt-openstack/tree/master/salt
https://github.com/rentalita/ubuntu-setup/
https://github.com/brutasse/states
https://github.com/bclermont/states
https://github.com/pcrews/salt-data
https://www.openhub.net/p/salt

Salt Documentation, Release 2019.2.2

1.15 Other community links

« Salt Stack Inc.

« Subreddit

« Google+

» YouTube

« Facebook

» Twitter

» Wikipedia page

« Stack Overflow

1.16 Hack the Source

If you want to get involved with the development of source code or the documentation efforts, please review the
contributing documentation!

4 Chapter 1. Introduction to Salt

http://www.saltstack.com
http://www.reddit.com/r/saltstack
https://plus.google.com/114449193225626631691/posts
http://www.youtube.com/user/SaltStack
https://www.facebook.com/SaltStack
https://twitter.com/SaltStackInc
http://en.wikipedia.org/wiki/Salt_(software)
https://stackoverflow.com/questions/tagged/salt-stack

CHAPTER

TWO

INSTALLATION

This section contains instructions to install Salt. If you are setting up your environment for the first time, you should
install a Salt master on a dedicated management server or VM, and then install a Salt minion on each system that you
want to manage using Salt. For now you don’t need to worry about your architecture, you can easily add components
and modify your configuration later without needing to reinstall anything.

The general installation process is as follows:

1. Install a Salt master using the instructions for your platform or by running the Salt bootstrap script. If you use
the bootstrap script, be sure to include the =M option to install the Salt master.

2. Make sure that your Salt minions can find the Salt master.
3. Install the Salt minion on each system that you want to manage.
4. Accept the Salt minion keys after the Salt minion connects.

After this, you should be able to run a simple command and receive salt version returns from all connected Salt
minions.

’salt 'x!' test.version

2.1 Quick Install

On most distributions, you can set up a Salt Minion with the Salt bootstrap.

2.2 Platform-specific Installation Instructions

These guides go into detail how to install Salt on a given platform.

2.2.1 Arch Linux

Installation

Salt (stable) is currently available via the Arch Linux Official repositories. There are currently -git packages available
in the Arch User repositories (AUR) as well.

Salt Documentation, Release 2019.2.2

Stable Release

Install Salt stable releases from the Arch Linux Official repositories as follows:

pacman -S salt

Tracking develop

To install the bleeding edge version of Salt (may include bugs!), use the -git package. Installing the -git package as
follows:

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz

cd salt-git/

makepkg -is

Note: yaourt
If a tool such as Yaourt is used, the dependencies will be gathered and built automatically.

The command to install salt using the yaourt tool is:

yaourt salt-git

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemct as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you’ve completed all of these steps you’re ready to start your Salt Master. You should be able to start your Salt
Master now using the command seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

2.2.2 Debian GNU/Linux / Raspbian

Debian GNU/Linux distribution and some derivatives such as Raspbian already have included Salt packages to their
repositories. However, current stable Debian release contains old outdated Salt releases. It is recommended to use
SaltStack repository for Debian as described below.

Installation from official Debian and Raspbian repositories is described here.

6 Chapter 2. Installation

https://aur.archlinux.org/packages.php?ID=5863

Salt Documentation, Release 2019.2.2

Installation from the Official SaltStack Repository

Packages for Debian 9 (Stretch) and Debian 8 (Jessie) are available in the Official SaltStack repository.

Instructions are at https://repo.saltstack.com/#debian.

Note: Regular security support for Debian 7 ended on April 25th 2016. As a result, 2016.3.1 and 2015.8.10 will be
the last Salt releases for which Debian 7 packages are created.

Installation from the Debian / Raspbian Official Repository

The Debian distributions contain mostly old Salt packages built by the Debian Salt Team. You can install Salt com-
ponents directly from Debian but it is recommended to use the instructions above for the packages from the official
Salt repository.

On Jessie there is an option to install Salt minion from Stretch with python-tornado dependency from jessie-backports
repositories.

To install fresh release of Salt minion on Jessie:
1. Add jessie-backports and stretch repositories:

Debian:

echo 'deb http://httpredir.debian.org/debian jessie-backports main' >> /etc/apt/
—.sources.list

echo 'deb http://httpredir.debian.org/debian stretch main' >> /etc/apt/sources.
~list

Raspbian:

echo 'deb http://archive.raspbian.org/raspbian/ stretch main' >> /etc/apt/sources.
—~Llist

2. Make Jessie a default release:

echo 'APT::Default-Release "jessie";' > Jetc/apt/apt.conf.d/1l0apt

3. Install Salt dependencies:

Debian:

apt-get update
apt-get install python-zmq python-systemd/jessie-backports python-tornado/jessie-
—backports salt-common/stretch

Raspbian:

apt-get update
apt-get install python-zmq python-tornado/stretch salt-common/stretch

4. Install Salt minion package from Latest Debian Release:

apt-get install salt-minion/stretch

2.2. Platform-specific Installation Instructions 7

https://repo.saltstack.com/#debian

Salt Documentation, Release 2019.2.2

Install Packages
Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

. apt-get install salt-api

. apt-get install salt-cloud

. apt-get install salt-master

. apt-get install salt-minion

. apt-get install salt-ssh

. apt-get dinstall salt-syndic

Post-installation tasks

Now, go to the Configuring Salt page.

2.2.3 Arista EOS Salt minion installation guide

The Salt minion for Arista EOS is distributed as a SWIX extension and can be installed directly on the switch. The EOS
network operating system is based on old Fedora distributions and the installation of the salt-minion requires
backports. This SWIX extension contains the necessary backports, together with the Salt basecode.

Note: This SWIX extension has been tested on Arista DCS-7280SE-68-R, running EOS 4.17.5M and vEOS 4.18.3F.

Important Notes

This package is in beta, make sure to test it carefully before running it in production.
If confirmed working correctly, please report and add a note on this page with the platform model and EOS version.
If you want to uninstall this package, please refer to the uninstalling section.

Installation from the Official SaltStack Repository

Download the swix package and save it to flash.

veos#copy https://salt-eos.netops.life/salt-eos-latest.swix flash:
veos#copy https://salt-eos.netops.life/startup.sh flash:

Install the Extension

Copy the Salt package to extension

veos#copy flash:salt-eos-latest.swix extension:

Install the SWIX

8 Chapter 2. Installation

Salt Documentation, Release 2019.2.2

veos#extension salt-eos-latest.swix force

Verify the installation

veos#show extensions | include salt-eos
salt-e0s-2017-07-19.swix 1.0.11/1.fc25 A, F 27

Change the Salt master IP address or FQDN, by edit the variable (SALT_MASTER)

veos#bash vi /mnt/flash/startup.sh

Make sure you enable the eAPI with unix-socket

veos (config)#management api http-commands
protocol unix-socket
no shutdown

Post-installation tasks

Generate Keys and host record and start Salt minion

veos#bash
#sudo /mnt/flash/startup.sh

salt-minion should be running

Copy the installed extensions to boot-extensions

veos#copy installed-extensions boot-extensions

Apply event-handler to let EOS start salt-minion during boot-up

veos (config)#event-handler boot-up-script
trigger on-boot
action bash sudo /mnt/flash/startup.sh

For more specific installation details of the salt-minion, please refer to Configuring Salt.

Uninstalling

If you decide to uninstall this package, the following steps are recommended for safety:

1. Remove the extension from boot-extensions

’veos#bash rm /mnt/flash/boot-extensions

2. Remove the extension from extensions folder

’veos#bash rm /mnt/flash/.extensions/salt-eos-latest.swix

2. Remove boot-up script

’veos(conﬁg)#no event-handler boot-up-script

2.2. Platform-specific Installation Instructions 9

Salt Documentation, Release 2019.2.2

Additional Information

This SWIX extension contains the following RPM packages:

libsodium-1.0.11-1.fc25.7686.rpm
libstdc++-6.2.1-2.fc25.7686.rpm
openpgm-5.2.122-6.fc24.i686.rpm
python-Jinja2-2.8-0.1686.rpm
python-PyYAML-3.12-0.7686.rpm
python-babel-0.9.6-5.fcl8.noarch.rpm
python-backports-1.0-3.fc18.i686.rpm
python-backports-ssl_match_hostname-3.4.0.2-1.fcl8.noarch.rpm
python-backports_abc-0.5-0.i686.rpm
python-certifi-2016.9.26-0.1686.rpm
python-chardet-2.0.1-5.fcl8.noarch.rpm
python-crypto-1.4.1-1.noarch.rpm
python-crypto-2.6.1-1.fc18.1686.rpm
python-futures-3.1.1-1.noarch.rpm
python-jtextfsm-0.3.1-0.noarch.rpm
python-kitchen-1.1.1-2.fcl8.noarch.rpm
python-markupsafe-0.18-1.fc18.7686.rpm
python-msgpack-python-0.4.8-0.7686.rpm
python-napalm-base-0.24.3-1.noarch.rpm
python-napalm-eos-0.6.0-1.noarch.rpm
python-netaddr-0.7.18-0.noarch.rpm
python-pyeapi-0.7.0-0.noarch.rpm
python-salt-2017.7.0_1414_g2fb986f-1.noarch.rpm
python-singledispatch-3.4.0.3-0.1686.rpm
python-six-1.10.0-0.1686.rpm
python-tornado-4.4.2-0.7686.rpm
python-urllib3-1.5-7.fcl8.noarch.rpm
python2-zmg-15.3.0-2.fc25.i686.rpm
zeromq-4.1.4-5.fc25.i686.rpm

2.2.4 Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora repositories and EPEL. It is installable
using yum or dnf, depending on your version of Fedora.

Note: Released versions of Salt starting with 2015.5. 2 through 2016. 3. 2 do not have Fedora packages available
though EPEL. To install a version of Salt within this release array, please use SaltStack’s Bootstrap Script and use the
git method of installing Salt using the version’s associated release tag.

Release 2016 . 3. 3 and onward will have packaged versions available via EPEL.

WARNING: Fedora 19 comes with systemd 204. Systemd has known bugs fixed in later revisions that prevent the
salt-master from starting reliably or opening the network connections that it needs to. It’s not likely that a salt-
master will start or run reliably on any distribution that uses systemd version 204 or earlier. Running salt-minions
should be OK.

Installation

Salt can be installed using yum and is available in the standard Fedora repositories.

10 Chapter 2. Installation

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
https://github.com/saltstack/salt-bootstrap
http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2019.2.2

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

yum install salt-master
yum install salt-minion

Installing from updates-testing

When a new Salt release is packaged, it is first admitted into the updates—-testing repository, before being
moved to the stable repo.

To install from updates-testing, use the enablerepo argument for yum:

yum -—enablerepo=updates-testing install salt-master
yum --enablerepo=updates-testing install salt-minion

Installation Using pip

Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using a package manager.
Installing from pip has a few additional requirements:

« Install the group 'Development Tools’, dnf groupinstall 'Development Tools'

« Install the "zeromq-devel” package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

Post-installation tasks

Master

To have the Master start automatically at boot time:

’systemctl enable salt-master.service

To start the Master:

’systemctl start salt-master.service

2.2. Platform-specific Installation Instructions 11

https://pypi.python.org/pypi/salt

Salt Documentation, Release 2019.2.2

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

2.2.5 FreeBSD

Installation

Salt is available in the FreeBSD ports tree at sysutils/py-salt.

FreeBSD binary repo

pkg install py27-salt

FreeBSD ports

By default salt is packaged using python 2.7, but if you build your own packages from FreeBSD ports either by hand
or with poudriere you can instead package it with your choice of python. Add a line to /etc/make.conf to choose
your python flavour:

echo "DEFAULT_VERSIONS+= python=3.6" >> /etc/make.conf

Then build the port and install:

cd /usr/ports/sysutils/py-salt
make 1install

Post-installation tasks

Master

Copy the sample configuration file:

’cp Jusr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf:

’ sysrc salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

12 Chapter 2. Installation

https://www.freshports.org/sysutils/py-salt/

Salt Documentation, Release 2019.2.2

’service salt_master start

Minion

Copy the sample configuration file:

’cp Jusr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.conf:

’ sysrc salt_minion_enable="YES"

Start the Minion

Start the Salt Minion as follows:

’service salt_minion start

Now go to the Configuring Salt page.

2.2.6 Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

2.2.7 OpenBSD

Salt was added to the OpenBSD ports tree on Aug 10th 2013. It has been tested on OpenBSD 5.5 onwards.

Salt is dependent on the following additional ports. These will be installed as dependencies of the sysutils/salt
port:

devel/py-futures
devel/py-progressbar
net/py-msgpack
net/py-zmq
security/py-crypto
security/py-M2Crypto
textproc/py-MarkupSafe
textproc/py-yaml
www/py-jinja2
www/py-requests
www/py-tornado

2.2. Platform-specific Installation Instructions 13

Salt Documentation, Release 2019.2.2

Installation

To install Salt from the OpenBSD pkg repo, use the command:

pkg_add salt

Post-installation tasks

Master

To have the Master start automatically at boot time:

’rcctl enable salt_master

To start the Master:

’rcctl start salt_master

Minion

To have the Minion start automatically at boot time:

’rcctl enable salt_minion

To start the Minion:

’rcctl start salt_minion

Now go to the Configuring Salt page.

2.2.8 macOS
Installation from the Official SaltStack Repository

Latest stable build from the selected branch:
The output of md5 <salt pkg> should match the contents of the corresponding md5 file.
Earlier builds from supported branches

Archived builds from unsupported branches

Installation from Homebrew

brew install saltstack

It should be noted that Homebrew explicitly discourages the use of sudo:

Homebrew is designed to work without using sudo. You can decide to use it but we strongly recommend
not to do so. If you have used sudo and run into a bug then it is likely to be the cause. Please don’t file
a bug report unless you can reproduce it after reinstalling Homebrew from scratch without using sudo

14 Chapter 2. Installation

https://repo.saltstack.com/osx/
https://repo.saltstack.com/osx/archive/
https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#sudo

Salt Documentation, Release 2019.2.2

Installation from MacPorts

Macports isolates its dependencies from the OS, and installs salt in /opt/local by default, with config files under
/opt/local/etc/salt. For best results, add /opt/local/bin to your PATH.

’sudo port install salt

Variants allow selection of python version used to run salt, defaulting to python27, but also supporting python34,
python35, and python36. To install salt with Python 3.6, use the python36 variant, for example:

’sudo port install salt @python36

Startup items (for master, minion, and rest-cherrypy API gateway, respectively) are installed by subport targets.
These will register launchd LaunchDaemons as org.macports.salt-minion, for example, to trigger automatic startup
of the salt-minion through launchd. LaunchDaemons for salt can be started and stopped without reboot using the
macprots load and unload commands.

sudo port install salt-master salt-minion salt-api
sudo port load salt-master salt-minion salt-api

Installation from Pip

When only using the macOS system’s pip, install this way:

sudo pip install salt

Salt-Master Customizations

Note: Salt master on macOS is not tested or supported by SaltStack. See SaltStack Platform Support for more
information.

To run salt-master on macOS, sudo add this configuration option to the /etc/salt/master file:

’ max_open_files: 8192

On versions previous to macOS 10.10 (Yosemite), increase the root user maxfiles limit:

’sudo launchctl limit maxfiles 4096 8192

Note: On macOS 10.10 (Yosemite) and higher, maxfiles should not be adjusted. The default limits are sufficient in
all but the most extreme scenarios. Overriding these values with the setting below will cause system instability!

Now the salt-master should run without errors:

sudo salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

2.2. Platform-specific Installation Instructions 15

https://saltstack.com/product-support-lifecycle/

Salt Documentation, Release 2019.2.2

2.2.9 RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

Salt should work properly with all mainstream derivatives of Red Hat Enterprise Linux, including CentOS, Scientific
Linux, Oracle Linux, and Amazon Linux. Report any bugs or issues on the issue tracker.

Installation from the Official SaltStack Repository

Packages for Redhat, CentOS, and Amazon Linux are available in the SaltStack Repository.
« Red Hat / CentOS

« Amazon Linux

Note: As of 2015.8.0, EPEL repository is no longer required for installing on RHEL systems. SaltStack repository
provides all needed dependencies.

Warning: If installing on Red Hat Enterprise Linux 7 with disabled (not subscribed on) 'RHEL Server Releases’
or 'RHEL Server Optional Channel’ repositories, append CentOS 7 GPG key URL to SaltStack yum repository
configuration to install required base packages:

[saltstack-repo]

name=SaltStack repo for Red Hat Enterprise Linux S$releasever
baseurl=https://repo.saltstack.com/yum/redhat/$releasever/$bhasearch/latest

enabled=1

gpgcheck=1
gpgkey=https://repo.saltstack.com/yum/redhat/$releasever/$bhasearch/latest/SALTSTACK-
—GPG-KEY . pub

https://repo.saltstack.com/yum/redhat/$releasever/$bhasearch/latest/base/RPM-
—~GPG-KEY-Cent0S-7

Note: systemd and systemd-python are required by Salt, but are not installed by the Red Hat 7 @base
installation or by the Salt installation. These dependencies might need to be installed before Salt.

Installation from the Community-Maintained Repository

Beginning with version 0.9.4, Salt has been available in EPEL.

Note: Packages in this repository are built by community, and it can take a little while until the latest stable SaltStack
release become available.

RHEL/CentOS 6 and 7, Scientific Linux, etc.

Warning: Salt 2015.8 is currently not available in EPEL due to unsatisfied dependencies: python-crypto
2.6.1 or higher, and python-tornado version 4.2.1 or higher. These packages are not currently available in
EPEL for Red Hat Enterprise Linux 6 and 7.

16 Chapter 2. Installation

https://github.com/saltstack/salt/issues
https://repo.saltstack.com/#rhel
https://repo.saltstack.com/#amzn
http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2019.2.2

Enabling EPEL

If the EPEL repository is not installed on your system, you can download the RPM for RHEL/CentOS 6 or for
RHEL/CentOS 7 and install it using the following command:

rpm -Uvh epel-release-X-Y.rpm

Replace epel-release-X-Y.rpm with the appropriate filename.

Installing Stable Release

Salt is packaged separately for the minion and the master. It is necessary to install only the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

« yum install salt-master
« yum install salt-minion
« yum install salt-ssh

« yum 1install salt-syndic

« yum install salt-cloud

Installing from epel-testing

When a new Salt release is packaged, it is first admitted into the epel-testing repository, before being moved
to the stable EPEL repository.

To install from epel-testing, use the enablerepo argument for yum:

yum --enablerepo=epel-testing install salt-minion

Installation Using pip
Since Salt is on PyP]I, it can be installed using pip, though most users prefer to install using RPM packages (which
can be installed from EPEL).
Installing from pip has a few additional requirements:
« Install the group 'Development Tools’, yum groupinstall 'Development Tools'
« Install the *zeromq-devel’ package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

2.2. Platform-specific Installation Instructions 17

http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html
https://pypi.python.org/pypi/salt
http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2019.2.2

ZeroMQ 4

We recommend using ZeroMQ 4 where available. SaltStack provides ZeroMQ 4.0.5 and pyzmq 14.5.0 in the SaltStack

Repository.

If this repository is added before Salt is installed, then installing either salt-master or salt-minion will
automatically pull in ZeroMQ 4.0.5, and additional steps to upgrade ZeroMQ and pyzmgq are unnecessary.

Package Management

Salt’s interface to yum makes heavy use of the repoquery utility, from the yum-utils package. This package will
be installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is
being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this

dependency.

Post-installation tasks

Master

To have the Master start automatically at boot time:

RHEL/CentOS 5 and 6

’chkconﬁ'g salt-master on

RHEL/CentOS 7

’systemctl enable salt-master.service

To start the Master:
RHEL/CentOS 5 and 6

’service salt-master start

RHEL/CentOS 7

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

RHEL/CentOS 5 and 6

’chkconf‘ig salt-minion on

RHEL/CentOS 7

’systemctl enable salt-minion.service

To start the Minion:
RHEL/CentOS 5 and 6

18

Chapter 2. Installation

http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils

Salt Documentation, Release 2019.2.2

’service salt-minion start

RHEL/CentOS 7

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

2.2.10 Solaris

Salt is known to work on Solaris but community packages are unmaintained.

It is possible to install Salt on Solaris by using setuptools.

For example, to install the develop version of salt:

git clone https://github.com/saltstack/salt
cd salt
sudo python setup.py install --force

Note: SaltStack does offer commercial support for Solaris which includes packages.

2.2.11 Ubuntu

Installation from the Official SaltStack Repository

Packages for Ubuntu 16 (Xenial), Ubuntu 14 (Trusty), and Ubuntu 12 (Precise) are available in the SaltStack repository.

Instructions are at https://repo.saltstack.com/#ubuntu.

Install Packages

Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

apt-get
apt-get
apt-get
apt-get
apt-get
apt-get

install
install
install
install
install
install

Post-installation tasks

salt-api
salt-cloud
salt-master
salt-minion
salt-ssh

salt-syndic

Now go to the Configuring Salt page.

2.2. Platform-specific Installation Instructions

19

https://repo.saltstack.com/#ubuntu

Salt Documentation, Release 2019.2.2

2.2.12 Windows
Salt has full support for running the Salt minion on Windows. You must connect Windows Salt minions to a Salt
master on a supported operating system to control your Salt Minions.

Many of the standard Salt modules have been ported to work on Windows and many of the Salt States currently
work on Windows as well.

Installation from the Official SaltStack Repository

Latest stable build from the selected branch:
The output of md5sum <salt minion exe> should match the contents of the corresponding md5 file.
Earlier builds from supported branches

Archived builds from unsupported branches

Note: The installation executable installs dependencies that the Salt minion requires.

The 64bit installer has been tested on Windows 7 64bit and Windows Server 2008R2 64bit. The 32bit installer has
been tested on Windows 2008 Server 32bit. Please file a bug report on our GitHub repo if issues for other platforms
are found.

There are installers available for Python 2 and Python 3.

The installer will detect previous installations of Salt and ask if you would like to remove them. Clicking OK will
remove the Salt binaries and related files but leave any existing config, cache, and PKI information.

Salt Minion Installation

If the system is missing the appropriate version of the Visual C++ Redistributable (vcredist) the user will be prompted
to install it. Click OK to install the vcredist. Click Cance'l to abort the installation without making modifications
to the system.

If Salt is already installed on the system the user will be prompted to remove the previous installation. Click OK
to uninstall Salt without removing the configuration, PKI information, or cached files. Click Cance'l to abort the
installation before making any modifications to the system.

After the Welcome and the License Agreement, the installer asks for two bits of information to configure the minion;
the master hostname and the minion name. The installer will update the minion config with these options.

If the installer finds an existing minion config file, these fields will be populated with values from the existing config,
but they will be grayed out. There will also be a checkbox to use the existing config. If you continue, the existing
config will be used. If the checkbox is unchecked, default values are displayed and can be changed. If you continue,
the existing config file in c : \salt\conf will be removed along with the c: \salt\conf\minion.d directory.
The values entered will be used with the default config.

The final page allows you to start the minion service and optionally change its startup type. By default, the minion
is set to Automatic. You can change the minion start type to Automatic (Delayed Start) by checking
the 'Delayed Start’ checkbox.

Note: Highstates that require a reboot may fail after reboot because salt continues the highstate before Windows
has finished the booting process. This can be fixed by changing the startup type to ’Automatic (Delayed Start)’. The
drawback is that it may increase the time it takes for the ’salt-minion’ service to actually start.

20 Chapter 2. Installation

https://repo.saltstack.com/windows/
https://repo.saltstack.com/windows/archive/

Salt Documentation, Release 2019.2.2

The salt-minion service will appear in the Windows Service Manager and can be managed there or from the
command line like any other Windows service.

sc start salt-minion
net start salt-minion

Installation Prerequisites

Most Salt functionality should work just fine right out of the box. A few Salt modules rely on PowerShell. The
minimum version of PowerShell required for Salt is version 3. If you intend to work with DSC then Powershell
version 5 is the minimum.

Silent Installer Options

The installer can be run silently by providing the /S option at the command line. The installer also accepts the
following options for configuring the Salt Minion silently:

Option Description

/master= | A string value to set the IP address or hostname of the master. Default value is ’salt’. You can pass
a single master or a comma-separated list of masters. Setting the master will cause the installer to
use the default config or a custom config if defined.

/ A string value to set the minion name. Default value is "hostname’. Setting the minion name
minion-namesauses the installer to use the default config or a custom config if defined.

/ Either a1 or 0. ’1’ will start the salt-minion service, ’0’ will not. Default is to start the service after
start-minj dmstallation.

/ Set the minion start type to Automatic (Delayed Start).

start-minfion-delayed

/ Overwrite the existing config if present with the default config for salt. Default is to use the

default-cprfitgng config if present. If /master and/or /minion—-name is passed, those values will be
used to update the new default config.

/ A string value specifying the name of a custom config file in the same path as the installer or the
custom-copfulgpath to a custom config file. If /master and/or /minion-name is passed, those values will
be used to update the new custom config.

/S Runs the installation silently. Uses the above settings or the defaults.

/? Displays command line help.

Note: /start-service hasbeen deprecated but will continue to function as expected for the time being.

Note: /default-configand /custom-config= will backup an existing config if found. A timestamp and a
. bak extension will be added. That includes the min-ion file and the minion.d directory.

Here are some examples of using the silent installer:

Install the Salt Minion
Configure the minion and start the service

Salt-Minion-2017.7.1-Py2-AMD64-Setup.exe /S /master=yoursaltmaster /minion-
—name=yourminionname

2.2. Platform-specific Installation Instructions 21

Salt Documentation, Release 2019.2.2

Install the Salt Minion
Configure the minion but don't start the minion service

Salt-Minion-2017.7.1-Py3-AMD64-Setup.exe /S /master=yoursaltmaster /minion-
—name=yourminionname /start-minion=0

Install the Salt Minion
Configure the minion using a custom config and configuring multimaster

Salt-Minion-2017.7.1-Py3-AMD64-Setup.exe /S /custom-config=windows_minion /
—master=prod_masterl,prod_master2

Running the Salt Minion on Windows as an Unprivileged User

Notes:

« These instructions were tested with Windows Server 2008 R2

« They are generalizable to any version of Windows that supports a salt-minion

Create the Unprivileged User that the Salt Minion will Run As

10.
11.
12.

NeRE e R =A™) B - O L R £V)

. Click Start > Control Panel > User Accounts.

. Click Add or remove user accounts.

. Click Create new account.

. Enter salt-user (or a name of your preference) in the New account name field.
. Select the Standard user radio button.

. Click the Create Account button.

. Click on the newly created user account.

. Click the Create a password link.

. In the New password and Confirm new password fields, provide a password (e.g “SuperSecretMin-

ionPassword4Me!”).
In the Type a password hint field, provide appropriate text (e.g. "My Salt Password”).
Click the Create password button.

Close the Change an Account window.

Add the New User to the Access Control List for the Salt Folder

A g W

. In a File Explorer window, browse to the path where Salt is installed (the default path is C:\Salt).
. Right-click on the Sa'lt folder and select Properties.

. Click on the Security tab.

. Click the Ed1 t button.

. Click the Add button.

. Type the name of your designated Salt user and click the OK button.

22

Chapter 2. Installation

Salt Documentation, Release 2019.2.2

7. Check the box to Allow the Mod1i fy permission.
8. Click the OK button.
9. Click the OK button to close the Salt Properties window.

Update the Windows Service User for the salt-minion Service

1. Click Start > Administrative Tools > Services.
. In the Services list, right-click on salt-minion and select Properties.

. Click the Log On tab.

[S S B W]

. Click the This account radio button.
5. Provide the account credentials created in section A.
6. Click the OK button.

7. Click the OK button to the prompt confirming that the user has been granted the Log On As A
Service right.

8. Click the OK button to the prompt confirming that The new logon name will not take effect
until you stop and restart the service.

9. Right-Click on salt-minion and select Stop.
10. Right-Click on salt-minion and select Start.

Building and Developing on Windows

This document will explain how to set up a development environment for Salt on Windows. The development
environment allows you to work with the source code to customize or fix bugs. It will also allow you to build your
own installation.

There are several scripts to automate creating a Windows installer as well as setting up an environment that facilitates
developing and troubleshooting Salt code. They are located in the pkg\windows directory in the Salt repo (here).

Scripts:

Script Description

build_env_2. A PowerShell script that sets up a Python 2 build environment

psl

build_env_3. A PowerShell script that sets up a Python 3 build environment

psl

build_pkg.bat | A batch file that builds a Windows installer based on the contents of the C: \Python27
directory

build.bat A batch file that fully automates the building of the Windows installer using the above
two scripts

Note: The build.bat and build_pkg.bat scripts both accept a parameter to specify the version of Salt that
will be displayed in the Windows installer. If no version is passed, the version will be determined using git.

Both scripts also accept an additional parameter to specify the version of Python to use. The default is 2.

2.2. Platform-specific Installation Instructions 23

https://github.com/saltstack/salt/tree/develop/pkg/windows

Salt Documentation, Release 2019.2.2

Prerequisite Software

The only prerequisite is Git for Windows.

Create a Build Environment
1. Working Directory

Create a Salt-Dev directory on the root of C:. This will be our working directory. Navigate to Salt-Dev and
clone the Salt repo from GitHub.

Open a command line and type:

cd \

md Salt-Dev

cd Salt-Dev

git clone https://github.com/saltstack/salt

Go into the salt directory and checkout the version of salt to work with (2016.3 or higher).

cd salt
git checkout 2017.7.2

2. Setup the Python Environment

Navigate to the pkg\windows directory and execute the build_env.ps1 PowerShell script.

cd pkg\windows
powershell -file build_env_2.psl

Note: You can also do this from Explorer by navigating to the pkg\windows directory, right clicking the
build_env_2.ps1 powershell script and selecting Run with PowerShell

This will download and install Python 2 with all the dependencies needed to develop and build Salt.

Note: If you get an error or the script fails to run you may need to change the execution policy. Open a powershell
window and type the following command:

Set-ExecutionPolicy RemoteSigned

3. Salt in Editable Mode

Editable mode allows you to more easily modify and test the source code. For more information see the Pip docu-
mentation.

Navigate to the root of the salt directory and install Salt in editable mode with pip

cd \Salt-Dev\salt
pip install -e .

24 Chapter 2. Installation

https://git-scm.com/download/win/
https://github.com/saltstack/salt/
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

Salt Documentation, Release 2019.2.2

Note: The . is important

Note: If pip is not recognized, you may need to restart your shell to get the updated path

Note: If pip is still not recognized make sure that the Python Scripts folder is in the System %PATH%.
(C:\Python2\Scripts)

4. Setup Salt Configuration

Salt requires a minion configuration file and a few other directories. The default config file is named minion located
inC:\salt\conf. The easiest way to set this up is to copy the contents of the salt\pkg\windows\buildenv
directory to C:\salt.

cd \
md salt
xcopy /s /e \Salt-Dev\salt\pkg\windows\buildenv* \salt)\

Now go into the C:\salt\conf directory and edit the minion config file named minion (no extension). You
need to configure the master and id parameters in this file. Edit the following lines:

master: <ip or name of your master>
id: <name of your minion>

Create a Windows Installer

To create a Windows installer, follow steps 1 and 2 from Create a Build Environment above. Then proceed to 3 below:

3. Install Salt

To create the installer for Window we install Salt using Python instead of pip. Navigate to the root sa'lt directory
and install Salt.

cd \Salt-Dev\salt
python setup.py install

4. Create the Windows Installer

Navigate to the pkg\windows directory and run the build_pkg.bat with the build version (2017.7.2) and the
Python version as parameters.

cd pkg\windows
build_pkg.bat 2017.7.2 2

AAAAAAAN A
build version -- |
python version ------

2.2. Platform-specific Installation Instructions 25

Salt Documentation, Release 2019.2.2

Note: If no version is passed, the build_pkg.bat will guess the version number using git. If the python version
is not passed, the default is 2.

Creating a Windows Installer: Alternate Method (Easier)

Clone the Salt repo from GitHub into the directory of your choice. We're going to use Salt-Dev.

cd \

md Salt-Dev

cd Salt-Dev

git clone https://github.com/saltstack/salt

Go into the salt directory and checkout the version of Salt you want to build.

cd salt
git checkout 2017.7.2

Then navigate to pkg\windows and run the build.bat script with the version you’re building.

cd pkg\windows
build.bat 2017.7.2 3

AAAAAAAN A

build version |
python version --

This will install everything needed to build a Windows installer for Salt using Python 3. The binary will be in the
salt\pkg\windows\installer directory.

Testing the Salt minion

1. Create the directory C: \salt (if it doesn’t exist already)
2. Copy the example conf and var directories from pkg\windows\buildenv into C:\salt

3. Edit C:\salt\conf\minion

master: +ipaddress or hostname of your salt-master

4. Start the salt-minion

cd C:\Python27\Scripts
python salt-minion -1 debug

5. On the salt-master accept the new minion’s key

sudo salt-key -A

This accepts all unaccepted keys. If you’re concerned about security just accept the key for this
specific minion.

6. Test that your minion is responding

On the salt-master run:

26 Chapter 2. Installation

https://github.com/saltstack/salt/

Salt Documentation, Release 2019.2.2

sudo salt 'x' test.version

You should get the following response: {'your minion hostname': True}

Packages Management Under Windows 2003

Windows Server 2003 and Windows XP have both reached End of Support. Though Salt is not officially supported
on operating systems that are EoL, some functionality may continue to work.

On Windows Server 2003, you need to install optional component "WMI Windows Installer Provider” to get a full
list of installed packages. If you don’t have this, salt-minion can’t report some installed software.

2.2.13 SUSE

Installation from the Official SaltStack Repository

Packages for SUSE 12 SP1, SUSE 12, SUSE 11, openSUSE 13 and openSUSE Leap 42.1 are available in the SaltStack
Repository.

Instructions are at https://repo.saltstack.com/#suse.

Installation from the SUSE Repository

Since openSUSE 13.2, Salt 2014.1.11 is available in the primary repositories. With the release of SUSE manager 3 a
new repository setup has been created. The new repo will by systemsmanagement:saltstack, which is the source for
newer stable packages. For backward compatibility a linkpackage will be created to the old devel:language:python

repo. All development of suse packages will be done in systemsmanagement:saltstack:testing. This will ensure that
salt will be in mainline suse repo’s, a stable release repo and a testing repo for further enhancements.

Installation
Salt can be installed using zypper and is available in the standard openSUSE/SLES repositories.
Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

systemctl enable salt-master.service

To start the Master:

2.2. Platform-specific Installation Instructions 27

https://repo.saltstack.com/#suse

Salt Documentation, Release 2019.2.2

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

’chkconf‘ig salt-master on

To start the Master:

’ rcsalt-master start

Minion

To have the Minion start automatically at boot time:

’Chkconf‘ig salt-minion on

To start the Minion:

’ rcsalt-minion start

Unstable Release
openSUSE

For openSUSE Tumbleweed run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_Tumbleweed/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For openSUSE 42.1 Leap run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_Leap_42.1/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For openSUSE 13.2 run the following as root:

28 Chapter 2. Installation

Salt Documentation, Release 2019.2.2

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_13.2/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

SUSE Linux Enterprise

For SLE 12 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—SLE_12/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For SLE 11 SP4 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—SLE_11_SP4/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

2.3 Initial Configuration

2.3.1 Configuring Salt

Salt configuration is very simple. The default configuration for the master will work for most installations and the
only requirement for setting up a minion is to set the location of the master in the minion configuration file.

The configuration files will be installed to /etc/salt and are named after the respective components, /etc/
salt/master,and /etc/salt/minion.

Master Configuration

By default the Salt master listens on ports 4505 and 4506 on all interfaces (0.0.0.0). To bind Salt to a specific IP,
redefine the “interface” directive in the master configuration file, typically /etc/salt/master, as follows:

- #interface: 0.0.0.0
+ 1dinterface: 10.0.0.1

After updating the configuration file, restart the Salt master. See the master configuration reference for more details
about other configurable options.

Minion Configuration

Although there are many Salt Minion configuration options, configuring a Salt Minion is very simple. By default
a Salt Minion will try to connect to the DNS name salt”; if the Minion is able to resolve that name correctly, no
configuration is needed.

If the DNS name "salt” does not resolve to point to the correct location of the Master, redefine the “master” directive
in the minion configuration file, typically /etc/salt/minion, as follows:

2.3. Initial Configuration 29

Salt Documentation, Release 2019.2.2

- #master: salt
+ master: 10.0.0.1

After updating the configuration file, restart the Salt minion. See the minion configuration reference for more details
about other configurable options.

Proxy Minion Configuration

A proxy minion emulates the behaviour of a regular minion and inherits their options.
Similarly, the configuration file is /etc/salt/proxy and the proxy tries to connect to the DNS name “salt”.

In addition to the regular minion options, there are several proxy-specific - see the proxy minion configuration refer-
ence.

Running Salt

1. Start the master in the foreground (to daemonize the process, pass the —-d flag):

’salt—master

2. Start the minion in the foreground (to daemonize the process, pass the -d flag):

’ salt-minion

Having trouble?

The simplest way to troubleshoot Salt is to run the master and minion in the foreground with log level set to
debug:

salt-master --log-level=debug

For information on salt’s logging system please see the logging document.

Run as an unprivileged (non-root) user
To run Salt as another user, set the user parameter in the master config file.

Additionally, ownership, and permissions need to be set such that the desired user can read from and write to the
following directories (and their subdirectories, where applicable):

« /etc/salt

« /var/cache/salt
» /var/log/salt

« /var/run/salt

More information about running salt as a non-privileged user can be found here.

There is also a full troubleshooting guide available.

30 Chapter 2. Installation

Salt Documentation, Release 2019.2.2

Key Identity

Salt provides commands to validate the identity of your Salt master and Salt minions before the initial key exchange.
Validating key identity helps avoid inadvertently connecting to the wrong Salt master, and helps prevent a potential
MiTM attack when establishing the initial connection.

Master Key Fingerprint

Print the master key fingerprint by running the following command on the Salt master:

salt-key -F master

Copy the master . pub fingerprint from the Local Keys section, and then set this value as the master_finger
in the minion configuration file. Save the configuration file and then restart the Salt minion.

Minion Key Fingerprint

Run the following command on each Salt minion to view the minion key fingerprint:

salt-call --local key.finger

Compare this value to the value that is displayed when you run the salt-key --finger <MINION_ID> com-
mand on the Salt master.

Key Management

Salt uses AES encryption for all communication between the Master and the Minion. This ensures that the commands
sent to the Minions cannot be tampered with, and that communication between Master and Minion is authenticated
through trusted, accepted keys.

Before commands can be sent to a Minion, its key must be accepted on the Master. Run the salt-key command
to list the keys known to the Salt Master:

[root@master ~]# salt-key -L
Unaccepted Keys:

alpha

bravo

charlie

delta

Accepted Keys:

This example shows that the Salt Master is aware of four Minions, but none of the keys has been accepted. To accept
the keys and allow the Minions to be controlled by the Master, again use the salt-key command:

[root@master ~]# salt-key -A
[root@master ~]# salt-key -L
Unaccepted Keys:

Accepted Keys:

alpha

bravo

charlie

delta

2.3. Initial Configuration 31

Salt Documentation, Release 2019.2.2

The sa'lt-key command allows for signing keys individually or in bulk. The example above, using —A bulk-accepts
all pending keys. To accept keys individually use the lowercase of the same option, —a keyname.

See also:
salt-key manpage
Sending Commands

Communication between the Master and a Minion may be verified by running the test.version command:

[root@master ~]# salt alpha test.version
alpha:
2018.3.4

Communication between the Master and all Minions may be tested in a similar way:

[root@master ~]# salt 'x' test.version
alpha:
2018.3.4
bravo:
2018.3.4
charlie:
2018.3.4
delta:
2018.3.4

Each of the Minions should send a 2018. 3. 4 response as shown above, or any other salt version installed.

What’s Next?

Understanding targeting is important. From there, depending on the way you wish to use Salt, you should also
proceed to learn about Remote Execution and Configuration Management.

2.4 Additional Installation Guides

2.4.1 Salt Bootstrap
The Salt Bootstrap Script allows a user to install the Salt Minion or Master on a variety of system distributions and
versions.

The Salt Bootstrap Script is a shell script is known as bootstrap-salt. sh. It runs through a series of checks to
determine the operating system type and version. It then installs the Salt binaries using the appropriate methods.

The Salt Bootstrap Script installs the minimum number of packages required to run Salt. This means that in the event
you run the bootstrap to install via package, Git will not be installed. Installing the minimum number of packages
helps ensure the script stays as lightweight as possible, assuming the user will install any other required packages
after the Salt binaries are present on the system.

The Salt Bootstrap Script is maintained in a separate repo from Salt, complete with its own issues, pull requests,
contributing guidelines, release protocol, etc.

To learn more, please see the Salt Bootstrap repo links:

« Salt Bootstrap repo

32 Chapter 2. Installation

https://github.com/saltstack/salt-bootstrap

Salt Documentation, Release 2019.2.2

« README: includes supported operating systems, example usage, and more.
« Contributing Guidelines

« Release Process

Note: The Salt Bootstrap script can be found in the Salt repo under the salt/cloud/deploy/
bootstrap-salt.sh path. Any changes to this file will be overwritten! Bug fixes and feature additions must be
submitted via the Salt Bootstrap repo. Please see the Salt Bootstrap Script’s Release Process for more information.

2.4.2 Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ connection. These communi-
cations are done over TCP ports 4505 and 4506, which need to be accessible on the master only. This document
outlines suggested firewall rules for allowing these incoming connections to the master.

Note: No firewall configuration needs to be done on Salt minions. These changes refer to the master only.

Fedora 18 and beyond / RHEL 7 / CentOS 7

Starting with Fedora 18 FirewallD is the tool that is used to dynamically manage the firewall rules on a host. It has
support for IPv4/6 settings and the separation of runtime and permanent configurations. To interact with FirewallD
use the command line client firewall-cmd.

firewall-cmd example:

firewall-cmd --permanent --zone=<zone> --add-port=4505-4506/tcp

A network zone defines the security level of trust for the the network. The user should choose an appropriate zone
value for their setup. Possible values include: drop, block, public, external, dmz, work, home, internal, trusted.

Don’t forget to reload after you made your changes.

firewall-cmd --reload

RHEL 6 / CentOS 6

The lokkit command packaged with some Linux distributions makes opening iptables firewall ports very simple
via the command line. Just be careful to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

’lokk'it -p 22:tcp -p 4505:tcp -p 4506:tcp

The system-config-firewall-tui command provides a text-based interface to modifying the firewall.

system-config-firewall-tui:

’ system-config-firewall-tui

2.4. Additional Installation Guides 33

https://github.com/saltstack/salt-bootstrap#bootstrapping-salt
https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md
https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md#release-information
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md#release-information
https://fedoraproject.org/wiki/FirewallD

Salt Documentation, Release 2019.2.2

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt. Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

If you have an older package of Salt where the above configuration file is not included, the SUSEfirewall2
command makes opening iptables firewall ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the firewall.
YaST2:

yast2 firewall

Windows

Windows Firewall is the default component of Microsoft Windows that provides firewalling and packet filtering.
There are many 3rd party firewalls available for Windows, some of which use rules from the Windows Firewall. If
you are experiencing problems see the vendor’s specific documentation for opening the required ports.

The Windows Firewall can be configured using the Windows Interface or from the command line.
Windows Firewall (interface):

1. Open the Windows Firewall Interface by typing wf . msc at the command prompt or in a run dialog (Windows
Key + R)

. Navigate to Inbound Rules in the console tree
. Add a new rule by clicking New Rule... in the Actions area

. Change the Rule Type to Port. Click Next

2
3
4
5. Set the Protocol to TCP and specify local ports 4505-4506. Click Next

6. Set the Action to Allow the connection. Click Next

7. Apply the rule to Domain, Private, and Public. Click Next

8. Give the new rule a Name, ie: Salt. You may also add a description. Click Finish
Windows Firewall (command line):

The Windows Firewall rule can be created by issuing a single command. Run the following command from the
command line or a run prompt:

netsh advfirewall firewall add rule name="Salt" dir=in action=allow protocol=TCPH
— Llocalport=4505-4506

34 Chapter 2. Installation

https://github.com/saltstack/salt/blob/master/pkg/suse/salt.SuSEfirewall2

Salt Documentation, Release 2019.2.2

iptables

Different Linux distributions store their iptables (also known as netfilter) rules in different places, which makes it
difficult to standardize firewall documentation. Included are some of the more common locations, but your mileage
may vary.

Fedora / RHEL / CentOS:

’ /etc/sysconfig/iptables

Arch Linux:

’ /etc/iptables/iptables.rules

Debian
Follow these instructions: https://wiki.debian.org/iptables

Once you’ve found your firewall rules, you’ll need to add the below line to allow traffic on tcp /4505 and tcp/
4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505:4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw. Enable with:

’ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf). The following example describes the addition to pf.
conf needed to access the Salt master.

’pass in on $int_if proto tcp from any to $int_if port 4505:4506

Once this addition has been made to the pf.conf the rules will need to be reloaded. This can be done using the
pfctl command.

’pfctl -vf /etc/pf.conf

2.4.3 Whitelist communication to Master

There are situations where you want to selectively allow Minion traffic from specific hosts or networks into your Salt
Master. The first scenario which comes to mind is to prevent unwanted traffic to your Master out of security concerns,
but another scenario is to handle Minion upgrades when there are backwards incompatible changes between the
installed Salt versions in your environment.

Here is an example Linux iptables ruleset to be set on the Master:

Allow Minions from these networks

-I INPUT -s 10.1.2.0/24 -p tcp --dports 4505:4506 -j ACCEPT

-I INPUT -s 10.1.3.0/24 -p tcp --dports 4505:4506 -j ACCEPT

Allow Salt to communicate with Master on the loopback interface
-A INPUT -i lo -p tcp --dports 4505:4506 -j ACCEPT

(continues on next page)

2.4. Additional Installation Guides 35

http://www.netfilter.org/
https://wiki.debian.org/iptables
https://github.com/saltstack/salt/blob/master/pkg/salt.ufw
http://openbsd.org/faq/pf/

Salt Documentation, Release 2019.2.2

(continued from previous page)

Reject everything else
-A INPUT -p tcp --dports 4505:4506 -j REJECT

Note: The important thing to note here is that the salt command needs to communicate with the listening network
socket of salt-master on the loopback interface. Without this you will see no outgoing Salt traffic from the
master, even for asimple salt 'x' test.version,becausethe salt client never reached the salt-master
to tell it to carry out the execution.

2.4.4 Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before accepting its key on the master. For
instance, you may want the minion to bootstrap itself as soon as it comes online. You may also want to let your
developers provision new development machines on the fly.

See also:

Many ways to preseed minion keys

Salt has other ways to generate and pre-accept minion keys in addition to the manual steps outlined below.
salt-cloud performs these same steps automatically when new cloud VMs are created (unless instructed not to).

salt-api exposes an HTTP call to Salt’s REST APIto generate and download the new minion keys as
a tarball.

There is a general four step process to do this:

1. Generate the keys on the master:

root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion’s id.

2. Add the public key to the accepted minion folder:

root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_id]

It is necessary that the public key file has the same name as your minion id. This is how Salt matches minions with
their keys. Also note that the pki folder could be in a different location, depending on your OS or if specified in the
master config file.

3. Distribute the minion keys.

There is no single method to get the keypair to your minion. The difficulty is finding a dis-
tribution method which is secure. For Amazon EC2 only, an AWS best practice is to use IAM
Roles to pass credentials. (See blog post, http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/
Using-IAM-roles-to-distribute-non- AWS-credentials-to-your-EC2-instances)

Security Warning

Since the minion key is already accepted on the master, distributing the private key poses a potential security risk.
A malicious party will have access to your entire state tree and other sensitive data if they gain access to a preseeded
minion key.

4. Preseed the Minion with the keys

36 Chapter 2. Installation

http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances

Salt Documentation, Release 2019.2.2

You will want to place the minion keys before starting the salt-minion daemon:

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run salt-call state.apply or any other salt
commands that require master authentication.

2.4.5 The macOS (Maverick) Developer Step By Step Guide To Salt Installation

This document provides a step-by-step guide to installing a Salt cluster consisting of one master, and one minion
running on a local VM hosted on macOS.

Note: This guide is aimed at developers who wish to run Salt in a virtual machine. The official (Linux) walkthrough
can be found here.

The 5 Cent Salt Intro

Since you’re here you’ve probably already heard about Salt, so you already know Salt lets you configure and run
commands on hordes of servers easily. Here’s a brief overview of a Salt cluster:

« Salt works by having a "master” server sending commands to one or multiple minion” servers. The master
server is the "command center”. It is going to be the place where you store your configuration files, aka: which
server is the db, which is the web server, and what libraries and software they should have installed”. The
minions receive orders from the master. Minions are the servers actually performing work for your business.

« Salt has two types of configuration files:

1. the "salt communication channels” or “meta” or “config” configuration files (not official names): one for the
master (usually is /etc/salt/master , on the master server), and one for minions (default is /etc/salt/minion or
/etc/salt/minion.conf, on the minion servers). Those files are used to determine things like the Salt Master IP,
port, Salt folder locations, etc.. If these are configured incorrectly, your minions will probably be unable to
receive orders from the master, or the master will not know which software a given minion should install.

2. the "business” or “service” configuration files (once again, not an official name): these are configuration files,
ending with ”.sls” extension, that describe which software should run on which server, along with particular
configuration properties for the software that is being installed. These files should be created in the /srv/salt
folder by default, but their location can be changed using ... /etc/salt/master configuration file!

Note: This tutorial contains a third important configuration file, not to be confused with the previous two: the
virtual machine provisioning configuration file. This in itself is not specifically tied to Salt, but it also contains some
Salt configuration. More on that in step 3. Also note that all configuration files are YAML files. So indentation
matters.

Note: Salt also works with “masterless” configuration where a minion is autonomous (in which case salt can be
seen as a local configuration tool), or in “multiple master” configuration. See the documentation for more on that.

Before Digging In, The Architecture Of The Salt Cluster

2.4. Additional Installation Guides 37

http://docs.saltstack.com/topics/tutorials/walkthrough.html

Salt Documentation, Release 2019.2.2

Salt Master

The ”Salt master” server is going to be the Mac OS machine, directly. Commands will be run from a terminal app, so
Salt will need to be installed on the Mac. This is going to be more convenient for toying around with configuration
files.

Salt Minion

We’ll only have one “Salt minion” server. It is going to be running on a Virtual Machine running on the Mac, using
VirtualBox. It will run an Ubuntu distribution.

Step 1 - Configuring The Salt Master On Your Mac

Official Documentation

Because Salt has a lot of dependencies that are not built in macOS, we will use Homebrew to install Salt. Homebrew
is a package manager for Mac, it’s great, use it (for this tutorial at least!). Some people spend a lot of time installing
libs by hand to better understand dependencies, and then realize how useful a package manager is once they’re
configuring a brand new machine and have to do it all over again. It also lets you uninstall things easily.

Note: Brew is a Ruby program (Ruby is installed by default with your Mac). Brew downloads, compiles, and
links software. The linking phase is when compiled software is deployed on your machine. It may conflict with
manually installed software, especially in the /usr/local directory. It’s ok, remove the manually installed version
then refresh the link by typing brew link 'packageName'. Brew has a brew doctor command that can
help you troubleshoot. It’s a great command, use it often. Brew requires xcode command line tools. When you
run brew the first time it asks you to install them if they’re not already on your system. Brew installs software in
/usr/local/bin (system bins are in /usr/bin). In order to use those bins you need your $PATH to search there first.
Brew tells you if your $PATH needs to be fixed.

Tip: Use the keyboard shortcut cmd + shift + period in the "open” macOS dialog box to display hidden
files and folders, such as .profile.

Install Homebrew

Install Homebrew here http://brew.sh/

Or just type

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—~install)"

Now type the following commands in your terminal (you may want to type brew doctor after each to make sure
everything’s fine):

brew install python
brew install swig
brew install zmq

38 Chapter 2. Installation

http://docs.saltstack.com/topics/installation/osx.html
http://brew.sh/

Salt Documentation, Release 2019.2.2

Note: zmgq is ZeroMQ. It’s a fantastic library used for server to server network communication and is at the core of
Salt efficiency.

Install Salt

You should now have everything ready to launch this command:

pip install salt

Note: There should be no need for sudo pip install salt. Brew installed Python for your user, so
you should have all the access. In case you would like to check, type which python to ensure that it’s
/usr/local/bin/python, and which p1ip which should be /usr/local/bin/pip.

Now type python in a terminal then, import salt. There should be no errors. Now exit the Python terminal
using exit ().

Create The Master Configuration

If the default /etc/salt/master configuration file was not created, copy-paste it from here: http://docs.saltstack.com/
ref/configuration/examples.html#configuration-examples-master

Note: /etc/salt/master is afile, not a folder.

Salt Master configuration changes. The Salt master needs a few customization to be able to run on macOS:

sudo launchctl limit maxfiles 4096 8192

In the /etc/salt/master file, change max_open_files to 8192 (or just add the line: max_open_files: 8192 (no
quote) if it doesn’t already exists).

You should now be able to launch the Salt master:

sudo salt-master --log-level=all

There should be no errors when running the above command.

Note: This command is supposed to be a daemon, but for toying around, we’ll keep it running on a terminal to
monitor the activity.

Now that the master is set, let’s configure a minion on a VM.

Step 2 - Configuring The Minion VM

The Salt minion is going to run on a Virtual Machine. There are a lot of software options that let you run virtual
machines on a mac, But for this tutorial we’re going to use VirtualBox. In addition to virtualBox, we will use Vagrant,
which allows you to create the base VM configuration.

2.4. Additional Installation Guides 39

http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Salt Documentation, Release 2019.2.2

Vagrant lets you build ready to use VM images, starting from an OS image and customizing it using “provisioners”.
In our case, we’ll use it to:

« Download the base Ubuntu image

Install salt on that Ubuntu image (Salt is going to be the “provisioner” for the VM).

Launch the VM

SSH into the VM to debug

Stop the VM once you’re done.

Install VirtualBox

Go get it here: https://www.virtualBox.org/wiki/Downloads (click on VirtualBox for macOS hosts => x86/amd64)

Install Vagrant

Go get it here: http://downloads.vagrantup.com/ and choose the latest version (1.3.5 at time of writing), then the
.dmg file. Double-click to install it. Make sure the vagrant command is found when run in the terminal. Type
vagrant. It should display a list of commands.

Create The Minion VM Folder

Create a folder in which you will store your minion’s VM. In this tutorial, it’s going to be a minion folder in the
$home directory.

cd $home
mkdir minion

Initialize Vagrant

From the minion folder, type

vagrant 1init

This command creates a default Vagrantfile configuration file. This configuration file will be used to pass configura-
tion parameters to the Salt provisioner in Step 3.

Import Precise64 Ubuntu Box

vagrant box add precise64 http://files.vagrantup.com/precise64.box

Note: This box is added at the global Vagrant level. You only need to do it once as each VM will use this same file.

40 Chapter 2. Installation

https://www.virtualBox.org/wiki/Downloads
http://downloads.vagrantup.com/

Salt Documentation, Release 2019.2.2

Modify the Vagrantfile

Modify ./minion/Vagrantfile to use th precise64 box. Change the config.vm.box line to:

’conf‘ig.vm.box = "precise64" ‘

Uncomment the line creating a host-only IP. This is the ip of your minion (you can change it to something else if
that IP is already in use):

’conﬁ'g.vm.network :private_network, dip: "192.168.33.10" ‘

At this point you should have a VM that can run, although there won’t be much in it. Let’s check that.

Checking The VM

From the $home/minion folder type:

’vagrant up ‘

A log showing the VM booting should be present. Once it’s done you’ll be back to the terminal:

’ping 192.168.33.10 ‘

The VM should respond to your ping request.
Now log into the VM in ssh using Vagrant again:

’vagrant ssh ‘

You should see the shell prompt change to something similar to vagrant@precise64: ~$ meaning you're inside
the VM. From there, enter the following:

’p'ing 10.0.2.2 ‘

Note: That ip is the ip of your VM host (the macOS host). The number is a VirtualBox default and is displayed in
the log after the Vagrant ssh command. We’ll use that IP to tell the minion where the Salt master is. Once you’re
done, end the ssh session by typing exi t.

It’s now time to connect the VM to the salt master
Step 3 - Connecting Master and Minion
Creating The Minion Configuration File

Create the /etc/salt/minion file. In that file, put the following lines, giving the ID for this minion, and the IP
of the master:

master: 10.0.2.2
id: 'minionl’'
file_client: remote

2.4. Additional Installation Guides 41

Salt Documentation, Release 2019.2.2

Minions authenticate with the master using keys. Keys are generated automatically if you don’t provide one and
can accept them later on. However, this requires accepting the minion key every time the minion is destroyed or
created (which could be quite often). A better way is to create those keys in advance, feed them to the minion, and
authorize them once.

Preseed minion keys

From the minion folder on your Mac run:

sudo salt-key --gen-keys=minionl

This should create two files: minion1l.pem, and minion1.pub. Since those files have been created using sudo, but will
be used by vagrant, you need to change ownership:

sudo chown youruser:yourgroup minionl.pem
sudo chown youruser:yourgroup minionl.pub

Then copy the .pub file into the list of accepted minions:

sudo cp minionl.pub /etc/salt/pki/master/minions/minionl

Modify Vagrantfile to Use Salt Provisioner

Let’s now modify the Vagrantfile used to provision the Salt VM. Add the following section in the Vagrantfile (note:
it should be at the same indentation level as the other properties):

salt-vagrant config
config.vm.provision :salt do |salt|
salt.run_highstate = true

salt.minion_config = "/etc/salt/minion"
salt.minion_key = "./minionl.pem"
salt.minion_pub = "./minionl.pub"

end

Now destroy the vm and recreate it from the /minion folder:

vagrant destroy
vagrant up

If everything is fine you should see the following message:

"Bootstrapping Salt... (this may take a while)
Salt successfully configured and +installed!"

Checking Master-Minion Communication

To make sure the master and minion are talking to each other, enter the following:

sudo salt 'x' test.version

You should see your minion answering with its salt version. It’s now time to do some configuration.

42 Chapter 2. Installation

Salt Documentation, Release 2019.2.2

Step 4 - Configure Services to Install On the Minion

In this step we’ll use the Salt master to instruct our minion to install Nginx.

Checking the system’s original state

First, make sure that an HTTP server is not installed on our minion. When opening a browser directed at http:/
/192.168.33.10/ You should get an error saying the site cannot be reached.

Initialize the top.sls file

System configuration is done in /srv/salt/top.sls (and subfiles/folders), and then applied by running the
state. apply function to have the Salt master order its minions to update their instructions and run the associated
commands.

First Create an empty file on your Salt master (macOS machine):

’ touch /srv/salt/top.sls

When the file is empty, or if no configuration is found for our minion an error is reported:

’sudo salt 'minionl' state.apply

This should return an error stating: No Top file or external nodes data matches found.

Create The Nginx Configuration

Now is finally the time to enter the real meat of our server’s configuration. For this tutorial our minion will be
treated as a web server that needs to have Nginx installed.

Insert the following lines into /srv/salt/top.sls (which should current be empty).

base:
'minionl':
- bin.nginx

Now create /srv/salt/bin/nginx.sls containing the following:

nginx:
pkg.installed:
- name: nginx
service.running:
- enable: True
- reload: True

Check Minion State

Finally, run the state. app ly function again:

sudo salt 'minionl' state.apply

2.4. Additional Installation Guides 43

Salt Documentation, Release 2019.2.2

You should see a log showing that the Nginx package has been installed and the service configured. To prove it,
open your browser and navigate to http://192.168.33.10/, you should see the standard Nginx welcome page.

Congratulations!
Where To Go From Here

A full description of configuration management within Salt (sls files among other things) is available here: http:
//docs.saltstack.com/en/latest/index.html#configuration-management

2.4.6 running salt as normal user tutorial

Before continuing make sure you have a working Salt installation by following the Installation and the configuration
instructions.

Stuck?

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Running Salt functions as non root user

If you don’t want to run salt cloud as root or even install it you can configure it to have a virtual root in your working
directory.

The salt system uses the salt.syspath module to find the variables

If you run the salt-build, it will generated in:

’ ./build/1lib.linux-x86_64-2.7/salt/_syspaths.py

To generate it, run the command:

’python setup.py build

Copy the generated module into your salt directory

’cp ./build/1lib.linux-x86_64-2.7/salt/_syspaths.py salt/_syspaths.py

Edit it to include needed variables and your new paths

you need to edit this
ROOT_DIR = *your current dir* + '/salt/root'

you need to edit this
INSTALL_DIR = xlocation of source codex

CONFIG_DIR = ROOT_DIR + '/etc/salt'

CACHE_DIR = ROOT_DIR + '/var/cache/salt'

SOCK_DIR = ROOT_DIR + '/var/run/salt'

SRV_ROOT_DIR= ROOT_DIR + '/srv'

BASE_FILE_ROOTS_DIR = ROOT_DIR + '/srv/salt'
BASE_PILLAR_ROOTS_DIR = ROOT_DIR + '/srv/pillar'
BASE_MASTER_ROOTS_DIR = ROOT_DIR + '/srv/salt-master'

(continues on next page)

44 Chapter 2. Installation

http://192.168.33.10/
http://docs.saltstack.com/en/latest/index.html#configuration-management
http://docs.saltstack.com/en/latest/index.html#configuration-management
https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

LOGS_DIR = ROOT_DIR + '/var/log/salt'

PIDFILE_DIR = ROOT_DIR + '/var/run'

CLOUD_DIR = INSTALL_DIR + '/cloud'

BOOTSTRAP = CLOUD_DIR + '/deploy/bootstrap-salt.sh'

Create the directory structure

mkdir -p root/etc/salt root/var/cache/run root/run/salt root/srv
root/srv/salt root/srv/pillar root/srv/salt-master root/var/log/salt root/var/run

Populate the configuration files:

’cp -r conf/x root/etc/salt/

Edit your root/etc/salt/master configuration that is used by salt-cloud:

’user: kyour user namex

Run like this:

’ PYTHONPATH="pwd" scripts/salt-cloud

2.4.7 Standalone Minion
Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Use salt-call commands on a system without connectivity to a master

« Masterless States, run states entirely from files local to the minion

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Minion Configuration

Throughout this document there are several references to setting different options to configure a masterless Minion.
Salt Minions are easy to configure via a configuration file that is located, by default, in /etc/salt/minion. Note,
however, that on FreeBSD systems, the minion configuration file is located in /usr/local/etc/salt/minion.

You can learn more about minion configuration options in the Configuring the Salt Minion docs.

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data. To instruct the minion to
not look for a master when running salt-call the file_client configuration option needs to be set. By default
the file_client is set to remote so that the minion knows that file server and pillar data are to be gathered
from the master. When setting the i le_client option to local the minion is configured to not gather this
data from the master.

2.4. Additional Installation Guides 45

Salt Documentation, Release 2019.2.2

file_client: local

Now the salt-call command will not look for a master and will assume that the local system has all of the file and
pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files local to the minion. To do this the
minion configuration file needs to be set up to know how to return file_roots information like the master. The
file_roots setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
base:
- /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that they would be set up on a master.
Now, with the file_client option set to Llocal and an available state tree then calls to functions in the state
module will use the information in the file_roots on the minion instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or path changes needed, SLS modules
written to be used from a master do not need to be modified in any way to work with a minion.

This makes it easy to “script” deployments with Salt states without having to set up a master, and allows for these
SLS modules to be easily moved into a Salt master as the deployment grows.

The declared state can now be executed with:

’ salt-call state.apply

Or the salt-call command can be executed with the ——local flag, this makes it unnecessary to change the config-
uration file:

’salt—call state.apply --local

External Pillars

External pillars are supported when running in masterless mode.

2.4.8 Salt Masterless Quickstart
Running a masterless salt-minion lets you use Salt’s configuration management for a single machine without calling
out to a Salt master on another machine.

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

- Stand up a master server via States (Salting a Salt Master)
« Use salt-call commands on a system without connectivity to a master
« Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

46 Chapter 2. Installation

Salt Documentation, Release 2019.2.2

Bootstrap Salt Minion

The salt-bootstrap script makes bootstrapping a server with Salt simple for any OS with a Bourne shell:

curl -L https://bootstrap.saltstack.com -o bootstrap_salt.sh
sudo sh bootstrap_salt.sh

See the salt-bootstrap documentation for other one liners. When using Vagrant to test out salt, the Vagrant salt
provisioner will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master, the file_client configuration option needs to be set in the
minion configuration file. By default the file_client is set to remote so that the minion gathers file server
and pillar data from the salt master. When setting the file_client option to Local the minion is configured to
not gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local system has all of the file and pillar
resources.

Configuration which resided in the master configuration (e.g. /etc/salt/master)should be moved to the minion
configuration since the minion does not read the master configuration.

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Create State Tree
Following the successful installation of a salt-minion, the next step is to create a state tree, which is where the SLS
files that comprise the possible states of the minion are stored.

The following example walks through the steps necessary to create a state tree that ensures that the server has the
Apache webserver installed.

Note: For a complete explanation on Salt States, see the tutorial.

1. Create the top.sls file:
/srv/salt/top.sls:

base:
l*l:
- webserver

2. Create the webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
pkg: # state declaration
- dinstalled # function declaration

2.4. Additional Installation Guides 47

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
http://www.vagrantup.com/
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.saltstack.com/en/latest/topics/tutorials/states_pt1.html

Salt Documentation, Release 2019.2.2

Note: The apache package has different names on different platforms, for instance on Debian/Ubuntu it is apache2,
on Fedora/RHEL it is httpd and on Arch it is apache

The only thing left is to provision our minion using salt-call.

Salt-call

The salt-call command is used to run remote execution functions locally on a minion instead of executing them from
the master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data:

salt-call --local state.apply

The --local flag tells the salt-minion to look for the state tree in the local file system and not to contact a Salt
Master for instructions.

To provide verbose output, use -1 debug:

salt-call --local state.apply -1 debug

The minion first examines the top . ss file and determines that it is a part of the group matched by * glob and that
the webserver SLS should be applied.

It then examines the webserver . s'ls file and finds the apache state, which installs the Apache package.

The minion should now have Apache installed, and the next step is to begin learning how to write more complex
states.

2.5 Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.
« Python - Python2 >= 2.7, Python3 >= 3.4
« msgpack-python - High-performance message interchange format
« YAML - Python YAML bindings
« Jinja2 - parsing Salt States (configurable in the master settings)
« MarkupSafe - Implements a XML/HTML/XHTML Markup safe string for Python

« apache-libcloud - Python lib for interacting with many of the popular cloud service providers using a unified
API

« Requests - HTTP library
« Tornado - Web framework and asynchronous networking library
« futures - Python2 only dependency. Backport of the concurrent.futures package from Python 3.2
Depending on the chosen Salt transport, ZeroMQ or RAET, dependencies vary:
« ZeroMQ:
- ZeroMQ >=3.2.0

- pyzmgq >= 2.2.0 - ZeroMQ Python bindings

48 Chapter 2. Installation

http://python.org/download/
https://pypi.python.org/pypi/msgpack-python/
http://pyyaml.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
http://libcloud.apache.org
http://docs.python-requests.org/en/latest
http://www.tornadoweb.org/en/stable/
https://github.com/agronholm/pythonfutures
http://zeromq.org/
https://github.com/saltstack/raet
http://zeromq.org/
https://github.com/zeromq/pyzmq

Salt Documentation, Release 2019.2.2

— PyCrypto - The Python cryptography toolkit
« RAET:
— libnacl - Python bindings to libsodium
— ioflo - The flo programming interface raet and salt-raet is built on
— RAET - The worlds most awesome UDP protocol

Salt defaults to the ZeroMQ transport, and the choice can be made at install time, for example:

’python setup.py --salt-transport=raet install

This way, only the required dependencies are pulled by the setup script if need be.

If installing using pip, the ——salt-transport install option can be provided like:

’p'ip install --install-option="--salt-transport=raet" salt

Note: Salt does not bundle dependencies that are typically distributed as part of the base OS. If you have unmet
dependencies and are using a custom or minimal installation, you might need to install some additional packages
from your OS vendor.

2.6 Optional Dependencies

« mako - an optional parser for Salt States (configurable in the master settings)

« gce - dynamic Cython module compiling

2.7 Upgrading Salt

When upgrading Salt, the master(s) should always be upgraded first. Backward compatibility for minions running
newer versions of salt than their masters is not guaranteed.

Whenever possible, backward compatibility between new masters and old minions will be preserved. Generally, the
only exception to this policy is in case of a security vulnerability.

See also:

Installing Salt for development and contributing to the project.

2.8 Building Packages using Salt Pack

Salt-pack is an open-source package builder for most commonly used Linux platforms, for example: Redhat/CentOS
and Debian/Ubuntu families, utilizing SaltStack states and execution modules to build Salt and a specified set of
dependencies, from which a platform specific repository can be built.

https://github.com/saltstack/salt-pack

2.6. Optional Dependencies 49

https://www.dlitz.net/software/pycrypto/
https://github.com/saltstack/libnacl
https://github.com/jedisct1/libsodium
https://github.com/ioflo/ioflo
https://github.com/saltstack/raet
http://zeromq.org/
http://www.makotemplates.org/
http://cython.org/
https://github.com/saltstack/salt-pack

Salt Documentation, Release 2019.2.2

50 Chapter 2. Installation

CHAPTER

THREE

CONFIGURING SALT

This section explains how to configure user access, view and store job results, secure and troubleshoot, and how to
perform many other administrative tasks.

3.1 Configuring the Salt Master

The Salt system is amazingly simple and easy to configure, the two components of the Salt system each have a respec-
tive configuration file. The salt-master is configured via the master configuration file, and the salt-minion
is configured via the minion configuration file.

See also:
Example master configuration file.

The configuration file for the salt-master is located at /etc/salt/master by default. A notable exception is
FreeBSD, where the configuration file is located at /usr/local/etc/sa'lt. The available options are as follows:

3.1.1 Primary Master Configuration

interface

Default: 0.0.0.0 (all interfaces)

The local interface to bind to, must be an IP address.

interface: 192.168.0.1

ipvé

Default: False

Whether the master should listen for IPv6 connections. If this is set to True, the interface option must be adjusted
too (for example: interface: '::')

ipv6: True

publish_port

Default: 4505

The network port to set up the publication interface.

51

Salt Documentation, Release 2019.2.2

publish_port: 4505

master_id

Default: None

The id to be passed in the publish job to minions. This is used for MultiSyndics to return the job to the requesting
master.

Note: This must be the same string as the syndic is configured with.

master_1id: MasterOfMaster

user

Default: root

The user to run the Salt processes

user: root

enable_ssh_minions

Default: False

Tell the master to also use salt-ssh when running commands against minions.

enable_ssh_minions: True

Note: Cross-minion communication is still not possible. The Salt mine and publish.publish do not work between
minion types.

ret_port

Default: 4506

The port used by the return server, this is the server used by Salt to receive execution returns and command execu-
tions.

ret_port: 4506

pidfile

Default: /var/run/salt-master.pid

Specify the location of the master pidfile.

52 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

pidfile: /var/run/salt-master.pid

root_d1ir

Default: /

The system root directory to operate from, change this to make Salt run from an alternative root.

root_dir: /

Note: This directory is prepended to the following options: pki_dir, cachedir, sock_dir, log_file,
autosign_file,autoreject_file,pidfile,autosign_grains_dir.

conf_file

Default: /etc/salt/master

The path to the master’s configuration file.

conf_file: /etc/salt/master

pki_dir

Default: /etc/salt/pki/master

The directory to store the pki authentication keys.

pki_dir: /etc/salt/pki/master

extension_modules

Changed in version 2016.3.0: The default location for this directory has been moved. Prior to this version, the location
was a directory named extmods in the Salt cachedir (on most platforms, /var /cache/salt/extmods). It has
been moved into the master cachedir (on most platforms, /var/cache/salt/master/extmods).

Directory for custom modules. This directory can contain subdirectories for each of Salt’s module types such as
runners, output, wheel, modules, states, returners, engines, utils, etc. This path is appended to
root_dir.

extension_modules: /root/salt_extmods

extmod_whitelist/extmod_blacklist

New in version 2017.7.0.

By using this dictionary, the modules that are synced to the master’s extmod cache using saltutil.sync_* can be
limited. If nothing is set to a specific type, then all modules are accepted. To block all modules of a specific type,
whitelist an empty list.

3.1. Configuring the Salt Master 53

Salt Documentation, Release 2019.2.2

extmod_whitelist:
modules:
- custom_module
engines:
- custom_engine
pillars: []

extmod_blacklist:
modules:
- specific_module

Valid options:
« modules
« states
 grains
« renderers
o returners
e output
+ proxy
o runners
o wheel
« engines
« queues
« pillar
« utils
« sdb
« cache
« clouds
« tops
e roster

. tokens

module_dirs

Default: []

Like extension_modules, but a list of extra directories to search for Salt modules.

module_dirs:

- /var/cache/salt/minion/extmods

54

Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

cachedir

Default: /var/cache/salt/master
The location used to store cache information, particularly the job information for executed salt commands.

This directory may contain sensitive data and should be protected accordingly.

cachedir: /var/cache/salt/master

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

keep_jobs

Default: 24

Set the number of hours to keep old job information. Note that setting this option to @ disables the cache cleaner.

keep_jobs: 24

gather_job_timeout

New in version 2014.7.0.
Default: 10

The number of seconds to wait when the client is requesting information about running jobs.

gather_job_timeout: 10

timeout

Default: 5

Set the default timeout for the salt command and api.

loop_1interval

Default: 60

The loop_interval option controls the seconds for the master’s maintenance process check cycle. This process updates
file server backends, cleans the job cache and executes the scheduler.

output

Default: nested

Set the default outputter used by the salt command.

3.1. Configuring the Salt Master 55

Salt Documentation, Release 2019.2.2

outputter_dirs

Default: []

A list of additional directories to search for salt outputters in.

outputter_dirs: []

output_file

Default: None

Set the default output file used by the salt command. Default is to output to the CLI and not to a file. Functions the
same way as the "—out-file” CLI option, only sets this to a single file for all salt commands.

output_file: /path/output/file

show_timeout

Default: True

Tell the client to show minions that have timed out.

show_timeout: True

show_jid

Default: False

Tell the client to display the jid when a job is published.

show_jid: False

color

Default: True

By default output is colored, to disable colored output set the color value to False.

color: False

color_theme

Default: """

Specifies a path to the color theme to use for colored command line output.

color_theme: /etc/salt/color_theme

56

Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

cli_summary

Default: False

When set to True, displays a summary of the number of minions targeted, the number of minions returned, and
the number of minions that did not return.

cli_summary: False

sock_dir

Default: /var/run/salt/master

Set the location to use for creating Unix sockets for master process communication.

sock_dir: /var/run/salt/master

enable_gpu_grains

Default: False

Enable GPU hardware data for your master. Be aware that the master can take a while to start up when Ispci and/or
dmidecode is used to populate the grains for the master.

enable_gpu_grains: True

job_cache

Default: True

The master maintains a temporary job cache. While this is a great addition, it can be a burden on the master for
larger deployments (over 5000 minions). Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended. Normally it is wise to make sure the master has access to a faster
IO system or a tmpfs is mounted to the jobs dir.

job_cache: True

Note: Setting the job_cache to False will not cache minion returns, but the JID directory for each job is
still created. The creation of the JID directories is necessary because Salt uses those directories to check for JID
collisions. By setting this option to False, the job cache directory, which is /var/cache/salt/master/
jobs/ by default, will be smaller, but the JID directories will still be present.

Note that the keep_ jobs option can be set to a lower value, such as 1, to limit the number of hours jobs are stored
in the job cache. (The default is 24 hours.)

Please see the Managing the Job Cache documentation for more information.

minion_data_cache

Default: True

3.1. Configuring the Salt Master 57

Salt Documentation, Release 2019.2.2

The minion data cache is a cache of information about the minions stored on the master, this information is primarily
the pillar, grains and mine data. The data is cached via the cache subsystem in the Master cachedir under the name
of the minion or in a supported database. The data is used to predetermine what minions are expected to reply from
executions.

minion_data_cache: True

cache

Default: localfs

Cache subsystem module to use for minion data cache.

cache: consul

memcache_expire_seconds

Default: 0

Memcache is an additional cache layer that keeps a limited amount of data fetched from the minion data cache for a
limited period of time in memory that makes cache operations faster. It doesn’t make much sense for the localfs
cache driver but helps for more complex drivers like consu'l.

This option sets the memcache items expiration time. By default is set to O that disables the memcache.

memcache_expire_seconds: 30

memcache_max_items

Default: 1024

Set memcache limit in items that are bank-key pairs. Le the list of minion_0/data, minion_0/mine, minion_1/data
contains 3 items. This value depends on the count of minions usually targeted in your environment. The best one
could be found by analyzing the cache log with memcache_debug enabled.

memcache_max_items: 1024

memcache_full_cleanup

Default: False

If cache storage got full, i.e. the items count exceeds the memcache_max_1items value, memcache cleans up it’s
storage. If this option set to False memcache removes the only one oldest value from it’s storage. If this set set to
True memcache removes all the expired items and also removes the oldest one if there are no expired items.

memcache_full_cleanup: True

memcache_debug

Default: False

Enable collecting the memcache stats and log it on debug log level. If enabled memcache collect information about
how many fetch calls has been done and how many of them has been hit by memcache. Also it outputs the rate

58 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

value that is the result of division of the first two values. This should help to choose right values for the expiration
time and the cache size.

memcache_debug: True

ext_job_cache

Default: "'

Used to specify a default returner for all minions. When this option is set, the specified returner needs to be properly
configured and the minions will always default to sending returns to this returner. This will also disable the local
job cache on the master.

ext_job_cache: redis

event_return

New in version 2015.5.0.
Default: '

Specify the returner(s) to use to log events. Each returner may have installation and configuration requirements.
Read the returner’s documentation.

Note: Not all returners support event returns. Verify that a returner has an event_return() function before
configuring this option with a returner.

event_return:
- syslog
- splunk

event_return_queue

New in version 2015.5.0.
Default: 0

On busy systems, enabling event_returns can cause a considerable load on the storage system for returners. Events
can be queued on the master and stored in a batched fashion using a single transaction for multiple events. By
default, events are not queued.

event_return_queue: 0

event_return_whitelist

New in version 2015.5.0.
Default: []
Only return events matching tags in a whitelist.

Changed in version 2016.11.0: Supports glob matching patterns.

3.1. Configuring the Salt Master 59

Salt Documentation, Release 2019.2.2

event_return_whitelist:
- salt/master/a_tag
- salt/run/x/ret

event_return_blacklist

New in version 2015.5.0.
Default: []
Store all event returns _except_ the tags in a blacklist.

Changed in version 2016.11.0: Supports glob matching patterns.

event_return_blacklist:
- salt/master/not_this_tag
- salt/wheel/*/ret

max_event_size

New in version 2014.7.0.
Default: 1048576

Passing very large events can cause the minion to consume large amounts of memory. This value tunes the maximum
size of a message allowed onto the master event bus. The value is expressed in bytes.

max_event_size: 1048576

master_job_cache

New in version 2014.7.0.
Default: Llocal_cache

Specify the returner to use for the job cache. The job cache will only be interacted with from the salt master and
therefore does not need to be accessible from the minions.

master_job_cache: redis

job_cache_store_endtime

New in version 2015.8.0.
Default: False

Specify whether the Salt Master should store end times for jobs as returns come in.

job_cache_store_endtime: False

60 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

enforce_mine_cache

Default: False

By-default when disabling the minion_data_cache mine will stop working since it is based on cached data, by en-
abling this option we explicitly enabling only the cache for the mine system.

enforce_mine_cache: False

max_minions

Default: 0

The maximum number of minion connections allowed by the master. Use this to accommodate the number of
minions per master if you have different types of hardware serving your minions. The default of ® means unlimited
connections. Please note that this can slow down the authentication process a bit in large setups.

max_minions: 100

con_cache

Default: False

If max_minions is used in large installations, the master might experience high-load situations because of having to
check the number of connected minions for every authentication. This cache provides the minion-ids of all connected
minions to all MWorker-processes and greatly improves the performance of max_minions.

con_cache: True

presence_events

Default: False

Causes the master to periodically look for actively connected minions. Presence events are fired on the event bus on
a regular interval with a list of connected minions, as well as events with lists of newly connected or disconnected
minions. This is a master-only operation that does not send executions to minions.

presence_events: False

ping_on_rotate

New in version 2014.7.0.
Default: False

By default, the master AES key rotates every 24 hours. The next command following a key rotation will trigger a
key refresh from the minion which may result in minions which do not respond to the first command after a key
refresh.

To tell the master to ping all minions immediately after an AES key refresh, set ping_on_rotate to True. This
should mitigate the issue where a minion does not appear to initially respond after a key is rotated.

Note that enabling this may cause high load on the master immediately after the key rotation event as minions
reconnect. Consider this carefully if this salt master is managing a large number of minions.

3.1. Configuring the Salt Master 61

Salt Documentation, Release 2019.2.2

If disabled, it is recommended to handle this event by listening for the aes_key_rotate event with the key tag
and acting appropriately.

ping_on_rotate: False

transport

Default: zeromq

Changes the underlying transport layer. ZeroMQ is the recommended transport while additional transport layers
are under development. Supported values are zeromq, raet (experimental), and tcp (experimental). This setting
has a significant impact on performance and should not be changed unless you know what you are doing!

transport: zeromq

transport_opts

Default: {}

(experimental) Starts multiple transports and overrides options for each transport with the provided dictionary This
setting has a significant impact on performance and should not be changed unless you know what you are doing!
The following example shows how to start a TCP transport alongside a ZMQ transport.

transport_opts:
tecp:
publish_port: 4605
ret_port: 4606
zeromq: []

master_stats

Default: False

Turning on the master stats enables runtime throughput and statistics events to be fired from the master event bus.
These events will report on what functions have been run on the master and how long these runs have, on average,
taken over a given period of time.

master_stats_event_-iter

Default: 60

The time in seconds to fire master_stats events. This will only fire in conjunction with receiving a request to the
master, idle masters will not fire these events.

sock_pool_size

Default: 1

To avoid blocking waiting while writing a data to a socket, we support socket pool for Salt applications. For example,
a job with a large number of target host list can cause long period blocking waiting. The option is used by ZMQ
and TCP transports, and the other transport methods don’t need the socket pool by definition. Most of Salt tools,
including CLI, are enough to use a single bucket of socket pool. On the other hands, it is highly recommended to set

62 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

the size of socket pool larger than 1 for other Salt applications, especially Salt API, which must write data to socket

concurrently.

sock_pool_size: 15

ipc_mode

Default: ipc

The ipc strategy. (i.e., sockets versus tcp, etc.) Windows platforms lack POSIX IPC and must rely on TCP based

inter-process communications. ipc_mode is set to tcp by default on Windows.

ipc_mode: -ipc

tcp_master_pub_port

Default: 4512
The TCP port on which events for the master should be published if ipc_mode is TCP.

tcp_master_pub_port: 4512

tcp_master_pull_port

Default: 4513
The TCP port on which events for the master should be pulled if ipc_mode is TCP.

tcp_master_pull_port: 4513

tcp_master_publish_pull

Default: 4514

The TCP port on which events for the master should be pulled fom and then republished onto the event bus on the

master.

tcp_master_publish_pull: 4514

tcp_master_workers

Default: 4515

The TCP port for mworkers to connect to on the master.

tcp_master_workers: 4515

3.1. Configuring the Salt Master

63

Salt Documentation, Release 2019.2.2

auth_events

New in version 2017.7.3.
Default: True

Determines whether the master will fire authentication events. Authentication events are fired when a minion per-
forms an authentication check with the master.

auth_events: True

minion_data_cache_events

New in version 2017.7.3.
Default: True

Determines whether the master will fire minion data cache events. Minion data cache events are fired when a minion
requests a minion data cache refresh.

minion_data_cache_events: True

http_connect_timeout

New in version 2019.2.0.
Default: 20

HTTP connection timeout in seconds. Applied when fetching files using tornado back-end. Should be greater than
overall download time.

http_connect_timeout: 20

http_request_timeout

New in version 2015.8.0.
Default: 3600

HTTP request timeout in seconds. Applied when fetching files using tornado back-end. Should be greater than
overall download time.

http_request_timeout: 3600

3.1.2 Salt-SSH Configuration

roster

Default: flat

Define the default salt-ssh roster module to use

roster: cache

64 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

roster_defaults

New in version 2017.7.0.

Default settings which will be inherited by all rosters.

roster_defaults:
user: daniel
sudo: True
priv: /root/.ssh/id_rsa
tty: True

roster_file

Default: /etc/salt/roster

Pass in an alternative location for the salt-ssh flat roster file.

roster_file: /root/roster

rosters

Default: None

Define locations for f lat roster files so they can be chosen when using Salt API. An administrator can place roster
files into these locations. Then, when calling Salt AP, the roster_ file parameter should contain a relative path
to these locations. That is, roster_file=/foo/roster will be resolved as /etc/salt/roster.d/foo/
roster etc. This feature prevents passing insecure custom rosters through the Salt APL

rosters:
- /etc/salt/roster.d
- /opt/salt/some/more/rosters

ssh_passwd

Default: '

The ssh password to log in with.

ssh_passwd:

ssh_priv_passwd

Default: "'

Passphrase for ssh private key file.

ssh_priv_passwd:

3.1. Configuring the Salt Master 65

Salt Documentation, Release 2019.2.2

ssh_port

Default: 22

The target system’s ssh port number.

ssh_port: 22

ssh_scan_ports

Default: 22

Comma-separated list of ports to scan.

ssh_scan_ports: 22

ssh_scan_timeout

Default: 0.01

Scanning socket timeout for salt-ssh.

ssh_scan_timeout: 0.01

ssh_sudo

Default: False

Boolean to run command via sudo.

ssh_sudo: False

ssh_timeout

Default: 60

Number of seconds to wait for a response when establishing an SSH connection.

ssh_timeout: 60

ssh_user

Default: root

The user to log in as.

ssh_user: root

66

Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

ssh_log_file

New in version 2016.3.5.
Default: /var/log/salt/ssh
Specify the log file of the salt-ssh command.

ssh_log_file: /var/log/salt/ssh

ssh_minion_opts

Default: None

Pass in minion option overrides that will be inserted into the SHIM for salt-ssh calls. The local minion config is not

used for salt-ssh. Can be overridden on a per-minion basis in the roster (ninion_opts)

ssh_minion_opts:
gpg_keydir: /root/gpg

ssh_use_home_key

Default: False

Set this to True to default to using ~/ . ssh/id_rsa for salt-ssh authentication with minions

ssh_use_home_key: False

ssh_identities_only

Default: False

Set this to True to default salt-ssh to run with —o IdentitiesOnly=yes. This option is intended for situations
where the ssh-agent offers many different identities and allows ssh to ignore those identities and use the only one

specified in options.

ssh_identities_only: False

ssh_1list_nodegroups

Default: {}

List-only nodegroups for salt-ssh. Each group must be formed as either a comma-separated list, or a YAML list. This
option is useful to group minions into easy-to-target groups when using salt-ssh. These groups can then be targeted

with the normal -N argument to salt-ssh.

ssh_1list_nodegroups:
groupA: minionl,minion2
groupB: minionl,minion3

3.1. Configuring the Salt Master

67

Salt Documentation, Release 2019.2.2

thin_extra_mods

Default: None

List of additional modules, needed to be included into the Salt Thin. Pass a list of importable Python modules that
are typically located in the site-packages Python directory so they will be also always included into the Salt Thin,
once generated.

min_extra_mods

Default: None

Identical as thin_extra_mods, only applied to the Salt Minimal.

3.1.3 Master Security Settings
open_mode

Default: False

Open mode is a dangerous security feature. One problem encountered with pki authentication systems is that keys
can become “mixed up” and authentication begins to fail. Open mode turns off authentication and tells the master
to accept all authentication. This will clean up the pki keys received from the minions. Open mode should not be
turned on for general use. Open mode should only be used for a short period of time to clean up pki keys. To turn
on open mode set this value to True.

open_mode: False

auto_accept

Default: False

Enable auto_accept. This setting will automatically accept all incoming public keys from minions.

auto_accept: False

keysize

Default: 2048

The size of key that should be generated when creating new keys.

keysize: 2048

autosign_timeout

New in version 2014.7.0.
Default: 120

Time in minutes that a incoming public key with a matching name found in pki_dir/minion_autosign/keyid is au-
tomatically accepted. Expired autosign keys are removed when the master checks the minion_autosign directory.
This method to auto accept minions can be safer than an autosign_file because the keyid record can expire and is

68 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

limited to being an exact name match. This should still be considered a less than secure option, due to the fact that
trust is based on just the requesting minion id.

autosign_file

Default: not defined

If the autosign_file is specified incoming keys specified in the autosign_file will be automatically accepted.
Matches will be searched for first by string comparison, then by globbing, then by full-string regex matching. This
should still be considered a less than secure option, due to the fact that trust is based on just the requesting minion
id.

Changed in version 2018.3.0: For security reasons the file must be readonly except for it’s owner. If
permissive_pki_access is True the owning group can also have write access, but if Salt is running as root
it must be a member of that group. A less strict requirement also existed in previous version.

autoreject_file

New in version 2014.1.0.
Default: not defined

Works like autosign_f1ile, but instead allows you to specify minion IDs for which keys will automatically be
rejected. Will override both membership in the autosign_f1ile and the auto_accept setting.

autosign_grains_dir

New in version 2018.3.0.
Default: not defined

If the autosign_grains_dir is specified, incoming keys from minions with grain values that match those
defined in files in the autosign_grains_dir will be accepted automatically. Grain values that should be accepted
automatically can be defined by creating a file named like the corresponding grain in the autosign_grains_dir and
writing the values into that file, one value per line. Lines starting with a # will be ignored. Minion must be configured
to send the corresponding grains on authentication. This should still be considered a less than secure option, due to
the fact that trust is based on just the requesting minion.

Please see the Autoaccept Minions from Grains documentation for more information.

autosign_grains_dir: /etc/salt/autosign_grains

permissive_pki_access

Default: False

Enable permissive access to the salt keys. This allows you to run the master or minion as root, but have a non-root
group be given access to your pki_dir. To make the access explicit, root must belong to the group you’ve given access
to. This is potentially quite insecure. If an autosign_file is specified, enabling permissive_pki_access will allow group
access to that specific file.

permissive_pki_access: False

3.1. Configuring the Salt Master 69

Salt Documentation, Release 2019.2.2

publisher_acl

Default: {}

Enable user accounts on the master to execute specific modules. These modules can be expressed as regular expres-
sions.

publisher_acl:
fred:
- test.ping
- pkg.*

publisher_acl_blacklist

Default: {}
Blacklist users or modules

This example would blacklist all non sudo users, including root from running any commands. It would also blacklist
any use of the cmd” module.

This is completely disabled by default.

publisher_acl_blacklist:
users:
- root
- '"A(?!sudo_) .*$' # all non sudo users
modules:
- cmd.*
- test.echo

sudo_acl

Default: False

Enforce publisher_acland publisher_acl_blacklist when usershave sudo access to the salt command.

sudo_acl: False

external_auth

Default: {}

The external auth system uses the Salt auth modules to authenticate and validate users to access areas of the Salt
system.

external_auth:
pam:
fred:
- test.x

70 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

token_expire

Default: 43200
Time (in seconds) for a newly generated token to live.

Default: 12 hours

token_expire: 43200

token_expire_user_override

Default: False
Allow eauth users to specify the expiry time of the tokens they generate.

A boolean applies to all users or a dictionary of whitelisted eauth backends and usernames may be given:

token_expire_user_override:
pam:
- fred
- tom
ldap:
- gary

keep_acl_1in_token

Default: False

Set to True to enable keeping the calculated user’s auth list in the token file. This is disabled by default and the auth
list is calculated or requested from the eauth driver each time.

keep_acl_in_token: False

eauth_acl_module

Default: ''

Auth subsystem module to use to get authorized access list for a user. By default it’s the same module used for
external authentication.

eauth_acl_module: django

file_recv

Default: False

Allow minions to push files to the master. This is disabled by default, for security purposes.

file_recv: False

3.1. Configuring the Salt Master 71

Salt Documentation, Release 2019.2.2

file_recv_max_size

New in version 2014.7.0.
Default: 100

Set a hard-limit on the size of the files that can be pushed to the master. It will be interpreted as megabytes.

file_recv_max_size: 100

master_sign_pubkey

Default: False

Sign the master auth-replies with a cryptographic signature of the master’s public key. Please see the tutorial how
to use these settings in the Multimaster-PKI with Failover Tutorial

master_sign_pubkey: True

master_sign_key_name

Default: master_s1ign

The customizable name of the signing-key-pair without suffix.

master_sign_key_name: <filename_without_suffix>

master_pubkey_signature

Default: master_pubkey_signature

The name of the file in the master’s pki-directory that holds the pre-calculated signature of the master’s public-key.

master_pubkey_signature: <filename>

master_use_pubkey_signature

Default: False

Instead of computing the signature for each auth-reply, use a pre-calculated signature. The
master_pubkey_signature must also be set for this.

master_use_pubkey_signature: True

rotate_aes_key

Default: True

Rotate the salt-masters AES-key when a minion-public is deleted with salt-key. This is a very important security-
setting. Disabling it will enable deleted minions to still listen in on the messages published by the salt-master. Do
not disable this unless it is absolutely clear what this does.

72 Chapter 3. Configuring Salt

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2019.2.2

rotate_aes_key: True

publish_session

Default: 86400

The number of seconds between AES key rotations on the master.

publish_session: Default: 86400

ssl

New in version 2016.11.0.
Default: None

TLS/SSL connection options. This could be set to a dictionary containing arguments corresponding to python ss'l.
wrap_socket method. For details see Tornado and Python documentation.

Note: to set enum arguments values like cert_reqs and ss1_version use constant names without ssl module
prefix: CERT_REQUIRED or PROTOCOL_SSLv23.

ssl:
keyfile: <path_to_keyfile>
certfile: <path_to_certfile>
ssl_version: PROTOCOL_TLSv1_2

preserve_minion_cache

Default: False

By default, the master deletes its cache of minion data when the key for that minion is removed. To preserve the
cache after key deletion, set preserve_minion_cache to True.

WARNING: This may have security implications if compromised minions auth with a previous deleted minion ID.

preserve_minion_cache: False

allow_minion_key_revoke

Default: True

Controls whether a minion can request its own key revocation. When True the master will honor the minion’s
request and revoke its key. When False, the master will drop the request and the minion’s key will remain accepted.

allow_minion_key_revoke: False

optimization_order

Default: [0, 1, 2]

In cases where Salt is distributed without .py files, this option determines the priority of optimization level(s) Salt’s
module loader should prefer.

3.1. Configuring the Salt Master 73

http://www.tornadoweb.org/en/stable/tcpserver.html#tornado.tcpserver.TCPServer
http://docs.python.org/2/library/ssl.html#ssl.wrap_socket

Salt Documentation, Release 2019.2.2

Note: This option is only supported on Python 3.5+.

optimization_order:
-2

-0
1

3.1.4 Master Large Scale Tuning Settings
max_open_Tfiles

Default: 100000

Each minion connecting to the master uses AT LEAST one file descriptor, the master subscription connection. If
enough minions connect you might start seeing on the console(and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)

max_open_files: 100000

By default this value will be the one of ulimit -Hn, i.e., the hard limit for max open files.

To set a different value than the default one, uncomment, and configure this setting. Remember that this value
CANNOT be higher than the hard limit. Raising the hard limit depends on the OS and/or distribution, a good way
to find the limit is to search the internet for something like this:

raise max open files hard limit debian

worker_threads

Default: 5

The number of threads to start for receiving commands and replies from minions. If minions are stalling on replies
because you have many minions, raise the worker_threads value.

Worker threads should not be put below 3 when using the peer system, but can drop down to 1 worker otherwise.

Note: When the master daemon starts, it is expected behaviour to see multiple salt-master processes, even if
‘worker_threads’ is set to *1’. At a minimum, a controlling process will start along with a Publisher, an EventPub-
lisher, and a number of MWorker processes will be started. The number of MWorker processes is tuneable by the
‘worker_threads’ configuration value while the others are not.

worker_threads: 5

pub_hwm

Default: 1000

The zeromq high water mark on the publisher interface.

74 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

pub_hwm: 1000

zmq_backlog

Default: 1000
The listen queue size of the ZeroMQ backlog.

zmq_backlog: 1000

3.1.5 Master Module Management

runner_dirs

Default: []

Set additional directories to search for runner modules.

runner_dirs:
- /var/lib/salt/runners

utils_dirs

New in version 2018.3.0.
Default: []

Set additional directories to search for util modules.

utils_dirs:
- /var/lib/salt/utils

cython_enable

Default: False

Set to true to enable Cython modules (.pyx files) to be compiled on the fly on the Salt master.

cython_enable: False

3.1.6 Master State System Settings

state_top

Default: top.sls

The state system uses a "top” file to tell the minions what environment to use and what modules to use. The state_top
file is defined relative to the root of the base environment. The value of state_top” is also used for the pillar top file

state_top: top.sls

3.1. Configuring the Salt Master 75

Salt Documentation, Release 2019.2.2

state_top_saltenv

This option has no default value. Set it to an environment name to ensure that only the top file from that environment
is considered during a highstate.

Note: Using this value does not change the merging strategy. For instance, if top_file_merging_strategy
is set to merge, and state_top_saltenv is set to foo, then any sections for environments other than foo in
the top file for the foo environment will be ignored. With state_top_saltenv set to base, all states from
all environments in the base top file will be applied, while all other top files are ignored. The only way to set
state_top_saltenv to something other than base and not have the other environments in the targeted top
file ignored, would be to set top_file_merging_strategy tomerge_all.

state_top_saltenv: dev

top_file_merging_strategy

Changed in version 2016.11.0: A merge_all strategy has been added.
Default: merge

When no specific fileserver environment (a.k.a. saltenv) has been specified for a highstate, all environments’ top
files are inspected. This config option determines how the SLS targets in those top files are handled.

When set to merge, the base environment’s top file is evaluated first, followed by the other environments’ top
files. The first target expression (e.g. '* ') for a given environment is kept, and when the same target expression
is used in a different top file evaluated later, it is ignored. Because base is evaluated first, it is authoritative. For
example, if there is a target for ' x' for the foo environment in both the base and foo environment’s top files, the
one in the foo environment would be ignored. The environments will be evaluated in no specific order (aside from
base coming first). For greater control over the order in which the environments are evaluated, use env_order.
Note that, aside from the base environment’s top file, any sections in top files that do not match that top file’s
environment will be ignored. So, for example, a section for the ga environment would be ignored if it appears in
the dev environment’s top file. To keep use cases like this from being ignored, use the merge_all strategy.

When set to same, then for each environment, only that environment’s top file is processed, with the others being
ignored. For example, only the dev environment’s top file will be processed for the dev environment, and any
SLS targets defined for dev in the base environment’s (or any other environment’s) top file will be ignored. If an
environment does not have a top file, then the top file from the default_top config parameter will be used as a
fallback.

When set to merge_a'll, then all states in all environments in all top files will be applied. The order in which
individual SLS files will be executed will depend on the order in which the top files were evaluated, and the envi-
ronments will be evaluated in no specific order. For greater control over the order in which the environments are
evaluated, use env_order.

top_file_merging_strategy: same

env_order

Default: []

When top_file_merging_strategy is set to merge, and no environment is specified for a highstate, this
config option allows for the order in which top files are evaluated to be explicitly defined.

76 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

env_order:
- base
- dev

- qa

master_tops

Default: {}

The master_tops option replaces the external_nodes option by creating a pluggable system for the generation of
external top data. The external_nodes option is deprecated by the master_tops option. To gain the capabilities of the
classic external_nodes system, use the following configuration:

master_tops:
ext_nodes: <Shell command which returns yaml>

renderer

Default: jinja|yaml

The renderer to use on the minions to render the state data.

renderer: jinja|json

userdata_template

New in version 2016.11.4.
Default: None

The renderer to use for templating userdata files in salt-cloud, if the userdata_template is not set in the cloud
profile. If no value is set in the cloud profile or master config file, no templating will be performed.

userdata_template: jinja

jinja_env
New in version 2018.3.0.

Default: {}

jinja_env overrides the default Jinja environment options for all templates except sls templates. To set the options
for sls templates use jinja_sls_env.

Note: The Jinja2 Environment documentation is the official source for the default values. Not all the options listed
in the jinja documentation can be overridden using jinja_env or jinja_sls_env.

The default options are:

3.1. Configuring the Salt Master 77

http://jinja.pocoo.org/docs/api/#jinja2.Environment

Salt Documentation, Release 2019.2.2

jinja_env:
block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
1strip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

jinja_sls_env

New in version 2018.3.0.
Default: {}

jinja_sls_env sets the Jinja environment options for sls templates. The defaults and accepted options are exactly the
same as they are for jinja_env.

The default options are:

jinja_sls_env:
block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
1strip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

Example using line statements and line comments to increase ease of use:

If your configuration options are

jinja_sls_env:
line_statement_prefix: '%'
line_comment_prefix: '##'

With these options jinja will interpret anything after a % at the start of a line (ignoreing whitespace) as a jinja
statement and will interpret anything after a ## as a comment.

This allows the following more convenient syntax to be used:

(this comment will not stay once rendered)

(this comment remains 1in the rendered template)
ensure all the formula services are running

% for service in formula_services:
enable_service_{{ service }}:

(continues on next page)

78 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

service.running:
name: {{ service }}
% endfor

The following less convenient but equivalent syntax would have to be used if you had not set the line_statement and
line_comment options:

{# (this comment will not stay once rendered) #}
(this comment remains in the rendered template)
{# ensure all the formula services are running #}
% for service in formula_services %
enable_service_{{ service }}:

service.running:

name: {{ service }}

% endfor %}

jinja_trim_blocks

Deprecated since version 2018.3.0: Replaced by jinja_env and jinja_sls_env
New in version 2014.1.0.
Default: False

If this is set to True, the first newline after a Jinja block is removed (block, not variable tag!). Defaults to False
and corresponds to the Jinja environment init variable trim_blocks.

jinja_trim_blocks: False

jinja_lstrip_blocks

Deprecated since version 2018.3.0: Replaced by jinja_env and jinja_sls_env
New in version 2014.1.0.
Default: False

If this is set to True, leading spaces and tabs are stripped from the start of a line to a block. Defaults to False and
corresponds to the Jinja environment init variable lstrip_blocks.

jinja_lstrip_blocks: False

failhard

Default: False

Set the global failhard flag. This informs all states to stop running states at the moment a single state fails.

failhard: False

3.1. Configuring the Salt Master 79

Salt Documentation, Release 2019.2.2

state_verbose

Default: True

Controls the verbosity of state runs. By default, the results of all states are returned, but setting this value to False
will cause salt to only display output for states that failed or states that have changes.

state_verbose: False

state_output

Default: full

The state_output setting controls which results will be output full multi line:
« full, terse - each state will be full/terse
« mixed - only states with errors will be full
« changes - states with changes and errors will be full

full_-id,mixed_id, changes_idand terse_1id are also allowed; when set, the state ID will be used as name
in the output.

state_output: full

state_output_diff

Default: False

The state_output_diff setting changes whether or not the output from successful states is returned. Useful when
even the terse output of these states is cluttering the logs. Set it to True to ignore them.

state_output_diff: False

state_aggregate

Default: False

Automatically aggregate all states that have support for mod_aggregate by setting to True. Or pass a list of state
module names to automatically aggregate just those types.

state_aggregate:
- pkg

state_aggregate: True

state_events

Default: False

Send progress events as each function in a state run completes execution by setting to True. Progress events are in
the format salt/job/<JID>/prog/<MID>/<RUN NUM>.

80 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

state_events: True

yaml_utfs8

Default: False

Enable extra routines for YAML renderer used states containing UTF characters.

yaml_utf8: False

runner_returns

Default: False

If set to True, runner jobs will be saved to job cache (defined by master_job_cache).

runner_returns: True

3.1.7 Master File Server Settings

fileserver_backend

Default: ['roots']

Salt supports a modular fileserver backend system, this system allows the salt master to link directly to third party
systems to gather and manage the files available to minions. Multiple backends can be configured and will be
searched for the requested file in the order in which they are defined here. The default setting only enables the
standard backend roots, which is configured using the file_roots option.

Example:

fileserver_backend:
- roots
- gitfs

Note: For masterless Salt, this parameter must be specified in the minion config file.

fileserver_followsymlinks

New in version 2014.1.0.
Default: True

By default, the file_server follows symlinks when walking the filesystem tree. Currently this only applies to the
default roots fileserver_backend.

fileserver_followsymlinks: True

3.1. Configuring the Salt Master 81

Salt Documentation, Release 2019.2.2

fileserver_ignoresymlinks

New in version 2014.1.0.
Default: False

If you do not want symlinks to be treated as the files they are pointing to, set fileserver_ignoresymlinks
to True. By default this is set to False. When set to True, any detected symlink while listing files on the Master
will not be returned to the Minion.

fileserver_ignoresymlinks: False

fileserver_limit_traversal

New in version 2014.1.0.

Deprecated since version 2018.3.4: This option is now ignored. Firstly, it only traversed 1 le_roots, which means
it did not work for the other fileserver backends. Secondly, since this option was added we have added caching to
the code that traverses the file_roots (and gitfs, etc.), which greatly reduces the amount of traversal that is done.

Default: False

By default, the Salt fileserver recurses fully into all defined environments to attempt to find files. To limit this
behavior so that the fileserver only traverses directories with SLS files and special Salt directories like _modules, set
fileserver_limit_traversal to True. This might be useful for installations where a file root has a very
large number of files and performance is impacted.

fileserver_limit_traversal: False

fileserver_list_cache_time

New in version 2014.1.0.
Changed in version 2016.11.0: The default was changed from 30 seconds to 20.
Default: 20

Salt caches the list of files/symlinks/directories for each fileserver backend and environment as they are requested,
to guard against a performance bottleneck at scale when many minions all ask the fileserver which files are available
simultaneously. This configuration parameter allows for the max age of that cache to be altered.

Set this value to O to disable use of this cache altogether, but keep in mind that this may increase the CPU load on
the master when running a highstate on a large number of minions.

Note: Rather than altering this configuration parameter, it may be advisable to use the fileserver.
clear_file_list_cache runner to clear these caches.

fileserver_list_cache_time: 5

fileserver_verify_config

New in version 2017.7.0.

Default: True

82 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

By default, as the master starts it performs some sanity checks on the configured fileserver backends. If any of these
sanity checks fail (such as when an invalid configuration is used), the master daemon will abort.

To skip these sanity checks, set this option to False.

fileserver_verify_config: False

hash_type

Default: sha256

The hash_type is the hash to use when discovering the hash of a file on the master server. The default is sha256, but
md5, shal, sha224, sha384, and sha512 are also supported.

hash_type: sha256

file_buffer_size

Default: 1048576

The buffer size in the file server in bytes.

file_buffer_size: 1048576

file_ignore_regex

Default: ''

A regular expression (or a list of expressions) that will be matched against the file path before syncing the modules
and states to the minions. This includes files affected by the file.recurse state. For example, if you manage your
custom modules and states in subversion and don’t want all the ".svn’ folders and content synced to your minions,
you could set this to ’/.svn($|/)’. By default nothing is ignored.

file_ignore_regex:
- "/\.svn($]/)!
- /\.git(s]/)!

file_ignore_glob

Default "'

A file glob (or list of file globs) that will be matched against the file path before syncing the modules and states to
the minions. This is similar to file_ignore_regex above, but works on globs instead of regex. By default nothing is
ignored.

file_ignore_glob:
- "\x.pyc'
- '"\x/somefolder/*.bak'
- "*.swp'

3.1. Configuring the Salt Master 83

Salt Documentation, Release 2019.2.2

Note: Vim’s .swp files are a common cause of Unicode errors in file. recurse states which use templating.
Unless there is a good reason to distribute them via the fileserver, it is good practice to include '\ *.swp"' in the
file_ignore_glob

master_roots

Default: /srv/salt-master

A master-only copy of the file_roots dictionary, used by the state compiler.

master_roots: /srv/salt-master

roots: Master’s Local File Server

file_roots

Default:

base:
- /srv/salt

Salt runs a lightweight file server written in ZeroMQ to deliver files to minions. This file server is built into the
master daemon and does not require a dedicated port.

The file server works on environments passed to the master. Each environment can have multiple root directories.
The subdirectories in the multiple file roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.

As of 2018.3.5 and 2019.2.1, it is possible to have __env__ as a catch-all environment.

Example:

file_roots:
base:
- /srv/salt
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states
__env__
- /srv/salt/default

Note: For masterless Salt, this parameter must be specified in the minion config file.

roots_update_interval

New in version 2018.3.0.

Default: 60

84 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

This option defines the update interval (in seconds) for file_roots.

Note: Since file_roots consists of files local to the minion, the update process for this fileserver backend just
reaps the cache for this backend.

roots_update_dinterval: 120

gitfs: Git Remote File Server Backend

gitfs_remotes

Default: []

When using the g1t fileserver backend at least one git remote needs to be defined. The user running the salt master
will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. Branches and tags are translated into salt environments.

gitfs_remotes:
- git://github.com/saltstack/salt-states.git
- file:///var/git/saltmaster

Note: file:// repos will be treated as a remote and copied into the master’s gitfs cache, so only the local refs for
those repos will be exposed as fileserver environments.

As of 2014.7.0, it is possible to have per-repo versions of several of the gitfs configuration parameters. For more
information, see the GitFS Walkthrough.

gitfs_provider

New in version 2014.7.0.

Optional parameter used to specify the provider to be used for gitfs. More information can be found in the GitFS
Walkthrough.

Must be either pygit2 or gitpython. If unset, then each will be tried in that same order, and the first one with
a compatible version installed will be the provider that is used.

gitfs_provider: gitpython

gitfs_ssl_verify

Default: True

Specifies whether or not to ignore SSL certificate errors when fetching from the repositories configured in
gitfs_remotes. The False setting is useful if you're using a git repo that uses a self-signed certificate. However,
keep in mind that setting this to anything other True is a considered insecure, and using an SSH-based transport
(if available) may be a better option.

3.1. Configuring the Salt Master 85

Salt Documentation, Release 2019.2.2

gitfs_ssl_verify: False

Note: pygit2 only supports disabling SSL verification in versions 0.23.2 and newer.

Changed in version 2015.8.0: This option can now be configured on individual repositories as well. See here for more
info.

Changed in version 2016.11.0: The default config value changed from False to True.

gitfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver which will be prepended to all files served by gitfs. This option can be used in
conjunction with gitfs_root. It can also be configured for an individual repository, see here for more info.

gitfs_mountpoint: salt://foo/bar

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent). Assuming a file baz. sh in the root of a gitfs remote, and the above example mountpoint, this file would
be served up via salt://foo/bar/baz.sh.

gitfs_root

Default: ''

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
gitfs_mountpoint. If used, then from Salt’s perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of gitfs) be considered as the root of the repo.

gitfs_root: somefolder/otherfolder

Changed in version 2014.7.0: This option can now be configured on individual repositories as well. See here for more
info.

gitfs_base

Default: master

Defines which branch/tag should be used as the base environment.

gitfs_base: salt

Changed in version 2014.7.0: This option can now be configured on individual repositories as well. See here for more
info.

86 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

gitfs_saltenv

New in version 2016.11.0.
Default: []

Global settings for per-saltenv configuration parameters. Though per-saltenv configuration parameters are typically
one-off changes specific to a single gitfs remote, and thus more often configured on a per-remote basis, this parameter
can be used to specify per-saltenv changes which should apply to all remotes. For example, the below configuration
will map the develop branch to the dev saltenv for all gitfs remotes.

gitfs_saltenv:
- dev:
- ref: develop

gitfs_disable_saltenv_mapping

New in version 2018.3.0.
Default: False

When set to True, all saltenv mapping logic is disregarded (aside from which branch/tag is mapped to the base
saltenv). To use any other environments, they must then be defined using per-saltenv configuration parameters.

gitfs_disable_saltenv_mapping: True

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_ref_types

New in version 2018.3.0.
Default: ['branch', 'tag', 'sha']

This option defines what types of refs are mapped to fileserver environments (i.e. saltenvs). It also sets the order
of preference when there are ambiguously-named refs (i.e. when a branch and tag both have the same name). The
below example disables mapping of both tags and SHAs, so that only branches are mapped as saltenvs:

gitfs_ref_types:
- branch

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

Note: sha is special in that it will not show up when listing saltenvs (e.g. with the fileserver. envs runner),
but works within states and with cp. cache_f1ile to retrieve a file from a specific git SHA.

gitfs_saltenv_whitelist

New in version 2014.7.0.

3.1. Configuring the Salt Master 87

Salt Documentation, Release 2019.2.2

Changed in version 2018.3.0: Renamed from gitfs_env_whitelistto gitfs_saltenv_whitelist
Default: []

Used to restrict which environments are made available. Can speed up state runs if the reposin gitfs_remotes
contain many branches/tags. More information can be found in the GitFS Walkthrough.

gitfs_saltenv_whitelist:
- base
- vl.*
- "mybranch\d+'

gitfs_saltenv_blacklist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from gitfs_env_blacklistto gitfs_saltenv_blacklist
Default: []

Used to restrict which environments are made available. Can speed up state runs if the repos in gitfs_remotes
contain many branches/tags. More information can be found in the GitFS Walkthrough.

gitfs_saltenv_blacklist:
- base
- vl.*
- "mybranch\d+'

gitfs_global_lock

New in version 2015.8.9.
Default: True

When set to Fa'lse, if there is an update lock for a gitfs remote and the pid written to it is not running on the master,
the lock file will be automatically cleared and a new lock will be obtained. When set to True, Salt will simply log a
warning when there is an update lock present.

On single-master deployments, disabling this option can help automatically deal with instances where the master
was shutdown/restarted during the middle of a gitfs update, leaving a update lock in place.

However, on multi-master deployments with the gitfs cachedir shared via GlusterFS, nfs, or another network filesys-
tem, it is strongly recommended not to disable this option as doing so will cause lock files to be removed if they were
created by a different master.

Disable global lock
gitfs_global_lock: False

gitfs_update_interval

New in version 2018.3.0.
Default: 60

This option defines the default update interval (in seconds) for gitfs remotes. The update interval can also be set for
a single repository via a per-remote config option

88 Chapter 3. Configuring Salt

http://www.gluster.org/

Salt Documentation, Release 2019.2.2

gitfs_update_interval: 120

GitFS Authentication Options

These parameters only currently apply to the pygit2 gitfs provider. Examples of how to use these can be found in
the GitFS Walkthrough.

gitfs_user

New in version 2014.7.0.
Default: ''

Along with gitfs_password, is used to authenticate to HTTPS remotes.

gitfs_user: git

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_password

New in version 2014.7.0.
Default: ''

Along with gitfs_user,isused to authenticate to HTTPS remotes. This parameter is not required if the repository
does not use authentication.

gitfs_password: mypassword

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_insecure_auth

New in version 2014.7.0.
Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

gitfs_insecure_auth: True

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

3.1. Configuring the Salt Master 89

Salt Documentation, Release 2019.2.2

gitfs_pubkey

New in version 2014.7.0.
Default: ''

Along with gitfs_privkey (and optionally gitfs_passphrase), is used to authenticate to SSH remotes.
Required for SSH remotes.

gitfs_pubkey: /path/to/key.pub

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_privkey

New in version 2014.7.0.
Default: ''

Along with gitfs_pubkey (and optionally gitfs_passphrase), is used to authenticate to SSH remotes. Re-
quired for SSH remotes.

gitfs_privkey: /path/to/key

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_passphrase

New in version 2014.7.0.
Default: ''

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

gitfs_passphrase: mypassphrase

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_refspecs

New in version 2017.7.0.
Default: ['+refs/heads/*:refs/remotes/origin/*', '+refs/tags/x:refs/tags/*"']

When fetching from remote repositories, by default Salt will fetch branches and tags. This parameter can be used to
override the default and specify alternate refspecs to be fetched. More information on how this feature works can
be found in the GitFS Walkthrough.

920 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

gitfs_refspecs:
- '+refs/heads/*:refs/remotes/origin/*"'
- '+refs/tags/x:refs/tags/x'
- '+refs/pull/*/head:refs/remotes/origin/pr/*"'
- '+refs/pull/x/merge:refs/remotes/origin/merge/*"'

hgfs: Mercurial Remote File Server Backend

hgfs_remotes

New in version 0.17.0.
Default: []

When using the hg fileserver backend at least one mercurial remote needs to be defined. The user running the salt
master will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. Branches and/or bookmarks are translated into salt environments, as defined by the hgfs_branch_method
parameter.

hgfs_remotes:
- https://username@bitbucket.org/username/reponame

Note: As of 2014.7.0, it is possible to have per-repo versions of the hgfs_root, hgfs_mountpoint,
hgfs_base, and hgfs_branch_method parameters. For example:

hgfs_remotes:

- https://username@bitbucket.org/username/repol
- base: saltstates

- https://username@bitbucket.org/username/repo2:
- root: salt
- mountpoint: salt://foo/bar/baz

- https://username@bitbucket.org/username/repo3:
- root: salt/states
- branch_method: mixed

hgfs_branch_method

New in version 0.17.0.

Default: branches

Defines the objects that will be used as fileserver environments.
« branches - Only branches and tags will be used
« bookmarks - Only bookmarks and tags will be used

« mixed - Branches, bookmarks, and tags will be used

hgfs_branch_method: mixed

3.1. Configuring the Salt Master 91

Salt Documentation, Release 2019.2.2

Note: Starting in version 2014.1.0, the value of the hgfs_base parameter defines which branch is used as the base
environment, allowing for a base environment to be used with an hgfs_branch_method of bookmarks.

Prior to this release, the default branch will be used as the base environment.

hgfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver which will be prepended to all files served by hgfs. This option can be used in
conjunction with hgfs_root. It can also be configured on a per-remote basis, see here for more info.

hgfs_mountpoint: salt://foo/bar

Note: The sa'lt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent). Assuming a file baz. sh in the root of an hgfs remote, this file would be served up via salt://foo/
bar/baz.sh.

hgfs_root

New in version 0.17.0.
Default: ''

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
hgfs_mountpoint. If used, then from Salt’s perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of hgfs) be considered as the root of the repo.

hgfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify hgfs roots on a per-remote basis was added. See here for more info.

hgfs_base

New in version 2014.1.0.
Default: default

Defines which branch should be used as the base environment. Change this if hgfs_branch_method is set to
bookmarks to specify which bookmark should be used as the base environment.

hgfs_base: salt

92 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

hgfs_saltenv_whitelist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from hgfs_env_whitelist to hgfs_saltenv_whitelist
Default: []

Used to restrict which environments are made available. Can speed up state runs if your hgfs remotes contain many
branches/bookmarks/tags. Full names, globs, and regular expressions are supported. If using a regular expression,
the expression must match the entire minion ID.

If used, only branches/bookmarks/tags which match one of the specified expressions will be exposed as fileserver
environments.

If used in conjunction with hgfs_saltenv_blacklist, then the subset of branches/bookmarks/tags which
match the whitelist but do not match the blacklist will be exposed as fileserver environments.

hgfs_saltenv_whitelist:
- base
- vl.*
- "mybranch\d+'

hgfs_saltenv_blacklist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from hgfs_env_blacklist to hgfs_saltenv_blacklist
Default: []

Used to restrict which environments are made available. Can speed up state runs if your hgfs remotes contain many
branches/bookmarks/tags. Full names, globs, and regular expressions are supported. If using a regular expression,
the expression must match the entire minion ID.

If used, branches/bookmarks/tags which match one of the specified expressions will not be exposed as fileserver
environments.

If used in conjunction with hgfs_saltenv_whitelist, then the subset of branches/bookmarks/tags which
match the whitelist but do not match the blacklist will be exposed as fileserver environments.

hgfs_saltenv_blacklist:
- base
- vl.*
- "mybranch\d+'

hgfs_update_interval

New in version 2018.3.0.
Default: 60

This option defines the update interval (in seconds) for hgfs_remotes.

hgfs_update_interval: 120

3.1. Configuring the Salt Master 93

Salt Documentation, Release 2019.2.2

svnfs: Subversion Remote File Server Backend

svnfs_remotes

New in version 0.17.0.
Default: []

When using the svn fileserver backend at least one subversion remote needs to be defined. The user running the
salt master will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. The trunk, branches, and tags become environments, with the trunk being the base environment.

svnfs_remotes:
- svn://foo.com/svn/myproject

Note: As of 2014.7.0, it is possible to have per-repo versions of the following configuration parameters:
« svnfs_root
. svnfs_mountpoint
« svnfs_trunk
. svnfs_branches
. svnfs_tags

For example:

svnfs_remotes:
- svn://foo.com/svn/projectl
- svn://foo.com/svn/project2:
- root: salt
- mountpoint: salt://foo/bar/baz
- svn//foo.com/svn/project3:
- root: salt/states
- branches: branch
- tags: tag

svnfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver which will be prepended to all files served by hgfs. This option can be used in
conjunction with svnfs_root. It can also be configured on a per-remote basis, see here for more info.

svnfs_mountpoint: salt://foo/bar

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent). Assuming a file baz . sh in the root of an svnfs remote, this file would be served up via salt: //foo/
bar/baz.sh.

94 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

svnfs_root

New in version 0.17.0.
Default: ''

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
svnfs_mountpoint. If used, then from Salt’s perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of svnfs) be considered as the root of the repo.

svnfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify svnfs roots on a per-remote basis was added. See here for more
info.

svnfs_trunk

New in version 2014.7.0.
Default: trunk

Path relative to the root of the repository where the trunk is located. Can also be configured on a per-remote basis,
see here for more info.

svnfs_trunk: trunk

svnfs_branches

New in version 2014.7.0.
Default: branches

Path relative to the root of the repository where the branches are located. Can also be configured on a per-remote
basis, see here for more info.

svnfs_branches: branches

svnfs_tags

New in version 2014.7.0.
Default: tags

Path relative to the root of the repository where the tags are located. Can also be configured on a per-remote basis,
see here for more info.

svnfs_tags: tags

svnfs_saltenv_whitelist

New in version 2014.7.0.

Changed in version 2018.3.0: Renamed from svnfs_env_whitelist to svnfs_saltenv_whitelist

3.1. Configuring the Salt Master 95

Salt Documentation, Release 2019.2.2

Default: []

Used to restrict which environments are made available. Can speed up state runs if your svnfs remotes contain
many branches/tags. Full names, globs, and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, only branches/tags which match one of the specified expressions will be exposed as fileserver environments.

If used in conjunction with svnfs_saltenv_blacklist, then the subset of branches/tags which match the
whitelist but do not match the blacklist will be exposed as fileserver environments.

svnfs_saltenv_whitelist:
- base
- vl.*x
- "mybranch\d+'

svnfs_saltenv_blacklist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from svnfs_env_blacklist to svnfs_saltenv_blacklist
Default: []

Used to restrict which environments are made available. Can speed up state runs if your svnfs remotes contain
many branches/tags. Full names, globs, and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, branches/tags which match one of the specified expressions will not be exposed as fileserver environments.

If used in conjunction with svnfs_saltenv_whitelist, then the subset of branches/tags which match the
whitelist but do not match the blacklist will be exposed as fileserver environments.

svnfs_saltenv_blacklist:
- base
- vl.*
- 'mybranch\d+"'

svnfs_update_interval

New in version 2018.3.0.
Default: 60

This option defines the update interval (in seconds) for svnfs_remotes.

svnfs_update_interval: 120

minionfs: MinionFS Remote File Server Backend
minionfs_env
New in version 2014.7.0.

Default: base

Environment from which MinionFS files are made available.

96 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

minionfs_env: minionfs

minionfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver from which minionfs files are served.

minionfs_mountpoint: salt://foo/bar

Note: The sa'lt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent).

minionfs_whitelist

New in version 2014.7.0.
Default: []

Used to restrict which minions’ pushed files are exposed via minionfs. If using a regular expression, the expression
must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified expressions will be exposed.

If used in conjunction with minionfs_blackl1ist, then the subset of hosts which match the whitelist but do not
match the blacklist will be exposed.

minionfs_whitelist:
- server0l
- devx
- 'mail\d+.mydomain.tld'

minionfs_blacklist

New in version 2014.7.0.
Default: []

Used to restrict which minions’ pushed files are exposed via minionfs. If using a regular expression, the expression
must match the entire minjon ID.

If used, only the pushed files from minions which match one of the specified expressions will not be exposed.

If used in conjunction with minionfs_whitelist, then the subset of hosts which match the whitelist but do not
match the blacklist will be exposed.

minionfs_blacklist:
- server0l
- devx
- 'mail\d+.mydomain.tld'

3.1. Configuring the Salt Master 97

Salt Documentation, Release 2019.2.2

minionfs_update_interval

New in version 2018.3.0.

Default: 60

This option defines the update interval (in seconds) for MinionFS.

Note: Since MinionFS consists of files local to the master, the update process for this fileserver backend just reaps

the cache for this backend.

minionfs_update_interval: 120

azurefs: Azure File Server Backend

New in version 2015.8.0.

See the azurefs documentation for usage examples.

azurefs_update_interval

New in version 2018.3.0.

Default: 60

This option defines the update interval (in seconds) for azurefs.

azurefs_update_dinterval: 120

s3fs: S3 File Server Backend
New in version 0.16.0.

See the s3fs documentation for usage examples.

s3fs_update_interval

New in version 2018.3.0.
Default: 60

This option defines the update interval (in seconds) for s3fs.

s3fs_update_interval: 120

3.1.8 Pillar Configuration
pillar_roots

Default:

98

Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

base:
- /srv/pillar

Set the environments and directories used to hold pillar sls data. This configuration is the same as file_roots:

pillar_roots:
base:
- /srv/pillar
dev:
- /srv/pillar/dev
prod:
- /srv/pillar/prod

on_demand_ext_pillar

New in version 2016.3.6,2016.11.3,2017.7.0.
Default: ['libvirt', 'virtkey']

The external pillars permitted to be used on-demand using pil lar. ext.

on_demand_ext_pillar:
- libvirt
- virtkey
- git

Warning: This will allow minions to request specific pillar data via pillar.ext, and may be considered
a security risk. However, pillar data generated in this way will not affect the in-memory pillar data, so this
risk is limited to instances in which states/modules/etc. (built-in or custom) rely upon pillar data generated by
pillar.ext.

decrypt_pillar

New in version 2017.7.0.
Default: []
A list of paths to be recursively decrypted during pillar compilation.

decrypt_pillar:
- 'foo:bar': gpg
- 'lorem:ipsum:dolor'

Entries in this list can be formatted either as a simple string, or as a key/value pair, with the key being the pillar
location, and the value being the renderer to use for pillar decryption. If the former is used, the renderer specified
by decrypt_pillar_default will be used.

decrypt_pillar_delimiter

New in version 2017.7.0.
Default: :

The delimiter used to distinguish nested data structures in the decrypt_pillar option.

3.1. Configuring the Salt Master 99

Salt Documentation, Release 2019.2.2

decrypt_pillar_delimiter: '|'
decrypt_pillar:

- 'foo|bar': gpg

- 'lorem|ipsum|dolor’

decrypt_pillar_default

New in version 2017.7.0.
Default: gpg

The default renderer used for decryption, if one is not specified for a given pillar key in decrypt_pillar.

decrypt_pillar_default: my_custom_renderer

decrypt_pillar_renderers

New in version 2017.7.0.
Default: ['gpg']

List of renderers which are permitted to be used for pillar decryption.

decrypt_pillar_renderers:

- 8pPg
- my_custom_renderer

pillar_opts

Default: False

The pillar_opts option adds the master configuration file data to a dict in the pillar called master. This can be
used to set simple configurations in the master config file that can then be used on minions.

Note that setting this option to True means the master config file will be included in all minion’s pillars. While
this makes global configuration of services and systems easy, it may not be desired if sensitive data is stored in the
master configuration.

pillar_opts: False

pillar_safe_render_error

Default: True

The pillar_safe_render_error option prevents the master from passing pillar render errors to the minion. This is set
on by default because the error could contain templating data which would give that minion information it shouldn’t
have, like a password! When set True the error message will only show:

’Render‘ing SLS 'my.sls' failed. Please see master log for details.

’ pillar_safe_render_error: True

100 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

ext_pillar

The ext_pillar option allows for any number of external pillar interfaces to be called when populating pillar data.
The configuration is based on ext_pillar functions. The available ext_pillar functions can be found herein:
https://github.com/saltstack/salt/blob/master/salt/pillar

By default, the ext_pillar interface is not configured to run.

Default: []

ext_pillar:
- hiera: /etc/hiera.yaml
- cmd_yaml: cat /etc/salt/yaml
- reclass:
inventory_base_uri: /etc/reclass

There are additional details at Pillars

ext_pillar_first

New in version 2015.5.0.
Default: False

This option allows for external pillar sources to be evaluated before pillar_roots. External pillar data is eval-
uated separately from pillar_roots pillar data, and then both sets of pillar data are merged into a single pillar
dictionary, so the value of this config option will have an impact on which key "wins” when there is one of the same
name in both the external pillar data and pillar_roots pillar data. By setting this option to True, ext_pillar
keys will be overridden by pillar_roots, while leaving it as False will allow ext_pillar keys to override those
frompillar_roots.

Note: For a while, this config option did not work as specified above, because of a bug in Pillar compilation. This
bug has been resolved in version 2016.3.4 and later.

ext_pillar_first: False

pillarenv_from_saltenv

Default: False

When set to True, the pillarenv value will assume the value of the effective saltenv when running states. This
essentially makes salt-run pillar.show_pillar saltenv=dev equivalent to salt-run pillar.
show_pillar saltenv=dev pillarenv=dev.If pillarenv isseton the CLIL it will override this option.

pillarenv_from_saltenv: True

Note: For salt remote execution commands this option should be set in the Minion configuration instead.

3.1. Configuring the Salt Master 101

https://github.com/saltstack/salt/blob/master/salt/pillar

Salt Documentation, Release 2019.2.2

pillar_raise_on_missing

New in version 2015.5.0.
Default: False

Set this option to True to force a KeyError to be raised whenever an attempt to retrieve a named value from pillar
fails. When this option is set to False, the failed attempt returns an empty string.

Git External Pillar (git_pillar) Configuration Options

git_pillar_provider

New in version 2015.8.0.

Specify the provider to be used for git_pillar. Must be either pygit2 or gitpython. If unset, then both will be
tried in that same order, and the first one with a compatible version installed will be the provider that is used.

git_pillar_provider: gitpython

git_pillar_base

New in version 2015.8.0.
Default: master

If the desired branch matches this value, and the environment is omitted from the git_pillar configuration, then the
environment for that git_pillar remote will be base. For example, in the configuration below, the foo branch/tag
would be assigned to the base environment, while bar would be mapped to the bar environment.

git_pillar_base: foo

ext_pillar:
- git:
- foo https://mygitserver/git-pillar.git
- bar https://mygitserver/git-pillar.git

git_pillar_branch

New in version 2015.8.0.
Default: master

If the branch is omitted from a git_pillar remote, then this branch will be used instead. For example, in the config-
uration below, the first two remotes would use the pillardata branch/tag, while the third would use the foo
branch/tag.

git_pillar_branch: pillardata

ext_pillar:
- git:
- https://mygitserver/pillarl.git
- https://mygitserver/pillar2.git:
- root: pillar
- foo https://mygitserver/pillar3.git

102 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

git_pillar_env

New in version 2015.8.0.
Default: '' (unset)

Environment to use for git_pillar remotes. This is normally derived from the branch/tag (or from a per-remote env
parameter), but if set this will override the process of deriving the env from the branch/tag name. For example, in the
configuration below the foo branch would be assigned to the base environment, while the bar branch would need
to explicitly have bar configured as it’s environment to keep it from also being mapped to the base environment.

git_pillar_env: base

ext_pillar:
- git:
- foo https://mygitserver/git-pillar.git
- bar https://mygitserver/git-pillar.git:
- env: bar

For this reason, this option is recommended to be left unset, unless the use case calls for all (or almost all) of the
git_pillar remotes to use the same environment irrespective of the branch/tag being used.

git_pillar_root

New in version 2015.8.0.
Default: ''

Path relative to the root of the repository where the git_pillar top file and SLS files are located. In the below config-
uration, the pillar top file and SLS files would be looked for in a subdirectory called pillar.

git_pillar_root: pillar

ext_pillar:
- git:
- master https://mygitserver/pillarl.git
- master https://mygitserver/pillar2.git

Note: This is a global option. If only one or two repos need to have their files sourced from a subdirectory, then
git_pillar_root can be omitted and the root can be specified on a per-remote basis, like so:

ext_pillar:
- git:
- master https://mygitserver/pillarl.git
- master https://mygitserver/pillar2.git:
- root: pillar

In this example, for the first remote the top file and SLS files would be looked for in the root of the repository, while
in the second remote the pillar data would be retrieved from the pillar subdirectory.

git_pillar_ssl_verify

New in version 2015.8.0.

3.1. Configuring the Salt Master 103

Salt Documentation, Release 2019.2.2

Changed in version 2016.11.0.
Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the remote repository. The False setting is
useful if you’re using a git repo that uses a self-signed certificate. However, keep in mind that setting this to anything
other True is a considered insecure, and using an SSH-based transport (if available) may be a better option.

In the 2016.11.0 release, the default config value changed from False to True.

git_pillar_ssl_verify: True

Note: pygit2 only supports disabling SSL verification in versions 0.23.2 and newer.

git_pillar_global_lock

New in version 2015.8.9.
Default: True

When set to False, if there is an update/checkout lock for a git_pillar remote and the pid written to it is not running
on the master, the lock file will be automatically cleared and a new lock will be obtained. When set to True, Salt
will simply log a warning when there is an lock present.

On single-master deployments, disabling this option can help automatically deal with instances where the master
was shutdown/restarted during the middle of a git_pillar update/checkout, leaving a lock in place.

However, on multi-master deployments with the git_pillar cachedir shared via GlusterFS, nfs, or another network
filesystem, it is strongly recommended not to disable this option as doing so will cause lock files to be removed if
they were created by a different master.

Disable global lock
git_pillar_global_lock: False

git_pillar_includes

New in version 2017.7.0.
Default: True

Normally, when processing git_pillar remotes, if more than one repo under the same g1t sectioninthe ext_pillar
configuration refers to the same pillar environment, then each repo in a given environment will have access to the
other repos’ files to be referenced in their top files. However, it may be desirable to disable this behavior. If so, set
this value to False.

For a more detailed examination of how includes work, see this explanation from the git_pillar documentation.

git_pillar_includes: False

Git External Pillar Authentication Options

These parameters only currently apply to the pygit2 git_pillar_provider. Authentication works the same
as it does in gitfs, as outlined in the GitFS Walkthrough, though the global configuration options are named differently
to reflect that they are for git_pillar instead of gitfs.

104 Chapter 3. Configuring Salt

http://www.gluster.org/

Salt Documentation, Release 2019.2.2

git_pillar_user

New in version 2015.8.0.
Default: ''

Along with git_pillar_password,is used to authenticate to HTTPS remotes.

git_pillar_user: git

git_pillar_password

New in version 2015.8.0.
Default: ''

Along with git_pillar_user,is used to authenticate to HTTPS remotes. This parameter is not required if the
repository does not use authentication.

git_pillar_password: mypassword

git_pillar_insecure_auth

New in version 2015.8.0.
Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

git_pillar_insecure_auth: True

git_pillar_pubkey

New in version 2015.8.0.
Default: ''

Along with git_pillar_privkey (and optionally git_pillar_passphrase), is used to authenticate to
SSH remotes.

git_pillar_pubkey: /path/to/key.pub

git_pillar_privkey

New in version 2015.8.0.
Default: ''

Along withgit_pillar_pubkey (and optionally git_pillar_passphrase),isused to authenticate to SSH
remotes.

git_pillar_privkey: /path/to/key

3.1. Configuring the Salt Master 105

Salt Documentation, Release 2019.2.2

git_pillar_passphrase

New in version 2015.8.0.
Default: ''

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

git_pillar_passphrase: mypassphrase

git_pillar_refspecs

New in version 2017.7.0.
Default: ['+refs/heads/*:refs/remotes/origin/*', '+refs/tags/x:refs/tags/*"']

When fetching from remote repositories, by default Salt will fetch branches and tags. This parameter can be used
to override the default and specify alternate refspecs to be fetched. This parameter works similarly to its GitFS
counterpart, in that it can be configured both globally and for individual remotes.

git_pillar_refspecs:
- '+refs/heads/x:refs/remotes/origin/*"'
- '+refs/tags/x:refs/tags/x'
- '+refs/pull/*/head:refs/remotes/origin/pr/*'
- '+refs/pull/*/merge:refs/remotes/origin/merge/*"'

git_pillar_verify_config

New in version 2017.7.0.
Default: True

By default, as the master starts it performs some sanity checks on the configured git_pillar repositories. If any of
these sanity checks fail (such as when an invalid configuration is used), the master daemon will abort.

To skip these sanity checks, set this option to False.

git_pillar_verify_config: False

Pillar Merging Options
pillar_source_merging_strategy

New in version 2014.7.0.
Default: smart

The pillar_source_merging_strategy option allows you to configure merging strategy between different sources. It
accepts 5 values:

e None:

It will not do any merging at all and only parse the pillar data from the passed environment and ’base’ if no
environment was specified.

New in version 2016.3.4.

106 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

e Fecurse:

It will recursively merge data. For example, theses 2 sources:

foo: 42
bar:
elementl: True

bar:
element2: True
baz: quux

will be merged as:

foo: 42
bar:
elementl: True
element2: True
baz: quux

- aggregate
instructs aggregation of elements between sources that use the #!yamlex renderer.

For example, these two documents:

#!lyamlex

foo: 42

bar: !aggregate {
elementl: True

}

baz: !aggregate quux

#!lyamlex
bar: !aggregate {
element2: True

}
baz: !aggregate quux2

will be merged as:

foo: 42
bar:
elementl: True
element2: True
baz:
- quux
- quux2

. overwrite:
Will use the behaviour of the 2014.1 branch and earlier.
Overwrites elements according the order in which they are processed.

First pillar processed:

A:
first_key: blah
second_key: blah

3.1. Configuring the Salt Master 107

Salt Documentation, Release 2019.2.2

Second pillar processed:

A:
third_key: blah
fourth_key: blah

will be merged as:

A:
third_key: blah
fourth_key: blah

- smart (default):

Guesses the best strategy based on the “renderer” setting.

Note: In order for yamlex based features such as ! aggregate to work as expected across documents using the
default smart merge strategy, the renderer config option must be set to jinja|yamlex or similar.

pillar_merge_lists

New in version 2015.8.0.
Default: False

Recursively merge lists by aggregating them instead of replacing them.

pillar_merge_lists: False

pillar_includes_override_sls

New in version 2017.7.6,2018.3.1.
Default: False

Prior to version 2017.7.3, keys from pillar includes would be merged on top of the pillar SLS. Since 2017.7.3, the
includes are merged together and then the pillar SLS is merged on top of that.

Set this option to True to return to the old behavior.

pillar_includes_override_sls: True

Pillar Cache Options

pillar_cache

New in version 2015.8.8.
Default: False

A master can cache pillars locally to bypass the expense of having to render them for each minion on every request.
This feature should only be enabled in cases where pillar rendering time is known to be unsatisfactory and any
attendant security concerns about storing pillars in a master cache have been addressed.

108 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

When enabling this feature, be certain to read through the additional pillar_cache_x configuration options to
fully understand the tunable parameters and their implications.

pillar_cache: False

Note: Setting pillar_cache: True hasno effect on targeting minions with pillar.

pillar_cache_ttl

New in version 2015.8.8.
Default: 3600

If and only if a master has set pillar_cache: True, the cache TTL controls the amount of time, in seconds,
before the cache is considered invalid by a master and a fresh pillar is recompiled and stored.

pillar_cache_backend

New in version 2015.8.8.

Default: disk

If an only if a master has set pillar_cache: True, one of several storage providers can be utilized:
« disk (default):

The default storage backend. This caches rendered pillars to the master cache. Rendered pillars are serialized
and deserialized as msgpack structures for speed. Note that pillars are stored UNENCRYPTED. Ensure that
the master cache has permissions set appropriately (sane defaults are provided).

« memory [EXPERIMENTAL]J:

An optional backend for pillar caches which uses a pure-Python in-memory data structure for maximal per-
formance. There are several caveats, however. First, because each master worker contains its own in-memory
cache, there is no guarantee of cache consistency between minion requests. This works best in situations
where the pillar rarely if ever changes. Secondly, and perhaps more importantly, this means that unencrypted
pillars will be accessible to any process which can examine the memory of the salt-master! This may
represent a substantial security risk.

pillar_cache_backend: disk

3.1.9 Master Reactor Settings

reactor

Default: []

Defines a salt reactor. See the Reactor documentation for more information.

reactor:
- 'salt/minion/x/start':
- salt://reactor/startup_tasks.sls

3.1. Configuring the Salt Master 109

Salt Documentation, Release 2019.2.2

reactor_refresh_interval

Default: 60

The TTL for the cache of the reactor configuration.

reactor_refresh_interval: 60

reactor_worker_threads

Default: 10

The number of workers for the runner/wheel in the reactor.

reactor_worker_threads: 10

reactor_worker_hwm

Default: 10000

The queue size for workers in the reactor.

reactor_worker_hwm: 10000

3.1.10 Salt-API Master Settings

There are some settings for salt-api that can be configured on the Salt Master.

api_logfile

Default: /var/log/salt/api
The logfile location for salt-api.

api_logfile: /var/log/salt/api

api_pidfile

Default: /var/run/salt-api.pid

If this master will be running sa'lt-ap1, specify the pidfile of the salt-api daemon.

api_pidfile: /var/run/salt-api.pid

rest_timeout

Default: 300

Used by salt-api for the master requests timeout.

rest_timeout: 300

110 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

3.1.11 Syndic Server Settings

A Salt syndic is a Salt master used to pass commands from a higher Salt master to minions below the syndic. Using
the syndic is simple. If this is a master that will have syndic servers(s) below it, set the order_masters setting to
True.

If this is a master that will be running a syndic daemon for passthrough the syndic_master setting needs to be
set to the location of the master server.

Do not forget that, in other words, it means that it shares with the local minion its ID and PKI directory.

order_masters

Default: False

Extra data needs to be sent with publications if the master is controlling a lower level master via a syndic minion. If
this is the case the order_masters value must be set to True

order_masters: False

syndic_master

Changed in version 2016.3.5,2016.11.1: Set default higher level master address.
Default: masterofmasters

If this master will be running the salt-synd1ic to connect to a higher level master, specify the higher level master
with this configuration value.

syndic_master: masterofmasters

You can optionally connect a syndic to multiple higher level masters by setting the syndic_master value to a list:

syndic_master:
- masterofmastersl
- masterofmasters2

Each higher level master must be set up in a multi-master configuration.

syndic_master_port

Default: 4506

If this master will be running the salt-synd1c to connect to a higher level master, specify the higher level master
port with this configuration value.

syndic_master_port: 4506

syndic_pidfile

Default: /var/run/salt-syndic.pid

If this master will be running the salt-syndc to connect to a higher level master, specify the pidfile of the syndic
daemon.

3.1. Configuring the Salt Master 111

Salt Documentation, Release 2019.2.2

syndic_pidfile: /var/run/syndic.pid

syndic_log_file

Default: /var/log/salt/syndic

If this master will be running the salt-synd1 c to connect to a higher level master, specify the log file of the syndic
daemon.

syndic_log_f1ile: /var/log/salt-syndic.log

syndic_failover

New in version 2016.3.0.
Default: random

The behaviour of the multi-syndic when connection to a master of masters failed. Can specify random (default)
or ordered. If set to random, masters will be iterated in random order. If ordered is specified, the configured
order will be used.

syndic_failover: random

syndic_wait

Default: 5

The number of seconds for the salt client to wait for additional syndics to check in with their lists of expected minions
before giving up.

syndic_wait: 5

syndic_forward_all_events

New in version 2017.7.0.
Default: False

Option on multi-syndic or single when connected to multiple masters to be able to send events to all connected
masters.

syndic_forward_all_events: False

3.1.12 Peer Publish Settings

Salt minions can send commands to other minions, but only if the minion is allowed to. By default "Peer Publica-
tion” is disabled, and when enabled it is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

112 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

peer

Default: {}

The configuration uses regular expressions to match minions and then a list of regular expressions to match functions.
The following will allow the minion authenticated as foo.example.com to execute functions from the test and pkg
modules.

peer:
foo.example.com:

- test.x

- pkg.*

This will allow all minions to execute all commands:

peer:
ok

This is not recommended, since it would allow anyone who gets root on any single minion to instantly have root on
all of the minjons!

By adding an additional layer you can limit the target hosts in addition to the accessible commands:

peer:
foo.example.com:
"dbx':
- test.x
- pkg.*

peer_run

Default: {}

The peer_run option is used to open up runners on the master to access from the minions. The peer_run configuration
matches the format of the peer configuration.

The following example would allow foo.example.com to execute the manage.up runner:

peer_run:
foo.example.com:
- manage.up

3.1.13 Master Logging Settings
log_file

Default: /var/log/salt/master
The master log can be sent to a regular file, local path name, or network location. See also log_f1ile.

Examples:

log_file: /var/log/salt/master

3.1. Configuring the Salt Master 113

Salt Documentation, Release 2019.2.2

"Log_f'ile: file:///dev/log

’ log_file: udp://loghost:16514

log_level

Default: warning

The level of messages to send to the console. See also log_level.

log_level: warning

log_level_logfile

Default: warning

The level of messages to send to the log file. See also log_level_logfile. When it is not set explicitly it will
inherit the level set by log_level option.

log_level_logfile: warning

log_datefmt

Default: %H : %M : %S

The date and time format used in console log messages. See also Log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d 9%H :%M:9%S

The date and time format used in log file messages. See also log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also log_fmt_console.

Note: Log colors are enabled in Log_fmt_console rather than the color config since the logging system is
loaded before the master config.

Console log colors are specified by these additional formatters:

%(colorlevel)s %(colorname)s %(colorprocess)s %(colormsg)s

114 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

Since it is desirable to include the surrounding brackets, ’[* and ’]’, in the coloring of the messages, these color
formatters also include padding as well. Color LogRecord attributes are only available for console logging.

log_fmt_console: '%(colorlevel)s %(colormsg)s'
log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also log_granular_levels.

log_rotate_max_bytes

Default: 0

The maximum number of bytes a single log file may contain before it is rotated. A value of 0 disables this feature.
Currently only supported on Windows. On other platforms, use an external tool such as ’logrotate’ to manage log
files. log_rotate_max_bytes

log_rotate_backup_count

Default: 0

The number of backup files to keep when rotating log files. Only used if log_rotate_max_bytes is greater than
0. Currently only supported on Windows. On other platforms, use an external tool such as 'logrotate’ to manage
log files. log_rotate_backup_count

3.1.14 Node Groups
nodegroups

Default: {}

Node groups allow for logical groupings of minion nodes. A group consists of a group name and a compound target.

nodegroups:
groupl: 'L@foo.domain.com,bar.domain.com,baz.domain.com or blx.domain.com'
group2: 'G@os:Debian and foo.domain.com'
group3: 'G@Eos:Debian and N@groupl'
group4:
- 'G@foo:bar'
_ 'OI"
- 'G@foo:baz'

3.1. Configuring the Salt Master 115

Salt Documentation, Release 2019.2.2

More information on using nodegroups can be found here.

3.1.15 Range Cluster Settings

range_server

Default: 'range:80'

The range server (and optional port) that serves your cluster information https://github.com/ytoolshed/range/wiki/
%22yamlfile%22-module-file-spec

range_server: range:80

3.1.16 Include Configuration

Configuration can be loaded from multiple files. The order in which this is done is:
1. The master config file itself
2. The files matching the glob in default_include
3. The files matching the glob in inc lude (if defined)

Each successive step overrides any values defined in the previous steps. Therefore, any config options defined in one
of the default_1include files would override the same value in the master config file, and any options defined
in include would override both.

default_include

Default: master.d/*.conf

The master can include configuration from other files. Per default the master will automatically include all config
files from master.d/*.conf where master.d is relative to the directory of the master configuration file.

Note: Salt creates files in the master . d directory for its own use. These files are prefixed with an underscore. A
common example of this is the _schedule. conf file.

include

Default: not defined

The master can include configuration from other files. To enable this, pass a list of paths to this option. The paths
can be either relative or absolute; if relative, they are considered to be relative to the directory the main minion
configuration file lives in. Paths can make use of shell-style globbing. If no files are matched by a path passed to this
option then the master will log a warning message.

Include files from a master.d directory in the same
directory as the master config file
include: master.d/x*

Include a single extra file into the configuration
include: /etc/roles/webserver

(continues on next page)

116 Chapter 3. Configuring Salt

https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Salt Documentation, Release 2019.2.2

(continued from previous page)

Include several files and the master.d directory
include:

- extra_config

- master.d/x*

- Jetc/roles/webserver

3.1.17 Keepalive Settings

tcp_keepalive

Default: True

The tcp keepalive interval to set on TCP ports. This setting can be used to tune Salt connectivity issues in messy
network environments with misbehaving firewalls.

tcp_keepalive: True

tcp_keepalive_cnt

Default: -1

Sets the ZeroMQ TCP keepalive count. May be used to tune issues with minion disconnects.

tcp_keepalive_cnt: -1

tcp_keepalive_idle

Default: 300

Sets ZeroMQ TCP keepalive idle. May be used to tune issues with minion disconnects.

tcp_keepalive_idle: 300

tcp_keepalive_intvl

Default: -1

Sets ZeroMQ TCP keepalive interval. May be used to tune issues with minion disconnects.

tcp_keepalive_intvl': -1

3.1.18 Windows Software Repo Settings

winrepo_provider

New in version 2015.8.0.

Specify the provider to be used for winrepo. Must be either pygit2 or gitpython. If unset, then both will be
tried in that same order, and the first one with a compatible version installed will be the provider that is used.

3.1. Configuring the Salt Master 117

Salt Documentation, Release 2019.2.2

winrepo_provider: gitpython

winrepo_dir

Changed in version 2015.8.0: Renamed from win_repo towinrepo_dir.
Default: /srv/salt/win/repo

Location on the master where the winrepo_remotes are checked out for pre-2015.8.0 minions. 2015.8.0 and later
minions use winrepo_remotes_ng instead.

winrepo_dir: /srv/salt/win/repo

winrepo_dir_ng

New in version 2015.8.0: A new ng repo was added.
Default: /srv/salt/win/repo-ng

Location on the master where the winrepo_remotes_ng are checked out for 2015.8.0 and later minions.

winrepo_dir_ng: /srv/salt/win/repo-ng

winrepo_cachefile

Changed in version 2015.8.0: Renamed from win_repo_mastercachefile towinrepo_cachefile

Note: 2015.8.0 and later minions do not use this setting since the cachefile is now located on the minion.

Default: winrepo.p

Path relative to winrepo_dir where the winrepo cache should be created.

winrepo_cachefile: winrepo.p

winrepo_remotes

Changed in version 2015.8.0: Renamed from win_gitrepos towinrepo_remotes.
Default: ['https://github.com/saltstack/salt-winrepo.git']

List of git repositories to checkout and include in the winrepo for pre-2015.8.0 minions. 2015.8.0 and later minions
use winrepo_remotes_ng instead.

winrepo_remotes:
- https://github.com/saltstack/salt-winrepo.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes:
- '<commit_id> https://github.com/saltstack/salt-winrepo.git'

118 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

winrepo_remotes_ng

New in version 2015.8.0: A new ng repo was added.
Default: ['https://github.com/saltstack/salt-winrepo-ng.git']

List of git repositories to checkout and include in the winrepo for 2015.8.0 and later minions.

winrepo_remotes_ng:
- https://github.com/saltstack/salt-winrepo-ng.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes_ng:
- '<commit_id> https://github.com/saltstack/salt-winrepo-ng.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

winrepo_branch

New in version 2015.8.0.
Default: master

If the branch is omitted from a winrepo remote, then this branch will be used instead. For example, in the con-
figuration below, the first two remotes would use the winrepo branch/tag, while the third would use the foo
branch/tag.

winrepo_branch: winrepo

winrepo_remotes:
- https://mygitserver/winrepol.git
- https://mygitserver/winrepo2.git:
- foo https://mygitserver/winrepo3.git

winrepo_ssl_verify

New in version 2015.8.0.
Changed in version 2016.11.0.
Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the remote repository. The False setting is
useful if you’re using a git repo that uses a self-signed certificate. However, keep in mind that setting this to anything
other True is a considered insecure, and using an SSH-based transport (if available) may be a better option.

In the 2016.11.0 release, the default config value changed from False to True.

winrepo_ssl_verify: True

3.1. Configuring the Salt Master 119

Salt Documentation, Release 2019.2.2

Winrepo Authentication Options

These parameters only currently apply to the pygit2 winrepo_provider. Authentication works the same as
it does in gitfs, as outlined in the GitFS Walkthrough, though the global configuration options are named differently
to reflect that they are for winrepo instead of gitfs.

winrepo_user

New in version 2015.8.0.
Default: ''

Along with winrepo_password, is used to authenticate to HTTPS remotes.

winrepo_user: git

winrepo_password

New in version 2015.8.0.
Default: ''

Along with winrepo_user, is used to authenticate to HTTPS remotes. This parameter is not required if the
repository does not use authentication.

winrepo_password: mypassword

winrepo_insecure_auth

New in version 2015.8.0.
Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

winrepo_insecure_auth: True

winrepo_pubkey

New in version 2015.8.0.
Default: ''

Along with winrepo_privkey (and optionally winrepo_passphrase), is used to authenticate to SSH re-
motes.

winrepo_pubkey: /path/to/key.pub

120 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

winrepo_privkey

New in version 2015.8.0.
Default: ''

Along withwinrepo_pubkey (and optionally winrepo_passphrase), is used to authenticate to SSH remotes.

winrepo_privkey: /path/to/key

winrepo_passphrase

New in version 2015.8.0.
Default: ''

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

winrepo_passphrase: mypassphrase

winrepo_refspecs

New in version 2017.7.0.
Default: ['+refs/heads/x:refs/remotes/origin/x', '+refs/tags/*:refs/tags/*']

When fetching from remote repositories, by default Salt will fetch branches and tags. This parameter can be used
to override the default and specify alternate refspecs to be fetched. This parameter works similarly to its GitFS
counterpart, in that it can be configured both globally and for individual remotes.

winrepo_refspecs:
- '+refs/heads/x:refs/remotes/origin/*"'
- '+refs/tags/x:refs/tags/x'
- '+refs/pull/*/head:refs/remotes/origin/pr/*"'
- '+refs/pull/*/merge:refs/remotes/origin/merge/*"'

3.1.19 Configure Master on Windows

The master on Windows requires no additional configuration. You can modify the master configuration by creat-
ing/editing the master config file located at c:\salt\conf\master. The same configuration options available
on Linux are available in Windows, as long as they apply. For example, SSH options wouldn’t apply in Windows.
The main differences are the file paths. If you are familiar with common salt paths, the following table may be useful:

linux Paths Windows Paths
/etc/salt | <——-> | c:\salt\conf
/ <--=-> 1 c:\salt

So, for example, the master config file in Linux is /etc/salt/master. In Windows the master config file is
c:\salt\conf\master. The Linux path /etc/salt becomes c:\salt\conf in Windows.

3.1. Configuring the Salt Master 121

Salt Documentation, Release 2019.2.2

Common File Locations

Linux Paths

Windows Paths

conf_file: /etc/salt/master

conf_file: c:\salt\conf\master

log_file: /var/log/salt/master

log_file: c:\salt\var\log\salt\master

pidfile: /var/run/salt-master.pid

pidfile: c:\salt\var\run\salt-master.pid

Common Directories

Linux Paths Windows Paths

cachedir: /var/cache/salt/master cachedir: c:\salt\var\cache\salt\n
extension_modules: /var/cache/salt/ c:\salt\var\cache\salt\master\extn
master/extmods

pki_dir: /etc/salt/pki/master

pki_dir: c:\salt\conf\pki\master

root_dir: / root_dir: c:\salt

sock_dir: /var/run/salt/master sock_dir: c:\salt\var\run\salt\masg
Roots
file_roots

Linux Paths

Windows Paths

/srv/salt

c:\salt\srv\salt

/srv/spm/salt

c:\salt\srv\spm\salt

pillar_roots

Linux Paths

Windows Paths

/srv/pillar

c:\salt\srv\pillar

/srv/spm/pillar

c:\salt\srv\spm\pillar

Win Repo Settings

Linux Paths

Windows Paths

winrepo_dir: /srv/salt/win/repo

winrepo_dir: c:\salt\srv\salt\win\repo

winrepo_dir_ng: /srv/salt/win/
repo-ng

aster
ods

ter

winrepo_dir_ng: c:\salt\srv\salt\win\reporng

3.2 Configuring the Salt Minion

The Salt system is amazingly simple and easy to configure. The two components of the Salt system each have a respec-
tive configuration file. The salt-master is configured via the master configuration file, and the salt-minion

is configured via the minion configuration file.
See also:

example minion configuration file

122

Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

The Salt Minion configuration is very simple. Typically, the only value that needs to be set is the master value so the
minion knows where to locate its master.

By default, the salt-minion configuration will be in /etc/salt/minion. A notable exception is FreeBSD, where
the configuration will be in /usr/local/etc/salt/minion.

3.2.1 Minion Primary Configuration

master

Default: salt
The hostname or IP address of the master. See 1pv6 for IPv6 connections to the master.

Default: salt

master: salt

master:port Syntax

New in version 2015.8.0.

The master config option can also be set to use the master’s IP in conjunction with a port number by default.

’master: localhost:1234

For IPv6 formatting with a port, remember to add brackets around the IP address before adding the port and enclose
the line in single quotes to make it a string:

’master: '[2001:db8:85a3:8d3:1319:8a2e:370:7348]:1234"'

Note: Ifaportis specified in the master aswellasmaster_port, the master_port setting will be overridden
by the master configuration.

List of Masters Syntax

The option can also be set to a list of masters, enabling multi-master mode.

master:
- addressl
- address2

Changed in version 2014.7.0: The master can be dynamically configured. The master value can be set to an module
function which will be executed and will assume that the returning value is the ip or hostname of the desired master.
If a function is being specified, then the master_type option must be set to func, to tell the minion that the value
is a function to be run and not a fully-qualified domain name.

master: module.function
master_type: func

3.2. Configuring the Salt Minion 123

Salt Documentation, Release 2019.2.2

In addition, instead of using multi-master mode, the minion can be configured to use the list of master addresses as
a failover list, trying the first address, then the second, etc. until the minion successfully connects. To enable this
behavior, set master_type to failover:

master:

- addressl

- address2
master_type: failover

ipvé

Default: None

Whether the master should be connected over IPv6. By default salt minion will try to automatically detect IPv6
connectivity to master.

ipv6: True

master_uri_format

New in version 2015.8.0.

Specify the format in which the master address will be evaluated. Valid options are default or ip_only. If
ip_on'ly is specified, then the master address will not be split into IP and PORT, so be sure that only an IP (or
domain name) is set in the master configuration setting.

master_uri_format: ip_only

master_tops_first

New in version 2018.3.0.
Default: False

SLS targets defined using the Master Tops system are normally executed after any matches defined in the Top File.
Set this option to True to have the minion execute the Master Tops states first.

master_tops_first: True

master_type

New in version 2014.7.0.
Default: str

The type of the master variable. Can be str, failover, func or disable.

master_type: failover

If this option is set to failover, master must be a list of master addresses. The minion will then try each master
in the order specified in the list until it successfully connects. master_alive_interval must also be set, this
determines how often the minion will verify the presence of the master.

124 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

master_type: func

If the master needs to be dynamically assigned by executing a function instead of reading in the static master value,
set this to func. This can be used to manage the minion’s master setting from an execution module. By simply
changing the algorithm in the module to return a new master ip/fqdn, restart the minion and it will connect to the
new master.

As of version 2016.11.0 this option can be set to disable and the minion will never attempt to talk to the master.
This is useful for running a masterless minion daemon.

master_type: disable

max_event_s1ize

New in version 2014.7.0.
Default: 1048576

Passing very large events can cause the minion to consume large amounts of memory. This value tunes the maximum
size of a message allowed onto the minion event bus. The value is expressed in bytes.

max_event_size: 1048576

enable_legacy_startup_events

New in version 2019.2.0.
Default: True

When a minion starts up it sends a notification on the event bus with a tag that looks like this: salt/minion/
<minion_id>/start. For historical reasons the minion also sends a similar event with an event tag like this:
minion_start. This duplication can cause a lot of clutter on the event bus when there are many minions.
Set enable_legacy_startup_events: False in the minion config to ensure only the salt/minion/
<minion_id>/start events are sent. Beginning with the Sodium Salt release this option will default to False.

enable_legacy_startup_events: True

master_failback

New in version 2016.3.0.
Default: False

If the minion is in multi-master mode and the :conf_minion‘master_type‘ configuration option is set to failover,
this setting can be set to True to force the minion to fail back to the first master in the list if the first master is back
online.

master_failback: False

master_failback_interval

New in version 2016.3.0.

Default: 0

3.2. Configuring the Salt Minion 125

Salt Documentation, Release 2019.2.2

If the minion is in multi-master mode, the :conf_minion‘master_type‘ configuration is set to failover, and the
master_failback option is enabled, the master failback interval can be set to ping the top master with this
interval, in seconds.

master_failback_interval: 0

master_alive_interval

Default: 0

Configures how often, in seconds, the minion will verify that the current master is alive and responding. The minion
will try to establish a connection to the next master in the list if it finds the existing one is dead.

master_alive_interval: 30

master_shuffle

New in version 2014.7.0.
Deprecated since version 2019.2.0.

Default: False

Warning: This option has been deprecated in Salt 2019.2. 0. Please use random_master instead.

master_shuffle: True

random_master

New in version 2014.7.0.

Changed in version 2019.2.0: The master_failback option can be used in conjunction with random_master
to force the minion to fail back to the first master in the list if the first master is back online. Note that master_type
must be set to failover in order for the master_failback setting to work.

Default: False

If master is a list of addresses, shuffle them before trying to connect to distribute the minions over all available
masters. This uses Python’s random. shuffle method.

If multiple masters are specified in the ‘master’ setting as a list, the default behavior is to always try to connect to
them in the order they are listed. If random_master is set to True, the order will be randomized instead upon
Minion startup. This can be helpful in distributing the load of many minions executing salt-call requests, for
example, from a cron job. If only one master is listed, this setting is ignored and a warning is logged.

random_master: True

Note: When the failover, master_failback, and random_master options are used together, only the
“secondary masters” will be shuffled. The first master in the list is ignored in the random.shuffle call. See
master_failback for more information.

126 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

retry_dns

Default: 30

Set the number of seconds to wait before attempting to resolve the master hostname if name resolution fails. Defaults
to 30 seconds. Set to zero if the minion should shutdown and not retry.

retry_dns: 30

retry_dns_count

New in version 2018.3.4.
Default: None

Set the number of attempts to perform when resolving the master hostname if name resolution fails. By default the
minion will retry indefinitely.

retry_dns_count: 3

master_port

Default: 4506

The port of the master ret server, this needs to coincide with the ret_port option on the Salt master.

master_port: 4506

publish_port

Default: 4505

The port of the master publish server, this needs to coincide with the publish_port option on the Salt master.

publish_port: 4505

source_interface_name

New in version 2018.3.0.

The name of the interface to use when establishing the connection to the Master.

Note: If multiple IP addresses are configured on the named interface, the first one will be selected. In that case, for
a better selection, consider using the source_address option.

Note: To use an IPv6 address from the named interface, make sure the option 1pv6 is enabled, i.e., ipv6: true.

Note: If the interface is down, it will avoid using it, and the Minion will bind to ©.0.0. 0 (all interfaces).

3.2. Configuring the Salt Minion 127

Salt Documentation, Release 2019.2.2

Warning: This option requires modern version of the underlying libraries used by the selected transport:
. zeromg requires pyzmq >= 16.0.1 and Libzmq >=4.1.6

« tcprequires tornado >=4.5

Configuration example:

source_interface_name: bond0.1234

source_address

New in version 2018.3.0.

The source IP address or the domain name to be used when connecting the Minion to the Master. See 1pv6 for IPv6
connections to the Master.

Warning: This option requires modern version of the underlying libraries used by the selected transport:
« zeromq requires pyzmq >= 16.0.1 and libzmqg >=4.1.6

« tcp requires tornado >=4.5

Configuration example:

source_address: if-bond0-1234.sjc.us-west.internal

source_ret_port

New in version 2018.3.0.

The source port to be used when connecting the Minion to the Master ret server.

Warning: This option requires modern version of the underlying libraries used by the selected transport:
. zeromg requires pyzmq >= 16.0.1 and Libzmq >=4.1.6

« tcprequires tornado >=4.5

Configuration example:

source_ret_port: 49017

source_publish_port

New in version 2018.3.0.

The source port to be used when connecting the Minion to the Master publish server.

128 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

Warning: This option requires modern version of the underlying libraries used by the selected transport:
. zeromg requires pyzmq >= 16.0.1 and Libzmq >=4.1.6

« tcprequires tornado >=4.5

Configuration example:

source_publish_port: 49018

user

Default: root

The user to run the Salt processes

user: root

sudo_user

Default: ''

The user to run salt remote execution commands as via sudo. If this option is enabled then sudo will be used to
change the active user executing the remote command. If enabled the user will need to be allowed access via the
sudoers file for the user that the salt minion is configured to run as. The most common option would be to use the
root user. If this option is set the user option should also be set to a non-root user. If migrating from a root minion
to a non root minion the minion cache should be cleared and the minion pki directory will need to be changed to
the ownership of the new user.

sudo_user: root

pidfile

Default: /var/run/salt-minion.pid

The location of the daemon’s process ID file

pidfile: /var/run/salt-minion.pid

root_d1ir

Default: /

This directory is prepended to the following options: pki_dir, cachedir, log_file, sock_dir, and
pidfile.

root_dir: /

3.2. Configuring the Salt Minion 129

Salt Documentation, Release 2019.2.2

conf_file

Default: /etc/salt/minion

The path to the minion’s configuration file.

conf_file: /etc/salt/minion

pki_dir

Default: /etc/salt/pki/minion

The directory used to store the minion’s public and private keys.

pki_dir: /etc/salt/pki/minion

id

Default: the system’s hostname
See also:

Salt Walkthrough

The Setting up a Salt Minion section contains detailed information on how the hostname is determined.

Explicitly declare the id for this minion to use. Since Salt uses detached ids it is possible to run multiple minions on
the same machine but with different ids.

id: foo.bar.com

minion_id_caching

New in version 0.17.2.
Default: True

Caches the minion id to a file when the minion’s 1d is not statically defined in the minion config. This setting prevents
potential problems when automatic minion id resolution changes, which can cause the minion to lose connection
with the master. To turn off minion id caching, set this config to False.

For more information, please see Issue #7558 and Pull Request #8488.

minion_id_caching: True

append_domain

Default: None

Append a domain to a hostname in the event that it does not exist. This is useful for systems where socket.
getfqdn () does not actually result in a FQDN (for instance, Solaris).

append_domain: foo.org

130 Chapter 3. Configuring Salt

https://github.com/saltstack/salt/issues/7558
https://github.com/saltstack/salt/pull/8488

Salt Documentation, Release 2019.2.2

minion_id_lowercase

Default: False

Convert minion id to lowercase when it is being generated. Helpful when some hosts get the minion id in uppercase.
Cached ids will remain the same and not converted.

minion_id_lowercase: True

cachedir

Default: /var/cache/salt/minion
The location for minion cache data.

This directory may contain sensitive data and should be protected accordingly.

cachedir: /var/cache/salt/minion

color_theme

Default: ""

Specifies a path to the color theme to use for colored command line output.

color_theme: /etc/salt/color_theme

append_minionid_config_dirs

Default: [] (the empty list) for regular minions, ['cachedir'] for proxy minions.

Append minion_id to these configuration directories. Helps with multiple proxies and minions running on the same
machine. Allowed elements in the list: pki_dir, cachedir, extension_modules. Normally not needed
unless running several proxies and/or minions on the same machine.

append_minionid_config_dirs:
- pki_dir
- cachedir

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

Note: When set to True the verify_env option requires WRITE access to the configuration directory (/etc/salt/).
In certain situations such as mounting /etc/salt/ as read-only for templating this will create a stack trace when
state.apply is called.

3.2. Configuring the Salt Minion 131

Salt Documentation, Release 2019.2.2

cache_jobs

Default: False

The minion can locally cache the return data from jobs sent to it, this can be a good way to keep track of the minion
side of the jobs the minion has executed. By default this feature is disabled, to enable set cache_jobs to True.

cache_jobs: False

grains

Default: (empty)
See also:
Using grains in a state

Statically assigns grains to the minion.

grains:
roles:
- webserver
- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

grains_cache

Default: False

The minion can locally cache grain data instead of refreshing the data each time the grain is referenced. By default
this feature is disabled, to enable set grains_cache to True.

grains_cache: False

grains_deep_merge

New in version 2016.3.0.
Default: False

The grains can be merged, instead of overridden, using this option. This allows custom grains to defined different
subvalues of a dictionary grain. By default this feature is disabled, to enable set grains_deep_merge to True.

grains_deep_merge: False

For example, with these custom grains functions:

def customl_k1():
return {'customl': {'k1': 'v1'}}

def customl_k2():
return {'customl': {'k2': 'v2'}}

Without grains_deep_merge, the result would be:

132 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

customl:
ki: vl

With grains_deep_merge, the result will be:

customl:
ki: vl
k2: v2

grains_refresh_every

Default: 0

The grains_refresh_every setting allows for a minion to periodically check its grains to see if they have
changed and, if so, to inform the master of the new grains. This operation is moderately expensive, therefore care
should be taken not to set this value too low.

Note: This value is expressed in minutes.

A value of 10 minutes is a reasonable default.

grains_refresh_every: 0

metadata_server_grains

New in version 2017.7.0.
Default: False

Set this option to enable gathering of cloud metadata from http://169.254.169.254/latest for use in
grains (see here for more information).

metadata_server_grains: True

fibre_channel_grains

Default: False

The fibre_channel_grains setting will enable the fc_wwn grain for Fibre Channel WWN’s on the minion.
Since this grain is expensive, it is disabled by default.

fibre_channel_grains: True

iscsi_grains

Default: False

The iscsi_grains setting will enable the iscsi_iqgn grain on the minion. Since this grain is expensive, it is
disabled by default.

iscsi_grains: True

3.2. Configuring the Salt Minion 133

Salt Documentation, Release 2019.2.2

mine_enabled

New in version 2015.8.10.
Default: True

Determines whether or not the salt minion should run scheduled mine updates. If this is set to False then the mine
update function will not get added to the scheduler for the minion.

mine_enabled: True

mine_return_job

New in version 2015.8.10.
Default: False

Determines whether or not scheduled mine updates should be accompanied by a job return for the job cache.

mine_return_job: False

mine_functions

Default: Empty

Designate which functions should be executed at mine_interval intervals on each minion. See this documentation on
the Salt Mine for more information. Note these can be defined in the pillar for a minion as well.

example minion configuration file

mine_functions:
test.ping: []
network.ip_addrs:
interface: etho
cidr: '10.0.0.0/8'

mine_interval

Default: 60

The number of minutes between mine updates.

mine_interval: 60

sock_dir

Default: /var/run/salt/minion

The directory where Unix sockets will be kept.

sock_d1ir: /var/run/salt/minion

134 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

enable_gpu_grains

Default: True

Enable GPU hardware data for your master. Be aware that the minion can take a while to start up when Ispci and/or
dmidecode is used to populate the grains for the minion, so this can be set to Fa'lse if you do not need these grains.

enable_gpu_grains: False

outputter_dirs

Default: []

A list of additional directories to search for salt outputters in.

outputter_dirs: []

backup_mode

Default: ''

Make backups of files replaced by file.managed and file.recurse state modules under cachedir in
file_backup subdirectory preserving original paths. Refer to File State Backups documentation for more details.

backup_mode: minion

acceptance_wait_time

Default: 10

The number of seconds to wait until attempting to re-authenticate with the master.

acceptance_wait_time: 10

acceptance_wait_time_max

Default: 0

The maximum number of seconds to wait until attempting to re-authenticate with the master. If set, the wait will
increase by acceptance_wait_time seconds each iteration.

acceptance_wait_time_max: 0

rejected_retry

Default: False

If the master rejects the minion’s public key, retry instead of exiting. Rejected keys will be handled the same as
waiting on acceptance.

rejected_retry: False

3.2. Configuring the Salt Minion 135

Salt Documentation, Release 2019.2.2

random_reauth_delay

Default: 10

When the master key changes, the minion will try to re-auth itself to receive the new master key. In larger envi-
ronments this can cause a syn-flood on the master because all minions try to re-auth immediately. To prevent this
and have a minion wait for a random amount of time, use this optional parameter. The wait-time will be a random
number of seconds between 0 and the defined value.

random_reauth_delay: 60

master_tries

New in version 2016.3.0.
Default: 1

The number of attempts to connect to a master before giving up. Set this to —1 for unlimited attempts. This allows
for a master to have downtime and the minion to reconnect to it later when it comes back up. In ’failover’ mode,
which is set in the master_type configuration, this value is the number of attempts for each set of masters. In
this mode, it will cycle through the list of masters for each attempt.

master_tries is different than auth_tries because auth_tries attempts to retry auth attempts with a
single master. auth_tries is under the assumption that you can connect to the master but not gain authorization
from it. master_tries will still cycle through all of the masters in a given try, so it is appropriate if you expect
occasional downtime from the master(s).

master_tries: 1

auth_tries

New in version 2014.7.0.
Default: 7

The number of attempts to authenticate to a master before giving up. Or, more technically, the number of consecutive
SaltReqTimeoutErrors that are acceptable when trying to authenticate to the master.

auth_tries: 7

auth_timeout

New in version 2014.7.0.
Default: 60

When waiting for a master to accept the minion’s public key, salt will continuously attempt to reconnect until
successful. This is the timeout value, in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master is under unusually heavy
load, this should be left at the default.

auth_timeout: 60

136 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

auth_safemode

New in version 2014.7.0.
Default: False

If authentication fails due to SaltReqTimeoutError during a ping_interval, this setting, when set to True, will cause
a sub-minion process to restart.

auth_safemode: False

ping_dinterval

Default: 0

Instructs the minion to ping its master(s) every n number of minutes. Used primarily as a mitigation technique
against minion disconnects.

ping_interval: 0

random_startup_delay

Default: 0

The maximum bound for an interval in which a minion will randomly sleep upon starting up prior to attempting
to connect to a master. This can be used to splay connection attempts for cases where many minions starting up at
once may place undue load on a master.

For example, setting this to 5 will tell a minion to sleep for a value between 0 and 5 seconds.

random_startup_delay: 5

recon_default

Default: 1000

The interval in milliseconds that the socket should wait before trying to reconnect to the master (1000ms = 1 second).

recon_default: 1000

recon_max

Default: 10000

The maximum time a socket should wait. Each interval the time to wait is calculated by doubling the previous time.
If recon_max is reached, it starts again at the recon_default.

Short example:
« reconnect 1: the socket will wait 'recon_default’ milliseconds
« reconnect 2: ‘recon_default’ * 2
« reconnect 3: (‘recon_default’ * 2) * 2

« reconnect 4: value from previous interval * 2

3.2. Configuring the Salt Minion 137

Salt Documentation, Release 2019.2.2

« reconnect 5: value from previous interval * 2

« reconnect x: if value >= recon_max, it starts again with recon_default

recon_max: 10000

recon_randomize

Default: True

Generate a random wait time on minion start. The wait time will be a random value between recon_default and
recon_default + recon_max. Having all minions reconnect with the same recon_default and recon_max value kind
of defeats the purpose of being able to change these settings. If all minions have the same values and the setup is
quite large (several thousand minions), they will still flood the master. The desired behavior is to have time-frame
within all minions try to reconnect.

recon_randomize: True

loop_interval

Default: 1

The loop_interval sets how long in seconds the minion will wait between evaluating the scheduler and running
cleanup tasks. This defaults to 1 second on the minion scheduler.

loop_interval: 1

pub_ret

Default: True

Some installations choose to start all job returns in a cache or a returner and forgo sending the results back to a
master. In this workflow, jobs are most often executed with —async from the Salt CLI and then results are evaluated
by examining job caches on the minions or any configured returners. WARNING: Setting this to False will disable
returns back to the master.

pub_ret: True

return_retry_timer

Default: 5

The default timeout for a minion return attempt.

return_retry_timer: 5

return_retry_timer_max

Default: 10

The maximum timeout for a minion return attempt. If non-zero the minion return retry timeout will be a random
int between return_retry_timer and return_retry_timer_max

138 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

return_retry_timer_max: 10

cache_sreqs

Default: True

The connection to the master ret_port is kept open. When set to False, the minion creates a new connection for
every return to the master.

cache_sreqs: True

ipc_mode

Default: ipc

Windows platforms lack POSIX IPC and must rely on slower TCP based inter- process communications. Set ipc_mode
to tcp on such systems.

ipc_mode: -ipc

tcp_pub_port

Default: 4510

Publish port used when ipc_mode is set to tcp.

tcp_pub_port: 4510

tcp_pull_port

Default: 4511

Pull port used when ipc_mode is set to tcp.

tcp_pull_port: 4511

transport

Default: zeromq

Changes the underlying transport layer. ZeroMQ is the recommended transport while additional transport layers
are under development. Supported values are zeromq, raet (experimental), and tcp (experimental). This setting
has a significant impact on performance and should not be changed unless you know what you are doing!

transport: zeromq

3.2. Configuring the Salt Minion 139

Salt Documentation, Release 2019.2.2

syndic_finger

Default: ''

The key fingerprint of the higher-level master for the syndic to verify it is talking to the intended master.

syndic_finger: 'ab:30:65:2a:d6:9e:20:4f:d8:b2:f3:a7:d4:65:50:10'

http_connect_timeout

New in version 2019.2.0.
Default: 20

HTTP connection timeout in seconds. Applied when fetching files using tornado back-end. Should be greater than
overall download time.

http_connect_timeout: 20

http_request_timeout

New in version 2015.8.0.
Default: 3600

HTTP request timeout in seconds. Applied when fetching files using tornado back-end. Should be greater than
overall download time.

http_request_timeout: 3600

proxy_host

Default: ''

The hostname used for HTTP proxy access.

proxy_host: proxy.my-domain

proxy_port

Default: 0

The port number used for HTTP proxy access.

proxy_port: 31337

proxy_username

Default: "'

The username used for HTTP proxy access.

140 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

proxy_username: charon

proxy_password

Default: "'

The password used for HTTP proxy access.

proxy_password: obolus

no_proxy

New in version 2019.2.0.
Default: []
List of hosts to bypass HTTP proxy

Note: This key does nothing unless proxy_host etc is configured, it does not support any kind of wildcards.

no_proxy: ['127.0.0.1', 'foo.tld']

3.2.2 Docker Configuration

docker .update_mine

New in version 2017.7.8,2018.3.3.
Changed in version 2019.2.0: The default value is now False

Default: True

If enabled, when containers are added, removed, stopped, started, etc., the mine will be updated with the results of
docker.ps verbose=True all=True host=True. This mine data is used by mine.get_docker. Set
this option to Fa'lse to keep Salt from updating the mine with this information.

Note: This option can also be set in Grains or Pillar data, with Grains overriding Pillar and the minion config file

overriding Grains.

Note: Disabling this will of course keep mine. get_docker from returning any information for a given minion.

docker.update_mine: False

docker.compare_container_networks

New in version 2018.3.0.

3.2. Configuring the Salt Minion 141

Salt Documentation, Release 2019.2.2

Default: {'static': ['Aliases', 'Links', 'IPAMConfig'], 'automatic':
['IPAddress', 'Gateway', 'GlobalIPv6Address', 'IPv6Gateway']}

Specifies which keys are examined by docker. compare_container_networks.

Note: This should not need to be modified unless new features added to Docker result in new keys added to the
network configuration which must be compared to determine if two containers have different network configs. This
config option exists solely as a way to allow users to continue using Salt to manage their containers after an API
change, without waiting for a new Salt release to catch up to the changes in the Docker API.

docker.compare_container_networks:
static:
- Aliases
- Links
- IPAMConfig
automatic:
- IPAddress
- Gateway
- GlobalIPv6Address
- IPv6Gateway

optimization_order

Default: [0, 1, 2]

In cases where Salt is distributed without .py files, this option determines the priority of optimization level(s) Salt’s
module loader should prefer.

Note: This option is only supported on Python 3.5+.

optimization_order:
-2

-0
1

3.2.3 Minion Execution Module Management

disable_modules

Default: [] (all execution modules are enabled by default)
The event may occur in which the administrator desires that a minion should not be able to execute a certain module.
However, the sys module is built into the minion and cannot be disabled.

This setting can also tune the minion. Because all modules are loaded into system memory, disabling modules will
lower the minion’s memory footprint.

Modules should be specified according to their file name on the system and not by their virtual name. For example,
to disable cmd, use the string cmdmod which corresponds to salt.modules.cmdmod.

142 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

disable_modules:
- test
- solr

disable_returners

Default: [] (all returners are enabled by default)

If certain returners should be disabled, this is the place

disable_returners:
- mongo_return

whitelist_modules

Default: [] (Module whitelisting is disabled. Adding anything to the config option will cause only the listed modules
to be enabled. Modules not in the list will not be loaded.)

This option is the reverse of disable_modules. If enabled, only execution modules in this list will be loaded and
executed on the minion.

Note that this is a very large hammer and it can be quite difficult to keep the minion working the way you think it
should since Salt uses many modules internally itself. At a bare minimum you need the following enabled or else
the minion won’t start.

whitelist_modules:
- cmdmod
- test
- config

module_dirs

Default: []

A list of extra directories to search for Salt modules

module_dirs:
- /var/lib/salt/modules

returner_dirs

Default: []

A list of extra directories to search for Salt returners

returner_dirs:
- /var/lib/salt/returners

3.2. Configuring the Salt Minion 143

Salt Documentation, Release 2019.2.2

states_dirs

Default: []

A list of extra directories to search for Salt states

states_d1irs:
- /var/lib/salt/states

grains_dirs

Default: []

A list of extra directories to search for Salt grains

grains_dirs:
- /var/lib/salt/grains

render_dirs

Default: []

A list of extra directories to search for Salt renderers

render_dirs:
- /var/lib/salt/renderers

utils_dirs

Default: []

A list of extra directories to search for Salt utilities

utils_dirs:
- /Jvar/lib/salt/utils

cython_enable

Default: False

Set this value to true to enable auto-loading and compiling of . pyx modules, This setting requires that gcc and
cython are installed on the minion.

cython_enable: False

enable_zip_modules

New in version 2015.8.0.
Default: False

Set this value to true to enable loading of zip archives as extension modules. This allows for packing module code with
specific dependencies to avoid conflicts and/or having to install specific modules’ dependencies in system libraries.

144 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

enable_zip_modules: False

providers

Default: (empty)

A module provider can be statically overwritten or extended for the minion via the providers option. This can
be done on an individual basis in an SLS file, or globally here in the minion config, like below.

providers:
service: systemd

modules_max_memory

Default: -1

Specify a max size (in bytes) for modules on import. This feature is currently only supported on *NIX operating
systems and requires psutil.

modules_max_memory: -1

extmod_whitelist/extmod_blacklist

New in version 2017.7.0.

By using this dictionary, the modules that are synced to the minion’s extmod cache using saltutil.sync_* can be
limited. If nothing is set to a specific type, then all modules are accepted. To block all modules of a specific type,
whitelist an empty list.

extmod_whitelist:
modules:
- custom_module
engines:
- custom_engine
pillars: []

extmod_blacklist:
modules:
- specific_module

Valid options:
« beacons
« clouds
« sdb
« modules
» states
« grains
« renderers

« returners

3.2. Configuring the Salt Minion 145

Salt Documentation, Release 2019.2.2

 proxy
+ engines
« output
« utils

« pillar

3.2.4 Top File Settings

These parameters only have an effect if running a masterless minion.

state_top

Default: top.sls

The state system uses a "top” file to tell the minions what environment to use and what modules to use. The state_top
file is defined relative to the root of the base environment.

state_top: top.sls

state_top_saltenv

This option has no default value. Set it to an environment name to ensure that only the top file from that environment
is considered during a highstate.

Note: Using this value does not change the merging strategy. For instance, if top_file_merging_strategy
is set to merge, and state_top_saltenv is set to foo, then any sections for environments other than foo in
the top file for the foo environment will be ignored. With state_top_saltenyv set to base, all states from
all environments in the base top file will be applied, while all other top files are ignored. The only way to set
state_top_saltenv to something other than base and not have the other environments in the targeted top
file ignored, would be to set top_file_merging_strategy tomerge_all.

state_top_saltenv: dev

top_file_merging_strategy

Changed in version 2016.11.0: A merge_a'll strategy has been added.
Default: merge

When no specific fileserver environment (a.k.a. saltenv) has been specified for a highstate, all environments’ top
files are inspected. This config option determines how the SLS targets in those top files are handled.

When set to merge, the base environment’s top file is evaluated first, followed by the other environments’ top
files. The first target expression (e.g. '*') for a given environment is kept, and when the same target expression
is used in a different top file evaluated later, it is ignored. Because base is evaluated first, it is authoritative. For
example, if there is a target for ' *' for the foo environment in both the base and foo environment’s top files, the
one in the foo environment would be ignored. The environments will be evaluated in no specific order (aside from
base coming first). For greater control over the order in which the environments are evaluated, use env_order.
Note that, aside from the base environment’s top file, any sections in top files that do not match that top file’s

146 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

environment will be ignored. So, for example, a section for the gqa environment would be ignored if it appears in
the dev environment’s top file. To keep use cases like this from being ignored, use the merge_all strategy.

When set to same, then for each environment, only that environment’s top file is processed, with the others being
ignored. For example, only the dev environment’s top file will be processed for the dev environment, and any
SLS targets defined for dev in the base environment’s (or any other environment’s) top file will be ignored. If an
environment does not have a top file, then the top file from the default_top config parameter will be used as a
fallback.

When set to merge_a'll, then all states in all environments in all top files will be applied. The order in which
individual SLS files will be executed will depend on the order in which the top files were evaluated, and the envi-
ronments will be evaluated in no specific order. For greater control over the order in which the environments are
evaluated, use env_order.

top_file_merging_strategy: same

env_order

Default: []

When top_file_merging_strategy is set to merge, and no environment is specified for a highstate, this
config option allows for the order in which top files are evaluated to be explicitly defined.

env_order:
- base
- dev

- qga

default_top

Default: base

When top_file_merging_strategy is set to same, and no environment is specified for a highstate (i.e.
environment is not set for the minion), this config option specifies a fallback environment in which to look
for a top file if an environment lacks one.

default_top: dev

startup_states

Default: "'

States to run when the minion daemon starts. To enable, set startup_states to:
- highstate: Execute state.highstate
« s'ls: Read in the sls_list option and execute the named sls files

« top: Read top_file option and execute based on that file on the Master

startup_states: '’

3.2. Configuring the Salt Minion 147

Salt Documentation, Release 2019.2.2

sls_Tlist

Default: []

List of states to run when the minion starts up if startup_states issetto sls.

sls_list:
- edit.vim
- hyper

top_file

Default: ''

Top file to execute if startup_states is set to top.

top_file: "'

3.2.5 State Management Settings

renderer

Default: jinja|yaml

The default renderer used for local state executions

renderer: jinja|json

test

Default: False

Set all state calls to only test if they are going to actually make changes or just post what changes are going to be
made.

test: False

state_verbose

Default: True

Controls the verbosity of state runs. By default, the results of all states are returned, but setting this value to False
will cause salt to only display output for states that failed or states that have changes.

state_verbose: True

state_output

Default: full
The state_output setting controls which results will be output full multi line:

« full, terse - each state will be full/terse

148 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

« mixed - only states with errors will be full
« changes - states with changes and errors will be full

full_id,mixed_id, changes_idand terse_1id are also allowed; when set, the state ID will be used as name
in the output.

state_output: full

state_output_diff

Default: False

The state_output_diff setting changes whether or not the output from successful states is returned. Useful when
even the terse output of these states is cluttering the logs. Set it to True to ignore them.

state_output_diff: False

autoload_dynamic_modules

Default: True

autoload_dynamic_modules turns on automatic loading of modules found in the environments on the master. This
is turned on by default. To turn off auto-loading modules when states run, set this value to False.

autoload_dynamic_modules: True

Default: True

clean_dynamic_modules keeps the dynamic modules on the minion in sync with the dynamic modules on the master.
This means that if a dynamic module is not on the master it will be deleted from the minion. By default this is enabled
and can be disabled by changing this value to False.

clean_dynamic_modules: True

Note: If extmod_whitelist is specified, modules which are not whitelisted will also be cleaned here.

saltenv

Changed in version 2018.3.0: Renamed from environment to saltenv. If environment is used, saltenv
will take its value. If both are used, environment will be ignored and saltenv will be used.

Normally the minion is not isolated to any single environment on the master when running states, but the environ-
ment can be isolated on the minion side by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.

saltenv: dev

lock_saltenv

New in version 2018.3.0.

Default: False

3.2. Configuring the Salt Minion 149

Salt Documentation, Release 2019.2.2

For purposes of running states, this option prevents using the saltenv argument to manually set the environment.
This is useful to keep a minion which has the saltenv option set to dev from running states from an environment
other than dev.

lock_saltenv: True

snapper_states

Default: False

The snapper_states value is used to enable taking snapper snapshots before and after salt state runs. This allows for
state runs to be rolled back.

For snapper states to function properly snapper needs to be installed and enabled.

snapper_states: True

snapper_states_config

Default: root

Snapper can execute based on a snapper configuration. The configuration needs to be set up before snapper can use it.
The default configuration is root, this default makes snapper run on SUSE systems using the default configuration
set up at install time.

snapper_states_config: root

3.2.6 File Directory Settings
file_client

Default: remote

The client defaults to looking on the master server for files, but can be directed to look on the minion by setting this
parameter to Loca'l.

file_client: remote

use_master_when_local

Default: False

When using a local file_client, this parameter is used to allow the client to connect to a master for remote
execution.

use_master_when_local: False

file_roots

Default:

150 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

base:
- /srv/salt

When using a local file_client, this parameter is used to setup the fileserver’s environments. This parameter
operates identically to the master config parameter of the same name.

file_roots:

base:
- /srv/salt

dev:
- /srv/salt/dev/services
- /srv/salt/dev/states

prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

fileserver_followsymlinks

New in version 2014.1.0.
Default: True

By default, the file_server follows symlinks when walking the filesystem tree. Currently this only applies to the
default roots fileserver_backend.

fileserver_followsymlinks: True

fileserver_ignoresymlinks

New in version 2014.1.0.
Default: False

If you do not want symlinks to be treated as the files they are pointing to, set fileserver_ignoresymlinks
to True. By default this is set to False. When set to True, any detected symlink while listing files on the Master
will not be returned to the Minion.

fileserver_ignoresymlinks: False

fileserver_limit_traversal

New in version 2014.1.0.
Default: False

By default, the Salt fileserver recurses fully into all defined environments to attempt to find files. To limit this
behavior so that the fileserver only traverses directories with SLS files and special Salt directories like _modules, set
fileserver_limit_traversal to True. This might be useful for installations where a file root has a very
large number of files and performance is impacted.

fileserver_limit_traversal: False

3.2. Configuring the Salt Minion 151

Salt Documentation, Release 2019.2.2

hash_type

Default: sha256

The hash_type is the hash to use when discovering the hash of a file on the local fileserver. The default is sha256,
but md5, shal, sha224, sha384, and sha512 are also supported.

hash_type: sha256

3.2.7 Pillar Configuration

pillar_roots

Default:

base:
- /srv/pillar

When using a local file_client, this parameter is used to setup the pillar environments.

pillar_roots:
base:
- /srv/pillar
dev:
- /srv/pillar/dev
prod:
- /srv/pillar/prod

on_demand_ext_pillar

New in version 2016.3.6,2016.11.3,2017.7.0.
Default: ['libvirt', 'virtkey']

When using a local i le_client, this option controls which external pillars are permitted to be used on-demand
using pillar.ext.

on_demand_ext_pillar:
- libvirt
- virtkey
- git

Warning: This will allow a masterless minion to request specific pillar data via pillar.ext, and may be
considered a security risk. However, pillar data generated in this way will not affect the in-memory pillar data, so
this risk is limited to instances in which states/modules/etc. (built-in or custom) rely upon pillar data generated
by pillar.ext.

decrypt_pillar

New in version 2017.7.0.

Default: []

152 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

A list of paths to be recursively decrypted during pillar compilation.

decrypt_pillar:
- 'foo:bar': gpg
- 'lorem:ipsum:dolor'

Entries in this list can be formatted either as a simple string, or as a key/value pair, with the key being the pillar
location, and the value being the renderer to use for pillar decryption. If the former is used, the renderer specified
by decrypt_pillar_default will be used.

decrypt_pillar_delimiter

New in version 2017.7.0.
Default: :

The delimiter used to distinguish nested data structures in the decrypt_pillar option.

decrypt_pillar_delimiter: '|'
decrypt_pillar:

- 'foo|bar': gpg

- 'lorem|ipsum|dolor’

decrypt_pillar_default

New in version 2017.7.0.
Default: gpg

The default renderer used for decryption, if one is not specified for a given pillar key in decrypt_pillar.

decrypt_pillar_default: my_custom_renderer

decrypt_pillar_renderers

New in version 2017.7.0.
Default: ['gpg']

List of renderers which are permitted to be used for pillar decryption.

decrypt_pillar_renderers:

- 8gpPg
- my_custom_renderer

pillarenv

Default: None

Isolates the pillar environment on the minion side. This functions the same as the environment setting, but for pillar
instead of states.

pillarenv: dev

3.2. Configuring the Salt Minion 153

Salt Documentation, Release 2019.2.2

pillarenv_from_saltenv

New in version 2017.7.0.
Default: False

When set to True, the pillarenv value will assume the value of the effective saltenv when running states.
This essentially makes salt 'x' state.sls mysls saltenv=dev equivalent to salt 'x' state.
sls mysls saltenv=dev pillarenv=dev. If pillarenv is set, either in the minion config file or via
the CLI, it will override this option.

pillarenv_from_saltenv: True

pillar_raise_on_missing

New in version 2015.5.0.
Default: False

Set this option to True to force a KeyError to be raised whenever an attempt to retrieve a named value from pillar
fails. When this option is set to False, the failed attempt returns an empty string.

minion_pillar_cache

New in version 2016.3.0.
Default: False

The minion can locally cache rendered pillar data under cachedir/pillar. This allows a temporarily
disconnected minion to access previously cached pillar data by invoking salt-call with the -local and -
pillar_root=:conf_minion:cachedir/pillar options. Before enabling this setting consider that the rendered pillar may
contain security sensitive data. Appropriate access restrictions should be in place. By default the saved pillar
data will be readable only by the user account running salt. By default this feature is disabled, to enable set min-
ion_pillar_cache to True.

minion_pillar_cache: False

file_recv_max_size

New in version 2014.7.0.
Default: 100

Set a hard-limit on the size of the files that can be pushed to the master. It will be interpreted as megabytes.

file_recv_max_size: 100

pass_to_ext_pillars

Specify a list of configuration keys whose values are to be passed to external pillar functions.
Suboptions can be specified using the ’:’ notation (i.e. option:suboption)

The values are merged and included in the extra_minion_data optional parameter of the external pillar func-
tion. The extra_minion_data parameter is passed only to the external pillar functions that have it explicitly
specified in their definition.

154 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

If the config contains

optl: valuel
opt2:
suboptl: value2
subopt2: value3

pass_to_ext_pillars:
- optl
- opt2: suboptl

the extra_minion_data parameter will be

{'optl': 'valuel',
'opt2': {'suboptl': 'value2'}}

3.2.8 Security Settings
open_mode

Default: False

Open mode can be used to clean out the PKI key received from the Salt master, turn on open mode, restart the minion,
then turn off open mode and restart the minion to clean the keys.

open_mode: False

master_finger

Default: ''

Fingerprint of the master public key to validate the identity of your Salt master before the initial key exchange. The
master fingerprint can be found by running “salt-key -F master” on the Salt master.

master_finger: 'ba:30:65:2a:d6:9e:20:4f:d8:b2:f3:a7:d4:65:11:13"

keysize

Default: 2048

The size of key that should be generated when creating new keys.

keysize: 2048

permissive_pki_access

Default: False

Enable permissive access to the salt keys. This allows you to run the master or minion as root, but have a non-root
group be given access to your pki_dir. To make the access explicit, root must belong to the group you’ve given access
to. This is potentially quite insecure.

3.2. Configuring the Salt Minion 155

Salt Documentation, Release 2019.2.2

permissive_pki_access: False

verify_master_pubkey_sign

Default: False

Enables verification of the master-public-signature returned by the master in auth-replies. Please see the tutorial on
how to configure this properly Multimaster-PKI with Failover Tutorial

New in version 2014.7.0.

verify_master_pubkey_sign: True

If this is set to True, master_sign_pubkey must be also set to True in the master configuration file.

master_sign_key_name

Default: master_sign

The filename without the .pub suffix of the public key that should be used for verifying the signature from the master.
The file must be located in the minion’s pki directory.

New in version 2014.7.0.

master_sign_key_name: <filename_without_suffix>

autosign_grains

New in version 2018.3.0.
Default: not defined

The grains that should be sent to the master on authentication to decide if the minion’s key should be accepted
automatically.

Please see the Autoaccept Minions from Grains documentation for more information.

autosign_grains:
- uuid
- server_id

always_verify_signature

Default: False

If verify_master_pubkey_sign is enabled, the signature is only verified if the public-key of the master
changes. If the signature should always be verified, this can be set to True.

New in version 2014.7.0.

always_verify_signature: True

156 Chapter 3. Configuring Salt

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2019.2.2

cmd_blacklist_glob

Default: []

If cmd_blacklist_glob is enabled then any shell command called over remote execution or via salt-call will
be checked against the glob matches found in the ¢md_blacklist_glob list and any matched shell command will be
blocked.

Note: This blacklist is only applied to direct executions made by the salt and salt-call commands. This does NOT
blacklist commands called from states or shell commands executed from other modules.

New in version 2016.11.0.

cmd_blacklist_glob:
_ lrm * 1
- 'cat /etc/* !

cmd_whitelist_glob

Default: []

If cmd_whitelist_glob is enabled then any shell command called over remote execution or via salt-call will be
checked against the glob matches found in the cmd_whitelist_glob list and any shell command NOT found in the list
will be blocked. If cmd_whitelist_glob is NOT SET, then all shell commands are permitted.

Note: This whitelist is only applied to direct executions made by the salt and salt-call commands. This does NOT
restrict commands called from states or shell commands executed from other modules.

New in version 2016.11.0.

cmd_whitelist_glob:
_ '15 * 1
- 'cat /etc/fstab'

ssl

New in version 2016.11.0.
Default: None

TLS/SSL connection options. This could be set to a dictionary containing arguments corresponding to python ssl.
wrap_socket method. For details see Tornado and Python documentation.

Note: to set enum arguments values like cert_reqs and ssl_version use constant names without ssl module
prefix: CERT_REQUIRED or PROTOCOL_SSLv23.

ssl:
keyfile: <path_to_keyfile>
certfile: <path_to_certfile>
ssl_version: PROTOCOL_TLSv1_2

3.2. Configuring the Salt Minion 157

http://www.tornadoweb.org/en/stable/tcpserver.html#tornado.tcpserver.TCPServer
http://docs.python.org/2/library/ssl.html#ssl.wrap_socket

Salt Documentation, Release 2019.2.2

3.2.9 Reactor Settings
reactor

Default: []

Defines a salt reactor. See the Reactor documentation for more information.

reactor: []

reactor_refresh_interval

Default: 60

The TTL for the cache of the reactor configuration.

reactor_refresh_interval: 60

reactor_worker_threads

Default: 10

The number of workers for the runner/wheel in the reactor.

reactor_worker_threads: 10

reactor_worker_hwm

Default: 10000

The queue size for workers in the reactor.

reactor_worker_hwm: 10000

3.2.10 Thread Settings

multiprocessing

Default: True

If multiprocessingisenabled when a minion receives a publication a new process is spawned and the command
is executed therein. Conversely, if multiprocessing is disabled the new publication will be run executed in a
thread.

multiprocessing: True

process_count_max

New in version 2018.3.0.

Default: -1

158 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

Limit the maximum amount of processes or threads created by salt-minion. This is useful to avoid resource
exhaustion in case the minion receives more publications than it is able to handle, as it limits the number of spawned
processes or threads. -1 is the default and disables the limit.

process_count_max: -1

3.2.11 Minion Logging Settings
log_file

Default: /var/log/salt/minion
The minion log can be sent to a regular file, local path name, or network location. See also Log_f1ile.

Examples:

’ log_file: /var/log/salt/minion

llog_fﬂe: file:///dev/log

’ log_file: udp://loghost:10514

log_level

Default: warning

The level of messages to send to the console. See also log_level.

log_level: warning

log_level_logfile

Default: warning

The level of messages to send to the log file. See also log_level_logfile. When it is not set explicitly it will
inherit the level set by Log_level option.

log_level_logfile: warning

log_datefmt

Default: %H : %M : %S

The date and time format used in console log messages. See also Log_datefmt.

log_datefmt: '%H:%M:%S'

3.2. Configuring the Salt Minion 159

Salt Documentation, Release 2019.2.2

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also Llog_fmt_console.

Note: Log colors are enabled in Llog_fmt_console rather than the color config since the logging system is
loaded before the minion config.

Console log colors are specified by these additional formatters:
%(colorlevel)s %(colorname)s %(colorprocess)s %(colormsg)s

Since it is desirable to include the surrounding brackets, ’[* and ’]’, in the coloring of the messages, these color
formatters also include padding as well. Color LogRecord attributes are only available for console logging.

log_fmt_console: '%(colorlevel)s %(colormsg)s'
log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: % (asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s
’ g

The format of the log file logging messages. See also log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also log_granular_levels.

log_rotate_max_bytes

Default: 0

The maximum number of bytes a single log file may contain before it is rotated. A value of 0 disables this feature.
Currently only supported on Windows. On other platforms, use an external tool such as "logrotate’ to manage log
files. log_rotate_max_bytes

160 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

log_rotate_backup_count

Default: 0

The number of backup files to keep when rotating log files. Only used if log_rotate_max_bytes is greater than
0. Currently only supported on Windows. On other platforms, use an external tool such as ’logrotate’ to manage
log files. log_rotate_backup_count

zmq_mon+itor

Default: False

To diagnose issues with minions disconnecting or missing returns, ZeroMQ supports the use of monitor sockets to
log connection events. This feature requires ZeroMQ 4.0 or higher.

To enable ZeroMQ monitor sockets, set zmq_monitor’ to “True’ and log at a debug level or higher.

A sample log event is as follows:

[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': 'EVENT_DISCONNECTED'}

All events logged will include the string ZeroMQ event. A connection event should be logged as the minion starts
up and initially connects to the master. If not, check for debug log level and that the necessary version of ZeroMQ
is installed.

tcp_authentication_retries

Default: 5
The number of times to retry authenticating with the salt master when it comes back online.

Zeromq does a lot to make sure when connections come back online that they reauthenticate. The tcp transport
should try to connect with a new connection if the old one times out on reauthenticating.

-1 for infinite tries.
failhard

Default: False

Set the global failhard flag. This informs all states to stop running states at the moment a single state fails

failhard: False

3.2.12 Include Configuration

Configuration can be loaded from multiple files. The order in which this is done is:
1. The minion config file itself
2. The files matching the glob in default_include
3. The files matching the glob in include (if defined)

3.2. Configuring the Salt Minion 161

Salt Documentation, Release 2019.2.2

Each successive step overrides any values defined in the previous steps. Therefore, any config options defined in one
of the default_include files would override the same value in the minion config file, and any options defined
in inc lude would override both.

default_include

Default: minion.d/*.conf

The minion can include configuration from other files. Per default the minion will automatically include all config
files from minion.d/*.conf where minion.d is relative to the directory of the minion configuration file.

Note: Salt creates files in the minion.d directory for its own use. These files are prefixed with an underscore. A
common example of this is the _schedule. conf file.

include

Default: not defined

The minion can include configuration from other files. To enable this, pass a list of paths to this option. The paths
can be either relative or absolute; if relative, they are considered to be relative to the directory the main minion
configuration file lives in. Paths can make use of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include files from a minion.d directory in the same
directory as the minion config file
include: minion.d/*.conf

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the minion.d directory
include:

- extra_config

- minion.d/*

- Jetc/roles/webserver

3.2.13 Keepalive Settings
tcp_keepalive

Default: True

The tcp keepalive interval to set on TCP ports. This setting can be used to tune Salt connectivity issues in messy
network environments with misbehaving firewalls.

tcp_keepalive: True

tcp_keepalive_cnt

Default: -1

Sets the ZeroMQ TCP keepalive count. May be used to tune issues with minion disconnects.

162 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

tcp_keepalive_cnt: -1

tcp_keepalive_idle

Default: 300

Sets ZeroMQ TCP keepalive idle. May be used to tune issues with minion disconnects.

tcp_keepalive_idle: 300

tcp_keepalive_intvl

Default: -1

Sets ZeroMQ TCP keepalive interval. May be used to tune issues with minion disconnects.

tcp_keepalive_intvl': -1

3.2.14 Frozen Build Update Settings

These options control how salt.modules.saltutil.update () works with esky frozen apps. For more in-
formation look at https://github.com/cloudmatrix/esky/.

update_url

Default: False (Update feature is disabled)

The url to use when looking for application updates. Esky depends on directory listings to search for new versions.
A webserver running on your Master is a good starting point for most setups.

update_url: 'http://salt.example.com/minion-updates'

update_restart_services

Default: [] (service restarting on update is disabled)

A list of services to restart when the minion software is updated. This would typically just be a list containing the
minion’s service name, but you may have other services that need to go with it.

update_restart_services: ['salt-minion']

winrepo_cache_expire_min

New in version 2016.11.0.
Default: 1800

If set to a nonzero integer, then passing refresh=True to functions in the windows pkg module will not
refresh the windows repo metadata if the age of the metadata is less than this value. The exception to this is pkg.
refresh_db, which will always refresh the metadata, regardless of age.

3.2. Configuring the Salt Minion 163

https://github.com/cloudmatrix/esky/

Salt Documentation, Release 2019.2.2

winrepo_cache_expire_min: 1800

winrepo_cache_expire_max

New in version 2016.11.0.
Default: 21600

If the windows repo metadata is older than this value, and the metadata is needed by a function in the windows
pkg module, the metadata will be refreshed.

winrepo_cache_expire_max: 86400

3.2.15 Minion Windows Software Repo Settings

Important: To use these config options, the minion can be running in master-minion or masterless mode.

winrepo_source_dir

Default: salt://win/repo-ng/

The source location for the winrepo sls files.

winrepo_source_dir: salt://win/repo-ng/

3.2.16 Standalone Minion Windows Software Repo Settings

Important: To use these config options, the minion must be running in masterless mode (set file_client to

local).

winrepo_dir

Changed in version 2015.8.0: Renamed from win_repo towinrepo_dir. Also, this option did not have a default
value until this version.

Default: C:\salt\srv\salt\win\repo

Location on the minion where the winrepo_remotes are checked out.

winrepo_dir: 'D:\winrepo’

winrepo_dir_ng

New in version 2015.8.0: A new ng repo was added.
Default: /srv/salt/win/repo-ng

Location on the minion where the winrepo_remotes_ng are checked out for 2015.8.0 and later minions.

164 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

winrepo_dir_ng: /srv/salt/win/repo-ng

winrepo_cachefile

Changed in version 2015.8.0: Renamed from win_repo_cachefile to winrepo_cachefile. Also, this op-
tion did not have a default value until this version.

Default: winrepo.p

Path relative to winrepo_dir where the winrepo cache should be created.

winrepo_cachefile: winrepo.p

winrepo_remotes

Changed in version 2015.8.0: Renamed from win_gitrepos to winrepo_remotes. Also, this option did not
have a default value until this version.

New in version 2015.8.0.

Default: ['https://github.com/saltstack/salt-winrepo.git']

List of git repositories to checkout and include in the winrepo

winrepo_remotes:
- https://github.com/saltstack/salt-winrepo.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes:
- '<commit_id> https://github.com/saltstack/salt-winrepo.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

winrepo_remotes_ng

New in version 2015.8.0: A new ng repo was added.
Default: ['https://github.com/saltstack/salt-winrepo-ng.git']

List of git repositories to checkout and include in the winrepo for 2015.8.0 and later minions.

winrepo_remotes_ng:
- https://github.com/saltstack/salt-winrepo-ng.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes_ng:
- '<commit_id> https://github.com/saltstack/salt-winrepo-ng.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

3.2. Configuring the Salt Minion 165

Salt Documentation, Release 2019.2.2

ssh_merge_pillar

New in version 2018.3.2.
Default: True

Merges the compiled pillar data with the pillar data already available globally. This is useful when using salt-ssh
or salt-call --local and overriding the pillar data in a state file:

apply_showpillar:
module.run:
- name: state.apply
- mods:
- showpillar
- kwargs:
pillar:
test: "foo bar"

If set to True the showpillar state will have access to the global pillar data.

If set to Fa'lse only the overriding pillar data will be available to the showpillar state.

3.3 Configuring the Salt Proxy Minion

The Salt system is amazingly simple and easy to configure. The two components of the Salt system each have a respec-
tive configuration file. The salt-master is configured via the master configuration file, and the salt—-proxy is
configured via the proxy configuration file.

See also:
example proxy minion configuration file

The Salt Minion configuration is very simple. Typically, the only value that needs to be set is the master value so the
proxy knows where to locate its master.

By default, the salt-proxy configuration will be in /etc/salt/proxy. A notable exception is FreeBSD, where the
configuration will be in /usr/local/etc/salt/proxy

3.3.1 Proxy-specific Configuration Options

add_proxymodule_to_opts

New in version 2015.8.2.
Changed in version 2016.3.0.
Default: False

Add the proxymodule LazyLoader object to opts.

add_proxymodule_to_opts: True

proxy_merge_grains_in_module

New in version 2016.3.0.

Changed in version 2017.7.0.

166 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

Default: True

If a proxymodule has a function called grains, then call it during regular grains loading and merge the results with
the proxy’s grains dictionary. Otherwise it is assumed that the module calls the grains function in a custom way and
returns the data elsewhere.

proxy_merge_grains_in_module: False

proxy_keep_alive

New in version 2017.7.0.
Default: True

Whether the connection with the remote device should be restarted when dead. The proxy module must implement
the a'live function, otherwise the connection is considered alive.

proxy_keep_alive: False

proxy_keep_alive_dinterval

New in version 2017.7.0.
Default: 1

The frequency of keepalive checks, in minutes. It requires the proxy_keep_alive option to be enabled (and the
proxy module to implement the a'live function).

proxy_keep_alive_interval: 5

proxy_always_alive

New in version 2017.7.0.
Default: True

Whether the proxy should maintain the connection with the remote device. Similarly to proxy_keep_alive,
this option is very specific to the design of the proxy module. When proxy_always_alive is setto False, the
connection with the remote device is not maintained and has to be closed after every command.

proxy_always_alive: False

proxy_merge_pillar_in_opts

New in version 2017.7.3.
Default: False

Whether the pillar data to be merged into the proxy configuration options. As multiple proxies can run on the same
server, we may need different configuration options for each, while there’s one single configuration file. The solution
is merging the pillar data of each proxy minion into the opts.

proxy_merge_pillar_in_opts: True

3.3. Configuring the Salt Proxy Minion 167

Salt Documentation, Release 2019.2.2

proxy_deep_merge_pillar_in_opts

New in version 2017.7.3.
Default: False

Deep merge of pillar data into configuration opts. This option is evaluated only when
proxy_merge_pillar_in_opts is enabled.

proxy_merge_pillar_in_opts_strategy

New in version 2017.7.3.
Default: smart.

The strategy used when merging pillar configuration into opts. This option is evaluated only when
proxy_merge_pillar_in_opts is enabled.

proxy_mines_pillar

New in version 2017.7.3.
Default: True.

Allow enabling mine details using pillar data. This evaluates the mine configuration under the pillar, for the
following regular minion options that are also equally available on the proxy minion: mine_interval, and
mine_functions.

3.4 Configuration file examples

« Example master configuration file

o Example minion configuration file

« Example proxy minion configuration file

3.4.1 Example master configuration file

Primary configuration settings
AARBHABBHAAAABHBRRAAARGHARBHAAAARRRRRAA AR

This configuration file is used to manage the behavior of the Salt Master.
Values that are commented out but have an empty line after the comment are
defaults that do not need to be set in the config. If there is no blank line
after the comment then the value is presented as an example and is not the
default.

H o W B R

Per default, the master will automatically include all config files
from master.d/*.conf (master.d is a directory in the same directory
as the main master config file).
#default_include: master.d/*.conf

The address of the interface to bind to:

(continues on next page)

168 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

#interface: 0.0.0.0

Whether the master should listen for IPv6 connections. If this is set to True,
the interface option must be adjusted, too. (For example: "interface: '::'")
#ipv6: False

The tcp port used by the publisher:
#publish_port: 4505

The user under which the salt master will run. Salt will update all

permissions to allow the specified user to run the master. The exception 1is
the job cache, which must be deleted if this user is changed. If the

modified files cause conflicts, set verify_env to False.

#user: root

The port used by the communication interface. The ret (return) port is the
interface used for the file server, authentication, job returns, etc.
#ret_port: 4506

Specify the location of the daemon process ID file:
#pidfile: /var/run/salt-master.pid

The root directory prepended to these options: pki_dir, cachedir,

sock_dir, log_file, autosign_file, autoreject_file, extension_modules,
key_logfile, pidfile, autosign_grains_dir:

#root_dir: /

The path to the master's configuration file.
#conf_file: /etc/salt/master

Directory used to store public key data:
#pki_dir: /etc/salt/pki/master

Key cache. Increases master speed for large numbers of accepted
keys. Available options: 'sched'. (Updates on a fixed schedule.)
Note that enabling this feature means that minions will not be

available to target for up to the length of the maintanence loop
which by default is 60s.

#key_cache: '’

Directory to store job and cache data:

This directory may contain sensitive data and should be protected accordingly.
#

#cachedir: /var/cache/salt/master

Directory for custom modules. This directory can contain subdirectories for
each of Salt's module types such as "runners", "output'", "wheel", "modules",
"states", "returners", '"engines'", "utils", etc.

#extension_modules: /var/cache/salt/master/extmods

Directory for custom modules. This directory can contain subdirectories for
each of Salt's module types such as '"runners'", "output'", "wheel, "modules",
"states'", '"returners", "engines'", '"utils", etc.

Like 'extension_modules' but can take an array of paths

#module_dirs: []

(continues on next page)

3.4. Configuration file examples 169

Salt Documentation, Release 2019.2.2

(continued from previous page)

Verify and set permissions on configuration directories at startup:
#verify_env: True

Set the number of hours to keep old job information in the job cache:
#keep_jobs: 24

The number of seconds to wait when the client is requesting information
about running jobs.
#gather_job_timeout: 10

Set the default timeout for the salt command and api. The default is 5
seconds.
#timeout: 5

The loop_1interval option controls the seconds for the master's maintenance
process check cycle. This process updates file server backends, cleans the
job cache and executes the scheduler.

#loop_1interval: 60

Set the default outputter used by the salt command. The default is "nested".
#output: nested

To set a list of additional directories to search for salt outputters, set the
outputter_dirs option.
#outputter_dirs: []

Set the default output file used by the salt command. Default is to output
to the CLI and not to a file. Functions the same way as the "--out-file"

CLI option, only sets this to a single file for all salt commands.
#output_file: None

Return minions that timeout when running commands like test.ping
#show_timeout: True

Tell the client to display the jid when a job is published.
#show_jid: False

By default, output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

To display a summary of the number of minions targeted, the number of

minions returned, and the number of minions that did not return, set the
cli_summary value to True. (False by default.)
#
#

cli_summary: False

Set the directory used to hold unix sockets:
#sock_dir: /var/run/salt/master

The master can take a while to start up when lspci and/or dmidecode is used
to populate the grains for the master. Enable if you want to see GPU hardware

(continues on next page)

170 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

data for your master.
enable_gpu_grains: False

H

The master maintains a job cache. While this is a great addition, it can be
a burden on the master for larger deployments (over 5000 minions).
Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended.

#job_cache: True

H o B R

Cache minion grains, pillar and mine data via the cache subsystem in the
cachedir or a database.
#minion_data_cache: True

Cache subsystem module to use for minion data cache.

#cache: localfs

Enables a fast in-memory cache booster and sets the expiration time.
#memcache_expire_seconds: 0

Set a memcache limit in items (bank + key) per cache storage (driver + driver_opts).
#memcache_max_items: 1024

Each time a cache storage got full cleanup all the expired items not just thel
—oldest one.

#memcache_full_cleanup: False

Enable collecting the memcache stats and log it on ‘“debug’ log level.
#memcache_debug: False

Store all returns in the given returner.

Setting this option requires that any returner-specific configuration also

be set. See various returners in salt/returners for details on required

configuration values. (See also, event_return_queue, and event_return_queue_max_
—seconds below.)

#

#event_return: mysql

On busy systems, enabling event_returns can cause a considerable load on

the storage system for returners. Events can be queued on the master and

stored in a batched fashion using a single transaction for multiple events.
By default, events are not queued.

#event_return_queue: 0

In some cases enabling event return queueing can be very helpful, but the bus

may not busy enough to flush the queue consistently. Setting this to a reasonable
value (1-30 seconds) will cause the queue to be flushed when the oldest event isl
—older

than ‘event_return_queue_max_seconds regardless of how many events are in thel
—queue.

#event_return_queue_max_seconds: 0

Only return events matching tags in a whitelist, supports glob matches.
#event_return_whitelist:

- salt/master/a_tag

- salt/run/*x/ret

Store all event returns xxexceptx* the tags in a blacklist, supports globs.
#event_return_blacklist:

- salt/master/not_this_tag

- salt/wheel/*/ret

(continues on next page)

3.4. Configuration file examples 171

Salt Documentation, Release 2019.2.2

(continued from previous page)

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the

master event bus. The value is expressed in bytes.

#max_event_size: 1048576

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: 1ipc

Overwrite the default tcp ports used by the minion when ipc_mode is set to 'tcp'
#tcp_master_pub_port: 4510
#tcp_master_pull_port: 4511

By default, the master AES key rotates every 24 hours. The next command

following a key rotation will trigger a key refresh from the minion which may
result in minions which do not respond to the first command after a key refresh.
#

To tell the master to ping all minions immediately after an AES key refresh, set
ping_on_rotate to True. This should mitigate the issue where a minion does not
appear to initially respond after a key 1is rotated.

#

Note that ping_on_rotate may cause high load on the master immediately after

the key rotation event as minions reconnect. Consider this carefully if this

salt master is managing a large number of minions.

#

If disabled, it is recommended to handle this event by listening for the

'aes_key_rotate' event with the 'key' tag and acting appropriately.

ping_on_rotate: False

By default, the master deletes its cache of minion data when the key for that
minion is removed. To preserve the cache after key deletion, set

'preserve_minion_cache' to True.

#

WARNING: This may have security implications if compromised minions auth with
a previous deleted minion ID.

#preserve_minion_cache: False

Allow or deny minions from requesting their own key revocation
#allow_minion_key_revoke: True

If max_minions is used in large installations, the master might experience
high-load situations because of having to check the number of connected
minions for every authentication. This cache provides the minion-ids of
all connected minions to all MWorker-processes and greatly improves the
performance of max_minions.

con_cache: False

B T

The master can include configuration from other files. To enable this,

pass a list of paths to this option. The paths can be either relative or
absolute; 1if relative, they are considered to be relative to the directory
the main master configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option, then the master will log a warning message.

o H W H W W™ R

Include a config file from some other path:

(continues on next page)

172 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

TR H W™ R

include: /etc/salt/extra_config

Include config from several files and directories:
include:
- /etc/salt/extra_config

Large-scale tuning settings HittH#H
HERHAHRARARAARARARARRGRARABAGRARARRBRGRARA

#

IR OFH W OH OH I OH K W O K W™ W R R

Max open files

Each minion connecting to the master uses AT LEAST one file descriptor, the
master subscription connection. If enough minions connect you might start
seeing on the console (and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)

Aborted (core dumped)

By default this value will be the one of ‘ulimit -Hn', 1ie, the hard limit for
max open files.

If you wish to set a different value than the default one, uncomment and
configure this setting. Remember that this value CANNOT be higher than the
hard limit. Raising the hard limit depends on your 0S and/or distribution,
a good way to find the limit is to search the internet. For example:

raise max open files hard limit debian

#max_open_files: 100000

TR W R

The number of worker threads to start. These threads are used to manage
return calls made from minions to the master. If the master seems to be
running slowly, increase the number of threads. This setting can not be
set lower than 3.

#worker_threads: 5

#
#

#

Set the ZeroMQ high water marks
http://api.zeromq.org/3-2:zmq-setsockopt

The listen queue size / backlog

#zmq_backlog: 1000

#

The publisher interface ZeroMQPubServerChannel

#pub_hwm: 1000

o W R K W™ KR

T OH W R

The master may allocate memory per-event and not
reclaim it.

To set a high-water mark for memory allocation, use
ipc_write_buffer to set a high-water mark for message
buffering.

Value: In bytes. Set to 'dynamic' to have Salt select
a value for you. Default is disabled.
ipc_write_buffer: 'dynamic'

These two batch settings, batch_safe_limit and batch_safe_size, are used to
automatically switch to a batch mode execution. If a command would have been
sent to more than <batch_safe_limit> minions, then run the command 1in
batches of <batch_safe_size>. If no batch_safe_size is specified, a default

(continues on next page)

3.4. Configuration file examples 173

Salt Documentation, Release 2019.2.2

(continued from previous page)

of 8 will be used. If no batch_safe_limit is specified, then no automatic
batching will occur.

#batch_safe_limit: 100

#batch_safe_size: 8

Master stats enables stats events to be fired from the master at close
to the defined interval

#master_stats: False

#master_stats_event_1iter: 60

HitH## Security settings HitH##
HARBHARBHAAAABHBRRAAARGHBRBHAAAAARRRRRAA AR

Enable passphrase protection of Master private key. Although a string value
is acceptable; passwords should be stored in an external vaulting mechanism
and retrieved via sdb. See https://docs.saltstack.com/en/latest/topics/sdb/.
Passphrase protection is off by default but an example of an sdb profile and
query is as follows.
masterkeyring:

driver: keyring

service: system

T

IR B O H W W R W

key_pass: sdb://masterkeyring/key_pass

Enable passphrase protection of the Master signing_key. This only applies if
master_sign_pubkey is set to True. This is disabled by default.
master_sign_pubkey: True

signing_key_pass: sdb://masterkeyring/signing_pass

HOH B R

Enable "open mode", this mode still maintains encryption, but turns off
authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!

#open_mode: False

H R W R

Enable auto_accept, this setting will automatically accept all incoming
public keys from the minions. Note that this is insecure.
#auto_accept: False

The size of key that should be generated when creating new keys.
#keysize: 2048

Time in minutes that an incoming public key with a matching name found in
pki_dir/minion_autosign/keyid is automatically accepted. Expired autosign keys
are removed when the master checks the minion_autosign directory.

0 equals no timeout

autosign_timeout: 120

O B W R

If the autosign_file is specified, incoming keys specified in the

autosign_file will be automatically accepted. This is insecure. Regular
expressions as well as globing lines are supported. The file must be readonly
except for the owner. Use permissive_pki_access to allow the group write access.
#autosign_file: /etc/salt/autosign.conf

TR B R

Works like autosign_file, but instead allows you to specify minion IDs for
which keys will automatically be rejected. Will override both membership in

(continues on next page)

174 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

the autosign_file and the auto_accept setting.
#autoreject_file: /Jetc/salt/autoreject.conf

If the autosign_grains_dir is specified, incoming keys from minons with grain

values matching those defined in files in this directory will be accepted

automatically. This is insecure. Minions need to be configured to send the grains.
#autosign_grains_dir: /etc/salt/autosign_grains

Enable permissive access to the salt keys. This allows you to run the

master or minion as root, but have a non-root group be given access to

your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure. If an autosign_file
is specified, enabling permissive_pki_access will allow group access to that
specific file.

#permissive_pki_access: False

TR W W R

Allow users on the master access to execute specific commands on minions.
This setting should be treated with care since it opens up execution

capabilities to non root users. By default this capability is completely
disabled.

#publisher_acl:

larry:

- test.ping

- network. *

#

Blacklist any of the following users or modules

#

This example would blacklist all non sudo users, including root from
running any commands. It would also blacklist any use of the "cmd"
module. This is completely disabled by default.

#

#

Check the list of configured users in client ACL against users on the
system and throw errors if they do not exist.

#client_acl_verify: True

#

#publisher_acl_blacklist:

users:

- root

- "A(?!sudo_).*S' # all non sudo users

modules:

- cmd

Enforce publisher_acl & publisher_acl_blacklist when users have sudo
access to the salt command.

#

#sudo_acl: False

The external auth system uses the Salt auth modules to authenticate and
validate users to access areas of the Salt system.
#external_auth:

pam:

fred:

- test.x
#

Time (in seconds) for a newly generated token to live. Default: 12 hours

(continues on next page)

3.4. Configuration file examples 175

Salt Documentation, Release 2019.2.2

(continued from previous page)

#token_expire: 43200

#

Allow eauth users to specify the expiry time of the tokens they generate.
A boolean applies to all users or a dictionary of whitelisted eauth backends
and usernames may be given.

token_expire_user_override:

pam:

- fred

- tom

ldap:

- gary

#

#token_expire_user_override: False

Set to True to enable keeping the calculated user's auth list in the token

file. This 1is disabled by default and the auth list is calculated or requested
from the eauth driver each time.

#keep_acl_in_token: False

Auth subsystem module to use to get authorized access list for a user. By default it
!

— S

the same module used for external authentication.

#eauth_acl_module: django

Allow minions to push files to the master. This is disabled by default, for
security purposes.
#file_recv: False

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100
#file_recv_max_size: 100

Signature verification on messages published from the master.
This causes the master to cryptographically sign all messages published to its event
bus, and minions then verify that signature before acting on the message.

This is False by default.

Note that to facilitate interoperability with masters and minions that are different
versions, if sign_pub_messages is True but a message is received by a minion with

no signature, it will still be accepted, and a warning message will be logged.
Conversely, if sign_pub_messages is False, but a minion receives a signed

message i1t will be accepted, the signature will not be checked, and a warningR
—message

will be logged. This behavior went away in Salt 2014.1.0 and these two situations
will cause minion to throw an exception and drop the message.

sign_pub_messages: False

TR W O R W W K W W™ R

o

Signature verification on messages published from minions

This requires that minions cryptographically sign the messages they

publish to the master. If minions are not signing, then log this information
at loglevel 'INFO' and drop the message without acting on it.
require_minion_sign_messages: False

O H W R

HH

The below will drop messages when their signatures do not validate.
Note that when this option is False but ‘require_minion_sign_messages 1is True

(continues on next page)

176 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

minions MUST sign their messages but the validity of their signatures
is 1ignored.

These two config options exist so a Salt infrastructure can be moved
to signing minion messages gradually.

drop_messages_signature_fail: False

TR H W™ R

Use TLS/SSL encrypted connection between master and minion.

Can be set to a dictionary containing keyword arguments corresponding to Python's
'ssl.wrap_socket' method.

Default is None.

#ssl:

keyfile: <path_to_keyfile>

certfile: <path_to_certfile>

ssl_version: PROTOCOL_TLSv1_2

o W R

wHit##H# Salt-SSH Configuration #HitH#H
HUBBBUHUBHHRARBBB BB LB BHBHARBRBB BB B HHRRRRRY

Define the default salt-ssh roster module to use
#roster: flat

Pass in an alternative location for the salt-ssh “flat' roster file
#roster_file: /etc/salt/roster

Define locations for ‘flat' roster files so they can be chosen when using Salt API.
An administrator can place roster files into these locations. Then when

calling Salt API, parameter 'roster_file' should contain a relative path to

these locations. That is, '"roster_file=/foo/roster" will be resolved as

"/etc/salt/roster.d/foo/roster'" etc. This feature prevents passing insecure

custom rosters through the Salt API.

#

#rosters:

- Jetc/salt/roster.d
- Jopt/salt/some/more/rosters

The ssh password to log in with.
#ssh_passwd: "'

#The target system's ssh port number.
#ssh_port: 22

Comma-separated list of ports to scan.
#ssh_scan_ports: 22

Scanning socket timeout for salt-ssh.
#ssh_scan_timeout: 0.01

Boolean to run command via sudo.
#ssh_sudo: False

Number of seconds to wait for a response when establishing an SSH connection.
#ssh_timeout: 60

The user to log in as.
#ssh_user: root

The log file of the salt-ssh command:

(continues on next page)

3.4. Configuration file examples 177

Salt Documentation, Release 2019.2.2

(continued from previous page)

#ssh_log_file: /var/log/salt/ssh

Pass 1n minion option overrides that will be inserted into the SHIM for
salt-ssh calls. The local minion config is not used for salt-ssh. Can be
overridden on a per-minion basis in the roster (“minion_opts")
#ssh_minion_opts:

gpg_keydir: /root/gpg

Set this to True to default to using ~/.ssh/id_rsa for salt-ssh
authentication with minions
#ssh_use_home_key: False

Set this to True to default salt-ssh to run with " “-o IdentitiesOnly=yes'’
This option is intended for situations where the ssh-agent offers many

different identities and allows ssh to ignore those identities and use the
only one specified in options.

#ssh_identities_only: False

List-only nodegroups for salt-ssh. Each group must be formed as either a

comma-separated list, or a YAML list. This option is useful to group minions
into easy-to-target groups when using salt-ssh. These groups can then be

targeted with the normal -N argument to salt-ssh.

#ssh_list_nodegroups: {}

salt-ssh has the ability to update the flat roster file if a minion i1s not
found in the roster. Set this to True to enable 1it.
#ssh_update_roster: False

HitHH# Master Module Management HittH##
HERHAARARARAGRARARABRGRARABRGRGRARRB R RSB
Manage how master side modules are loaded.

Add any additional locations to look for master runners:
#runner_dirs: []

Add any additional locations to look for master utils:
#utils_dirs: []

Enable Cython for master side modules:
#cython_enable: False

HH#HH#H State System settings HH#H##H
HHBARBBARBRARRAABBAABBABHRRRBHARRRAHRR RS RAH

The state system uses a "top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the
root of the base environment as defined in "File Server settings" below.
#state_top: top.sls

The master_tops option replaces the external_nodes option by creating
a plugable system for the generation of external top data. The external_nodes
option is deprecated by the master_tops option.

To gain the capabilities of the classic external_nodes system, use the
following configuration:
master_tops:

EIEE 0

(continues on next page)

178 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

ext_nodes: <Shell command which returns yaml>
#
#master_tops: {}

The renderer to use on the minions to render the state data
#renderer: jinja|yaml

Default Jinja environment options for all templates except sls templates
#jinja_env:

block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
lstrip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

o R W OH W W O W W W W

Jinja environment options for sls templates
#jinja_sls_env:
block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
lstrip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

o W OFH R W OH R W™ W R R

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution, defaults to False
#failhard: False

The state_verbose and state_output settings can be used to change the way

state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False

all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting controls which results will be output full multi line
full, terse - each state will be full/terse

mixed - only states with errors will be full

changes - states with changes and errors will be full

full_id, mixed_id, changes_id and terse_id are also allowed;

when set, the state ID will be used as name in the output

#state_output: full

The state_output_diff setting changes whether or not the output from

(continues on next page)

3.4. Configuration file examples 179

Salt Documentation, Release 2019.2.2

(continued from previous page)

successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

Automatically aggregate all states that have support for mod_aggregate by
setting to 'True'. Or pass a list of state module names to automatically
aggregate just those types.

state_aggregate:

#
#
#
#
#
- pkg
#

#state_aggregate: False

Send progress events as each function in a state run completes execution
by setting to 'True'. Progress events are in the format

'salt/job/<JID>/prog/<MID>/<RUN NUM>'.

#state_events: False

HHHAH File Server settings HHH#H
HARHABRABHARBRBRARARABRARABABRBRAR ARG RG RS

Salt runs a lightweight file server written in zeromqg to deliver files to
minions. This file server is built into the master daemon and does not

require a dedicated port.

The file server works on environments passed to the master, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

o O OFH R W OH R W OH R W W R R

#file_roots:

base:

- /srv/salt
#

The master_roots setting configures a master-only copy of the file_roots dictionary,
used by the state compiler.
#master_roots: /srv/salt-master

When using multiple environments, each with their own top file, the
default behaviour is an unordered merge. To prevent top files from
being merged together and instead to only use the top file from the
requested environment, set this value to 'same'.
#top_file_merging_strategy: merge

To specify the order in which environments are merged, set the ordering
in the env_order option. Given a conflict, the last matching value will

(continues on next page)

180 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

win.
#env_order: ['base', 'dev', 'prod']

If top_file_merging_strategy is set to 'same' and an environment does not

contain a top file, the top file in the environment specified by default_top
will be used instead.

#default_top: base

The hash_type is the hash to use when discovering the hash of a file on
the master server. The default is sha256, but md5, shal, sha224, sha384 and
sha512 are also supported.

WARNING: While md5 and shal are also supported, do not use them due to the
high chance of possible collisions and thus security breach.

Prior to changing this value, the master should be stopped and all Salt
caches should be cleared.
#hash_type: sha256

TR W W H W W ™ R

The buffer size in the file server can be adjusted here:
#file_buffer_size: 1048576

A regular expression (or a list of expressions) that will be matched

against the file path before syncing the modules and states to the minions.
This includes files affected by the file.recurse state.

For example, i1f you manage your custom modules and states in subversion

and don't want all the '.svn' folders and content synced to your minions,

you could set this to '/\.svn($|/)'. By default nothing is ignored.
#file_ignore_regex:

- '/\.svn(s|/)'

#o- /N git(s]/)"

A file glob (or list of file globs) that will be matched against the file
path before syncing the modules and states to the minions. This is similar
to file_1ignore_regex above, but works on globs instead of regex. By default
nothing i1s ignored.

file_ignore_glob:

- 'x.pyc!

- 'x/somefolder/x.bak'

- 'x.swp'

File Server Backend

Salt supports a modular fileserver backend system, this system allows

the salt master to link directly to third party systems to gather and

manage the files available to minions. Multiple backends can be

configured and will be searched for the requested file in the order in which
they are defined here. The default setting only enables the standard backend
"roots" which uses the "file_roots" option.

#fileserver_backend:

- roots

#

To use multiple backends list them in the order they are searched:
#fileserver_backend:

- git

- roots

TR OFH O K H W™ R

(continues on next page)

3.4. Configuration file examples 181

Salt Documentation, Release 2019.2.2

(continued from previous page)

Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True

by default. Currently this only applies to the default roots
fileserver_backend.

fileserver_followsymlinks: False

Uncomment the line below if you do not want symlinks to be

treated as the files they are pointing to. By default this is set to
False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
fileserver_ignoresymlinks: True

By default, the Salt fileserver recurses fully into all defined environments

to attempt to find files. To limit this behavior so that the fileserver only
traverses directories with SLS files and special Salt directories like _modules,
enable the option below. This might be useful for installations where a file root
has a very large number of files and performance is impacted. Default is False.
fileserver_limit_traversal: False

The fileserver can fire events off every time the fileserver is updated,
these are disabled by default, but can be easily turned on by setting this
flag to True

fileserver_events: False

Git File Server Backend Configuration

Optional parameter used to specify the provider to be used for gitfs. Must be
either pygit2 or gitpython. If unset, then both will be tried (in that
order), and the first one with a compatible version installed will be the
provider that is used.

EIEE 0

#gitfs_provider: pygit2

Along with gitfs_password, is used to authenticate to HTTPS remotes.
gitfs_user: "'

Along with gitfs_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not use authentication.
#gitfs_password: ''

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote.
This parameter enables authentication over HTTP. Enable this at your own risk.
#gitfs_insecure_auth: False

Along with gitfs_privkey (and optionally gitfs_passphrase), is used to

authenticate to SSH remotes. This parameter (or its per-remote counterpart)
i1s required for SSH remotes.

#gitfs_pubkey: '’

Along with gitfs_pubkey (and optionally gitfs_passphrase), is used to

authenticate to SSH remotes. This parameter (or its per-remote counterpart)
1s required for SSH remotes.

#gitfs_privkey: ''

This parameter 1is optional, required only when the SSH key being used to

(continues on next page)

182 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

authenticate is protected by a passphrase.
#gitfs_passphrase: ''

When using the git fileserver backend at least one git remote needs to be
defined. The user running the salt master will need read access to the repo.

The repos will be searched in order to find the file requested by a client
and the first repo to have the file will return 1it.

When using the git backend branches and tags are translated into salt
environments.

Note: file:// repos will be treated as a remote, so refs you want used must
exist in that repo as xlocal* refs.

#gitfs_remotes:

- git://github.com/saltstack/salt-states.git

- file:///var/git/saltmaster

o P W H W W W W

#

#

#

The gitfs_ssl_verify option specifies whether to ignore ssl certificate

errors when contacting the gitfs backend. You might want to set this to

false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default of True
1s a security concern, you may want to try using the ssh transport.
#gitfs_ssl_verify: True

#

The gitfs_root option gives the ability to serve files from a subdirectory
within the repository. The path is defined relative to the root of the

repository and defaults to the repository root.

#gitfs_root: somefolder/otherfolder

#

The refspecs fetched by gitfs remotes

#gitfs_refspecs:

- '+refs/heads/*:refs/remotes/origin/*"'
- '+refs/tags/*:refs/tags/*"'

#

#

witHH# Pillar settings HitHH##

AARBHBRBHAAAABHRRRAAARGRBRBHAAAARRHRBRAA AR
Salt Pillars allow for the building of global data that can be made selectively

available to different minions based on minion grain filtering. The Salt

Pillar is laid out in the same fashion as the file server, with environments,
a top file and sls files. However, pillar data does not need to be in the

highstate format, and is generally just key/value pairs.

#pillar_roots:

base:

- /srv/pillar

#

#ext_pillar:
- hiera: /etc/hiera.yaml
- cmd_yaml: cat /Jetc/salt/yaml

A list of paths to be recursively decrypted during pillar compilation.
Entries in this list can be formatted either as a simple string, or as a
key/value pair, with the key being the pillar location, and the value being
the renderer to use for pillar decryption. If the former 1is used, the
renderer specified by decrypt_pillar_default will be used.

#decrypt_pillar:

TR B W R

(continues on next page)

3.4. Configuration file examples 183

Salt Documentation, Release 2019.2.2

(continued from previous page)

- 'foo:bar': gpg

- 'lorem:ipsum:dolor’

The delimiter used to distinguish nested data structures in the
decrypt_pillar option.

#decrypt_pillar_delimiter: ':'

The default renderer used for decryption, if one is not specified for a given
pillar key in decrypt_pillar.
#decrypt_pillar_default: gpg

List of renderers which are permitted to be used for pillar decryption.
#decrypt_pillar_renderers:

- gpg

The ext_pillar_first option allows for external pillar sources to populate

before file system pillar. This allows for targeting file system pillar from
ext_pillar.

#ext_pillar_first: False

The external pillars permitted to be used on-demand using pillar.ext
#on_demand_ext_pillar:

- libvirt

- virtkey

The pillar_gitfs_ssl_verify option specifies whether to ignore ssl certificate
errors when contacting the pillar gitfs backend. You might want to set this to
false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default of True
is a security concern, you may want to try using the ssh transport.
#pillar_gitfs_ssl_verify: True

IO W R

The pillar_opts option adds the master configuration file data to a dict in
the pillar called "master". This is used to set simple configurations in the
master config file that can then be used on minions.

#pillar_opts: False

The pillar_safe_render_error option prevents the master from passing pillar

render errors to the minion. This is set on by default because the error could
contain templating data which would give that minion information it shouldn't
have, like a password! When set true the error message will only show:

Rendering SLS 'my.sls' failed. Please see master log for details.
#pillar_safe_render_error: True

The pillar_source_merging_strategy option allows you to configure merging strategy
between different sources. It accepts five values: none, recurse, aggregate,R
—overwrite,

or smart. None will not do any merging at all. Recurse will merge recursivelyR
—mapping of data.

Aggregate instructs aggregation of elements between sources that use the #!yamlexR
—renderer. Overwrite

will overwrite elements according the order in which they are processed. This 1is

behavior of the 2014.1 branch and earlier. Smart guesses the best strategy based

on the '"renderer" setting and is the default value.
#pillar_source_merging_strategy: smart

(continues on next page)

184 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

Recursively merge lists by aggregating them instead of replacing them.
#pillar_merge_lists: False

Set this option to True to force the pillarenv to be the same as the effective
saltenv when running states. If pillarenv is specified this option will be

ignored.

#pillarenv_from_saltenv: False

Set this option to 'True' to force a 'KeyError' to be raised whenever an

attempt to retrieve a named value from pillar fails. When this option is set
to 'False', the failed attempt returns an empty string. Default is 'False'.
#pillar_raise_on_missing: False

Git External Pillar (git_pillar) Configuration Options

Specify the provider to be used for git_pillar. Must be either pygit2 or
gitpython. If unset, then both will be tried in that same order, and the
first one with a compatible version installed will be the provider that

is used.

#git_pillar_provider: pygit2

R B OH R R

If the desired branch matches this value, and the environment is omitted

from the git_pillar configuration, then the environment for that git_pillar
remote will be base.

#git_pillar_base: master

If the branch is omitted from a git_pillar remote, then this branch will
be used instead
#git_pillar_branch: master

Environment to use for git_pillar remotes. This is normally derived from
the branch/tag (or from a per-remote env parameter), but if set this will
override the process of deriving the env from the branch/tag name.
#git_pillar_env: "'

Path relative to the root of the repository where the git_pillar top file
and SLS files are located.
#git_pillar_root: "'

Specifies whether or not to ignore SSL certificate errors when contacting
the remote repository.
#git_pillar_ssl_verify: False

When set to False, if there is an update/checkout lock for a git_pillar
remote and the pid written to it is not running on the master, the lock
file will be automatically cleared and a new lock will be obtained.
#git_pillar_global_lock: True

Git External Pillar Authentication Options

#

Along with git_pillar_password, is used to authenticate to HTTPS remotes.
#git_pillar_user: "'

Along with git_pillar_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not use authentication.
#git_pillar_password: ''

(continues on next page)

3.4. Configuration file examples 185

Salt Documentation, Release 2019.2.2

(continued from previous page)

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote.
This parameter enables authentication over HTTP.
#git_pillar_insecure_auth: False

Along with git_pillar_privkey (and optionally git_pillar_passphrase),
1s used to authenticate to SSH remotes.
#git_pillar_pubkey: ''

Along with git_pillar_pubkey (and optionally git_pillar_passphrase),
1s used to authenticate to SSH remotes.
#git_pillar_privkey: "'

This parameter is optional, required only when the SSH key being used
to authenticate is protected by a passphrase.
#git_pillar_passphrase: '’

The refspecs fetched by git_pillar remotes
#git_pillar_refspecs:

- '+refs/heads/x:refs/remotes/origin/*"'

- '+refs/tags/x:refs/tags/*'

A master can cache pillars locally to bypass the expense of having to render them

for each minion on every request. This feature should only be enabled in cases

where pillar rendering time is known to be unsatisfactory and any attendant security
concerns about storing pillars in a master cache have been addressed.

#

When enabling this feature, be certain to read through the additional ‘pillar_

—cache_x»""

configuration options to fully understand the tunable parameters and theirR
—implications.

#

Note: setting ' ‘pillar_cache: True ' has no effect on targeting Minions withR®
—Pillars.

See https://docs.saltstack.com/en/latest/topics/targeting/pillar.html
#pillar_cache: False

If and only if a master has set " ‘pillar_cache: True'', the cache TTL controls thel
—amount

of time, in seconds, before the cache is considered invalid by a master and a fresh
pillar is recompiled and stored.

#pillar_cache_ttl: 3600

If and only if a master has set ‘pillar_cache: True', one of several storagel
—providers

can be utilized.

#

“disk': The default storage backend. This caches rendered pillars to the masterR
—cache.

Rendered pillars are serialized and deserialized as msgpack structures forR
—speed.

Note that pillars are stored UNENCRYPTED. Ensure that the master cache

has permissions set appropriately. (Same defaults are provided.)

#

memory: [EXPERIMENTAL] An optional backend for pillar caches which uses a pure-
—Python

(continues on next page)

186 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

in-memory data structure for maximal performance. There are several caveats,
however. First, because each master worker contains its own in-memory cache,
there is no guarantee of cache consistency between minion requests. This

works best in situations where the pillar rarely if ever changes. Secondly,
and perhaps more importantly, this means that unencrypted pillars will

be accessible to any process which can examine the memory of the " ‘salt-
—master !

This may represent a substantial security risk.

#

#pillar_cache_backend: disk

HEHRBHRHS Reactor Settings H#H#H
HHBHBHBHRAAAARBH BB RAAAARBRB BB HHAAAARBRH

Define a salt reactor. See https://docs.saltstack.com/en/latest/topics/reactor/
#reactor: []

#Set the TTL for the cache of the reactor configuration.
#reactor_refresh_interval: 60

#Configure the number of workers for the runner/wheel in the reactor.
#reactor_worker_threads: 10

#Define the queue size for workers in the reactor.
#reactor_worker_hwm: 10000

HitH#H Syndic settings HitH###
HERHAHRABABABRARARARAGRARABABRGRABRBRB RSB

The Salt syndic is used to pass commands through a master from a higher
master. Using the syndic is simple. If this is a master that will have
syndic servers(s) below it, then set the "order_masters'" setting to True.

If this is a master that will be running a syndic daemon for passthrough, then
the "syndic_master" setting needs to be set to the location of the master server
to receive commands from.

o W R KR W™ R

Set the order_masters setting to True if this master will command lower
masters' syndic interfaces.
#order_masters: False

If this master will be running a salt syndic daemon, syndic_master tells
this master where to receive commands from.
#syndic_master: masterofmasters

This i1s the 'ret_port' of the MasterOfMaster:
#syndic_master_port: 4506

PID file of the syndic daemon:
#syndic_pidfile: /var/run/salt-syndic.pid

The log file of the salt-syndic daemon:
#syndic_log_file: /var/log/salt/syndic

The behaviour of the multi-syndic when connection to a master of masters failed.
Can specify ' ‘random’® (default) or "‘ordered’'. If set to ' ‘random’ ', masters

(continues on next page)

3.4. Configuration file examples 187

Salt Documentation, Release 2019.2.2

(continued from previous page)

will be iterated in random order. If ‘‘ordered’’ 1is specified, the configured
order will be used.
#syndic_failover: random

The number of seconds for the salt client to wait for additional syndics to
check in with their lists of expected minions before giving up.
#syndic_wait: 5

HH#HH#H Peer Publish settings HH#H#H
AAAAHHBBHARAABHBRRAAAAR BB RHRAAA AR RRAA RS

Salt minions can send commands to other minions, but only if the minion 1is
allowed to. By default "Peer Publication" is disabled, and when enabled it
i1s enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

The configuration uses regular expressions to match minions and then a list
of regular expressions to match functions. The following will allow the

minion authenticated as foo.example.com to execute functions from the test
and pkg modules.

#peer:

foo.example.com:

- test.x*

- pkg.x*

#

This will allow all minions to execute all commands:

#peer:

N

- L%

#

This 1s not recommended, since it would allow anyone who gets root on any
single minion to instantly have root on all of the minions!

Minions can also be allowed to execute runners from the salt master.

Since executing a runner from the minion could be considered a security risk,
1t needs to be enabled. This setting functions just like the peer setting
except that it opens up runners instead of module functions.

#

ALl peer runner support is turned off by default and must be enabled before
using. This will enable all peer runners for all minions:

#peer_run:

#oooLke

- Lk

#

To enable just the manage.up runner for the minion foo.example.com:
#peer_run:

foo.example.com:

- manage.up

#

#

HHHAH Mine settings HHH#HS

AARRHBRBHAAAABHRRRHAAAA BB RAAARARRRH

Restrict mine.get access from minions. By default any minion has a full access

to get all mine data from master cache. In acl definion below, only pcre matches
are allowed.

mine_get:

(continues on next page)

188 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

LK

- L%

#

The example below enables minion foo.example.com to get 'network.interfaces' mine
data only, minions web* to get all network.* and disk.* mine data and all other
minions won't get any mine data.

mine_get:

foo.example.com:

- network.interfaces

web.x:

- network. x

- disk.x

HitH## Logging settings HittH##

AARBHARBHAAAABHBRRAAARGHRRBHAAAARHHRRAA AR

The location of the master log file

The master log can be sent to a regular file, local path name, or network

location. Remote logging works best when configured to use rsyslogd(8) (e.g.:

““file:///dev/log’ "), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/master

#log_file: file:///dev/log

#log_file: udp://loghost:10514

#log_file: /var/log/salt/master
#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.

#
#
#
The following log levels are considered INSECURE and may log sensitive data:
['garbage', 'trace', 'debug']

#

#

log_level: warning

The level of messages to send to the log file.

One of 'garbage', 'trace', 'debug', 'info', 'warning', 'error', 'critical’.

If using 'log_granular_levels' this must be set to the highest desired level.
#log_level_logfile: warning

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S"'

#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-attributes

Console log colors are specified by these additional formatters:

%(colorlevel)s
%(colorname)s
%(colorprocess)s
%(colormsg)s

o R W OH K W W B R

(continues on next page)

3.4. Configuration file examples 189

Salt Documentation, Release 2019.2.2

(continued from previous page)

Since 1t 1is desirable to include the surrounding brackets, '[' and ']', 1in

the coloring of the messages, these color formatters also include padding as

well. Color LogRecord attributes are only available for console logging.

#

#log_fmt_console: '%(colorlevel)s %(colormsg)s'

#log_fmt_console: '[%(levelname)-8s] %(message)s'

#

#log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets

'salt.modules' to log at the 'debug' level:

log_granular_levels:

'salt': 'warning'

'salt.modules': 'debug'
#
#

log_granular_levels: {}

HH#HR#H Node Groups H#H#H?
HABAAABAABHAHBRABBAABRAARRARBARRHARRR AR RAHS

Node groups allow for logical groupings of minion nodes. A group consists of
a group name and a compound target. Nodgroups can reference other nodegroups
with 'N@' classifier. Ensure that you do not have circular references.

#

#nodegroups:

groupl: 'L@foo.domain.com,bar.domain.com,baz.domain.com or blx*.domain.com'
group2: 'G@os:Debian and foo.domain.com'

group3: 'G@os:Debian and N@groupl'

group4:

- 'G@foo:bar'

- 'or'

- 'G@foo:baz'

HitH## Range Cluster settings HitH##
HABAAHRAABRAGRRAGRAABRAGHRARRAARHARRHRAG RS

The range server (and optional port) that serves your cluster information
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

#

#range_server: range:80

Windows Software Repo settings
AARGHBRBHAAARRHRBRARAAARRRRRRAAAARRRHRRBHAAAA

Location of the repo on the master:

#winrepo_dir_ng: '/srv/salt/win/repo-ng'’

#

List of git repositories to include with the local repo:
#winrepo_remotes_ng:

- 'https://github.com/saltstack/salt-winrepo-ng.git’

Windows Software Repo settings - Pre 2015.8
HARBHHBBHARAARHBRRAAAARRRRRRAAAARRRRBHRAA AR BB RAAAARRRRY
Legacy repo settings for pre-2015.8 Windows minions.

(continues on next page)

190 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

#

Location of the repo on the master:

#winrepo_dir: '/srv/salt/win/repo’

#

Location of the master's repo cache file:
#winrepo_mastercachefile: '/srv/salt/win/repo/winrepo.p’

#

List of git repositories to include with the local repo:
#winrepo_remotes:

- 'https://github.com/saltstack/salt-winrepo.git'

The refspecs fetched by winrepo remotes
#winrepo_refspecs:

- '+refs/heads/x:refs/remotes/origin/*"'

- '+refs/tags/x:refs/tags/*'

#

HH#HR#H Returner settings H#HHH#H

AARRHBRBHAAARRHRRRHAAA AR RRRAAR AR RAAAARRH
Which returner(s) will be used for minion's result:
#return: mysql

HitH Miscellaneous settings #it###
HABHARBAABRAGRAABRARBRABRAAHRABRAAHRASRHRAHRH

Default match type for filtering events tags: startswith, endswith, find, regex,R
—fnmatch

#event_match_type: startswith

Save runner returns to the job cache
#runner_returns: True

Permanently include any available Python 3rd party modules into thin and minimalR
—Salt

when they are generated for Salt-SSH or other purposes.

The modules should be named by the names they are actually imported inside thel
—Python.

The value of the parameters can be either one module or a comma separated list ofR
—them.

#thin_extra_mods: foo,bar

#min_extra_mods: foo,bar,baz

HitH Keepalive settings #itH i
AARBHBHBHAAARGRRBRAAARARHRRRRAAARARRRBRAAAARRH

Warning: Failure to set TCP keepalives on the salt-master can result in
not detecting the loss of a minion when the connection is lost or when
it's host has been terminated without first closing the socket.

Salt's Presence System depends on this connection status to know i1f a minion
is "present'.

ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the 0S. If connections between the minion and the master pass through

a state tracking device such as a firewall or VPN gateway, there 1is

the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

R B O H W W O R W™ R

(continues on next page)

3.4. Configuration file examples 191

Salt Documentation, Release 2019.2.2

(continued from previous page)

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)

or leave to the 0S defaults (-1), on Linux, typically disabled. Default True,R
—enabled.

#tcp_keepalive: True

How long before the first keepalive should be sent in seconds. Default 300

to send the first keepalive after 5 minutes, 0S default (-1) is typically 7200R
—seconds

on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.

#tcp_keepalive_idle: 300

How many lost probes are needed to consider the connection lost. Default -1

to use 0S defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_
—probes.

#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use 0S defaults, typically 75 seconds on Linux, see

/proc/sys/net/ipv4/tcp_keepalive_intvl.

#tcp_keepalive_intvl: -1

3.4.2 Example minion configuration file

#u###t Primary configuration settings #####
AARBHABBHARAABHBHRAAAAGHRRBHAAAAARHRRRAA AR

This configuration file is used to manage the behavior of the Salt Minion.
With the exception of the location of the Salt Master Server, values that are
commented out but have an empty line after the comment are defaults that need
not be set in the config. If there is no blank line after the comment, the
value is presented as an example and is not the default.

I OH B W

Per default the minion will automatically include all config files
from minion.d/*.conf (minion.d is a directory in the same directory
as the main minion config file).

#default_include: minion.d/*.conf

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt

Set http proxy information for the minion when doing requests
#proxy_host:

#proxy_port:

#proxy_username:

#proxy_password:

List of hosts to bypass HTTP proxy. This key does nothing unless proxy_host etc 1is
configured, it does not support any kind of wildcards.
#no_proxy: []

If multiple masters are specified in the 'master' setting, the default behavior

i1s to always try to connect to them in the order they are listed. If random_master
1s set to True, the order will be randomized upon Minion startup instead. This can
be helpful in distributing the load of many minions executing salt-call requests,

(continues on next page)

192 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

for example, from a cron job. If only one master is listed, this setting is ignored
and a warning will be logged.
#random_master: False

NOTE: Deprecated in Salt 2019.2.0. Use 'random_master' instead.
#master_shuffle: False

Minions can connect to multiple masters simultaneously (all masters

are "hot"), or can be configured to failover if a master becomes

unavailable. Multiple hot masters are configured by setting this

value to "str". Failover masters can be requested by setting

to "failover". MAKE SURE TO SET master_alive_interval if you are

using failover.

Setting master_type to 'disable' let's you have a running minion (with engines and
beacons) without a master connection

master_type: str

Poll interval in seconds for checking if the master is still there. Only

respected i1f master_type above is '"failover". To disable the interval entirely,
set the value to -1. (This may be necessary on machines which have high numbers
of TCP connections, such as load balancers.)

master_alive_interval: 30

If the minion is in multi-master mode and the master_type configuration option
is set to '"failover'", this setting can be set to "True" to force the minion

to fail back to the first master in the list if the first master is back online.
#master_failback: False

If the minion is in multi-master mode, the "master_type" configuration is set to
"failover", and the "master_failback" option is enabled, the master failback

interval can be set to ping the top master with this interval, in seconds.
#master_failback_interval: O

Set whether the minion should connect to the master via IPv6:
#ipv6: False

Set the number of seconds to wait before attempting to resolve

the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.

retry_dns: 30

HoH B R

Set the number of times to attempt to resolve

the master hostname if name resolution fails. Defaults to None,
which will attempt the resolution indefinitely.
retry_dns_count: 3

H o W R

Set the port used by the master reply and authentication server.
#master_port: 4506

The user to run salt.
#user: root

The user to run salt remote execution commands as via sudo. If this option 1is
enabled then sudo will be used to change the active user executing the remote
command. If enabled the user will need to be allowed access via the sudoers

file for the user that the salt minion is configured to run as. The most

(continues on next page)

3.4. Configuration file examples 193

Salt Documentation, Release 2019.2.2

(continued from previous page)

common option would be to use the root user. If this option is set the user

option should also be set to a non-root user. If migrating from a root minion
to a non root minion the minion cache should be cleared and the minion pki

directory will need to be changed to the ownership of the new user.
#sudo_user: root

Specify the location of the daemon process ID file.
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The path to the minion's configuration file.
#conf_file: /etc/salt/minion

The directory to store the pki information in
#pki_dir: /etc/salt/pki/minion

Explicitly declare the id for this minion to use, if left commented the 1id
will be the hostname as returned by the python call: socket.getfqdn()
Since salt uses detached ids it is possible to run multiple minions on the
same machine but with different ids, this can be useful for salt compute
clusters.
#1id:

Cache the minion id to a file when the minion's id is not statically defined
in the minion config. Defaults to "True". This setting prevents potential
problems when automatic minion id resolution changes, which can cause the
minion to lose connection with the master. To turn off minion id caching,
set this config to " ‘False'’
#minion_1id_caching: True

H R B W R

Append a domain to a hostname in the event that it does not exist. This is
useful for systems where socket.getfqdn() does not actually result in a

FQDN (for instance, Solaris).

#append_domain:

Custom static grains for this minion can be specified here and used in SLS
files just like all other grains. This example sets 4 custom grains, with
the 'roles' grain having two values that can be matched against.

#grains:

roles:

- webserver

- memcache

deployment: datacenter4
cabinet: 13

cab_u: 14-15

#

#

#

Where cache data goes.
This data may contain sensitive data and should be protected accordingly.
#cachedir: /var/cache/salt/minion

Append minion_id to these directories. Helps with
multiple proxies and minions running on the same machine.
Allowed elements in the list: pki_dir, cachedir, extension_modules

(continues on next page)

194 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

Normally not needed unless running several proxies and/or minions on the samel
—machine

Defaults to ['cachedir'] for proxies, [] (empty list) for regular minions
#append_minionid_config_dirs:

Verify and set permissions on configuration directories at startup.
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this

can be a good way to keep track of jobs the minion has executed

(on the minion side). By default this feature is disabled, to enable, set
cache_jobs to True.

#cache_jobs: False

Set the directory used to hold unix sockets.
#sock_dir: /var/run/salt/minion

The minion can take a while to start up when lspci and/or dmidecode is used
to populate the grains for the minion. Set this to False if you do not need
GPU hardware grains for your minion.

enable_gpu_grains: True

T OH W W

Set the default outputter used by the salt-call command. The default 1is
"nested".
#output: nested

To set a list of additional directories to search for salt outputters, set the
outputter_dirs option.
#outputter_dirs: []

By default output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

Backup files that are replaced by file.managed and file.recurse under
"cachedir'/file_backup relative to their original location and appended
with a timestamp. The only valid setting is "minion'". Disabled by default.

Alternatively this can be specified for each file in state files:
/etc/ssh/sshd_config:
file.managed:
- source: salt://ssh/sshd_config
- backup: minion

o W OH KR W R R W™ R

#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will

continuously attempt to reconnect until successful. This is the time, 1in
seconds, between those reconnection attempts.

#acceptance_wait_time: 10

If this 1s nonzero, the time between reconnection attempts will increase by

(continues on next page)

3.4. Configuration file examples 195

Salt Documentation, Release 2019.2.2

(continued from previous page)

acceptance_wait_time seconds per iteration, up to this maximum. If this 1is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0O

If the master rejects the minion's public key, retry instead of exiting.
Rejected keys will be handled the same as waiting on acceptance.
#rejected_retry: False

When the master key changes, the minion will try to re-auth itself to receive

the new master key. In larger environments this can cause a SYN flood on the

master because all minions try to re-auth immediately. To prevent this and

have a minion wait for a random amount of time, use this optional parameter.

The wait-time will be a random number of seconds between 0 and the defined value.
#random_reauth_delay: 60

To avoid overloading a master when many minions startup at once, a randomized
delay may be set to tell the minions to wait before connecting to the master.
This value is the number of seconds to choose from for a random number. For
example, setting this value to 60 will choose a random number of seconds to delay
on startup between zero seconds and sixty seconds. Setting to '0' will disable
this feature.
random_startup_delay: 0

IR H W OB R R

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the timeout value,

in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master
is under unusually heavy load, this should be left at the default.

#auth_timeout: 60

EIESE -

Number of consecutive SaltReqTimeoutError that are acceptable when trying to
authenticate.
#auth_tries: 7

The number of attempts to connect to a master before giving up.

Set this to -1 for unlimited attempts. This allows for a master to have
downtime and the minion to reconnect to it later when it comes back up.
In 'failover' mode, it is the number of attempts for each set of masters.
In this mode, it will cycle through the list of masters for each attempt.

This is different than auth_tries because auth_tries attempts to
retry auth attempts with a single master. auth_tries is under the
assumption that you can connect to the master but not gain
authorization from it. master_tries will still cycle through all
the masters in a given try, so it is appropriate if you expect
occasional downtime from the master(s).

#master_tries: 1

HoF P O H W W OH W W ™ W

If authentication fails due to SaltReqTimeoutError during a ping_interval,
cause sub minion process to restart.
#auth_safemode: False

Ping Master to ensure connection is alive (minutes).
#ping_1interval: O

(continues on next page)

196 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

TR OFH W O W W™ R

B R I T T e o T T T T i e i TR N T

To auto recover minions i1f master changes IP address (DDNS)
auth_tries: 10
auth_safemode: False
ping_interval: 2

Minions won't know master is missing until a ping fails. After the ping fail,
the minion will attempt authentication and likely fails out and cause a restart.
When the minion restarts it will resolve the masters IP and attempt to reconnect.

If you don't have any problems with syn-floods, don't bother with the
three recon_x* settings described below, just leave the defaults!

The ZeroMQ pull-socket that binds to the masters publishing interface tries

to reconnect immediately, if the socket is disconnected (for example if

the master processes are restarted). In large setups this will have all

minions reconnect immediately which might flood the master (the ZeroMQ-default

is usually a 100ms delay). To prevent this, these three recon_x settings

can be used.

recon_default: the interval in milliseconds that the socket should wait before
trying to reconnect to the master (1000ms = 1 second)

recon_max: the maximum time a socket should wait. each interval the time to wait
is calculated by doubling the previous time. if recon_max is reached,
it starts again at recon_default. Short example:

reconnect 1: the socket will wait 'recon_default' milliseconds
reconnect 2: 'recon_default' * 2

reconnect 3: ('recon_default' x 2) % 2

reconnect 4: value from previous interval * 2

reconnect 5: value from previous interval * 2

reconnect x: if value >= recon_max, it starts again with recon_default

recon_randomize: generate a random wait time on minion start. The wait time will
be a random value between recon_default and recon_default +
recon_max. Having all minions reconnect with the same recon_default
and recon_max value kind of defeats the purpose of being able to
change these settings. If all minions have the same values and your
setup is quite large (several thousand minions), they will still
flood the master. The desired behavior is to have timeframe within
all minions try to reconnect.

Example on how to use these settings. The goal: have all minions reconnect within a
60 second timeframe on a disconnect.

recon_default: 1000

recon_max: 59000

recon_randomize: True

Each minion will have a randomized reconnect value between 'recon_default’
and 'recon_default + recon_max', which in this example means between 1000ms
60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random
value is 11 seconds (or 11000ms).

reconnect 1: wait 11 seconds

reconnect 2: wait 22 seconds

reconnect 3: wait 33 seconds

reconnect 4: wait 44 seconds

(continues on next page)

3.4. Configuration file examples 197

Salt Documentation, Release 2019.2.2

(continued from previous page)

wait 55 seconds

wait time is bigger than 60 seconds (recon_default + recon_max)
wait 11 seconds

wait 22 seconds

wait 33 seconds

etc.

reconnect
reconnect
reconnect
reconnect
reconnect
reconnect

X © o NO O

#

#

#

#

#

#

#

In a setup with ~6000 thousand hosts these settings would average the reconnects
to about 100 per second and all hosts would be reconnected within 60 seconds.
recon_default: 100
recon_max: 5000

recon_randomize: False
#
#
#
#
#
#

The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to 1
second on the minion scheduler.

loop_interval: 1

Some installations choose to start all job returns in a cache or a returner

and forgo sending the results back to a master. In this workflow, jobs

are most often executed with --async from the Salt CLI and then results

are evaluated by examining job caches on the minions or any configured returners.
WARNING: Setting this to False will xxdisablex* returns back to the master.
#pub_ret: True

O R B R

The grains can be merged, instead of overridden, using this option.

This allows custom grains to defined different subvalues of a dictionary

grain. By default this feature is disabled, to enable set grains_deep_merge
to " True'’

#grains_deep_merge: False

The grains_refresh_every setting allows for a minion to periodically check
its grains to see if they have changed and, if so, to inform the master
of the new grains. This operation is moderately expensive, therefore

care should be taken not to set this value too low.

Note: This value is expressed in __minutes__!

A value of 10 minutes is a reasonable default.

TR OB O K W O K W™ R

If the value is set to zero, this check is disabled.
#grains_refresh_every: 1

Cache grains on the minion. Default is False.
#grains_cache: False

Cache rendered pillar data on the minion. Default is False.

This may cause 'cachedir'/pillar to contain sensitive data that should be
protected accordingly.

#minion_pillar_cache: False

Grains cache expiration, in seconds. If the cache file is older than this
number of seconds then the grains cache will be dumped and fully re-populated
with fresh data. Defaults to 5 minutes. Will have no effect if 'grains_cache’

(continues on next page)

198 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

1s not enabled.
grains_cache_expiration: 300

H

Determines whether or not the salt minion should run scheduled mine updates.
Defaults to "True". Set to "False" to disable the scheduled mine updates
(this essentially just does not add the mine update function to the minion's
scheduler).

#mine_enabled: True

H o B R

Determines whether or not scheduled mine updates should be accompanied by a job
return for the job cache. Defaults to "False". Set to "True" to include job

returns in the job cache for mine updates.

#mine_return_job: False

Example functions that can be run via the mine facility
NO mine functions are established by default.

Note these can be defined in the minion's pillar as well.
#mine_functions:

test.ping: []

network.ip_addrs:

interface: etho

cidr: '10.0.0.0/8'

The number of minutes between mine updates.
#mine_interval: 60

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: 1ipc

Overwrite the default tcp ports used by the minion when ipc_mode is set to 'tcp'
#tcp_pub_port: 4510
#tcp_pull_port: 4511

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the

minion event bus. The value is expressed in bytes.

#max_event_size: 1048576

When a minion starts up it sends a notification on the event bus with a tag

that looks like this: ‘salt/minion/<minion_1id>/start’. For historical reasons
the minion also sends a similar event with an event tag like this:

“minion_start'. This duplication can cause a lot of clutter on the event bus

when there are many minions. Set ‘enable_legacy_startup_events: False' 1in the
minion config to ensure only the ‘salt/minion/<minion_id>/start’ events are

sent. Beginning with the ‘Sodium’ Salt release this option will default to

‘False’

#enable_legacy_startup_events: True

To detect failed master(s) and fire events on connect/disconnect, set
master_alive_1interval to the number of seconds to poll the masters for
connection events.

#

#master_alive_interval: 30

The minion can include configuration from other files. To enable this,

(continues on next page)

3.4. Configuration file examples 199

Salt Documentation, Release 2019.2.2

(continued from previous page)

pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include a config file from some other path:
include: /etc/salt/extra_config

o W H K W O KR W™ R

Include config from several files and directories:
#include:

- Jetc/salt/extra_config

- Jetc/roles/webserver

The syndic minion can verify that it is talking to the correct master via the
key fingerprint of the higher-level master with the "syndic_finger" config.
#syndic_finger: "'

#

#

#

Minion module management HitH##
HARGHARBHARAABHBRRAAARGRRRBHRAAAARRHRRAA AR

Disable specific modules. This allows the admin to limit the level of

access the master has to the minion. The default here is the empty list,

below is an example of how this needs to be formatted in the config file
#disable_modules:

- cmdmod

- test

#disable_returners: []

This is the reverse of disable_modules. The default, like disable_modules, is thel
—empty list,

but if this option is set to xanything* then *onlyx those modules will load.

Note that this is a very large hammer and it can be quite difficult to keep theR
—minion working

the way you think it should since Salt uses many modules internally itself. At ol
—bare minimum

you need the following enabled or else the minion won't start.

#whitelist_modules:

- cmdmod

- test

- config

Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.
Specify a list of extra directories to search for minion modules and
returners. These paths must be fully qualified!

#module_dirs: []

#returner_dirs: []

#states_dirs: []

#render_dirs: []

#utils_dirs: []

#

A module provider can be statically overwritten or extended for the minion
via the providers option, in this case the default module will be

overwritten by the specified module. In this example the pkg module will

HHOH W R

(continues on next page)

200 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

be provided by the yumpkg5 module instead of the system default.

#providers:
pkg: yumpkg5h
#

Enable Cython modules searching and loading. (Default: False)

#cython_enable: False

#

Specify a max size (in bytes) for modules on import. This feature is currently
only supported on *nix operating systems and requires psutil.

modules_max_memory: -1

HH#HH#H State Management Settings #Hittn#
AARAHBHHRAAAARHHBRRAAAARRBRRRAAAA AR R A

The default renderer to use in SLS files. This is configured as a
pipe-delimited expression. For example, jinja|yaml will first run jinja
templating on the SLS file, and then load the result as YAML. This syntax 1is
documented in further depth at the following URL:

https://docs.saltstack.com/en/latest/ref/renderers/#composing-renderers
NOTE: The "shebang" prefix (e.g. "#!jinja|yaml'") described in the
documentation linked above is for use in an SLS file to override the default

renderer, it should not be used when configuring the renderer here.

renderer: jinja|yaml

o R W H W W OH W W W ®

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution. Defaults to False.

#failhard: False

#

Reload the modules prior to a highstate run.

#autoload_dynamic_modules: True

#

clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module 1is
not on the master it will be deleted from the minion. By default, this is
enabled and can be disabled by changing this value to False.
#clean_dynamic_modules: True
#
#
#
#
#

Normally, the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.

#environment: None

#

Isolates the pillar environment on the minion side. This functions the same

as the environment setting, but for pillar instead of states.

#pillarenv: None

#

Set this option to True to force the pillarenv to be the same as the

effective saltenv when running states. Note that if pillarenv is specified,

this option will be ignored.

#pillarenv_from_saltenv: False

#

Set this option to 'True' to force a 'KeyError' to be raised whenever an

(continues on next page)

3.4. Configuration file examples 201

Salt Documentation, Release 2019.2.2

(continued from previous page)

attempt to retrieve a named value from pillar fails. When this option is set
to 'False', the failed attempt returns an empty string. Default is 'False'.
#pillar_raise_on_missing: False

#

If using the local file directory, then the state top file name needs to be
defined, by default this is top.sls.

#state_top: top.sls

#

Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate

'sls' -- Read in the sls_list option and execute the named sls files

'top' -- Read top_file option and execute based on that file on the Master
#startup_states: '

#

List of states to run when the minion starts up if startup_states is 'sls':
#sls_list:

- edit.vim

- hyper

#

Top file to execute if startup_states is 'top':

#top_file: "'

Automatically aggregate all states that have support for mod_aggregate by
setting to True. Or pass a list of state module names to automatically
aggregate just those types.

#
#
#
#
state_aggregate:
- pkg

#

#state_aggregate: False

witHH# File Directory Settings HittH#
AARBHBHBHAAARBHBRRAAARGRBRBHAAAAARRRBRAA AR
The Salt Minion can redirect all file server operations to a local directory,

this allows for the same state tree that is on the master to be used if

copied completely onto the minion. This is a literal copy of the settings on
the master but used to reference a local directory on the minion.

Set the file client. The client defaults to looking on the master server for
files, but can be directed to look at the local file directory setting

defined below by setting it to "local"”. Setting a local file_client runs the
minion in masterless mode.

#file_client: remote

The file directory works on environments passed to the minion, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be

reliably ensured. A base environment is required to house the top file.

Example:

file_roots:

base:

- /srv/salt/

dev:

- /srv/salt/dev/services

- /srv/salt/dev/states

prod:

(continues on next page)

202 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

- /srv/salt/prod/services
- /srv/salt/prod/states

file_roots:
base:
- /srv/salt

Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True

by default. Currently this only applies to the default roots
fileserver_backend.

fileserver_followsymlinks: False

#
#
#
#
#
#
Uncomment the line below if you do not want symlinks to be

treated as the files they are pointing to. By default this is set to

False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
#fileserver_ignoresymlinks: True

#

#

#

#

#

#

#

#

By default, the Salt fileserver recurses fully into all defined environments

to attempt to find files. To limit this behavior so that the fileserver only
traverses directories with SLS files and special Salt directories like _modules,
enable the option below. This might be useful for installations where a file root
has a very large number of files and performance is negatively impacted. Default
is False.

fileserver_limit_traversal: False

The hash_type is the hash to use when discovering the hash of a file on
the local fileserver. The default is sha256, but md5, shal, sha224, sha384
and sha512 are also supported.

WARNING: While md5 and shal are also supported, do not use them due to the
high chance of possible collisions and thus security breach.

Warning: Prior to changing this value, the minion should be stopped and all
Salt caches should be cleared.
#hash_type: sha256

FHoRH W OH R W W R R

The Salt pillar is searched for locally if file_client is set to local. If
this i1s the case, and pillar data is defined, then the pillar_roots need to
also be configured on the minion:

#pillar_roots:

base:

- /srv/pillar

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100

#file_recv_max_size: 100

#

#

HA#HEHS Security settings #HE#AH#
AARRHRRHHAAARRHRRRHAAAA AR RHAAAA AR RBHAA A

Enable "open mode", this mode still maintains encryption, but turns off

authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!

(continues on next page)

3.4. Configuration file examples 203

Salt Documentation, Release 2019.2.2

(continued from previous page)

#open_mode: False

The size of key that should be generated when creating new keys.
#keysize: 2048

Enable permissive access to the salt keys. This allows you to run the

master or minion as root, but have a non-root group be given access to

your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
#permissive_pki_access: False

The state_verbose and state_output settings can be used to change the way

state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False

all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting controls which results will be output full multi line
full, terse - each state will be full/terse

mixed - only states with errors will be full

changes - states with changes and errors will be full

full_1id, mixed_id, changes_id and terse_1id are also allowed;

when set, the state ID will be used as name in the output

#state_output: full

The state_output_diff setting changes whether or not the output from

successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

The state_output_profile setting changes whether profile information
will be shown for each state run.
#state_output_profile: True

Fingerprint of the master public key to validate the identity of your Salt master
before the initial key exchange. The master fingerprint can be found by running

"salt-key -f master.pub" on the Salt master.

#master_finger: "'

Use TLS/SSL encrypted connection between master and minion.

Can be set to a dictionary containing keyword arguments corresponding to Python's
'ssl.wrap_socket' method.

Default i1s None.

#ssl:

keyfile: <path_to_keyfile>

certfile: <path_to_certfile>

ssl_version: PROTOCOL_TLSv1_2

Grains to be sent to the master on authentication to check if the minion's key
will be accepted automatically. Needs to be configured on the master.
#autosign_grains:

- uuid
- server_1id
HEHR#HE Reactor Settings ##tHH#

(continues on next page)

204 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

AUBHBHBHHAAAABBRBR R RRAAARB R BB R R HAARARBRH
Define a salt reactor. See https://docs.saltstack.com/en/latest/topics/reactor/
#reactor: []

#Set the TTL for the cache of the reactor configuration.
#reactor_refresh_interval: 60

#Configure the number of workers for the runner/wheel in the reactor.
#reactor_worker_threads: 10

#Define the queue size for workers in the reactor.
#reactor_worker_hwm: 10000

HitHH#HH Thread settings #itH##
AARRHHBHHAAAARRHRRBHAAAAGRRBRBRAAAAARRHRRBHAA A

Disable multiprocessing support, by default when a minion receives a
publication a new process is spawned and the command is executed therein.

WARNING: Disabling multiprocessing may result in substantial slowdowns

when processing large pillars. See https://github.com/saltstack/salt/issues/38758
for a full explanation.

#multiprocessing: True

HoH W W R R

Limit the maximum amount of processes or threads created by salt-minion.

This i1s useful to avoid resource exhaustion in case the minion receives more
publications than it is able to handle, as it limits the number of spawned

processes or threads. -1 is the default and disables the limit.
#process_count_max: -1

witHH# Logging settings HitHH##
AARBHBHBHAAARBHBRRAAARGRBRBHAAAAARRRBRAA AR

The location of the minion log file

The minion log can be sent to a regular file, local path name, or network

location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
““file:///dev/log' "), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/minion

#log_file: file:///dev/log

#log_file: udp://loghost:10514

#

#log_file: /var/log/salt/minion

#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', 'info', 'warning', 'error', 'critical’.

#
#
#
The following log levels are considered INSECURE and may log sensitive data:
['garbage', 'trace', 'debug']
#
#
#

Default: 'warning'
log_level: warning

The level of messages to send to the log file.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.

(continues on next page)

3.4. Configuration file examples 205

Salt Documentation, Release 2019.2.2

(continued from previous page)

If using 'log_granular_levels' this must be set to the highest desired level.
Default: 'warning'
#log_level_logfile:

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.hhtml#time.strftime
#log_datefmt: '%H:%M:%S"'

#log_datefmt_logfile: '%Y-9%m-%d %H:%M:%S"'

The format of the console logging messages. Allowed formatting options can

be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#

Console log colors are specified by these additional formatters:

#

%(colorlevel)s

%(colorname)s

%(colorprocess)s

%(colormsg)s

#

Since it is desirable to include the surrounding brackets, '[' and ']', 1in

the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.

#

#log_fmt_console: '%(colorlevel)s %(colormsg)s'

#log_fmt_console: '[%(levelname)-8s] %(message)s’

#

#log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:

log_granular_levels:

'salt': 'warning'

'salt.modules': 'debug'
#

#log_granular_levels: {}

To diagnose issues with minions disconnecting or missing returns, ZeroMQ
supports the use of monitor sockets to log connection events. This
feature requires ZeroMQ 4.0 or higher.

To enable ZeroMQ monitor sockets, set 'zmg_monitor' to 'True' and log at a
debug level or higher.

A sample log event is as follows:

[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': 'EVENT_DISCONNECTED'}

All events logged will include the string 'ZeroMQ event'. A connection event
should be logged as the minion starts up and initially connects to the
master. If not, check for debug log level and that the necessary version of
ZeroMQ 1is installed.

FHoRH W OH K W OH R W OH R W OH K W™ ™R

#zmq_monitor: False

(continues on next page)

206 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

Number of times to try to authenticate with the salt master when reconnecting
to the master
#tcp_authentication_retries: 5

Hi##H Module configuration #HitH
HERHAHRARAHARRARARABRGRARARARBRBRARABRBRGSRAH

Salt allows for modules to be passed arbitrary configuration data, any data
passed here in valid yaml format will be passed on to the salt minion modules
for use. It is STRONGLY recommended that a naming convention be used in which
the module name is followed by a . and then the value. Also, all top level
data must be applied via the yaml dict construct, some examples:

You can specify that all modules should run in test mode:
test: True

o FH W O O W R

A simple value for the test module:

#test.foo: foo

#

A list for the test module:

#test.bar: [baz,quo]

#

A dict for the test module:

#test.baz: {spam: sausage, cheese: bread}

#

#

HitH Update settings #itH##H
HABARRBAABAARARARBRARBAABBAARRARBRARBRARBHRARH

Using the features in Esky, a salt minion can both run as a frozen app and
be updated on the fly. These options control how the update process

(saltutil.update()) behaves.
#
#

The url for finding and downloading updates. Disabled by default.
#update_url: False
#
The list of services to restart after a successful update. Empty by default.
#update_restart_services: []

HAR#AH Keepalive settings HA#A A
AARRHRRBHAAAAGHRRRHAAAABHRRRAAARARRRRRAAAARRH

ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the 0S. If connections between the minion and the master pass through

a state tracking device such as a firewall or VPN gateway, there 1is

the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

TR H W R

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)

or leave to the 0S defaults (-1), on Linux, typically disabled. Default True,R
—enabled.

#tcp_keepalive: True

How long before the first keepalive should be sent in seconds. Default 300

to send the first keepalive after 5 minutes, 0S default (-1) is typically 7200H
—seconds

on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.

(continues on next page)

3.4. Configuration file examples 207

Salt Documentation, Release 2019.2.2

(continued from previous page)

#tcp_keepalive_idle: 300

How many lost probes are needed to consider the connection lost. Default -1

to use 0S defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_
—probes.

#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use 0S defaults, typically 75 seconds on Linux, see

/proc/sys/net/ipv4/tcp_keepalive_intvl.

#tcp_keepalive_intvl: -1

Hi##H Windows Software settings #tH i
HERHAHRARARAARARARABHARGRARABRBRARARRB AR

Location of the repository cache file on the master:
#win_repo_cachefile: 'salt://win/repo/winrepo.p’

H#H#HH? Returner settings HH#HHHH
HABAARBAABHAHBAABRARBRARBAABRARARARRRAHRHAHRHA

Default Minion returners. Can be a comma delimited string or a list:
#

#return: mysql

#

#return: mysql,slack, redis

#

#return:

- mysql

- hipchat

- slack

Hus##H Miscellaneous settings A

HHBARBBABBHRABRAABRARBRABRARBBHRBRARBRARRH AR RA

Default match type for filtering events tags: startswith, endswith, find, regex,R®
—fnmatch

#event_match_type: startswith

3.4.3 Example proxy minion configuration file

Primary configuration settings
AARGHBRBHAAAAABHRRRAAARGRBRBAAAAARRRRRAA AR

This configuration file is used to manage the behavior of all Salt Proxy
Minions on this host.

With the exception of the location of the Salt Master Server, values that are
commented out but have an empty line after the comment are defaults that need
not be set in the config. If there is no blank line after the comment, the
value is presented as an example and is not the default.

o W B R

Per default the minion will automatically include all config files
from minion.d/*.conf (minion.d is a directory in the same directory
as the main minion config file).

#default_include: minion.d/*.conf

(continues on next page)

208 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

Backwards compatibility option for proxymodules created before 2015.8.2
This setting will default to 'False' in the 2016.3.0 release

Setting this to True adds proxymodules to the __opts__ dictionary.

This breaks several Salt features (basically anything that serializes

opts__ over the wire) but retains backwards compatibility.
#add_proxymodule_to_opts: True

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt

If a proxymodule has a function called 'grains', then call it during
regular grains loading and merge the results with the proxy's grains
dictionary. Otherwise it is assumed that the module calls the grains
function in a custom way and returns the data elsewhere

Default to False for 2016.3 and 2016.11. Switch to True for 2017.7.0.
proxy_merge_grains_in_module: True

EIRE

If a proxymodule has a function called 'alive' returning a boolean
flag reflecting the state of the connection with the remove device,
when this option is set as True, a scheduled job on the proxy will
try restarting the connection. The polling frequency depends on the
next option, 'proxy_keep_alive_interval'. Added in 2017.7.0.
proxy_keep_alive: True

HoH W OH R R

The polling interval (in minutes) to check if the underlying connection
with the remote device is still alive. This option requires
'proxy_keep_alive' to be configured as True and the proxymodule to
implement the 'alive' function. Added in 2017.7.0.
proxy_keep_alive_interval: 1

H R B W R

By default, any proxy opens the connection with the remote device when
initialized. Some proxymodules allow through this option to open/close
the session per command. This requires the proxymodule to have this
capability. Please consult the documentation to see if the proxy type
used can be that flexible. Added in 2017.7.0.

proxy_always_alive: True

HTHOoFH W W R

If multiple masters are specified in the 'master' setting, the default behavior

1s to always try to connect to them in the order they are listed. If random_masterR
—1S

set to True, the order will be randomized instead. This can be helpful inR
—distributing

the load of many minions executing salt-call requests, for example, from a cron job.
If only one master is listed, this setting is ignored and a warning will be logged.
#random_master: False

Minions can connect to multiple masters simultaneously (all masters
are "hot'"), or can be configured to failover if a master becomes
unavailable. Multiple hot masters are configured by setting this
value to "str'". Failover masters can be requested by setting

to "failover". MAKE SURE TO SET master_alive_interval if you are
using failover.

master_type: str

HToH W O K W™ R

(continues on next page)

3.4. Configuration file examples 209

Salt Documentation, Release 2019.2.2

(continued from previous page)

Poll interval in seconds for checking if the master is still there. Only
respected if master_type above is '"failover'.
master_alive_interval: 30

Set whether the minion should connect to the master via IPv6:
#1pv6: False

Set the number of seconds to wait before attempting to resolve

the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.

retry_dns: 30

B

Set the port used by the master reply and authentication server.
#master_port: 4506

The user to run salt.
#user: root

Setting sudo_user will cause salt to run all execution modules under an sudo
to the user given in sudo_user. The user under which the salt minion process
itself runs will still be that provided in the user config above, but all

execution modules run by the minion will be rerouted through sudo.
#sudo_user: saltdev

Specify the location of the daemon process ID file.
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The directory to store the pki information in
#pki_dir: /etc/salt/pki/minion

Where cache data goes.
This data may contain sensitive data and should be protected accordingly.
#cachedir: /var/cache/salt/minion

Append minion_1id to these directories. Helps with

multiple proxies and minions running on the same machine.

Allowed elements in the list: pki_dir, cachedir, extension_modules

Normally not needed unless running several proxies and/or minions on the samel
—machine

Defaults to ['cachedir'] for proxies, [] (empty list) for regular minions

append_minionid_config_dirs:

- cachedir

Verify and set permissions on configuration directories at startup.
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this

can be a good way to keep track of jobs the minion has executed

(on the minion side). By default this feature is disabled, to enable, set
cache_jobs to True.

(continues on next page)

210 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

#cache_jobs: False

Set the directory used to hold unix sockets.
#sock_dir: /var/run/salt/minion

Set the default outputter used by the salt-call command. The default 1is

"nested".

#output: nested

#

By default output is colored. To disable colored output, set the color value
to False.

#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

Backup files that are replaced by file.managed and file.recurse under
"cachedir'/file_backup relative to their original location and appended
with a timestamp. The only valid setting is "minion'". Disabled by default.

Alternatively this can be specified for each file in state files:
/etc/ssh/sshd_config:
file.managed:
- source: salt://ssh/sshd_config
- backup: minion

o R W H H W W B W

#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will

continuously attempt to reconnect until successful. This is the time, 1in
seconds, between those reconnection attempts.

#acceptance_wait_time: 10

If this is nonzero, the time between reconnection attempts will increase by
acceptance_wait_time seconds per iteration, up to this maximum. If this 1is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0O

If the master rejects the minion's public key, retry instead of exiting.
Rejected keys will be handled the same as waiting on acceptance.
#rejected_retry: False

When the master key changes, the minion will try to re-auth itself to receive

the new master key. In larger environments this can cause a SYN flood on the

master because all minions try to re-auth immediately. To prevent this and

have a minion wait for a random amount of time, use this optional parameter.

The wait-time will be a random number of seconds between 0 and the defined value.
#random_reauth_delay: 60

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the timeout value,

in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master
is under unusually heavy load, this should be left at the default.

#auth_timeout: 60

TR B W R

(continues on next page)

3.4. Configuration file examples 211

Salt Documentation, Release 2019.2.2

(continued from previous page)

Number of consecutive SaltReqTimeoutError that are acceptable when trying to
authenticate.
#auth_tries: 7

If authentication fails due to SaltReqTimeoutError during a ping_interval,
cause sub minion process to restart.
#auth_safemode: False

Ping Master to ensure connection is alive (minutes).
#ping_1interval: O

To auto recover minions i1f master changes IP address (DDNS)
auth_tries: 10
auth_safemode: False
ping_interval: 90

#
#
#
#
#
Minions won't know master is missing until a ping fails. After the ping fail,

the minion will attempt authentication and likely fails out and cause a restart.
When the minion restarts it will resolve the masters IP and attempt to reconnect.
If you don't have any problems with syn-floods, don't bother with the

three recon_x* settings described below, just leave the defaults!

The ZeroMQ pull-socket that binds to the masters publishing interface tries

to reconnect immediately, if the socket is disconnected (for example if

the master processes are restarted). In large setups this will have all

minions reconnect immediately which might flood the master (the ZeroMQ-default

is usually a 100ms delay). To prevent this, these three recon_x settings

can be used.

recon_default: the interval in milliseconds that the socket should wait before
trying to reconnect to the master (1000ms = 1 second)

recon_max: the maximum time a socket should wait. each interval the time to wait
is calculated by doubling the previous time. if recon_max is reached,
it starts again at recon_default. Short example:

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

reconnect the socket will wait 'recon_default' milliseconds
reconnect "recon_default' * 2

('recon_default' x 2) x 2

value from previous interval * 2

value from previous interval * 2

#
#
#
#
#
#
#
#
#
#
#
#
#
#

if value >= recon_max, it starts again with recon_default

reconnect
reconnect
reconnect
reconnect

X N WN KR

recon_randomize: generate a random wait time on minion start. The wait time will
be a random value between recon_default and recon_default +
recon_max. Having all minions reconnect with the same recon_default
and recon_max value kind of defeats the purpose of being able to
change these settings. If all minions have the same values and your
setup is quite large (several thousand minions), they will still
flood the master. The desired behavior is to have timeframe within
all minions try to reconnect.

Example on how to use these settings. The goal: have all minions reconnect within a
60 second timeframe on a disconnect.
recon_default: 1000

(continues on next page)

212 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

recon_max: 59000
recon_randomize: True

#

#

#

Each minion will have a randomized reconnect value between 'recon_default'
and 'recon_default + recon_max', which in this example means between 1000ms
60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random

value is 11 seconds (or 11000ms).

reconnect wait 11 seconds

reconnect wait 22 seconds

reconnect wait 33 seconds

reconnect wait 44 seconds

reconnect wait 55 seconds

reconnect wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect wait 11 seconds

reconnect wait 22 seconds
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

=

reconnect wait 33 seconds
reconnect etc.

X OO N UuNWwN

In a setup with ~6000 thousand hosts these settings would average the reconnects
to about 100 per second and all hosts would be reconnected within 60 seconds.
recon_default: 100

recon_max: 5000

recon_randomize: False

The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to a
sane 60 seconds, but if the minion scheduler needs to be evaluated more
often lower this value

loop_1interval: 60

The grains_refresh_every setting allows for a minion to periodically check
its grains to see if they have changed and, if so, to inform the master

of the new grains. This operation is moderately expensive, therefore

care should be taken not to set this value too low.

_minutes__!

#

#

#

#

#

Note: This value is expressed in
#

A value of 10 minutes is a reasonable default.

#

If the value i1s set to zero, this check is disabled.
#grains_refresh_every: 1

Cache grains on the minion. Default is False.
#grains_cache: False

Grains cache expiration, in seconds. If the cache file is older than this
number of seconds then the grains cache will be dumped and fully re-populated
with fresh data. Defaults to 5 minutes. Will have no effect if 'grains_cache'
i1s not enabled.

grains_cache_expiration: 300

R W W R

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: 1ipc

(continues on next page)

3.4. Configuration file examples 213

Salt Documentation, Release 2019.2.2

(continued from previous page)

Overwrite the default tcp ports used by the minion when in tcp mode
#tcp_pub_port: 4510
#tcp_pull_port: 4511

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the

minion event bus. The value is expressed in bytes.

#max_event_size: 1048576

To detect failed master(s) and fire events on connect/disconnect, set
master_alive_1interval to the number of seconds to poll the masters for
connection events.

#

#master_alive_interval: 30

The minion can include configuration from other files. To enable this,

pass a list of paths to this option. The paths can be either relative or
absolute; 1if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include a config file from some other path:
include: /etc/salt/extra_config

Include config from several files and directories:
include:

- /Jetc/salt/extra_config

- Jetc/roles/webserver

HOoH OF O OH OH I OH K W OH K W W R R

RS

Minion module management HitH##
AARBUHHBBHAAAARBRRRBRAARBRRBBRAAA ARG BB BHRA AR

Disable specific modules. This allows the admin to limit the level of
access the master has to the minion.

#disable_modules: [cmd,test]

#disable_returners: []

#
Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.

Specify a list of extra directories to search for minion modules and

returners. These paths must be fully qualified!

#module_dirs: []

#returner_dirs: []

#states_dirs: []

#render_dirs: []

#utils_dirs: []

#

A module provider can be statically overwritten or extended for the minion

via the providers option, in this case the default module will be

overwritten by the specified module. In this example the pkg module will

be provided by the yumpkg5 module instead of the system default.

#providers:

pkg: yumpkg5h

(continues on next page)

214 Chapter 3. Configuring Salt

Salt Documentation, Release 2019.2.2

(continued from previous page)

#

Enable Cython modules searching and loading. (Default: False)

#cython_enable: False

#

Specify a max size (in bytes) for modules on import. This feature is currently
only supported on *nix operating systems and requires psutil.

modules_max_memory: -1

HH#HH#H State Management Settings #H#tHn#
AARRHHBHRAAAARHHBRRAAAARRBRBRRAAAA AR R RHRAA A

The default renderer to use in SLS files. This is configured as a
pipe-delimited expression. For example, jinja|yaml will first run jinja
templating on the SLS file, and then load the result as YAML. This syntax 1is
documented in further depth at the following URL:

https://docs.saltstack.com/en/latest/ref/renderers/#composing-renderers
NOTE: The "shebang" prefix (e.g. "#!jinja|yaml'") described in the
documentation linked above is for use in an SLS file to override the default

renderer, it should not be used when configuring the renderer here.

renderer: jinja|yaml

o R O OH H W W OH W W B W

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution. Defaults to False.

#failhard: False

#

Reload the modules prior to a highstate run.

#autoload_dynamic_modules: True

#

clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module 1is
not on the master it will be deleted from the minion. By default, this is
enabled and can be disabled by changing this value to False.
#clean_dynamic_modules: True

#
Normally, the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage

environments is to isolate via the top file.

#environment: None

#

If using the local file directory, then the state top file name needs to be
defined, by default this 1is top.sls.

#state_top: top.sls

#

Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate

'sls' —-- Read in the sls_list option and execute the named sls files

'top' -- Read top_file option and execute based on that file on the Master
#startup_states: '’

#

List of states to run when the minion starts up if startup_states is 'sls':
#sls_list:
- edit.vim

(continues on next page)

3.4. Configuration file examples 215

Salt Documentation, Release 2019.2.2

(continued from previous page)

- hyper

#

Top file to execut